

# IN77O - Modelos y Algoritmos de Optimización

## Separación y Conos Propios

Basado en el Capítulo 2 del libro Convex Optimization Profesor: Fernando Ordóñez Auxiliares: Benjamín Barrientos, José Miguel González

## 1. Desigualdades generalizadas

#### 1.1. Conos propios y desigualdades generalizadas

**Definición 1.1.** Un cono  $K \subseteq \mathbb{R}^n$  es un **cono propio** si satisface las siguientes propiedades:

- $\blacksquare$  K es convexo.
- $\bullet$  K es cerrado.
- ullet K es sólido, es decir, tiene interior no vacío.
- K es "puntudo", es decir, no contiene una línea (o equivalentemente, si  $\mathbf{x} \in K$  y  $-\mathbf{x} \in K$ , entonces  $\mathbf{x} = \mathbf{0}$ ).

**Definición 1.2.** La **desigualdad generalizada** respecto al cono propio  $K \subseteq \mathbb{R}^n$ , que denotamos por  $\leq_K$  es una relación de orden parcial en  $\mathbb{R}^n$  definida por:

$$\mathbf{x} \prec_K \mathbf{y} \Leftrightarrow \mathbf{y} - \mathbf{x} \in K$$

Se utiliza también  $\mathbf{x} \succeq_K \mathbf{y}$  para denotar  $\mathbf{y} \preceq_K \mathbf{x}$ . Se define similarmente la desigualdad generalizada estricta,  $\prec_K$ , como:

$$\mathbf{x} \prec_K \mathbf{y} \Leftrightarrow \mathbf{y} - \mathbf{x} \in \text{int} K$$

y se utiliza también  $\mathbf{x} \succ_K \mathbf{y}$  para denotar  $\mathbf{y} \prec_K \mathbf{x}$ .

**Observación:** Cuando  $K = \mathbb{R}_+$ , el orden parcial  $\leq_K$  es el orden usual  $\leq$  sobre  $\mathbb{R}$ , y el orden parcial estricto  $\prec_K$  es el orden estricto usual < sobre  $\mathbb{R}$ .

#### 1.2. Elementos mínimos y minimales

**Definición 1.3.** Decimos que  $\mathbf{x} \in S$  es el **elemento mínimo** de S, respecto a la desigualdad generalizada  $\preceq_K$ , si para todo  $\mathbf{y} \in S$  se tiene  $\mathbf{x} \preceq_K \mathbf{y}$ . Se define el elemento máximo de S respecto a la desigualdad generalizada  $\preceq_K$  en forma análoga.

Observación: Si un elemento tiene un elemento mínimo (o máximo), entonces es único.

**Definición 1.4.** Decimos que  $\mathbf{x} \in S$  es un **elemento minimal** de S, respecto a la desigualdad generalizada  $\preceq_K$ , si para todo  $\mathbf{y} \in S$  se tiene que  $\mathbf{y} \preceq_K \mathbf{x} \Rightarrow \mathbf{y} = \mathbf{x}$ . Se define un elemento maximal de S respecto a la desigualdad generalizada  $\preceq_K$  en forma análoga.

Observación: Un conjunto puede tener varios elementos minimales (y maximales).

Si denotamos  $\mathbf{x} + K$  a los puntos que son mayores o iguales a  $\mathbf{x}$  según  $\leq_K$ , y  $\mathbf{x} - K$  a los puntos menores o iguales a  $\mathbf{x}$  según  $\leq_K$ , entonces:

•  $\mathbf{x} \in S$  es el elemento mínimo de S si y solo si:

$$S \subseteq \mathbf{x} + K$$

•  $\mathbf{x} \in S$  es un elemento minimal de S si y solo si:

$$(\mathbf{x} - K) \cap S = {\mathbf{x}}$$



## 2. Hiperplanos separadores y soporte

### 2.1. Teorema del hiperplano separador

**Teorema 2.1.** Suponga C, D conjuntos convexos tales que  $C \cap D = \emptyset$ . Entonces, existe  $\mathbf{a} \neq \mathbf{0}$  y b tal que  $\mathbf{a}'\mathbf{x} \leq b \ \forall \ \mathbf{x} \in C$  y  $\mathbf{a}'\mathbf{x} \geq b \ \forall \ \mathbf{x} \in D$ .

El hiperplano  $\{\mathbf{x} \mid \mathbf{a}'\mathbf{x} = b\}$  se llama **hiperplano separador** de los conjunto  $C \setminus D$ .

**Observación:** Imponiendo una condición adicional sobre los conjuntos tenemos una recíproca que nos permite escribir la siguiente equivalencia. Dos conjuntos convexos C y D, de los cuales al menos uno es abierto, son disjuntos si y solo si existe un hiperplano separador (como el descrito en el teorema).

Añadiendo restricciones adicionales, también existe una versión del teorema con hiperplano separador estricto.

**Teorema 2.2.** Suponga C, D conjuntos convexos y cerrados, al menos uno de ellos acotado y tales que  $C \cap D = \emptyset$ . Entonces, existe  $\mathbf{a} \neq \mathbf{0}$  y b tal que  $\mathbf{a}'\mathbf{x} < b \ \forall \ \mathbf{x} \in C$  y  $\mathbf{a}'\mathbf{x} > b \ \forall \ \mathbf{x} \in D$ .

### 2.2. Hiperplano soporte

**Definición 2.1.** Sea  $C \subseteq \mathbb{R}^n$  y sea  $\mathbf{x}_0$  un punto en el borde de C. Esto es:

$$\mathbf{x}_0 \in \mathrm{bd}\ C = \mathrm{cl}\ C \setminus \mathrm{int}\ C$$

Si  $\mathbf{a} \neq \mathbf{0}$  satisface  $\mathbf{a}'\mathbf{x} \leq \mathbf{a}'\mathbf{x}_0$ , entonces el hiperplano  $\{\mathbf{x} \mid \mathbf{a}'\mathbf{x} = \mathbf{a}'\mathbf{x}_0\}$  es llamado hiperplano soporte a C en  $\mathbf{x}_0$ .

**Definición 2.2.** Si un hiperplano soporte intersecta a C solo en  $\mathbf{x}_0$ , se le llama **hiperplano soporte** estricto a C en  $\mathbf{x}_0$ .

**Teorema 2.3.** Para cualquier conjunto convexo  $C \neq \emptyset$  y para cualquier  $\mathbf{x}_0 \in \mathrm{bd}\ C$ , existe un hiperplano soporte a C en  $\mathbf{x}_0$ .

**Observación:** Nuevamente, imponiendo condiciones adicionales sobre el conjunto tenemos una recíproca al teorema. Si un conjunto C es cerrado, tiene interior no vacío y para todo  $\mathbf{x}_0 \in \mathrm{bd}\ C$  existe un hiperplano soporte a C en  $\mathbf{x}_0$ , entonces C es convexo.

## 3. Conos duales y desigualdades generalizadas

#### 3.1. Conos duales

**Definición 3.1.** Sea K un cono. El conjunto:

$$K^* = \{ \mathbf{y} \mid \mathbf{x'y} \ge 0 \ \forall x \in K \}$$

se denomina como el **cono dual** de K.

Como el nombre lo sugiere,  $K^*$  es un cono y es siempre convexo, incluso cuando el cono original K no lo es. Si  $K^* = K$ , se dice que K es "autodual".

Un cono dual  $K^*$  satisface las siguientes propiedades

■ K\* es convexo y cerrado



- Si  $K_1 \subseteq K_2 \Longrightarrow K_2^* \subseteq K_1^*$
- Si K tiene interior no vacío, entonces  $K^*$  es puntudo.
- Si cl K es puntudo, entonces  $K^*$  tiene interior no vacío.
- $K^{**} = \text{cl (conv } K)$ . Por lo tanto, si K es convexo y cerrado, entonces  $K^{**} = K$ .

Corolario 3.1. Si K es un cono propio, entonces su cono dual  $K^*$  también lo es, y además se tiene que  $K^{**} = K$ 

#### 3.2. Desigualdades duales generalizadas

Sea K un cono propio. Como su cono dual  $K^*$  también es propio, y ambos inducen desigualdades generalizadas denotadas como  $\preceq_K$  y  $\preceq_{K^*}$  respectivamente. La desigualdad  $\preceq_{K^*}$  será la dual de la desigualdad generalizada  $\preceq_K$  Algunas propiedades importantes para una desigualdad generalizada y su dual son:

- $\mathbf{x} \preceq_K \mathbf{y}$  si y solo si  $\lambda' \mathbf{x} \leq \lambda' \mathbf{y}$  para todo  $\lambda \succeq_{K^*} \mathbf{0}$
- $\bullet$  x  $\prec_K$ y si y solo si  $\pmb{\lambda'}\mathbf{x}<\pmb{\lambda'}\mathbf{y}$  para todo  $\pmb{\lambda}\succeq_{K^*}\mathbf{0},\pmb{\lambda}\neq\mathbf{0}$

#### 3.3. Elementos mínimos y minimales via desigualdades duales

**Definición 3.2.** Decimos que  $\mathbf{x}$  es el **elemento mínimo** de S con respecto a la desigualdad generalizada  $\preceq_K$  si y solo si para todo  $\lambda \prec_{K^*}$ ,  $\mathbf{x}$  es el único minimizador de  $\lambda'\mathbf{z}$  con  $\mathbf{z} \in S$ 

Geométricamente, esto significa que para cualquier  $\lambda \prec_{K^*} 0$ , el hiperplano

$$\{z\mid \lambda'(z-x)=0\}$$

es un hiperplano soporte estricto a S en  $\mathbf{x}$ .

**Teorema 3.1.** Si  $\lambda \prec_{K^*} \mathbf{0}$  y x minimiza  $\lambda' \mathbf{z}$  con  $\mathbf{z} \in S$ , entonces x es minimal de S.

**Teorema 3.2.** Sea S convexo.  $\mathbf{x}$  es minimal de S si y solo si  $\lambda \preceq_{K^*} \mathbf{0}$  y  $\mathbf{x}$  minimiza  $\lambda' \mathbf{z}$  con  $\mathbf{z} \in S$  y  $\lambda \neq \mathbf{0}$ .