MA1001 Introducción al cálculo.

Profesor: Cristián Reyes.

Auxiliares: Sebastián Gangas & Ignacio Díaz.

Fecha: 16 de Abril de 2024

Auxiliar 6: Trigonometría

P1.- Pruebe las siguientes identidades:

(a)
$$\frac{\tan(x) - \sin(x)}{\sin^3(x)} = \frac{\sec(x)}{1 + \cos(x)}$$

(b)
$$\tan(4x) = \frac{4\tan(x) - 4\tan^3(x)}{1 - 6\tan^2(x) + \tan^4(x)}$$

(c)
$$8\sin^4(x) = 3 + \cos(4x) - 4\cos(2x)$$

- **P2.-** (a) Considere la función $f(x) = \sqrt{\tan^2(x) + \cot^2(x) + 2}$, determine:
 - (i) Dominio, periodicidad, y ceros de la función.
 - (ii) Paridad, intervalos de crecimiento, Imagen. Bosqueje el gráfico.
 - (b) ![Propuesto] Estudie ahora $f(x) = \sin(1/x)$. Determine su dominio e imagen, ¿es periódica?, ¿cuáles son sus intervalos de crecimiento?
- **P3.-** (a) Un satélite meteorológico con órbita sobre el ecuador terrestre, a una altura de H, localiza una tempestad eléctrica hacia el norte, en P, a un ángulo de θ con respecto a su vertical (Figura 1). Demuestre que los ángulos θ y ϕ se relacionan por medio de:

$$\tan \theta = \frac{R \sin \phi}{H + R(1 - \cos \phi)}$$

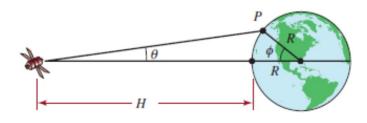


Figure 1

Resumen

■ [Identidad Fundamental]

$$\cos^2 x + \sin^2 x = 1, \quad \forall x \in \mathbb{R}$$

■ [Funciones recíprocas]

$$\csc x = \frac{1}{\sin x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

■ [Suma de ángulos]

$$\sin(x \pm y) = \sin(x)\cos(y) \pm \sin(y)\cos(x)$$
$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$
$$\tan(x \pm y) = \frac{\tan(x) + \tan(y)}{1 \mp \tan(x)\tan(y)}$$

■ [Ángulos dobles]

$$\sin(2x) = 2\sin(x)\cos(x)$$
$$\cos(2x) = \cos^2(x) - \sin^2(x)$$
$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

x	$\operatorname{sen} x$	$\cos x$	$\tan x$	$\cot x$	$\sec x$	$\csc x$
0	0	1	0	-	1	-
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}$	2
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2}{\sqrt{3}}$
$\frac{\pi}{2}$	1	0	_	1	_	1
π	0	-1	0	_	-1	_
$\frac{3\pi}{2}$	-1	0	_	0	_	-1