

## Guía de estudio 5

Temas: Gradiente y Plano Tangente

**Profesor: Alexander Frank M.**Auxiliar: Maximiliano S. Lioi

 $oxed{\mathbf{P1}}$  Calcular el plano tangente al grafo de la función z=f(x,y) en el punto indicado

- (a)  $z = x^3 + y^3 6xy$ , en (1, 2, -3)
- (b)  $z = \cos(x) \sin(y)$ , en  $(0, \pi/2, 1)$
- (c)  $z = \ln(x^2 + 2y + 1) + \int_0^x \cos(t^2) dt$   $y > -\frac{1}{2}, x \in \mathbb{R}$ , en  $(0, 1, \ln(3))$

 $\boxed{\mathbf{P2}}$  Sea  $f:\mathbb{R}^2 \to \mathbb{R}$  continua y diferenciable. Sea  $G_f = \{(\vec{x}, f(\vec{x})) : \vec{x} \in \mathrm{Dom}(f)\}$  el grafo de f. Sea además  $F:\mathbb{R}^3 \to \mathbb{R}$  tal que F(x,y,z) = z - f(x,y).

- (a) Mostrar que  $G_f$  corresponde a un conjunto de nivel de F. Luego demostrar que  $\nabla F = \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right)$ .
- (b) Encontrar el vector normal y el plano tangente a  $G_f$  para la función  $(x,y) \mapsto f(x,y) = xy + ye^x$  en el punto (1,1).

 $\boxed{\textbf{P3}}$  Se pide encontrar el plano tangente al grafo de la función s en el punto  $(\vec{a}, s(\vec{a}))$ , donde  $\vec{a} = (1, 1)$ , sabiendo que se tienen las siguientes condiciones

- (i)  $s = q \circ p$ .
- (ii)  $p: \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en (1,1).
- (iii)  $q(x,y,z) = (\ln(x^2 + y^2), x^{\sqrt{y}}, e^{xyz})$  es diferenciable en p(1,1) = (1,1,0) y además

$$Dp(1,1) = \left(\begin{array}{cc} 2 & 0\\ -1 & 4\\ 1 & 3 \end{array}\right)$$

 $\boxed{\textbf{P4}} \text{ Sea la superficie dada por } S = \bigg\{ (x,y,z) \in \mathbb{R}^3 : z^2 + \Big( \sqrt{x^2 + y^2} - 2 \Big)^2 = 1 \bigg\}.$ 

- (i) Encuentre los planos tangentes a S en  $\left(0,2+\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$  y (0,1,0).
- (ii) Bosqueje la intersección de S con el plano  $\{x=0\}$  (es decir el plano y-z). En este bosquejo indique los puntos  $\left(0,2+\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right), (0,1,0)$  y dibuje los vectores normales a S en tales puntos.

Guía de estudio 5

 ${\bf P5}$  Considere la función  $f:{\mathbb R}^3 o {\mathbb R}$  definida por la fórmula

$$f(x, y, z) = \frac{e^{xy} + z^2}{1 + \cos^2(xy)}$$

Calcule  $\nabla f(x,y,z)$  y encuentre el plano tangente al grafo de f en el punto (x,y,z)=(0,3,2).

**P6** Considere las funciones  $f: \mathbb{R}^2 \to \mathbb{R}$  y  $g: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}$  definidas respectivamente por  $f(x,y) = e^{x-y}$  y  $g(x,y,z) = \ln \left(x^2 + y^2 + z^2\right)$ . Calcular el punto de intersección entre el plano tangente al grafo de f en (0,0) y la recta que pasa por (1,0,0) cuyo vector director es  $\nabla g(1,1,1)$ . **Ind**: Recordar que la ecuación paramétrica de una recta que pasa por  $(x_0,y_0,z_0)$  con vector director  $(d_1,d_2,d_3)$  es:

$$(x, y, z) = (x_0, y_0, z_0) + t(d_1, d_2, d_3) \quad t \in \mathbb{R}$$

**P7** Para a,b,c>0, considere el semi-casquete elipsoidal definido por la superficie  $\mathcal{E}^+:=\{(x,y,z)\in\mathbb{R}^3:x^2/a^2+y^2/b^2+z^2/c^2=1,z\geq 0\}$ . Sea  $(x_0,y_0,z_0)\in\mathcal{E}^+$ , pruebe entonces que el plano tangente a  $\mathcal{E}^+$ que pasa por el punto ( $x_0,y_0,z_0$ ) está dado por

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1$$

**P8** Considere la superficie  $S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z = 0\}.$ 

- (a) Encuentre el plano tangente a S en el punto  $(0, -\pi, \pi^2)$ .
- (b) Considere la curva  $\Gamma$  dada por la parametrización  $\sigma(t) := (t \operatorname{sen} t, t \operatorname{cos} t, t^2)$ . Pruebe que  $\Gamma \subset S$  y que pasa por  $(0, -\pi, \pi^2)$ . Para cual t ocurre esto último?.

**P9** Sea  $(x,y,z) \mapsto F(x,y,z) = \sqrt{x^2 + y^2} + \left(x^2 + y^2\right)^{3/2} - z$  y la superficie S definida por  $S = \{(x,y,z) \in \mathbb{R}^3 : F(x,y,z) = 0\}$ . Encontrar un vector  $\vec{v}$  normal a S en un punto cualquiera de la superficie  $(x,y,z) \neq (0,0,0)$ . Calcular el coseno del ángulo  $\theta$  formado por el vector  $\vec{v}$  y el eje OZ. Determine el límite de  $\cos\theta$  cuando  $(x,y,z) \to (0,0,0)$ .

 $oxed{\mathbf{P10}}$  Un abierto  $\Omega\subset\mathbb{R}^n$  se dice conexo por caminos si para todo par de puntos  $x,y\in\Omega$  existe una función  $\gamma:[0,1]\to\mathbb{R}^n$  diferenciable en [0,1] tal que

$$\gamma(0) = x$$
,  $\gamma(1) = y$ ,  $y\gamma(t) \in \Omega \quad \forall t \in [0, 1]$ 

esto es, un camino diferenciable que une los puntos x e y dentro de  $\Omega$ . Demuestre que si  $\Omega$  es conexo por caminos y  $f:\Omega\to\mathbb{R}$  es diferenciable en  $\Omega$  y satisface

$$\nabla f(x) = 0 \quad \forall x \in \Omega$$

entonces f es constante. De un contraejemplo a esta afirmación si  $\Omega$  no es conexo por caminos.

Ind: Fije un punto  $x_0 \in \Omega$  y considere para  $y \in \Omega$  un camino diferenciable  $\gamma(t)$  con  $\gamma(0) = x_0$  y  $\gamma(1) = y$ . Estudie  $t \mapsto \phi(t) = f(\gamma(t))$ .

Guía de estudio 5

2