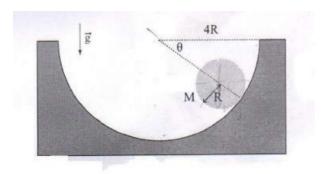


Auxiliar N

pre-examen

Profesor: Patricio Aceituno

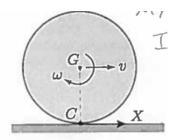

Auxiliares: Gaspar De la Barrera, Fernanda Padró, Rodrigo Rojas Sanhueza Ayudantes: Gerd Hartmann, Constanza Rodríguez

P1.

Un disco homogéneo de radio R y masa M rueda sin resbalar sobre una superficie cilíndrica de eje horizontal y radio 4R.

- a) Si la esfera es liberada desde el reposo en $\theta = 30^{\circ}$, determine la velocidad del centro de masa y la velocidad angular de la esfera cuando pasa por el punto más bajo de la cavidad
- b) Encuentre el periodo de pequeñas oscilaciones en torno al punto de equilibrio estable $\theta = 90^{\circ}$.

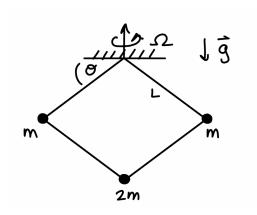
Indicación: el momento de inercia del disco con respecto al eje que pasa por su centro es $I = \frac{1}{2}MR^2$


P2.

Una bola de billar se encuentra en reposo sobre la mesa de juego cuando usted la impulsa hacia adelante con velocidad V_0 y sin velocidad angular. El coeficiente de roce cinético con el piso es μ .

- a) Encuentre la velocidad de la bola en función del tiempo.
- b) Encuentre la velocidad angular de la bola en función del tiempo.
- c) Encuentre el tiempo T en el que la bola comienza a rodar sin resbalar.
- d) ¿Cuánta energía perdió la bola hasta que empezó a girar sin resbalar?

Auxiliar N 1


Indicación: el momento de inercia de la bola con respecto al eje que pasa por su centro es $I=\frac{2}{5}MR^2$

P3.

Se tiene un sistema de tres partículas unidas por barras de largo L, como muestra la imagen. En un instante inicial el sistema se encuentra con todas las partículas a la misma altura, $\theta=0$ y con velocidad angular Ω_0 . Al soltarse el sistema las masas empiezan a bajar por acción de la gravedad hasta alcanzar un ángulo $\theta=\theta_{max}$ con velocidad angular Ω_{max} .

- a) Encuentre la energía y el momento angular inicial del sistema.
- b) Encuentre la energía y el momento angular del sistema en $\theta_{max}.$
- c) Si $\theta_{max}=45^{\rm o}$ determine el valor de Ω_0 y $\Omega_{max}.$

Auxiliar N 2