MA1101-10 Introducción al Cálculo

Profesor: Pedro Pérez.

Auxiliar: Patricio Yáñez A.

Consultas: pyanez@dim.uchile.cl

Auxiliar 9: Trigooooooo

8 de Mayo de 2024

P1. (20 min.) Resolver la ecuación trigonométrica:

$$sen 2x = \cos \frac{x}{2}.$$

Graficar las soluciones en el círculo geométrico y determinar si $\frac{3\pi}{5}$ es solución.

- **P2.** (a) (10 min.) Demostrar que $\cos \alpha + \cos \beta = 2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$.
 - (b) (15 min.) Utilizar lo anterior para resolver la ecuación $1 + \cos x + \cos 2x + \cos 3x = 0$.
- P3. (15 min.) Resolver la ecuación

$$\sqrt{3}\cos x + \sin x = 1.$$

P4. (30 min.) En un cuadrilátero A, B, C, D, conocemos los ángulos ABC, BCD, α y β respectivamente. Además se sabe que la longitud de los lados AB, BC y CD es 1. Probar que la longitud del cuarto lado AD es igual:

$$\sqrt{3 - 2\cos(\alpha) - 2\cos(\beta) + 2\cos(\alpha + \beta)}.$$

Identidades.

1.
$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

2.
$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

3.
$$sen(2x) = 2 sen x cos x$$

4.
$$\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

5.
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
 y $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$

6.
$$|\sin \frac{x}{2}| = \sqrt{\frac{1}{2}(1 - \cos x)}$$
 y $|\cos \frac{x}{2}| = \sqrt{\frac{1}{2}(1 + \cos x)}$

7.
$$|\tan \frac{x}{2}| = \sqrt{\frac{1-\cos x}{1+\cos x}}$$
, $\tan \frac{x}{2} = \frac{\sin x}{1+\cos x}$ y $\tan \frac{x}{2} = \frac{1-\cos x}{\sin x}$

8.
$$\operatorname{sen} x \pm \operatorname{sen} y = 2 \operatorname{sen}(\frac{x \pm y}{2}) \cos(\frac{x \mp y}{2})$$

9.
$$\cos x + \cos y = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})$$

10.
$$\cos x - \cos y = -2\operatorname{sen}(\frac{x+y}{2})\operatorname{sen}(\frac{x-y}{2})$$

11.
$$\tan x \pm \tan y = \frac{\sin(x \pm y)}{\cos x \cos y}$$