

Auxiliar 3: Sucesiones y compacidad

Profesor: Alexander Frank M.

Auxiliar: Maximiliano S. Lioi

[P1] [C1 2019-2] Sea $K \subseteq \mathbb{R}^n$ un conjunto compacto. Definimos

$$diam(K) = \sup\{||x - y|| : x, y \in K\}$$

Muestre que existen dos puntos $\bar{x}, \bar{y} \in K$ tales que

$$||\bar{x} - \bar{y}|| = \operatorname{diam}(K)$$

Hint: Justifique que existen dos sucesiones $(x_n)_n$ e $(y_n)_n$ en K tales que $||x_n - y_n|| \to \text{diam}(K)$, luego utilice la compacidad de K.

P2 Estudie la convergencia de la sucesión $(x_n, y_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^2$ dada por

$$\forall n \in \mathbb{N}, \quad (x_n, y_n) := (\frac{2n^2 + (-1)^n}{3n^2}, ne^{-n}\sin\left(\frac{1}{n}\right))$$

P3 Considere la sucesión $(x_n, y_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^2$ definida por

$$\forall n \in \mathbb{N}, \quad (x_n, y_n) := \left(\frac{u_n(\cos(v_n) - 1)}{u_n^2 + v_n^2}\right), \frac{2u_n^{\alpha} + v_n^4}{|u_n| + 3|v_n|}\right)$$

donde $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}$ sucesiones reales tales que $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n = 0$ y $\alpha\in\mathbb{R}$

- 1. Muestre que $(x_n, y_n)_{n \in \mathbb{N}}$ converge cuando $\alpha = 2$ e indique su límite
- 2. ¿Qué pasa si $\alpha = 1$?

P4 Considere $(x_n)_n \subseteq \mathbb{N}$ una sucesión convergente a $x \in \mathbb{R}^n$, pruebe que el conjunto

$$K = \{x_n : n \in \mathbb{N}\} \cup \{x\}$$

es compacto.

 ${f P5}$ [**Propuesto**] Sea $L:\mathbb{R}^n \to \mathbb{R}^m$ una aplicación lineal

- 1. Demostrar que $\operatorname{Ker}(L)=\{x\in\mathbb{R}^n:L(x)=0\}$ es un conjunto cerrado.
- 2. Demostrar que L es inyectiva $\iff \exists m>0$ tal que $||L(x)||>m||x|| \quad \forall x\in\mathbb{R}^n$

P6 [Propuesto] Estudie la convergencia de las siguientes sucesiones:

$$a_n = (\sin(n\pi), \cos(n\pi), \frac{1 - \cos(n\pi)}{n^n}) \subseteq \mathbb{R}^3$$
 (1)

$$b_n = \left(\frac{e^{\frac{1}{2n}} - 1}{2n}, (2n+1)\sin\left(\frac{1}{3n}\right)\right) \subseteq \mathbb{R}^2$$
 (2)

$$c_n = (\sqrt[n]{2024n}, (\frac{20n+1}{20n})^n) \subseteq \mathbb{R}^2$$
 (3)

Resumen

Definición(Sucesión en \mathbb{R}^n) Una sucesión en \mathbb{R}^n es una secuencia de la forma

$$(s_k)_n = \left(\begin{array}{c} s_k^1 \\ \vdots \\ s_k^n \end{array}\right)$$

donde $(s_k^1), \ldots, (s_k^n)$ son sucesiones en \mathbb{R} . **Definición(Convergencia en** \mathbb{R}^n) Decimos que la sucesión $(x_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}^n$ converge a $x\in\mathbb{R}^n$ si:

$$\forall \varepsilon > 0, \exists n_0 : \forall n \geq n_0, ||x_k - x|| < \varepsilon$$

para $||\cdot||$ alguna norma en \mathbb{R}^n y lo denotamos $x_k \to x$.

Observación Equivalentemente, para $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^n$ se tiene

$$x_n \to x \iff ||x_n - x|| \to 0$$

Proposición(Álgebra de sucesiones) Sean $(x_n)_{n\in\mathbb{N}}$ e $y_n)_{n\in\mathbb{N}}$ sucesiones en \mathbb{R}^n convergentes a x e y respectivamente, se tienen las siguientes propiedades

- $x_n + \lambda y_n \to x + \lambda y \quad \forall \lambda \in \mathbb{R}$
- $a_n x_n \to ax$ para $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ tal que $a_n \to a$
- $\langle x_n, y_n \rangle \to \langle x, y \rangle$

Proposición Sea $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^n$ y $x\in\mathbb{R}^n$. Luego

$$x_n \to x \iff x_k^i \to x^i \quad \forall i = 1, \cdots, n$$

Es decir, una sucesión converge si y solo converge por coordenadas.

Proposición Toda subsucesión de una sucesión convergente converge al mismo límite que la sucesión original

Definición (Sucesión acotada) Decimos que la sucesión $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}^n$ es acotada si $\exists K>0$ tal que

$$\forall n \in \mathbb{N}, ||x_n|| \leq K$$

Teorema(Bolzano-Weierstrass) Toda secuencia

 $(x_n)_n$ definida sobre un compacto K posee una subsecuencia $(x_{n_k})_k$ convergente y cuyo límite está en K

Teorema Toda función continua f definida sobre un compacto K de \mathbb{R}^n alcanza su mínimo y máximo en K.

Definición(Conjunto compacto) Decimos que A es compacto si es cerrado y acotado.

Definición (Sucesión de Cauchy) Considerando $(E, ||\cdot||)$ un e.v.n, decimos que $(x_n)_n$ es de Cauchy si $\forall \varepsilon > 0$ existe $n_0 > 0$ tal que si $n, m \ge n_0$, entonces

$$||x_n - x_m|| < \varepsilon$$

Proposición Toda sucesión convergente es de Cauchy

Proposición Toda sucesión de Cauchy es acotada **Teorema**(Completitud de \mathbb{R}^n) En \mathbb{R}^n toda sucesión de Cauchy $(x_n)_n$ converge a un punto $x \in \mathbb{R}^n$ **Definición**(Grafo) Sea $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ una función, definimos su grafo como el conjunto

$$Gr(f) := \{(x, f(x)) : x \in D\} \subseteq \mathbb{R}^{n+m}$$

Definición(Conjunto de nivel) Sea $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ una función y $\alpha \in \mathbb{R}$. Definimos el conjunto de nivel α de f como el conjunto

$$N_{\alpha}(f) := \{x \in \Omega : f(x) = \alpha\}$$

Observación Si además f es continua, entonces $N_{\alpha}(f)$ es cerrado $\forall \alpha \in \mathbb{R}$

Definición(Límite de funciones) Sea $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ una función, $\bar{x} \in Adh(\Omega)$ y $L \in \mathbb{R}^m$. Decimos que f(x) tiende a L cuando x tiende a \bar{x} , denotado como $\lim_{x \to \bar{x}} f(x) = L$ si

$$\forall \varepsilon > 0, \exists \delta > 0 : ||x - \bar{x}|| < \delta \implies ||f(x) - L|| < \varepsilon$$

Proposición Sea $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ una función, $\bar{x} \in \text{Adh}(\Omega)$ y $L \in \mathbb{R}^m$. Entonces $\lim_{x \to \bar{x}} f(x) = L$ equivale a que

$$\forall (x_n)_{n\in\mathbb{N}}\subseteq\Omega:x\to\bar{x},f(x_n)\to L$$