MECÁNICA

Patricio Cordero S. & Rodrigo Soto B.

Departamento de Física

Facultad de Ciencias Físicas y Matemáticas

Universidad de Chile

versión 7 de marzo de 2008

Índice general

1.	Mov	miento y Coordenadas	9
	1.1.	Posición y movimiento	9
	1.2.	Coordenadas y movimiento	13
		1.2.1. Coordenadas cartesianas	14
		1.2.2. Coordenadas cilíndricas	14
		1.2.3. Coordenadas esféricas 1	17
	1.3.	Velocidad angular	19
	1.4.	Rapidez, aceleración centrípeta y tangencial	21
		1.4.1. Velocidad y rapidez	21
		1.4.2. Coordenadas intrínsecas	24
		1.4.2.1. Los vectores \hat{t} y \hat{n}	24
		1.4.3. Aceleración centrípeta y tangencial	25
	1.5.	Movimientos particulares	28
		1.5.1. Movimiento uniforme	28
		1.5.2. Movimiento con aceleración constante	28
		1.5.3. Movimiento circunferencial	29
	1.6.	Problemas	30
2	D:ná	mine	
Ζ.	Dina	mica 3	5
	2.1.	Momentum lineal, fuerza y leyes de Newton	33
		2.1.1. Ejemplos de fuerzas	36
		2.1.2. Ejemplo de argolla en una vara horizontal que gira 3	37

	2.2.	Muchas partículas 39			39	
	2.3.	Mome	nto Angul	ar y Torque	41	
		2.3.1.	2.3.1. Ecuaciones generales			
			2.3.1.1.	Del péndulo esférico al péndulo cónico	43	
			2.3.1.2.	El péndulo simple	45	
			2.3.1.3.	Uso de coordenadas esféricas: movimiento en su- perficie cónica	46	
		2.3.2.	El centro	de masa y el momento angular	48	
	2.4.	Sistem	as de dos	s partículas: masa reducida	51	
	2.5.	Fuerza	as centrale	es	52	
		2.5.1.	La idea		52	
		2.5.2.	Corolario	o: segunda ley de Kepler	53	
	2.6.	Proble	mas		54	
2	Euro		nacíficas	u menimiente	57	
J.	2 1	zas es	Crovitoo		57	
	3.1.	2 1 1			57	
		212	La ley .	ión de gravedad	50	
	<u> </u>	5.1.Z.	Acelerac		59	
	J.Z.		Conoroli		00	
		3.2.1.	Generali		00	
	2.2	J.Z.Z.			02 64	
	ა.ა.				04	
		3.3.1.	Roce esi	ánico	04	
	2.4	3.3.Z.	Roce ain		0/ 70	
	3.4.		Conoroli		70	
		3.4.1.	Generali		70	
		3.4.2.	Roce vis		/1	
		3.4.3.	Roce vis		74	
			3.4.3.1.		74	
	0.5	Dutt	3.4.3.2.	Con gravedad:	75	
	3.5.	Proble	mas		79	

Facultad de Ciencias Físicas y Matemáticas

IVIELALIILA - F	Me	cár	nica	-	Ρ
-----------------	----	-----	------	---	---

4.	Trab	abajo y energía 83					
	4.1.	Trabaj	Trabajo y energía cinética				
	4.2.	Potenc	Potencia				
	4.3.	La ene	_a energía cinética de un sistema				
	4.4.	Fuerza	as conser	vativas y energía potencial	89		
		4.4.1.	Energía	mecánica	89		
		4.4.2.	Energía	Energía mecánica de un sistema			
	4.5.	Energi	a mecánica total no conservada				
	4.6.	Fuerza	as central	es y energía potencial	95		
		4.6.1.	Energía	potencial de fuerzas centrales	95		
		4.6.2.	La enero versal .	jía potencial asociada a la fuerza de gravitación uni-	96		
		4.6.3.	La energ	gía potencial del oscilador armónico tridimensional	97		
	4.7.	.7. Problemas					
5.	Equilibrio y oscilaciones 10				101		
	5.1.	5.1. Energía potencial y equilibrio			101		
		5.1.1. Punto de equilibrio					
		5.1.2.	5.1.2. Análisis unidimensional				
		5.1.2.1. Integración de caso conservativo unidimensional 107		107			
			5.1.2.2.	Caso sencillo en que la energía no se conserva	107		
		5.1.3.	Discusió	n avanzada: Tiempos de frenado en puntos de retorno	108		
		5.1.3.1. Primer caso: El punto de retorno no corresponde a un máximo de la energía potencial 108					
			5.1.3.2.	Segundo caso: El punto de retorno es un máximo de la energía potencial 109			
	5.2.	Peque	ñas oscila	aciones en torno a un punto de equilibrio	110		
		5.2.1.	Oscilaci	ones 1D	110		
			5.2.1.1.	Cuando la coordenada relevante no es una longitud	112		
		5.2.2.	Ejemplo	de energía y pequeñas oscilaciones	112		

Escuela de Ingeniería y Ciencias

		5.2.3. Otra vez el péndulo simple
		5.2.4. Equilibrio y pequeñas oscilaciones en 2D y 3D 116
	5.3.	Oscilador forzado
		5.3.1. La ecuación del oscilador forzado
		5.3.2. Solución, resonancia y batido
		5.3.3. Ejemplos en la práctica
		5.3.4. Un ejemplo sencillo
	5.4.	Oscilador amortiguado
	5.5.	Oscilador forzado y amortiguado 124
	5.6.	Problemas
6	Fue	zas centrales v planetas 131
0.	6 1	Barrera centrífuga y potencial efectivo U^* 131
	0.1.	611 La noción
		612 Fiemplo sencillo 134
		6.1.3. Órbitas circunferenciales
		614 Ecuación de Binet
	62	Planetas v todo eso
	0.2.	6.2.1 La ecuación de la órbita y su integral
		6.2.2. Cónicas
		6.2.2.1 Elipses: $e^2 < 1$ 139
		6.2.2.2 Hipérbolas: $e^2 > 1$ 140
		6223 Parábola: $e^2 = 1$ 140
		6.2.3. El caso planetario
		6.2.4. La tercera lev de Kepler
	6.3.	Problemas
7.	Mov	imiento relativo 147
	7.1.	Cinemática relativa
		7.1.1. Fuerzas y seudofuerzas
		7.1.2. Sistemas de referencia y su relación

Facultad de Ciencias Físicas y Matemáticas

	,			
1\/Ie	car	nca	-	Ρ
1110	oui	nou		

		7.1.3.	Derivada	as temporales en distintos sistemas de referencia 150
	7.2.	Velocio	dad y ace	leración en un sistema no inercial
	7.3.	La ecu	iación de	movimiento en un sistema no inercial
	7.4.	Nave e	espacial c	ue rota
	7.5.	Efecto	s de la ro	tación de la Tierra
		7.5.1.	Cuestior	nes generales
	7.6.	Proble	mas	
_	•			
8.	Sist	emas e	xtendido	os 167
	8.1.	Repas	0	
		8.1.1.	Centro c	le masa
		8.1.2.	Posicion	es con respecto al centro de masa
			8.1.2.1.	Momento angular
			8.1.2.2.	Energía cinética
	8.2.	Sistem	nas rígido	s discretos y continuos
		8.2.1.	Moment	o angular y matriz de inercia
		8.2.2.	Matriz d	e inercia y teorema de Steiner
		8.2.3.	Energía	cinética y matriz de inercia
		8.2.4.	Sobre la	dinámica
			8.2.4.1.	Varias veces el mismo ejemplo
	8.3.	Sistem	nas rígido	s con punto fijo
		8.3.1.	Moment	o angular y matriz de inercia..............176
		8.3.2.	Ejes apr	opiados para la matriz de inercia
		8.3.3.	Ejemplo	péndulo cónico doble
			8.3.3.1.	Descripción en sistema S'
			8.3.3.2.	Descripción en el sistema S''
			8.3.3.3.	Torque y velocidad angular
		8.3.4.	Propieda	ades de la matriz de inercia
			8.3.4.1.	Teorema de Steiner
			8.3.4.2.	Expresión para la energía cinética

Escuela de Ingeniería y Ciencias

		8.3.4.3.	Relación con el momento de inercia con respecto a <i>G</i>
8.4.	Límite	al caso c	ontinuo
	8.4.1.	Ejemplo	Péndulo de N masas y su límite al continuo 184
		8.4.1.1.	Del discreto al continuo
		8.4.1.2.	Directamente el caso continuo
	8.4.2.	Densida	des de masa, el centro de masa y matriz de inercia. 186
		8.4.2.1.	Ejemplos
		8	4.2.1.1. Una semicircunferencia con densidad li- neal uniforme
		8	4.2.1.2. Un semicírculo de densidad uniforme 188
		8.4.2.2.	Elementos de superficie y de volumen en coorde- nadas esféricas
		8	4.2.2.1. Ejemplo
		8.4.2.3.	Matriz de inercia de un cilindro
		8.4.2.4.	Un círculo con punto fijo en su perímetro \ldots
	8.4.3.	Disco qu	e rota en círculo sobre un plano
	8.4.4.	Trompo	en movimiento cónico
8.5.	Proble	mas	

Capítulo 1

Movimiento y Coordenadas

1.1. Posición y movimiento

LOS primeros movimientos que fueron descritos por medio de ecuaciones en el marco de lo que entendemos por física posiblemente fueron los que se refieren al movimientos de cuerpos en el cielo: el movimiento del Sol y la luna, el movimiento de las estrellas y—en un momento culminante—el movimiento de los planetas que nos dieron Copérnico, Galileo, Kepler y Newton en tres etapas de la historia.

Todas estas primeras descripciones cuantitativas de movimiento se hicieron como si los cuerpos fuesen simples puntos en movimiento ya que, en efecto, de este modo lo esencial queda descrito por el movimiento del centro del cuerpo. Normalmente, el movimiento descrito abarca una trayectoria muchísimas veces más grande que el tamaño del cuerpo en cuestión.

Por ejemplo, el diámetro de la Tierra es cien mil veces más chico que el diámetro de su órbita alrededor del Sol. Tolomeo (siglo II) describe con mucho ingenio el movimiento de los planetas colocando a la Tierra al centro. Copérnico (contemporáneo de Colón) expone en 1512 que el Sol está al centro y los planetas tienen órbitas perfectamente circunferenciales alrededor del Sol. Casi un siglo después Kepler descubre que las órbitas de los planetas son realmente elípticas. Su "Nueva Astronomía" es publicada en 1607. Cuando en 1632 Galileo publicó su libro "Diálogos sobre los dos sistemas del mundo" (el de Tolomeo y el de Copérnico), fue acusado y enjuiciado por la Inquisición. Otro de los muchos aportes de Galileo fue describir que el movimiento de cuerpos en caída libre y el movimiento de proyectiles en lanzamiento balístico depende de la llamada *aceleración de gravedad*, *g*. Al nivel del mar $g = 9.8 \left[\frac{m}{c^2}\right]$.

Aceptemos, entonces, que la atención en una buena parte del estudio de MECÁNICA estará dirigida a describir *puntos* en movimiento.

 \gg El pasajero de un vehículo, señor *D*, le comenta a su vecino *T* que aquel pequeño insecto sobre el otro asiento está totalmente quieto. Lo cual quiere decir que el insecto está quieto con respecto al vehículo, pero este último va a 50 Km/hr con respecto a la carretera.

Para describir el movimiento de un punto es necesario establecer una referencia respecto a la cual se define velocidades y qué está inmóvil. Para describir movimiento en tres dimensiones y—a veces en un plano, es decir, en dos dimensiones—la posición del punto en estudio es descrito por un vector $\vec{r}(t)$. El vector posición $\vec{r}(t)$ siempre se define en relación a una referencia particular y más aun, debe estar definido un punto \mathcal{O} que es el origen de coordenadas.

 \gg Poco rato después el señor *D* observa que el insecto está caminando por la pared plana del interior del vehículo. Rápidamente *D* escoge un punto \mathscr{O} sobre la pared y dos vectores unitarios perpendiculares entre sí: \hat{i} y \hat{j} y logra determinar que el movimiento del insecto queda bien descrito por

$$\vec{r}(t) = R_0 \left(\hat{i} \cos(2\pi t/t_0) + \hat{j} \sin(2\pi t/t_0) \right)$$

donde $R_0 = 10$ [cm] y $t_0 = 2$ [minutos]. ¿qué tipo de movimiento es éste? Primero calcule la magnitud de este vector, $\|\vec{r}(t)\| = \sqrt{\vec{r} \cdot \vec{r}}$ y compruebe que resulta R_0 , es decir, la magnitud del vector posición no cambia con el tiempo. En el instante t = 0 se cumple $\vec{r}(0) = R_0 \hat{i}$ mientras que en el instante $t_1 = \frac{t_0}{4}$ es $\vec{r}(t_1) = R_0 \hat{j}$. Dibuje la *trayectoria* del insecto y sobre esa trayectoria marque parte del itinerario, según las definiciones que se dan a continuación.

El vector posición $\vec{r}(t)$ define, en su evolución, un conjunto de puntos que se denomina *trayectoria*. El *itinerario* agrega a la trayectoria la información del valor de *t* en el cual el punto en movimiento pasa por las diversas posiciones de la trayectoria.

 \gg Una trayectoria puede ser definida como una relación entre las coordenadas. Por ejemplo, un objeto en un plano, con coordenadas cartesianas (*x*,*y*) puede tener una trayectoria dada por

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

1.1. POSICIÓN Y MOVIMIENTO

Otro ejemplo

$$z = \frac{4z_m}{x_m^2} \left(x_m - x \right) x$$

que representa un movimiento parabólico en el plano vertical *XZ* tal que cuando x = 0 y también cuando $x = x_m$ resulta z = 0 mientras que cuando $x = x_m/2$ la coordenada z alcanza un valor máximo $z = z_m$.

La velocidad es la variación de la posición en el tiempo, y la aceleración es la variación de la velocidad en el tiempo

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt}, \qquad \vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \frac{d^2\vec{r}}{dt^2}.$$
 (1.1.1)

 \gg Al definir al vector velocidad como la derivada del vector posición se está definiendo a la velocidad como el límite:

$$\vec{v}(t) = rac{d\vec{r}}{dt} \equiv \lim_{arepsilon=0} rac{\vec{r}(t+arepsilon) - \vec{r}(t)}{arepsilon}$$

Para terminar de aclarar este punto compruebe, mediante un dibujo, que el vector velocidad asociado a un movimiento circunferencial es necesariamente un vector tangencial a la circunferencia.

Las expresiones anteriores pueden ser invertidas. Por ejemplo, la definición de velocidad recién dada puede ser integrada—utilizando como variable de integración a una variable auxiliar t', desde un tiempo escogido t_0 hasta un tiempo arbitrario t,

$$\vec{r}(t) - \vec{r}(t_0) = \int_{t_0}^t \vec{v}(t') dt'$$
(1.1.2)

que es más conveniente escribir como

$$\vec{r}(t) = \vec{r}(t_0) + \int_{t_0}^t \vec{v}(t') dt'$$
(1.1.3)

Si en la expresión anterior se escoge $t = t_0$ el término integral es nulo porque el dominio de integración es nulo—y resulta una identidad.

En forma similar se puede invertir la definición de aceleración obteniéndose

$$\vec{v}(t) = \vec{v}(t_1) + \int_{t_1}^t \vec{a}(t') dt'$$
(1.1.4)

Universidad de Chile

Escuela de Ingeniería y Ciencias

EJEMPLO: Problema de lanzamiento de un objeto desde una posición inicial $\vec{r}(t_0) = \vec{r}_0$ con una velocidad $\vec{v}(t_0) = \vec{v}_0$ sabiendo que la aceleración tiene un valor fijo: $\vec{a}(t) = \vec{g}$. Primero se usa (1.1.4) y se obtiene

$$\vec{v}(t) = \vec{v}_0 + \vec{g} \int_{t_0}^{t} dt' = \vec{v}_0 + (t - t_0) \vec{g}$$
(1.1.5)

Luego se usa esta última expresión en (1.1.3) y puede comprobarse que arroja **Unidades:** En este texto se utilizará el sistema MKS de unidades. La longitud se expresa en metros, el tiempo en segundos y la masa en kilogramos.

caminata normal	1
máxima velocidad en ciudad	18
v _{max} en caída libre	50
avión comercial	275
velocidad del sonido en Valparaíso	340

Valor aproximado de algunas velocidades comunes expresadas en metros por segundo.

$$\vec{r}(t) = \vec{r}_0 + (t - t_0)\vec{v}_0 + \frac{(t - t_0)^2}{2}\vec{g}$$
 (1.1.6)

P. Cordero S. & R. Soto B.

Figura 1.1: Vectores posición a partir de dos orígenes distintos.

Si el movimiento de un punto *P* es descrito desde dos orígenes \mathcal{O} y \mathcal{O}' fijos, los vectores posición \vec{r} y \vec{r}' se relacionan por

$$\vec{r}(t) = \vec{\mathcal{O}}\vec{\mathcal{O}}' + \vec{r}'(t)$$

Puesto que $\vec{\mathscr{OO'}}$ no depende del tiempo, la velocidad y la aceleración respecto a ambos orígenes son iguales.

A qué velocidad le crece el pelo? ¿Cuál es el récord en carreras de 100 metros? ¿A qué velocidad remacha un buen tenista?

Si un automóvil va a 18 metros por segundo y frena con una aceleración negativa de magnitud 2g, ¿en qué distancia se detiene? ¿Cuánto vale su "peso"

^{1.1.} POSICIÓN Y MOVIMIENTO

en ese momento? Esta pregunta se refiere a la fuerza asociada a la aceleración total.

Suponga que un vehículo que iba a 18 metros por segundo en el momento de chocar contra un obstáculo duro, es detenido en una décima de segundo, a través de un proceso con aceleración uniforme. ¿Cuál es el valor de la aceleración durante este proceso?

Calcule la velocidad con que llega al suelo un cuerpo que es soltado en reposo desde una altura h. ¿Aproximadamente desde qué altura se atrevería usted a saltar al suelo? ¿A qué velocidad golpean sus pies el suelo? Desde el momento t_0 en que sus pies tocan el suelo hasta que su tronco se detiene, t_1 , los músculos de las piernas actúan como freno. Para simplificar, suponga que esa "frenada" es una aceleración negativa constante a_0 en el lapso (t_0, t_1) . Dé algún valor realista al cambio de altura del su tronco en ese lapso y deduzca un valor numérico para a_0 . Compare ese valor con la aceleración de gravedad.

Si se sabe que la velocidad de un punto como función del tiempo es

 $\vec{v}(t) = \omega R_0 \left[-\hat{\iota} \sin \omega t + \hat{j} \cos \omega t \right] + \hat{k} v_3$

y que la posición en t = 0 es $\vec{r}(0) = \hat{\iota}R_0$, determine la posición del punto en todo instante t > 0 y también la aceleración $\vec{a}(t)$. Haga un dibujo 3D del movimiento del punto y dibuje la dirección en que apunta $\vec{a}(t)$ en distintas partes de esa trayectoria.

1.2. Coordenadas y movimiento

El movimiento se puede describir con diversos tipos de coordenadas. En lo que sigue se define tres sistemas de coordenadas que se usará en Mecánica: coordenadas cartesianas, cilíndricas y esféricas. Para cada uno de estos sistemas de coordenadas tridimensionales se define tres coordenadas escalares que son (x, y, z) en cartesianas, (ρ, ϕ, z) en cilíndricas y (r, θ, ϕ) en esféricas y además se define vectores unitarios asociados a esas coordenadas espaciales: $(\hat{i}, \hat{j}, \hat{k}), (\hat{\rho}, \hat{\phi}, \hat{k})$ y $(\hat{r}, \hat{\theta}, \hat{\phi})$. Estos vectores unitarios apuntan en una dirección que, en general, depende del punto que se está describiendo. Sólo en coordenadas cartesianas esto no ocurre así.

Universidad de Chile

1.2.1. Coordenadas cartesianas

Ellas se basan en los ejes mutuamente perpendiculares *X*, *Y* y *Z*. Estos ejes tienen asociados los vectores unitarios $(\hat{i}, \hat{j}, \hat{k})$. Los ejes y los vectores unitarios asociados se suponen fijos al sistema de referencia en el cual se describe el movimiento. Los vectores de posición, velocidad y aceleración son

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{i} + z(t)\hat{k}
\vec{v}(t) = \dot{x}(t)\hat{i} + \dot{y}(t)\hat{i} + \dot{z}(t)\hat{k}$$
(1.2.1)

$$\vec{a}(t) = \ddot{x}(t)\hat{i} + \ddot{y}(t)\hat{i} + \ddot{z}(t)\hat{k}$$

coordenadas	vectores
<i>x</i> , <i>y</i> , <i>z</i>	$\hat{\imath}, \hat{j}, \hat{k}$

Las coordenadas (x(t), y(t), z(t)) de un punto móvil dependen del tiempo pero los vectores unitarios son constantes.

1.2.2. Coordenadas cilíndricas

Dado un punto *P* con coordenadas cartesianas (x, y, z) se dibuja un cilindro cuyo eje coincide con el eje *Z* y con radio $\rho = \sqrt{x^2 + y^2}$, de tal modo que *P* está en el manto del cilindro cuyo radio es ρ . La proyección al plano *XY* del vector posición \vec{r} del punto *P* tiene longitud ρ y forma un ángulo ϕ con el eje *X*. Las coordenadas cilíndricas de *P* son las cantidades (ρ, ϕ, z) . La relación con las coordenadas cartesianas es

$$x = \rho \cos \phi$$

$$y = \rho \sin \phi$$
 (1.2.2)

$$z = z$$

A este sistema de coordenadas se asocia vectores unitarios $(\hat{\rho}, \hat{\phi}, \hat{k})$ los que se relacionan a $(\hat{\iota}, \hat{j}, \hat{k})$ por

$$\hat{\rho} = \hat{\imath} \cos \phi + \hat{j} \sin \phi$$

$$\hat{\phi} = -\hat{\imath} \sin \phi + \hat{j} \cos \phi$$

$$\hat{k} = \hat{k}$$
(1.2.3)

^{1.2.} COORDENADAS Y MOVIMIENTO

Figura 1.2: Las coordenadas cilíndricas de un punto P son: ρ , la distancia de P al eje Z, ϕ que es ángulo que forma el plano que pasa por el eje Z y por OP con el plano XZ y la coordenada z que es igual que en el caso cartesiano.

Estos vectores unitarios apuntan, en cada punto *P* escogido, en la dirección en que una sola de las coordenadas cilíndricas varía.

Por ejemplo, si se considera un punto Q infinitesimalmente cercano a P que comparte con P el mismo valor de ρ y de z, y solo difieren por la coordenada ϕ , ($\phi_Q = \phi_P + d\phi$) entonces el vector $\hat{\phi}$ apunta en la dirección de P a Q.

coordenadas	vectores
$ ho$, ϕ , z	$\hat{ ho},\hat{\phi},\hat{k}$

A diferencia del sistema cartesiano de coordenadas, acá la dirección de los vectores unitarios básicos depende del punto *P* que se esté considerando.

Al describir un movimiento los vectores base $\hat{\rho}$ y $\hat{\phi}$ en general cambian de orientación. Las derivadas temporales de ellos es proporcional a $\dot{\phi}$,

$$\dot{\hat{
ho}} = \dot{\phi}\,\hat{\phi} \ \dot{\hat{\phi}} = -\dot{\phi}\,\hat{
ho}$$

En el caso de un punto móvil las coordenadas dependen en general del tiempo: $(\rho(t), \phi(t), z(t))$ y de los tres vectores unitarios dos son variables y ellos dependen del ángulo ϕ que es una coordenada que en general depende del tiempo, es decir: $(\hat{\rho}(\phi(t)), \hat{\phi}(\phi(t)), \hat{k})$.

A esto se debe que al derivar con respecto al tiempo, las coordenadas se derivan directamente con respecto al tiempo, mientras que los vectores

```
Universidad de Chile
```


Figura 1.3: Aquí el eje Z es perpendicular al papel, y se puede apreciar la relación entre las coordenadas (ρ, ϕ) y los vectores unitarios $\hat{\rho}$ y $\hat{\phi}$.

Figura 1.4: El vector posición \vec{r} puede ser expresado como combinación lineal de $\hat{\rho}$ y \hat{k} .

unitarios se derivan utilizando la regla de la cadena. Por ejemplo,

$$\dot{\rho} = \frac{d\rho}{dt}$$
 pero $\frac{d\hat{\rho}}{dt} = \frac{d\phi}{dt}\frac{d\hat{\rho}}{d\phi}$

Con todo lo anterior los vectores de posición, velocidad y aceleración en coordenadas cilíndricas son

$$\vec{r} = \rho \hat{\rho} + z\hat{k}$$

$$\vec{v} = \dot{\rho}\hat{\rho} + \rho \dot{\phi}\hat{\phi} + \dot{z}\hat{k}$$

$$\vec{a} = (\ddot{\rho} - \rho \dot{\phi}^2) \hat{\rho} + (2\dot{\rho}\dot{\phi} + \rho \ddot{\phi}) \hat{\phi} + \ddot{z}\hat{k}$$
(1.2.4)

Facultad de Ciencias Físicas y Matemáticas

^{1.2.} COORDENADAS Y MOVIMIENTO

Nótese que el último paréntesis se puede escribir

$$2\dot{\rho}\dot{\phi} + \rho\ddot{\phi} = \frac{1}{\rho}\frac{d}{dt}\left(\rho^{2}\dot{\phi}\right) \tag{1.2.5}$$

Todas las cantidades, excepto \hat{k} , dependen en general del tiempo, sin embargo para que la notación no aparezca tan pesada se ha omitido colocar "(*t*)" en cada factor.

Ahora se puede volver a mirar el significado de la frase que dice que los "vectores unitarios apuntan, en cada punto *P* escogido, en la dirección en que una sola de las coordenadas cilíndricas varía.". En efecto, si se diferencia \vec{r} dado en (1.2.4) se obtiene $d\vec{r} = d\rho \,\hat{\rho} + \rho \frac{d\hat{\rho}}{d\phi} d\phi + dz \hat{k}$, pero $\frac{d\hat{\rho}}{d\phi} = \hat{\phi}$ por lo que se obtiene

$$d\vec{r} = d\rho\,\hat{\rho} + \rho\,d\phi\,\hat{\phi} + dz\,\hat{k}$$

Cada uno de los tres sumandos anteriores contiene la diferencial de una de las tres coordenadas cilíndricas. Si se varía una sola coordenada, esa es la única diferencial no nula, y $d\vec{r}$ apunta, como se ha dicho, en la dirección del correspondiente vector unitario.

& Estudie el movimiento de un punto *P* para el cual las coordenadas cilíndricas en todo momento son: $\rho = \rho_0$, $\phi(t) = \frac{1}{2} \alpha_0 t^2$, $z(t) = A \phi(t)$. Obtenga el vector velocidad y aceleración y describa la geometría de la trayectoria en detalle.

1.2.3. Coordenadas esféricas

Las coordenadas esféricas de un punto *P* son: la distancia *r* de *P* al origen, el ángulo θ que forma \vec{r} con el eje *Z* y el ángulo ϕ que ya fue definido para coordenadas cilíndricas: (r, θ, ϕ) . Se relacionan a las coordenadas cartesianas por

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$
 (1.2.6)

$$z = r \cos \theta$$

A estas coordenadas se asocia vectores unitarios y ellos son

$$\hat{r} = (\hat{\imath}\cos\phi + \hat{j}\sin\phi)\sin\theta + \hat{k}\cos\theta$$

Universidad de Chile

Figura 1.5: La figura representa las coordenadas esféricas y los vectores unitarios asociados.

$$\hat{\theta} = (\hat{\imath}\cos\phi + \hat{j}\sin\phi)\cos\theta - \hat{k}\sin\theta \hat{\phi} = -\hat{\imath}\sin\phi + \hat{j}\cos\phi$$

Se destaca que

$$\hat{k} = \hat{r}\cos\theta - \hat{\theta}\sin\theta \qquad (1.2.7)$$

$$\hat{\rho} = \hat{\imath}\cos\phi + \hat{j}\sin\phi = \hat{\theta}\cos\theta + \hat{\imath}\sin\theta \qquad (1.2.8)$$

coordenadasvectores
$$r, \theta, \phi$$
 $\hat{r}, \hat{\theta}, \hat{\phi}$

Tal como en el caso anterior, los vectores unitarios básicos dependen del punto que se esté considerando y por tanto ellos, en general, varían con el tiempo. Sus derivadas son

$$\dot{\hat{r}} = \dot{\phi}\hat{\phi}\sin\theta + \dot{\theta}\hat{\theta} \dot{\hat{\theta}} = \dot{\phi}\hat{\phi}\cos\theta - \dot{\theta}\hat{r}$$

$$\dot{\hat{\phi}} = -\dot{\phi}\left(\hat{\theta}\cos\theta + \hat{r}\sin\theta\right)$$

$$(1.2.9)$$

Con lo anterior se puede obtener expresiones para la posición, la velocidad

1.2. COORDENADAS Y MOVIMIENTO

y la aceleración en coordenadas esféricas,

$$\vec{r} = r\hat{r}$$

$$\vec{v} = \dot{r}\hat{r} + r\dot{\phi}\hat{\phi}\sin\theta + r\dot{\theta}\hat{\theta}$$

$$\vec{a} = \left(\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2\sin^2\theta\right)\hat{r} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta\right)\hat{\theta} + \frac{\left(r^2\dot{\phi}\sin^2\theta\right)^2}{r\sin\theta}\hat{\phi}$$
(1.2.10)

Compruebe que

$$d\vec{r} = \hat{r}dr + \hat{\theta}rd\theta + \hat{\phi}r\sin\theta\,d\phi$$

♠ Considere un cono con vértice en el origen y eje que coincide con el eje Z y cuyo ángulo de apertura es θ (es decir, las rectas sobre el manto forman ángulo θ con el eje Z). Describa en coordenadas esféricas el movimientos de un punto que baja por el manto de este cono si se sabe que pierde altura a velocidad constante (es decir, la coordenada z(t) satisface $\dot{z} = -v_3$) y que además $\dot{\phi} = \omega_0$. Tome como condición inicial que el punto está sobre el manto con $r(0) = R_0$ y $\phi(0) = 0$.

1.3. Velocidad angular

La velocidad angular expresa la tasa de cambio de orientación que sufre el vector posición \vec{r} cuando se desarrolla el movimiento. El concepto de velocidad angular, $\vec{\omega}$, está ligado al origen de coordenadas que se escoja y representa tanto la tasa de variación de orientación como también la orientación del eje en torno al cual \vec{r} rota. Ella se puede expresar como el producto cruz entre los vectores posición y velocidad, dividido por el cuadrado de la magnitud de \vec{r} ,

$$\vec{\omega}(t) = \frac{\vec{r} \times \vec{v}}{\|\vec{r}\|^2} \tag{1.3.1}$$

Se ilustra lo anterior con un ejemplo.

EJEMPLO: Un movimiento uniforme y rectilíneo paralelo al eje X y a distancia b de él es descrito por

$$\vec{r} = b\,\hat{j} + (x_0 - v_0 t)\,\hat{\imath} \quad \Rightarrow \quad \vec{v} = -v_0\,\hat{\imath}$$
 (1.3.2)

se muestra en la figura adjunta,

$$x = x_0 - v_0 t$$
, $y = b$, $\phi = \arctan \frac{b}{x_0 - v_0 t}$ (1.3.3)

Universidad de Chile

Escuela de Ingeniería y Ciencias

De los datos dados en (1.3.2) y de la definición de $\vec{\omega}$ se obtiene que

P. Cordero S. & R. Soto B.

Figura 1.6: Un movimiento rectilíneo y uniforme. Se conocen b y v₀.

Por otro lado, se puede calcular ϕ directamente de observar que

$$\tan\phi = \frac{b}{x_0 - v_0 t}$$

Derivando esta relación con respecto al tiempo se obtiene que $\omega \equiv \dot{\phi}$ vale

$$\omega = \frac{b v_0}{b^2 + (x_0 - v_0 t)^2} \tag{1.3.5}$$

que es coherente con la expresión para la forma vectorial de la velocidad angular.

Nótese que si se hubiera escogido el origen sobre la recta, se tendría que b = 0 y se habría obtenido velocidad angular nula.

La velocidad angular, entonces, depende del origen \mathcal{O} respecto al cual se define. Estrictamente además, la velocidad angular es *un vector* cuya magnitud es $d\phi/dt$ y que apunta en la dirección del eje respecto al cual el punto en movimiento gira visto desde ese origen. Se usa la regla de la mano derecha. En el ejemplo anterior la velocidad angular apunta en la dirección \hat{k} , y la *velocidad angular vectorial* en ese ejemplo es $\vec{\omega} = \omega \hat{k}$.

Un corolario de lo anterior es que si se tiene una función vectorial cualquiera $\vec{A}(t)$ tridimensional, la variación de su orientación en el tiempo es

$$\vec{\omega}_A = \frac{\vec{A}}{\|\vec{A}\|^2} \times \frac{d\vec{A}}{dt}$$

1.3. VELOCIDAD ANGULAR

Si se hace el producto cruz de cada miembro de esta igualdad con \vec{A} se obtiene

$$\vec{\omega}_A \times \vec{A} = \frac{d\vec{A}}{dt} - \frac{\vec{A} \cdot \frac{d\vec{A}}{dt}}{\|\vec{A}\|}\vec{A}$$

Pero si \vec{A} es una función vectorial que cambia de orientación en el tiempo tal que su magnitud permanece constante, entonces $\vec{A} \cdot \vec{A} = \text{constante}$ lo que implica que $\vec{A} \cdot \frac{d\vec{A}}{dt} = 0$. En tal caso la última ecuación se reduce a

$$\frac{d\vec{A}}{dt} = \vec{\omega}_A \times \vec{A} \quad \Leftarrow \quad \vec{A} \cdot \vec{A} = \text{constante}$$
(1.3.6)

Un par de problemas:

• Considere una circunferencia de radio R en el plano XY centrada en un punto del eje X a distancia a del origen. Suponga un punto P que se mueve con rapidez uniforme v_0 sobre esa circunferencia y determine la velocidad angular de P con respecto al origen.

• Un disco de radio R rueda sin resbalar por un suelo horizontal (el eje de rotación de la rueda es horizontal). Su centro \mathcal{O} tiene aceleración constante $\vec{a} = a_0 \hat{i}$. Encuentre la magnitud de la velocidad angular con respecto a \mathcal{O} y obtenga la aceleración de cualquier punto P sobre el borde del disco, relativa al suelo. Encuentre los vectores \hat{i} y \hat{n} de la trayectoria de P como función del ángulo ϕ que $\mathcal{O}P$ forma con la vertical. Obtenga la magnitud de la aceleración centrípeta y el radio de curvatura de la trayectoria de P.

1.4. Rapidez, aceleración centrípeta y tangencial

La trayectoria de un punto *P* tiene, en cada instante, un vector tangencial \hat{t} , un radio de curvatura ρ_C y un vector \hat{n} —el vector normal—que apunta desde la trayectoria hacia el centro de curvatura asociado. Estos conceptos permiten otra descipción del movimiento.

1.4.1. Velocidad y rapidez

Considere la trayectoria de un punto en movimiento y sean *A* y *B* las posiciones del punto sobre su trayectoria en instantes *t* y $t + \Delta t$. Si se denota

Figura 1.7: *Cada punto A de una trayectoria (curva diferenciable) tiene asociado un centro de curvatura C y un radio de curvatura* ρ_C *. El arco de trayectoria* Δs *que describe un punto móvil en un pequeño intervalo* Δt *es* $\Delta s = \rho_C \Delta \alpha$ *donde* $\Delta \alpha$ *es el ángulo que subtiende tal arco desde C. La cuerda asociada tiene una longitud que coincide con la magnitud del vector* $\Delta \vec{r}(t) = \vec{r}(t + \Delta t) - \vec{r}(t)$ *. El ángulo entre la tangente en A a la trayectoria y* $\Delta \vec{r}$ *es* $\frac{1}{2}\Delta \alpha$ *. En el límite* $\Delta t \rightarrow 0$ *la tangente al arco en A apunta en la misma dirección que la cuerda.*

por Δs al largo del arco de trayectoria desde *A* a *B*, se define la *rapidez* del punto móvil sobre su trayectoria como

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$$
(1.4.1)

que es una cantidad escalar. A continuación se verá la relación que existe entre el concepto de velocidad $\vec{v}(t)$ y el de rapidez v(t). Para definir estos conceptos se debe dar un sentido (arbitrario) a la forma de recorrer la curva. Por ejemplo, si en la figura se escoge el sentido positivo hacia la derecha, un desplazamiento hacia la derecha se describe con un ds > 0 y un desplazamiento hacia la izquierda tiene asociado un ds < 0.

Se define *radianes* de modo que el largo *S* de un arco de circunferencia, de radio *R*, que tiene asociado un ángulo α es

$$S = R \alpha \tag{1.4.2}$$

Un pequeño arco *AB* de una curva se puede aproximar a un arco de circunferencia centrada en un punto *C* con algún radio ρ_C , tal que el arco subtiende un pequeño

ángulo $\Delta \alpha$. La longitud Δs de un arco se relaciona al elemento de ángulo por

$$\Delta s = \rho_C \Delta \alpha \tag{1.4.3}$$

1.4. RAPIDEZ, ACELERACIÓN CENTRÍPETA Y TANGENCIAL Facultad de Ciencias Físicas y Matemáticas

La longitud de la cuerda asociada es $\overline{AB} = 2\rho_C \sin \frac{\Delta \alpha}{2}$. Puesto que en el límite de ángulo muy pequeño, el seno de un ángulo se aproxima por el ángulo mismo, entonces en ese límite la longitud de la cuerda es $\rho_C \Delta \alpha$ y coincide con la longitud del arco. Este resultado sirve, en el párrafo que sigue, para relacionar la magnitud de la velocidad con la rapidez.

Los vectores posición $\vec{r}(t)$ y $\vec{r}(t + \Delta t)$ del movimiento de un punto difieren en

$$\begin{aligned} \Delta \vec{r} &= \vec{r} \left(t + \Delta t \right) - \vec{r} \left(t \right) \\ &\approx \frac{\Delta \vec{r} \left(t \right)}{\Delta t} \Delta t \\ &\approx \vec{v} \left(t \right) \Delta t \end{aligned}$$

Tomando el límite $\Delta t \to 0$ se obtiene que $d\vec{r}(t) = \vec{v}(t)dt$. Pero en el párrafo anterior se vio que la cuerda, que en este caso tiene longitud $\|\Delta \vec{r}(t)\|$, coincide en el límite en que Δt es infinitesimal, con el arco Δs :

$$\|\vec{v}\| = \lim_{\Delta t \to 0} \frac{\|\Delta \vec{r}(t)\|}{\Delta t}$$
$$= \lim_{\Delta t \to 0} \frac{\Delta s(t)}{\Delta t}$$
$$= |v(t)|$$
(1.4.4)

es decir,

$$\|\vec{v}\| = |v| \tag{1.4.5}$$

De (1.4.3) también se sabe que el radio de curvatura de una trayectoria está dado por

$$\rho_C = \frac{ds}{d\alpha} \tag{1.4.6}$$

Sea \hat{t} el vector unitario, tangente a la trayectoria de un punto, que apunta en la misma dirección que $d\vec{r}$, es decir, en la misma dirección que \vec{v} , pero no apuntan necesariamente en el mismo sentido. Se escoge como definición que el vector unitario \hat{t} apunte en el sentido en el cual crece el arco s(t)recorrido, de tal modo que

$$\vec{v}(t) = v(t)\hat{t} \tag{1.4.7}$$

En resumen, la velocidad es siempre tangencial a la trayectoria y la magnitud de la velocidad coincide con el valor absoluto de la rapidez. ♠ En un parque de diversiones hay un juego que consiste en disparar a un blanco móvil que se desplaza a velocidad constante \vec{v}_1 a lo largo de una recta *L*. Se sabe que los proyectiles salen desde el sitio *D* de disparo con rapidez v_0 . Si en el instante en que se hace el disparo el blanco está al pie de la perpendicular— de largo *b*—que va de *D* a *L*, ¿con qué ángulo se debe hacer el disparo para dar en el blanco?

Figura 1.8: El vector $d\hat{i} = \hat{i}(t+\varepsilon) - \hat{i}(t)$ donde ε es un tiempo muy pequeño, es un vector que, en el límite $\varepsilon \to 0$, apunta hacia el centro de curvatura. En la figura el vector $\hat{i}(t+\varepsilon)$ ha sido trasladado al punto correspondiente al tiempo t para poder hacer la diferencia geométricamente.

1.4.2. Coordenadas intrínsecas

1.4.2.1. Los vectores \hat{t} y \hat{n} .

Puesto que el vector \hat{t} es unitario

$$\hat{t} \cdot \hat{t} = 1$$
 implica $\hat{t} \cdot \frac{d\hat{t}}{dt} = 0$ (1.4.8)

es decir, el vector $d\hat{t}/dt$ es ortogonal a \hat{t} . La figura adjunta debiera ayudar a ver que este vector apunta hacia el centro de curvatura. Se denominará \hat{n} — vector normal—al vector *unitario* que apunta hacia el centro de curvatura. Ya se vio que la magnitud de cuerda y arco, en el caso en que estos sean muy pequeños, coincide y además se vio en (1.4.3) que ese arco es igual al radio multiplicado por el elemento de ángulo. Puesto que \hat{t} es unitario, al rotar describe un arco de radio 1 y por tanto la cuerda asociada, que tiene

1.4. RAPIDEZ, ACELERACIÓN CENTRÍPETA Y TANGENCIAL Facultad de Ciencias Físicas y Matemáticas

la magnitud de \hat{t} , es 1 multiplicado por el elemento de ángulo, es decir, $||d\hat{t}|| = d\alpha$. Usando (1.4.6) se obtiene que

$$d\hat{t} = d\alpha \,\hat{n} = \frac{ds}{\rho_C} \hat{n}$$
 equivalentemente $\frac{d\hat{t}}{ds} = \frac{1}{\rho_C} \hat{n}$ (1.4.9)

1.4.3. Aceleración centrípeta y tangencial

La aceleración es la derivada de la velocidad,

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \frac{d(v(t)\hat{t})}{dt}$$
$$= v(t)\frac{d\hat{t}}{dt} + \frac{dv(t)}{dt}\hat{t}$$
(1.4.10)

El último término en esta expresión es la parte de la aceleración que apunta tangencial a la trayectoria. Se la llama *aceleración tangencial*. El primer término a la derecha es

$$v(t)\frac{d\hat{t}}{dt} = v(t)\frac{ds}{dt}\frac{d\hat{t}}{ds}$$
(1.4.11)

pero ds/dt = v(t) y $d\hat{t}/ds = \hat{n}/\rho_C$ por lo que la aceleración se puede escribir

$$\vec{a}(t) = \frac{v^2(t)}{\rho_C}\hat{n} + \frac{dv(t)}{dt}\hat{t}$$

$$= \vec{a}_n(t) + \vec{a}_t(t)$$
(1.4.12)

El primer término es un vector que apunta hacia el centro de curvatura y se lo conoce como *aceleración centrípeta*. El segundo es la *aceleración tangencial*.

Demuestre que el radio de curvatura es igual a

$$\rho_C = \frac{v^2}{\|\vec{t} \times \vec{a}\|} = \frac{v^3}{\|\vec{v} \times \vec{a}\|}$$
(1.4.13)

EJEMPLO: Consideremos un punto en movimiento en un plano cuya trayectoria es descrita por una circunferencia:

$$\vec{r} = R_0 \left(\hat{\imath} \cos \phi + \hat{j} \sin \phi \right), \qquad \phi = \phi(t) \tag{1.4.14}$$

Universidad de Chile

Escuela de Ingeniería y Ciencias

$$d\vec{r} = R_0 \left(-\hat{\imath}\sin\phi + \hat{\jmath}\cos\phi\right) d\phi \tag{1.4.15}$$

cuya magnitud es

$$\|d\vec{r}\| = R_0 d\phi = ds \tag{1.4.16}$$

En este caso el vector tangencial es

$$\hat{t} = -\hat{\imath}\sin\phi + \hat{\jmath}\cos\phi \qquad (1.4.17)$$

De aquí se puede calcular $d\hat{t}/ds$ porque de (1.4.6) ya se sabe que $d\phi/ds = 1/\rho_C$, y en el presente caso es $\rho_C = R_0$, y se obtiene

P. Cordero S. & R. Soto B.

$$\hat{n} = -\hat{\imath}\cos\phi - \hat{j}\sin\phi \qquad (1.4.18)$$

Para poder calcular la velocidad y la aceleración es necesario dar la dependencia del vector posición en el tiempo. Supongamos el caso particular en que el ángulo varía linealmente con el tiempo, $\phi = \omega t$, es decir, hay una *velocidad angular* constante: $\dot{\phi} = \omega$. Entonces, tal como ya se sabe de (1.4.7), la velocidad es tangente a la trayectoria, y en este case es

$$\vec{v} = \omega R_0 \hat{t} \tag{1.4.19}$$

de donde la rapidez resulta constante: $v = \omega R_0$.

Se puede ver también que en este caso particular la aceleración tangencial es nula debido a que la rapidez es constante. La aceleración centrípeta es

$$\vec{a}_n(t) = \frac{\omega}{R_0} \left(-\hat{\imath} \cos \omega t - \hat{j} \sin \omega t \right)$$
(1.4.20)

que apunta siempre hacia el centro.

Si un automóvil toma una curva de 50 metros de radio (aproximadamente media cuadra) a 24 metros por segundo, ¿cuánto vale la aceleración centrípeta? ¿Es una fracción de g o es mayor que g?

Si un avión va a dos veces la velocidad del sonido y gira describiendo un arco de circunferencia, ¿cuál es el valor mínimo que puede tener ese radio si la aceleración máxima que soporta el piloto es 6g?

Considere el movimiento de un punto que describe la trayectoria plana

$$\vec{r} = \rho_0 \left(\hat{\imath}\cos\phi + \hat{j}\sin\phi\right) + \hat{\imath}\beta\phi \tag{1.4.21}$$

^{1.4.} RAPIDEZ, ACELERACIÓN CENTRÍPETA Y TANGENCIAL Facultad de Ciencias Físicas y Matemáticas

 $\cos \phi = \omega t$. Tanto $\rho_0 \mod \beta$ son constantes dadas. Determine $ds/d\phi$, y por tanto ds/dt; calcule el vector tangente unitario $\hat{t}(t)$ en función del tiempo; obtenga el vector velocidad en cualquier instante t y también calcule la aceleración $\vec{a}(t)$ e indique los valores de las partes centrípeta y tangencial.

Figura 1.9: Un hilo ideal es desenrollado de un cilindro de radio R

• Un hilo de grosor nulo está enrollado en una circunferencia de radio R manteniendo tensa la punta libre M. La parte no enrollada siempre es tangente a la circunferencia y el punto T de tangencia está totalmente determinado por el ángulo polar ϕ . El hilo está siendo desenrollado por medio de un mecanismo que hace que ϕ cambie en el tiempo en la forma: $\phi = \frac{\alpha}{2}t^2$, donde α es un número dado. Calcular la ecuación paramétrica de la trayectoria del extremo M libre del hilo sabiendo que inicialmente la parte libre era de largo L_0 y colgaba verticalmente. Obtenga las componentes de la velocidad y la aceleración expresada con los vectores unitarios $\hat{\phi}$ y $\hat{\rho}$. Obtenga los vectores tangente \hat{t} y normal \hat{n} de la trayectoria que describe M cuando ϕ crece. También obtenga, para cada punto de la trayectoria el radio de curvatura.

Indicaciones: La posición de *T* siempre es $\vec{p}_T = R\hat{\rho}$ y la posición de *M* puede escribirse como $\vec{p}_M = \vec{p}_T - L(t)\hat{\phi}$, donde L(t) es el largo variable de *T* a *M*. También hay que tomar en cuenta que si en un intervalo el punto *T* recorre una distancia *s*, en ese intervalo la longitud L(t) crece en esa misma cantidad *s*.

1.5. Movimientos particulares

A continuación se presentan algunos movimientos particulares $\vec{r}(t)$ que se pueden obtener a partir de datos específicos.

1.5.1. Movimiento uniforme

Un caso muy sencillo es el del movimiento uniforme. Este es aquel para el cual la velocidad es uniforme y por tanto la aceleración es nula, $\vec{a} = 0$. Si se dan como datos la posición $t = t_0$ y que para todo instante

$$\vec{v}(t) = \vec{v}_0$$

se puede invertir la definición de velocidad y obtener que

$$\vec{r}(t) = \vec{r}_0 + \int_{t_0}^t \vec{v}(t') dt'$$

= $\vec{r}_0 + \vec{v}_0 \int_{t_0}^t dt'$
= $\vec{r}_0 + (t - t_0) \vec{v}_0$ (1.5.1)

1.5.2. Movimiento con aceleración constante

Esta vez se da como dato que la aceleración es

$$\vec{a}(t) = \vec{g}$$

y además que la posición en un instante t_0 es \vec{r}_0 y que la velocidad en un instante t_1 es \vec{v}_1 .

Integrando la definición de aceleración se obtiene que

$$\vec{v}(t) = \vec{v}_1 + (t - t_1)\vec{g} \tag{1.5.2}$$

Una vez conocida la velocidad se calcula la posición en un instante arbitrario integrando una vez más

$$\vec{r}(t) = \vec{r}_0 + \int_{t_0}^t \vec{v}(t') dt'$$

^{1.5.} MOVIMIENTOS PARTICULARES

$$= \vec{r}_0 + \int_{t_0}^t \left(\vec{v}_1 + \vec{g} \left(t' - t_1 \right) \right) dt'$$

$$= \vec{r}_0 + (t - t_0) \vec{v}_1 + \left(\frac{t^2 - t_0^2}{2} - (t - t_0) t_1 \right) \vec{g}$$
(1.5.3)

Si tanto t_0 como t_1 son nulos y \vec{v}_1 es denotada \vec{v}_0 , la expresión anterior se reduce sencillamente a

$$\vec{r}(t) = \vec{r}_0 + t \, \vec{v}_0 + \frac{t^2}{2} \, \vec{g} \tag{1.5.4}$$

1.5.3. Movimiento circunferencial

Figura 1.10: Un movimiento circunferencial de radio ρ_0 se describe por la velocidad angular $\omega(t) \equiv \dot{\phi}(t)$.

El movimiento circunferencial general está caracterizado por el radio fijo ρ_0 de la circunferencia descrita por el punto móvil y por la velocidad angular $\omega(t) = \dot{\phi}$. En este caso los vectores posición, velocidad y aceleración en coordenadas cilíndricas son

$$\vec{r}(t) = \rho_0 \hat{\rho}(t)$$

$$\vec{v}(t) = \rho_0 \omega(t) \hat{\phi}$$

$$\vec{a}(t) = \rho_0 \left[\alpha(t) \hat{\phi}(t) - \omega^2(t) \hat{\rho}(t) \right]$$
(1.5.5)

la velocidad angular es $\omega(t)$ y $\alpha(t)$ es la *aceleración angular*

$$\begin{aligned}
\omega(t) &= \phi(t) \\
\alpha(t) &= \dot{\omega}(t)
\end{aligned} (1.5.6)$$

Universidad de Chile

Escuela de Ingeniería y Ciencias

La expresión para \vec{a} dada arriba quedó naturalmente separada en un término radial de *aceleración centrípeta*, $-\rho_0 \omega^2 \hat{\rho}$ y un término de aceleración tangencial, $\rho_0 \alpha(t) \hat{\phi}$.

1.6. Problemas

- 1.1 Por la orilla se una mesa rueda sin deslizar una rueda de radio R_1 con velocidad angular constante ω . Esta rueda tiene pegada en forma radial una varilla de largo R_2 ($R_2 > R_1$). Describa el movimiento de la punta de la varilla (distancia R_2 del centro de la rueda) a medida que la rueda avanza. Dibuje la curva (*x*-*z*) que describe la trayectoria de este punto. Dibuje la componente horizontal, v_x de la velocidad de la punta como función del tiempo, en particular incluya el caso en que $R_2 = R_1$.
- 1.2 Un globo asciende desde la superficie terrestre con velocidad vertical uniforme v_0 . Debido al viento, el globo adquiere una componente horizontal de velocidad que crece con la altura: $v_z = \alpha z$, donde α es una constante conocida y z es la altura sobre el terreno. Escogiendo el origen de coordenadas en el punto de partida determine: a) La trayectoria del globo; b) la componente tangencial y normal de la aceleración en función de la altura z.
- **1.3** Un punto se mueve ascendiendo por el manto de un cono de eje vertical, y vértice abajo, de tal modo que asciende a medida que gira en torno al eje: $z = A\phi$. El cono mismo se caracteriza por que las rectas sobre su manto que contienen al vértice forman un ángulo fijo θ con el eje. Describa el movimiento (los vectores $\vec{r}(t)$, $\vec{v}(t)$ y $\vec{a}(t)$) suponiendo que $\phi(t)$ es una función arbitraria. Calcule también la curvatura de la trayectoria como función de z y de θ .
- 1.4 El punto de unión *P* entre un pistón y una biela de largo *D* se mueve a lo largo del eje *X* debido a que el cigüeñal (disco) de radio *a* y centro en un punto fijo *C*, rota a velocidad angular ω constante. En el instante t = 0 la biela está horizontal

 $(\theta = 0, x = D + a)$. a) Encuentre una expresión para la distancia x(t) entre *P* y *C* como función de *t*. b) Encuentre la velocidad v(t) de *P*. c) En la expresión para v(t) considere el caso $a \ll D$ y de ahí encuentre una expre-

^{1.6.} PROBLEMAS

sión aproximada para la aceleración de *P*. ¿Cómo se compara la magnitud de la aceleración máxima del pistón con la aceleración del punto *A*?

1.5 Una barra rígida de largo *d* se mueve apoyada entre dos paredes rígidas, que forman un ángulo recto entre ellas.

Si el ángulo θ es una función arbitraria del tiempo $\theta = \theta(t)$, (a) Determine el vector posición, velocidad y aceleración del punto medio de la barra. (b) El radio de curvatura de una trayectoria se calcula como $\rho = v^3/||\vec{v} \times \vec{a}||$. Calcule el radio de curvatura de esta trayectoria. Interprete el resultado y dibuje la trayectoria. (c) Suponga ahora que el apoyo inferior de la barra se mueve con rapidez constante. Encuentre la función $\theta(t)$ que da lugar a ese **O** movimiento.

1.6. PROBLEMAS

Capítulo 2

Dinámica

2.1. Momentum lineal, fuerza y leyes de Newton

Galileo observó que cuerpos inicialmente en reposo, soltados desde la misma altura caen con movimiento uniformemente acelerado y esa aceleración es común a todos los cuerpos. Tal aceleración se denomina *aceleración de gravedad*. Si un cuerpo es soltado con velocidad inicial nula desde una altura z_0 sobre el suelo su altura posterior, como función del tiempo, es

$$z(t) = z_0 - \frac{g}{2}t^2$$

sin importar cual sea la masa del cuerpo. De lo anterior la aceleración resulta ser $\ddot{z} = -g$. Deduzca que el cuerpo llega al suelo con rapidez $\dot{z} = -\sqrt{2z_0g}$ donde el signo menos, en este caso, expresa que la velocidad es hacia abajo.

La *cantidad de movimiento* o *momentum lineal* \vec{p} de una partícula de masa *m* y velocidad \vec{v} es

$$\vec{p}(t) = m\vec{v}(t) \tag{2.1.1}$$

La masa de un cuerpo es normalmente una cantidad fija y se mide en kilogramos, K y, salvo que específicamente se diga lo contrario, se supondrá que la masa de un cuerpo es constante.

 $\gg~$ Sin embargo hay casos en que la masa varía. Un ejemplo muy

típico es el de un cohete que está expulsando parte de su masa, en forma de gases, para poder impulsarse.

Para percibir la cantidad de movimiento se puede experimentar dejando caer desde el reposo dos cuerpo desde la misma altura. Al recibirlos en nuestras manos y tratar de detenerlos es necesario un "mayor esfuerzo" cuando la masa del cuerpo es mayor. La razón de este mayor esfuerzo reside en que para detener el cuerpo, es decir, para hacer variar su momentum lineal desde el valor que tiene hasta cero, es necesario aplicar una fuerza.

Figura 2.1: Los años en que vivieron algunos de los fundadores de la Mecánica y algunos personajes destacados en otras áreas.

Newton descubrió que la relación general entre la variación del momentum (esto es $d\vec{p}/dt$) y la fuerza total aplicada es

$$\frac{d\vec{p}(t)}{dt} = \vec{F}^{\text{total}}$$
(2.1.2)

que se conoce como la II ley de Newton.

2.1. MOMENTUM LINEAL, FUERZA Y LEYES DE NEWTON Facultad de Ciencias Físicas y Matemáticas

Un caso especial es que no haya fuerza alguna aplicada. En tal caso $d\vec{p}/dt = 0$ lo que implica que el momentum permanece constante en el tiempo. Esto implica (masa constante) que la velocidad del cuerpo no cambia y por tanto la trayectoria es rectilínea. Esta es la <u>*I ley de Newton*</u>. Un caso aun más especial es el de un cuerpo en reposo.

Inversamente, si un cuerpo tiene velocidad constante, entonces la fuerza total sobre ese cuerpo necesariamente es nula.

En (2.1.2) la fuerza es la *fuerza total.* Sobre un cuerpo pueden estar actuando muchas fuerzas simultáneamente y el lado derecho en (2.1.2) debe tener la suma vectorial de todas las fuerzas que están actuando sobre el cuerpo.

 \gg Cuando un mozo lleva un vaso sobre una bandeja hay varias fuerzas actuando sobre ese vaso: su peso, $m\vec{g}$; una fuerza, llamada *normal* que la bandeja ejerce sobre el vaso y que es perpendicular a la superficie de contacto; otra fuerza, esta vez contenida en el plano de contacto, llamada *roce* que impide que el vaso deslice en la bandeja; también el aire ejerce una *fuerza viscosa* sobre el vaso, porque todo fluido (el aire, por ejemplo) tiende a frenar a un cuerpo que se mueve en él. La lista se podría continuar (la luna, el sol etc).

La <u>III ley de Newton</u> dice que si el cuerpo A ejerce una fuerza \vec{F} sobre un cuerpo B, entonces el cuerpo B ejerce una fuerza $-\vec{F}$ sobre el cuerpo A.

 \gg Un cuerpo en reposo sobre una mesa ejerce sobre ella su fuerza peso $\vec{F} = m\vec{g}$, la que apunta verticalmente hacia bajo, y entonces, según la III ley de Newton, la mesa ejerce sobre el cuerpo una fuerza, llamada *normal*, sobre el cuerpo, la que vale $\vec{N} = -m\vec{g}$, la cual apunta verticalmente hacia arriba. Puesto que sobre el cuerpo está además la atracción que le ejerce la Tierra (el peso), entonces la fuerza total sobre este cuerpo es nula, lo que permite entender porqué está en reposo.

Normalmente las leyes de Newton se asocian a sistemas de referencia llamados *sistemas de referencia inerciales*. Un ejemplo de sistema de referencia no inercial es un vehículo describiendo una curva. Un cuerpo dejado en reposo respecto al vehículo tiende a moverse alejándose del centro de curvatura. Más adelante se dirá que en sistemas de referencia no inerciales aparecen fuerzas especiales como es la *fuerza centrífuga* y la *fuerza*

Universidad de Chile

de Coriolis. Pero en un sistema de referencia inercial no se presentan tales fuerzas.

2.1.1. Ejemplos de fuerzas

A continuación se hará mención de algunas fuerzas que se utiliza en estas notas. Las fuerzas que se describen a continuación serán explicadas con más detalle más adelante.

- o <u>Peso</u>. Sobre un cuerpo de masa m cerca de la superficie de la Tierra actúa una fuerza cuya magnitud es mg y apunta "hacia abajo".
- o <u>Gravitacional</u>. La Ley Universal de Gravitación describe la fuerza de atracción gravitacional entre cuerpos masivos.
- o <u>Coulomb</u>. Cargas eléctricas se repelen o atraen, según la Ley de Coulomb, dependiendo si tienen signo igual o distinto.
- o <u>Contacto</u>. En cada punto en que dos cuerpos *A* y *B* están en contacto sólido-sólido aparece una fuerza \vec{F}_{AB} sobre *A* debido al contacto con *B* (y lo mismo sobre *B* debido a *A*). Si se define el plano tangente al contacto, la fuerza \vec{F}_{AB} puede ser descompuesta en forma única en la suma de dos fuerza: una perpendicular al plano de contacto y otra paralela a él. Estas dos fuerzas se denominan *fuerza normal* y *fuerza de roce*.
 - <u>Normal</u>. Si un cuerpo está apoyado sobre una superficie, la superficie ejerce una fuerza sobre el cuerpo que corresponde a la reacción debido a la fuerza que el cuerpo ejerce sobre la superficie. La normal es una fuerza perpendicular a la superficie de contacto.
 - <u>Roce</u>. Un cuerpo apoyado sobre una superficie puede ejercer una fuerza paralela a la superficie de contacto. Si la velocidad relativa entre el cuerpo y la superficie es nula se tiene la fuerza de roce estático y si la velocidad relativa entre el cuerpo y la superficie no es nula se tiene una fuerza de roce dinámico.

Otras fuerzas serán introducidas más adelante. Por el momento subrayamos que si un cuerpo está apoyado en una superficie y no hay roce entre ambos, entonces la única fuerza sobre el cuerpo debido a este contacto es la fuerza normal.

^{2.1.} MOMENTUM LINEAL, FUERZA Y LEYES DE NEWTON Facultad de Ciencias Físicas y Matemáticas
2.1.2. Ejemplo de argolla en una vara horizontal que gira

Figura 2.2: Una argolla que puede deslizar libremente, sin roce, a lo largo de una varilla y la varilla gira barriendo con velocidad angular uniforme $\dot{\phi} = \omega$ un plano horizontal. argolla

Consideremos el caso de una argolla que puede deslizar, libre de roce, a lo largo de una vara y esta vara gira barriendo un plano horizontal con velocidad angular $\dot{\phi} = \omega$ constante.

El problema será descrito con coordenadas cilíndricas y los vectores base asociados son $(\hat{\rho}, \hat{\phi}, \hat{k})$ de tal forma que \hat{k} es vertical hacia arriba.

La fuerza total de contacto sobre la argolla, igual que cualquier vector, puede expresarse con los vectores base:

$$\vec{F}_{\rm cont} = f_1 \,\hat{\rho} + f_2 \,\hat{\phi} + f_3 \,\hat{k}$$

pero la componente en la dirección $\hat{\rho}$ representaría roce—ya que es la dirección en la que puede haber movimiento—por lo cual se debe exigir que $f_1 = 0$. Lo que resta, $f_2 \hat{\phi} + f_3 \hat{k}$ es normal a la vara y por lo tanto es la fuerza llamada normal. Las fuerzas sobre la argolla son: su propio peso $\vec{P} = -mg\hat{k}$ y la fuerza normal \vec{N} que la varilla ejerce sobre la argolla. En este caso <u>normal</u> quiere decir ortogonal a la varilla, por lo tanto es una fuerza que ya se ha mencionado y que puede tener componentes en la dirección vertical \hat{k} y también en la dirección $\hat{\phi}$. Cambiándole el nombre a las componentes de la normal, ella se puede escribir

$$\vec{N} = N_k \hat{k} + N_\phi \hat{\phi} \tag{2.1.3}$$

Puesto que la argolla no tiene movimiento horizontal, la fuerza total en esa dirección debe ser nula, es decir, $N_k \hat{k} + \vec{P} = 0$, que implica: $N_k = mg$.

Las condiciones que definen el movimiento son

$$\dot{\phi}(t) = \omega, \qquad \rho(0) = \rho_0, \qquad \dot{\rho}(0) = 0 \qquad (2.1.4)$$

Universidad de Chile

Escuela de Ingeniería y Ciencias

y, puesto que el movimiento ocurre en un plano horizontal, la aceleración tiene la forma (ver (1.2.4)),

$$\vec{a} = \left(\ddot{\rho} - \rho \dot{\phi}^2 \right) \hat{\rho} + \left(2 \dot{\rho} \dot{\phi} + \rho \ddot{\phi} \right) \hat{\phi}$$
(2.1.5)

El plantear la II ley de Newton en coordenadas cilíndricas se puede separar en una componente radial y otra en la dirección de $\hat{\phi}$ lo que da lugar a dos ecuaciones escalares

$$m(2\dot{\rho}\omega) = N_{\phi} \tag{2.1.6}$$

$$\ddot{\rho} - \omega^2 \rho = 0 \tag{2.1.7}$$

Al integrar la segunda ecuación se obtiene

$$\rho(t) = \rho_0 \cosh(\omega t) \tag{2.1.8}$$

que da la forma explícita del movimiento a lo largo de la vara. Este resultado implica que ρ cambia con el tiempo y su variación está relacionada a un coseno hiperbólico. Esto implica, de (2.1.6), que N_{ϕ} no es nulo.

Al usar la forma de $\rho(t)$, obtenida en (2.1.8), en (2.1.6) se obtiene la expresión para N_{ϕ} ,

$$N_{\phi} = 2m\,\omega^2\,\rho_0\,\sinh(\omega t) \tag{2.1.9}$$

Lo que se ha deducido es que la argolla se mueve deslizándose hacia afuera de la argolla. Su distancia al centro de giro: $\rho(t)$, aumenta exponencialmente con el tiempo (en efecto, para tiempos muy grandes $\cosh(\omega t) \sim \frac{1}{2}e^{\omega t}$).

Si se intenta reproducir la situación descrita en un experimento real debemos tomar una argolla y una vara tal que haya roce insignificantemente pequeño entre ambos. Con un motor controlado automáticamente se mantendría uniforme la velocidad angular ω . Descubriríamos, sin embargo, que llegaría un momento en que el motor no sería capaz de mantener contante la velocidad angular, porque la fuerza normal que debe ejercer sobre la argolla es demasiado grande ya que la componente N_{ϕ} crece exponencialmente.

^{2.1.} MOMENTUM LINEAL, FUERZA Y LEYES DE NEWTON Facultad de Ciencias Físicas y Matemáticas

2.2. Muchas partículas

Se considera un sistema de *N* partículas puntuales de masas m_a , a = 1, 2, ..., N, de posiciones \vec{r}_a , velocidades \vec{v}_a y aceleraciones \vec{a}_a . La suma de las masas se denotará *M*

$$M = \sum_{k=1}^{N} m_a$$
 (2.2.1)

y *G* será la forma para designar el *centro de masa*. La posición y la velocidad de *G* son

$$\vec{R}_G = \frac{1}{M} \sum_{k=1}^N m_a \vec{r}_a$$
 (2.2.2)

$$\vec{V}_G = \frac{1}{M} \sum_{k=1}^N m_a \vec{v}_a$$
 (2.2.3)

Cada partícula satisface una ecuación de Newton

$$m_1 \frac{d\vec{v}_1}{dt} = \vec{F}_1$$

$$m_2 \frac{d\vec{v}_2}{dt} = \vec{F}_2$$

$$\dots = \dots$$

$$m_N \frac{d\vec{v}_N}{dt} = \vec{F}_N$$
(2.2.4)

que, al sumarlas dan

$$M\frac{dV_G}{dt} = \vec{F}^{\text{total}} \qquad \text{donde} \qquad (2.2.5)$$

$$\vec{F}^{\text{total}} = \sum_{k=1}^{N} \vec{F}_a \tag{2.2.6}$$

es decir, la variación del momentum total del sistema está dado por la fuerza total que actúa sobre el sistema. Vamos a ver, un poco más abajo, que esta fuerza total se debe exclusivamente a fuerzas externas al sistema.

La fuerza que ha sido llamada \vec{F}_a es la fuerza total sobre la *a*-partícula y puede descomponerse en la suma de las fuerzas que le ejercen las otras

Universidad de Chile

P. Cordero S. & R. Soto B.

$$\vec{F}_a = \vec{f}_a^{\text{ext}} + \vec{f}_a^{\text{int}} \tag{2.2.7}$$

A su vez \vec{f}_a^{int} está compuesta de las fuerzas \vec{F}_{ab} que cada partícula *b* ejerce sobre *a*,

$$\vec{f}_{a}^{\text{int}} = \sum_{b=1, b \neq a}^{N} \vec{F}_{ab}$$
 (2.2.8)

donde automáticamente la fuerza que una partícula ejerce sobre si misma es nula,

$$\vec{F}_{bb} \equiv 0 \tag{2.2.9}$$

Siempre se va a suponer que la fuerza \vec{F}_{ab} entre dos partículas puntuales es paralela a la línea que une ambos puntos.

A continuación se argumenta, a partir de (2.2.6), que las fuerzas internas no contribuyen a la fuerza total. En efecto, al calcular la contribución de las fuerzas internas se tiene

$$\sum_{a=1}^{N} \vec{f}_{a}^{\text{int}} = \sum_{a=1}^{N} \sum_{b=1}^{N} \vec{F}_{ab}$$
(2.2.10)

pero por cada sumando \vec{F}_{ab} hay otro que es \vec{F}_{ba} y el principio de acción y reacción establece que $\vec{F}_{ba} = -\vec{F}_{ab}$, lo que hace que la suma anterior sea nula. En resumen,

$$\vec{F}^{\text{total}} = \sum_{a} \vec{f}_{a}^{\text{ext}} \tag{2.2.11}$$

y por tanto la ecuación de movimiento para el centro de masa G del sistema es

$$M\frac{dV_G}{dt} = \sum_a \vec{f}_a^{\text{ext}} \equiv \vec{F}^{\text{ext}}$$
(2.2.12)

Corolario: si sobre un sistema de partículas no están actuando fuerzas externas, el centro de masa se mueve con velocidad uniforme.

• Estudie el movimiento del centro de masa del sistema compuesto por dos partículas masivas unidas por un hilo, que rotan en torno a su centro de masa y están en vuelo libre en presencia de gravedad \vec{g} .

2.3. Momento Angular y Torque

2.3.1. Ecuaciones generales

Así como el momentum lineal es una medida de la cantidad de movimiento de traslación, el *momento angular*, $\vec{\ell}_{\mathcal{O}}$, es—en cierto modo—la cantidad de movimiento de rotación *en torno a un punto* \mathcal{O} . Formalmente se define como la suma de los productos cruz entre las posiciones y los respectivos momentos lineales

$$\vec{\ell}_{\mathscr{O}}(t) = \sum_{a} \vec{r}_{a}(t) \times \vec{p}_{a}(t)$$
(2.3.1)

Por ejemplo, en el caso de la figura 1.6 (caso de una sola partícula), $\vec{r} = b\hat{j} + \hat{v}_0 t$ y el momentum es $\vec{p} = m v_0 \hat{i}$, por lo que el momento angular del ejemplo es $\vec{\ell}_{\mathcal{O}} = -m b v_0 \hat{k}$.

Calcule el momento angular $\vec{\ell}_{\mathcal{O}}$ de una partícula que gira con velocidad angular uniforme en torno al punto \mathcal{O} describiendo una circunferencia de radio *R*.

Por su propia definición el momento angular de una sola partícula "1" apunta en una dirección que es perpendicular al plano que definen $\vec{r}_1 \neq \vec{p}_1$. Esta dirección está relacionada al eje de giro del punto móvil con respecto al punto \mathcal{O} en un instante determinado. En general la dirección de ese eje va cambiando con el tiempo.

≫ Se tiene dos ruedas de bicicleta de igual geometría —montadas sobre ejes fijos—girando a igual velocidad angular. La primera es una rueda normal mientras que la otra tiene plomo en lugar de aire en su cámara. Al tratar de detenerlas se notará que se requiere de más esfuerzo para detener a la rueda con plomo. Esto se debe a que es más difícil llevar hasta cero el momento angular de un objeto que actualmente tiene momento angular más grande.

Si se toma la derivada con respecto al tiempo del momento angular, y se supone que las masas son contantes, se obtiene

$$\frac{d\vec{\ell}_{\mathscr{O}}}{dt} = \sum_{a} \frac{d(\vec{r}_{a} \times \vec{p}_{a})}{dt} = \sum_{a} \frac{d\vec{r}_{a}}{dt} \times \vec{p}_{a} + \sum_{a} \vec{r}_{a} \times \frac{d\vec{p}_{a}}{dt}$$
(2.3.2)

El primer término del lado derecho es cero porque cada sumando es proporcional a $\vec{v}_a \times \vec{v}_a$ y el último término se puede escribir sencillamente $\vec{r}_a \times \vec{p}_a$, es decir,

$$\frac{d\vec{\ell}_{\mathscr{O}}(t)}{dt} = \sum_{a} \vec{r}_{a}(t) \times \vec{F}_{a}^{\text{total}}$$
(2.3.3)

Para escribir esta última expresión se hizo uso de la segunda ley de Newton, (2.1.2). El lado derecho de la expresión anterior es lo que se conoce como *torque total* $\vec{\tau}_{\mathcal{O}}$ que producen las fuerzas \vec{F}_a sobre el sistema de partículas,

$$\vec{\tau}_{\mathscr{O}}^{\text{total}} = \sum \vec{r}_a(t) \times \vec{F}_a^{\text{total}}$$
(2.3.4)

y por tanto

$$\frac{d\vec{\ell}_{\mathscr{O}}(t)}{dt} = \vec{\tau}_{\mathscr{O}}^{\text{total}}$$
(2.3.5)

que quiere decir que la variación del momento angular se debe a la acción del torque total que actúa sobre el sistema.

Para estudiar la dinámica del momento angular se debe ver el valor del torque total y la forma de descomponerlo. El torque total $\vec{\tau}_{\mathcal{O}}$ es la suma del torque de las fuerzas externas y el de las fuerzas internas. Demostremos que este último es nulo. Como la suma no depende del nombre de los índices, se la puede escribir intercambiando el papel de *a* y *b*. Luego se suma ambas sumatorias y se divide por dos,

$$\vec{\tau}_{\vec{O}}^{\text{int}} = \sum_{a,b} \vec{r}_a \times \vec{F}_{ab}$$

$$= \frac{1}{2} \sum_{a,b} \vec{r}_a \times \vec{F}_{ab} + \frac{1}{2} \sum_{a,b} \vec{r}_b \times \vec{F}_{ba}$$

$$= \frac{1}{2} \sum_{a,b} (\vec{r}_a - \vec{r}_b) \times \vec{F}_{ab} \qquad (2.3.6)$$

es decir

$$\vec{\tau}_{\mathcal{O}} = \sum_{a} \vec{r}_{a} \times f_{a}^{\text{ext}} \tag{2.3.7}$$

El torque total sobre un sistema depende tan solo de las fuerzas que son externas al sistema.

 \gg Los frenos, en un vehículo ejercen torque sobre las ruedas, el motor también.

Si para un sistema el torque de la fuerza total es nulo, entonces el momento angular tiene derivada temporal nula, es decir, es constante.

2.3. MOMENTO ANGULAR Y TORQUE

Si para un sistema el torque no es nulo, pero una de sus componentes es nula todo el tiempo, entonces la correspondiente componente del momento angular es constante.

2.3.1.1. Del péndulo esférico al péndulo cónico

Figura 2.3: Para describir un péndulo esférico es conveniente escoger el eje Z apuntando en el mismo sentido que g.

Si una masa puntual pende de un hilo de largo *R*, cuyo otro extremo está fijo se tiene, en general, un péndulo esférico. Bajo condiciones iniciales particulares puede comportarse como un péndulo plano (el hilo barre siempre un mismo plano vertical) y puede ser también un péndulo cónico cuando la masa describe una circunferencia con coordenada cilíndrica *z* fija o, equivalentemente, con coordenada esférica θ fija. En la figura adjunta se ha escogido coordenadas esféricas con el polo norte abajo para lograr así que θ describa directamente la desviación del péndulo con respecto a su posición vertical en reposo.

La fuerza total sobre la masa es la suma de su peso y de la tensión del hilo. En coordenadas esféricas $\vec{T} = -T\hat{r}$ y la aceleración de gravedad, de acuerdo a la figura, es

$$\vec{g} = g(\hat{r}\cos\theta - \hat{\theta}\sin\theta)$$

Se aprecia que la fuerza total no tiene componente a lo largo de $\hat{\phi}$, lo que quiere decir que la componente de la aceleración dada en (1.2.10) debe ser nula, esto es,

$$m\frac{d}{dt}\left(R^2\,\phi\,\sin^2\theta\right)=0$$

Universidad de Chile

que implica que existe una constante ℓ_3 y

Figura 2.4: Un punto material en el extremo de un hilo de largo R gira en una trayectoria circunferencial de radio ρ . El otro extremo del hilo está fijo. Este sistema es un péndulo cónico. _{pconico}

Si ℓ_3 no es nulo, esta relación implica que θ no puede anularse porque eso daría que $\dot{\phi} \rightarrow \infty$. Sí se puede afirmar es que la rapidez es muy grande cuando el péndulo pasa por puntos en que el ángulo θ es muy chico. La ecuación de movimiento es reductible entonces a solo dos ecuaciones escalares: las componentes \hat{r} y $\hat{\theta}$:

$$-mR(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) = mg\cos\theta - T$$

$$mR(\ddot{\theta} - \dot{\phi}^2 \sin\theta\cos\theta) = -mg\sin\theta$$
(2.3.9)

Un péndulo cónico, tal como se aprecia en la figura adjunta, es "cónico" cuando el punto masivo gira describiendo una circunferencia. En tal caso el ángulo θ permanece en una valor fijo θ_0 .

Se quiere responder a la pregunta ¿bajo qué condiciones un péndulo esférico tiene movimiento cónico? De (2.3.8) se obtiene que en el caso actual ϕ es constante, y se denominará ω porque es la velocidad angular del péndulo que gira en torno al eje vertical. Dados *R* y *g* ¿puede tenerse un péndulo cónico para cualquier valor de ω ?

2.3. MOMENTO ANGULAR Y TORQUE

La segunda de las ecuaciones (2.3.9) se reduce a

$$R\omega^2 \cos \theta_0 = g \quad \Rightarrow \quad \cos \theta_0 = \frac{g}{R\omega^2} \quad \Rightarrow \quad \sin \theta_0 = \frac{1}{R}\sqrt{R^2 - \frac{g^2}{\omega^4}} \quad (2.3.10)$$

Puesto que un coseno debe tener módulo menor que la unidad, se debe cumplir que

$$\omega \ge \sqrt{\frac{g}{R}} \tag{2.3.11}$$

No es posible un péndulo cónico con velocidad angular menor que esta cota. Dada una velocidad angular ω superior a tal cota, el péndulo debe ser lanzado formando un ángulo con la vertical exactamente como el que se da en (2.3.10).

En resumen, el sistema descrito constituye un péndulo cónico tan solo si la velocidad angular se relaciona con el ángulo θ que el hilo forma con la vertical por medio de (2.3.10). El radio de la circunferencia es $\rho = \sqrt{R^2 - \frac{g^2}{\omega^4}}$.

2.3.1.2. El péndulo simple

Figura 2.5: Un péndulo consta de un hilo de largo R fijo en un extremo a un punto \mathcal{O} . En el otro extremo hay una masa puntual m.

Consideremos un péndulo plano como el de la figura adjunta. Este consiste en una partícula puntual de masa m, unida al extremo de un hilo cuyo

otro extremo está fijo en un techo que tomaremos como el punto \mathcal{O} . El movimiento ocurre en un plano. En este ejemplo el torque se debe a la fuerza peso, $\vec{g} = \hat{\rho} \cos \theta - \hat{\theta} \sin \theta$ y $\vec{r} = R \hat{\rho}$,

$$\vec{\tau}_{\mathscr{O}} = \vec{r} \times (m\vec{g}) = -mRg\sin\theta \hat{k}$$
(2.3.12)

donde *R* es el largo del hilo. El momento angular, por otro lado, es sencillamente $\vec{\ell}_{\mathcal{O}} = \vec{r} \times \vec{v} = mR^2 \dot{\theta} \hat{k}$ porque $\vec{v} = R \dot{\theta} \hat{\theta}$. De aquí que (2.3.5) implique

$$\ddot{\theta} = -\frac{g}{R}\sin\theta \tag{2.3.13}$$

Esta es la ecuación de movimiento de un péndulo de largo *R*. El movimiento no depende de la masa de la partícula que hay en el extremo del hilo. Esta ecuación supone que el hilo está siempre tenso, lo que podría no ocurrir si el movimiento excede $\theta = \pi/2$.

Si las oscilaciones son pequeñas, $\theta \ll 1$, se puede hacer la aproximación $\sin \theta \approx \theta$ y la ecuación queda

$$\ddot{\theta} = -\frac{g}{R}\,\theta\tag{2.3.14}$$

2.3.1.3. Uso de coordenadas esféricas: movimiento en superficie cónica

Consideremos una superficie cónica con eje vertical y vértice abajo. El vértice se escoge como origen. Una partícula P de masa m desliza sin roce por la superficie interior del cono bajo los efectos de la gravedad.

Se desea plantear las ecuaciones de movimiento en coordenadas esféricas, las propiedades del momento angular y reducir el problema a uno para la coordenada esférica r(t). La coordenada θ es constante ya que ella es el ángulo entre el eje y cualquier generatriz del cono.

No hay más fuerzas que el peso y la normal:

$$m\vec{g} = mg\left(-\hat{r}\cos\theta + \hat{\theta}\sin\theta\right)$$

$$\vec{N} = -N\hat{\theta}$$
(2.3.15)

En este caso particular la aceleración en coordenadas esféricas es

$$\vec{a} = \left(\ddot{r} - r\dot{\phi}^2\sin^2\theta\right)\hat{r} - r\dot{\phi}^2\sin\theta\cos\theta\,\hat{\theta} + \frac{\frac{d}{dt}(r^2\dot{\phi})}{r}\sin\theta\,\hat{\phi}$$
(2.3.16)

^{2.3.} MOMENTO ANGULAR Y TORQUE

Figura 2.6: Un punto se mueve apoyado en el interior de una superficie cónica de eje vertical y vértice abajo.

Puesto que la fuerza total no tiene componente a lo largo de $\hat{\phi}$, esa componente de la aceleración debe ser nula, lo que se reduce a $\frac{d}{dt}(r^2\dot{\phi}) = 0$, es decir, lo que hay en el interior del paréntesis es una constante

$$r^2 \dot{\phi} = \text{cte}$$
 obien $\dot{\phi} = \frac{\ell_0}{m r^2 \sin \theta}$ (2.3.17)

donde ℓ_0 es la magnitud del momento angular. En efecto, si se calcula el momento angular se obtiene

$$\vec{\ell} = mr\hat{r} \times \left(\hat{r}\,\dot{r} + \hat{\phi}\,r\dot{\phi}\,\sin\theta\right) = -mr^2\dot{\phi}\,\sin\theta\,\hat{\theta} \tag{2.3.18}$$

que, por lo que se ha dicho, es un vector de magnitud constante:

$$\vec{\ell} = \ell_0 \hat{\theta}$$

La ecuación de movimiento a lo largo de \hat{r} es

$$\ddot{r} - r\dot{\phi}^2 \sin^2 \theta = -g \cos \theta \tag{2.3.19}$$

Reemplazando en ella la expresión para $\dot{\phi}$ se obtiene

$$\ddot{r} = \frac{\ell_0^2}{m^2 r^3} - g\cos\theta$$
(2.3.20)

que es una ecuación difícil. Hay un caso sencillo e interesante que corresponden a órbitas circunferenciales horizontales de radio r_H . Para estas soluciones r es contante y también $\ddot{r} = 0$ por lo que el lado derecho de la última ecuación debe ser nulo, implicando que

$$r_H^3 = \frac{\ell_0^2}{m^2 g \cos \theta}$$

2.3.2. El centro de masa y el momento angular

Figura 2.7: El vector posición \vec{r}_k de una partícula k se puede descomponer en la suma del vector posición del centro de masa, \vec{R}_G , y el vector posición de k desde el centro de masa, $\vec{\rho}_k$.

Se define las posiciones $\vec{\rho}_a$ desde el centro de masa,

$$\vec{\rho}_a \equiv \vec{r}_a - \vec{R}_G \tag{2.3.21}$$

de velocidad con respecto al sistema CM es

$$\dot{\vec{\rho}}_a \equiv \vec{v}_a - \vec{V}_G \tag{2.3.22}$$

Demuestre que

$$\sum_{k=1}^{N} m_a \vec{\rho}_a = 0 \tag{2.3.23}$$

A veces también es útil la derivada temporal de la relación anterior,

$$\sum_{k=1}^{N} m_a \dot{\vec{p}}_a = 0 \tag{2.3.24}$$

2.3. MOMENTO ANGULAR Y TORQUE

En §2.2 también se definió el momento angular total del sistema y se vio que obedece a la ecuación

$$\frac{d\ell_{\mathcal{O}}}{dt} = \sum_{a} \vec{r}_{a} \times f_{a}^{\text{ext}}$$
(2.3.25)

El torque total sobre un sistema depende tan solo de las fuerzas externas al sistema. El momento angular del sistema con respecto a su propio centro de masa es

$$\vec{\ell}_G = \sum_{a=1}^N m_a \vec{\rho}_a \times \vec{v}_a \tag{2.3.26}$$

Sin embargo, si en la última expresión se hace el reemplazo $\vec{v}_a = \vec{V}_G + \vec{\rho}_a$ la forma de $\vec{\ell}_G$ se puede simplificar porque \vec{V}_G queda fuera de la sumatoria (no depende de *a*) y (2.3.24) asegura que ese término no contribuye a $\vec{\ell}_G$, concluyéndose que

$$\vec{\ell}_G = \sum_{a=1}^N m_a \vec{\rho}_a \times \dot{\vec{\rho}}_a \tag{2.3.27}$$

El momento angular $\vec{\ell}_{\mathcal{O}}$ también se puede escribir

$$\vec{\ell}_{\mathscr{O}} = \sum_{a=1}^{N} m_a \left(\vec{R}_G + \vec{\rho}_a \right) \times \left(\vec{V}_G + \dot{\vec{\rho}}_a \right)$$
$$= M \vec{R}_G \times \vec{V}_G + \sum_{a=1}^{N} m_a \vec{\rho}_a \times \dot{\vec{\rho}}_a$$
(2.3.28)

Para obtener la última expresión se hizo uso de (2.3.23) y de (2.3.24). El primer término del lado derecho es el momento angular del sistema como un todo con respecto al punto \mathcal{O} , y será denotado $\vec{\ell}_{\mathcal{O}}^{G}$

$$\vec{\ell}_{\mathcal{O}}{}^{\rm G} = M \vec{R}_{G} \times \vec{V}_{G} \tag{2.3.29}$$

mientras que el último término es \vec{l}_G . De aquí que

$$\vec{\ell}_{\mathcal{O}} = \vec{\ell}_{\mathcal{O}}^{\mathbf{G}} + \vec{\ell}_{G} \tag{2.3.30}$$

La ecuación de movimiento para cada cuerpo b de masa m_b del sistema es

$$m_b \ddot{\vec{\rho}}_b = \vec{F}_b - m_b \vec{R}_G$$

...

Universidad de Chile

Escuela de Ingeniería y Ciencias

Derivando (2.3.27) con respecto al tiempo se obtiene

$$\ddot{\ell}_G = \sum \vec{\rho}_b \times \left(F_b - m_b \ddot{\vec{R}}_G \right)$$

La última suma contiene $\sum m_b \vec{\rho}_b = 0$ por lo que el resultado es

$$\frac{d\ell_G}{dt} = \sum_b \vec{\rho}_b \times \vec{F}_b$$
$$\equiv \vec{\tau}_G \qquad (2.3.31)$$

Se puede anotar también que

$$\vec{\tau}_{\mathscr{O}} = \sum_{a} \vec{r}_{a} \times \vec{f}_{a}^{\text{ext}}$$

$$= \sum_{a} \left(\vec{R}_{G} + \vec{\rho}_{a} \right) \times \vec{f}_{a}^{\text{ext}}$$

$$= \vec{R}_{G} \times \sum_{a} \vec{f}_{a}^{\text{ext}} + \sum_{a} \vec{\rho}_{a} \times \vec{f}_{a}^{\text{ext}}$$

$$= \vec{\tau}_{\mathscr{O}}^{G} + \vec{\tau}_{G} \qquad (2.3.32)$$

La última línea define la notación.

El torque del peso respecto a G: Este se calcula como

$$\vec{\tau}_G = \sum_a m_a \vec{\rho}_a \times \vec{g}$$

$$= 0 \qquad (2.3.33)$$

La suma anterior se anula debido a (2.3.23). Ya que $\vec{\tau}_G = 0$ entonces $\vec{\ell}_G$ es constante si el peso es la única fuerza externa.

Un caso particular es el del deportista que se lanza desde un alto tablón a una piscina para, después de algunas volteretas, clavarse en el agua en forma perfecta. Un vez que está en vuelo su momento angular no puede cambiar. Tan solo alargando o acortando su cuerpo y moviendo sus brazos puede controlar su velocidad angular, pero llega al agua con el mismo \vec{l}_G que se dio en el momento de despegar del tablón. Los gatos hacen algo parecido para caer siempre de pié.

Lo anterior puede prestarse a confusión cuando se tiene un sistema con fuerzas de contacto. Por ejemplo, si se piensa al sistema de la figura 2.5 como una barra ideal sin masa con una partícula en cada extremo (es decir, como un sistema de dos partículas y no una sola), está la fuerza del peso sobre cada una y se vió en aquel caso que el torque causado por el peso es el que determina la dinámica del sistema.

2.3. MOMENTO ANGULAR Y TORQUE

2.4. Sistemas de dos partículas: masa reducida

En general las ecuaciones para un sistema de dos partículas se puede escribir

$$m_1 \frac{d^2 \vec{r}_1}{dt^2} = \vec{F}_{12} + \vec{f}_1 \tag{2.4.1}$$

$$m_2 \frac{d^2 \vec{r}_2}{dt^2} = -\vec{F}_{12} + \vec{f}_2 \qquad (2.4.2)$$

Ya se sabe que la suma de ambas ecuaciones da la dinámica del centro de masa, ecuación (2.2.12).

Si se define el vector de posición relativa y la masa reducida μ por

$$\vec{\rho} = \vec{r}_1 - \vec{r}_2 = \vec{\rho}_1 - \vec{\rho}_2, \qquad \mu = \frac{m_1 m_2}{m_1 + m_2}$$
 (2.4.3)

entonces la ecuación (2.4.1) multiplicada por $m_2/(m_1+m_2)$ queda

$$\mu \left(\ddot{\vec{\rho}} + \ddot{\vec{r}}_2 \right) = \frac{m_2}{m_1 + m_2} \left(\vec{F}_{12} + \vec{f}_1 \right)$$
(2.4.4)

si a esta ecuación se le suma (2.4.2) multiplicada por $-m_1/(m_1+m_2)$ se obtiene

$$\mu \ddot{\vec{\rho}} = \vec{F}_{12} + \frac{m_2}{m_1 + m_2} \vec{f}_1 - \frac{m_1}{m_1 + m_2} \vec{f}_2 \qquad (2.4.5)$$

Esta ecuación es equivalente a la ecuación de una sola partícula de masa μ y posición $\vec{\rho}$.

 \gg El problema de dos partículas se reduce al problema del movimiento del centro de masa y a la ecuación (2.4.5) para el movimiento relativo.

En el caso usual en que $\vec{f}_a = m_a \vec{g}$ la ecuación anterior se reduce a

$$\mu \vec{\vec{p}} = \vec{F}_{12}$$
 caso especial (2.4.6)

que es una ecuación en la que no interviene sino las fuerza entre las partículas.

El momento angular con respecto a *G* puede también ser escrito usando $\vec{\rho}$ y la masa reducida μ . Para lograrlo se debe observar primero que $\vec{\rho}$, $\vec{\rho}_1$ y $\vec{\rho}_2$ son paralelos y satisfacen

$$\vec{\rho}_1 = \frac{\mu}{m_1}\vec{\rho}, \qquad -\vec{\rho}_2 = \frac{\mu}{m_2}\vec{\rho}$$
 (2.4.7)

Universidad de Chile

Escuela de Ingeniería y Ciencias

Entonces

$$\vec{\ell}_G = m_1 \vec{\rho}_1 \times \vec{\rho}_1 + m_2 \vec{\rho}_2 \times \vec{\rho}_2$$

= $\mu \vec{\rho} \times \vec{\rho}$ (2.4.8)

2.5. Fuerzas centrales

2.5.1. La idea

Una fuerza se dice central, con centro en el punto \mathcal{O} , si el valor de esta fuerza en un punto \vec{r} es

$$\vec{F} = f(\vec{r})\,\hat{r} \tag{2.5.1}$$

donde \vec{r} es el vector posición desde \mathscr{O} del punto donde se define la fuerza, $r = \|\vec{r}\|$ y $\hat{r} = \vec{r}/r$. La magnitud $f(\vec{r}) = f(r, \theta, \phi)$ de la fuerza es una función escalar cualquiera que en los casos más importantes solo depende del escalar *r*.

Como pronto se verá, importantes fuerzas de la naturaleza son centrales, tales como la que describe la *Ley de Gravitación* y también la *Ley de Coulomb* entre cargas eléctricas. En ambos casos *f* solo depende de *r* (no depende ni de θ ni de ϕ), en cambio en el ejemplo del péndulo recién descrito, la tensión del hilo es una fuerza con centro en el punto fijo al techo que también depende del ángulo ϕ .

El torque $\tau_{\mathscr{O}}$, en el caso en que la fuerza total sobre una partícula es una fuerza central, es nulo, porque $\tau_{\mathscr{O}} = \vec{r} \times (f(r)\hat{r}) = 0$ ya que se trata del producto cruz entre dos vectores paralelos. De esto y de (2.3.5) se concluye que en un caso así

$$\frac{d\ell}{dt} = 0 \tag{2.5.2}$$

es decir, el momento angular permanece constante, $\vec{\ell}(t) = \vec{\ell}_0$.

Pero si $\vec{\ell}$ es constante, y puesto que $\vec{\ell} = \vec{r} \times \vec{p}$, el plano que definen los vectores \vec{r} y \vec{p} permanece fijo, es decir, el movimiento trascurre en un plano fijo.

Resumen: si la fuerza total sobre una partícula es una fuerza central, con centro en \mathcal{O} , el momento angular $\vec{\ell}_{\mathcal{O}}$ es constante en el tiempo y el movimiento es plano.

^{2.5.} FUERZAS CENTRALES

Figura 2.8: Si el momento angular se conserva, entonces áreas barridas en tiempos iguales son iguales.

2.5.2. Corolario: segunda ley de Kepler.

Veremos que si se conserva el momento angular, la línea que une al punto \mathscr{O} con el punto que define el vector posición $\vec{r}(t)$ barre áreas iguales en tiempos iguales. Para demostrarlo hay que recordar que si se tiene dos vectores \vec{a} y \vec{b} definidos a partir de \mathscr{O} , la magnitud del producto $\vec{a} \times \vec{b}$ es igual al área del paralelógramo que definen \vec{a} y \vec{b} . Si la posición de la partícula en un instante t es $\vec{r}(t)$, en un pequeño instante posterior $t + \varepsilon$ es $\vec{r}(t + \varepsilon) = \vec{r}(t) + \varepsilon \frac{d\vec{r}}{dt} = \vec{r}(t) + \varepsilon \vec{v}(t)$. El área barrida en este lapso infinitesimal ε es la mitad del área del paralelógramo (porque es el área de un triángulo), es decir, esta área infinitesimal vale $dS = \frac{1}{2} ||\vec{r}(t) \times (\vec{r}(t) + \varepsilon \vec{v}(t))||$ que resulta ser $dS = \frac{\varepsilon}{2} ||\vec{r}(t) \times \vec{v}(t)||$ que es $dS = \varepsilon \frac{||\vec{\ell}||}{2m}$. El infinitesimal ε es un elemento de tiempo dt, y de aquí que la conclusión sea que

$$\frac{dS}{dt} = \frac{\|\vec{\ell}\|}{2m} \tag{2.5.3}$$

En palabras, la expresión anterior dice que el área barrida por $\vec{r}(t)$ —a medida que la partícula se mueve en su órbita—no depende de t y es proporcional a la magnitud del momento angular. Si la expresión anterior se integra entre dos instantes arbitrarios t_1 y t_2 de la historia de la partícula, el resultado es

$$S_{12} = \frac{\|\vec{\ell}\|}{2m} (t_2 - t_1) \tag{2.5.4}$$

Es decir, el tiempos iguales $(t_2 - t_1)$ se barren áreas iguales S_{12} .

2.6. Problemas

- 2.1 Considere el movimiento de un proyectil lanzado desde (x = 0, y = 0) con velocidad inicial v = (îcos θ + ĵsin θ) v₀ y aceleración de gravedad g = -gĵ.
 a) Determine la trayectoria y(x), la rapidez v(t) en todo momento y el vector tangente unitario t̂.
 b) Si el proyectil ha sido lanzado desde la base de un plano inclinado (ángulo α y α < θ), determine el ángulo θ óptimo para que el proyectil golpee al plano lo más lejos posible.
- 2.2 Una cuerpo comienza su movimiento (sin roce) desde la cúspide de una esfera fija de radio R con rapidez v_0 . Determinar dónde el cuerpo pierde contacto con la esfera.
- 2.3 Por un riel circunferencial en posición horizontal de radio R avanza un cuerpo C_1 de masa m_1 arrastrando a un cuerpo C_2 de masa m_2 con un hilo de largo $R\sqrt{2}$. El cuerpo C_1 es movido por una fuerza de magni-

tud *F* conocida y fija que es siempre tangencial a la circunferencia. En el instante t = 0 los cuerpos parten desde el reposo y en t_0 completan una vuelta. **a**) Calcule la tensión del hilo en ese intervalo. **b**) En el instante t_0 se corta el hilo y sobre C_1 continua actuando la misma fuerza. Obtenga el instante t_1 en el cual C_1 alcanza a C_2 .

- 2.4 En una vara horizontal de largo *D* hay un anillo de masa m_1 que puede deslizar por la vara sin roce alguno. De este anillo sale un hilo en cuyo extremo pende un punto de masa m_2 , es decir, se tiene un péndulo simple que no tiene un punto fijo, sino que éste desliza en una vara horizontal. Encontrar una expresión para la tensión del hilo en función del ángulo ϕ y de $\dot{\phi}$.
- 2.5 En la situación de la figura se tiene una rueda de masa total M y radio R_0 enfrentando un peldaño de altura a. Determine la mínima fuerza horizontal \vec{F} que se debe aplicar para que la rueda supere al peldaño.

2.6 Una partícula *P* de masa *m* se mueve por la superficie interior de un cono de eje vertical, ángulo θ y vértice abajo. Si sobre *P* actua una fuerza que,

2.6. PROBLEMAS

expresada en coordenadas esféricas, es $\vec{F} = -\gamma r \hat{r}$, determine las ecuaciones de movimiento de *P* en coordenadas esféricas y obtenga una expresión para su velocidad. Datos iniciales: $r(0) = R_0$, $\dot{\phi}(0) = \omega$, $\dot{r}(0) = 0$.

2.7 Resuelva el caso de una argolla de masa *m* en una varilla que gira con velocidad angular uniforme: $\dot{\phi} = \omega$ siempre formando un ángulo θ con la vertical. No hay roce entre ambos. Tome como condiciones iniciales que $z(0) = z_0$ y que $\dot{z}(0) = 0$. Si la varilla gira muy lentamente la argolla cae hacia \mathcal{O} . Describa todas las situaciones posibles, desde velocidad angular muy pequeña hasta muy grande y escriba el valor de la velocidad angular crítica para decidir si cae o sube.

Indicación: usando coordenadas cilíndricas se puede ver que la varilla apunta en la dirección unitario $\hat{t} = \hat{k}\cos\theta + \hat{\rho}\sin\theta$. La fuerza total es la suma del peso, $-mg\hat{k}$ y la fuerza normal, que inicialmente se debe escribir con un vector general perpendicular a \hat{t} . Demuestre que la fuerza normal entonces es de la forma: $\vec{N} = \hat{\phi} N_{\phi} + (\hat{k}\sin\theta - \hat{\rho}\cos\theta)N_n$. Una vez que se tiene las fuerzas, la ecuación de movimiento (II ley de Newton) puede ser escrita y descompuesta en tres ecuaciones escalares. Hay que tomar en cuenta que la argolla solo se puede mover a lo largo de la varilla, es decir, siempre se debe satisfacer $\rho(t) = z(t) \tan \theta$ (*). En estas ecuaciones escalares aparecen las cantidades desconocidas N_n y N_{ϕ} , pero si se usa (*) se puede obtener una ecuación libre de estos coeficientes. Tal ecuación entonces se puede integrar y se obtiene z(t). A partir de ahí el problema es muy sencillo.

2.8 Hay un hilo enrollado alrededor de un cilindro. El eje del cilindro es horizontal, su radio es R y la altura desde el suelo al eje es L. En el instante inicial está desenrollada una parte del hilo, de longitud D, la que se mantiene tirante y horizontal, $\phi = 0$. En esa punta del hilo hay un cuerpo de masa m. Este cuerpo se suelta desde el reposo y a medida que cae el hilo se va enrollando. **a**) Determine la tensión del hilo como función del ángulo ϕ . **b**) Dé la forma de la aceleración y determine el radio de curvatura. Interprete.

Indicación: Conviene tomar el origen en el eje del cilindro y escribir el vector posición del cuerpo como la suma de los vectores posición del punto P de tangencia del hilo

Universidad de Chile

 $(\vec{r}_P \text{ en } | a \text{ dirección } \hat{\rho})$ y el vector que apunta en la dirección del hilo y que es tangente al cilindro, en la dirección $\hat{\phi}$.

- 2.9 Desde el punto de vista del momento angular estudie el péndulo cónico descrito en la sección 2.3.1.1. Haga su estudio en dos casos: (a) cuando el origen \mathcal{O} para definir el momento angular y el torque está al centro de la circunferencia que describe la partícula y (b) cuando \mathcal{O} se escoge en el punto en que el hilo se une al techo. En ambos casos escriba el vector posición de la masa *m* usando los vectores unitarios asociados a coordenadas cónica, obtenga la velocidad, calcule el momento angular y el torque y compruebe que (2.3.5) se satisface.
- 2.10 Un astronauta de masa *m* se aleja de su nave unido a ella por una cuerda, pero impulsado por sus propios cohetes. Debido a que se le acaba el combustible debe ser traído de vuelta recogiendo la cuerda. Esto se comienza a hacer cuando la cuerda está tirante, tiene una longitud extendida R₀ desde la nave y la velocidad angular del astronauta, respecto a la nave, es Ω₀. La cuerda comienza a ser recogida con rapidez constante v₀. Suponga que no hay complicación alguna en el momento de comenzar a recoger la cuerda.
 a) Encuentre la rapidez del astronauta en función de la distancia a la nave.
 b) Si se sabe que la cuerda soporta una tensión máxima 27 mR₀ Ω₀² antes de cortarse, determine a qué distancia de la nave se encuentra el astronauta en el momento en que la cuerda se corta. Nota: la nave tiene masa tan grande que para todos los efectos de este problema puede tomarse como un punto fijo.
- 2.11 Un péndulo plano de largo R y masa m es liberado desde su punto más bajo ($\phi = 0$) con una velocidad angular ω_0 . No alcanza a llegar a la cúspide (altura 2R medida desde el punto más bajo) porque cuando ϕ toma el valor ϕ_M el movimiento deja de ser circunferencial. Obtenga una expresión para $\cos \phi_M$ en función de m, g, ω_0 y R.
- 2.12 Sobre un plano horizontal está apoyada una cuña de masa M y sobre la

cuña hay un cuerpo de masa m. Despre-

ciando todos los roces, determine el movimiento de este sistema si inicialmente ambos cuerpos están en reposo.

2.6. PROBLEMAS

Capítulo 3

Fuerzas específicas y movimiento

3.1. Ley de Gravitación Universal

3.1.1. La ley

La tercera ley de Kepler dice que el cubo de la distancia media, R, de un planeta dividida por el cuadrado de su período, T, es la misma constante para todos los planetas, es decir para cualquier planeta a el cuociente

$$\frac{R_a^3}{T_a^2} = k$$

da un valor k que no depende del planeta. Kepler estableció que las órbitas son elipses. También estableció la ley (2.5.3) que sabemos que significa que el momento angular se conserva. Kepler enunció sus dos primeras leyes en 1609, mientras que la tercera es de diez años después, 1619. Isaac Newton se basó en la tercera ley de Kepler para afirmar en 1666 que existe una fuerza de atracción gravitacional que es proporcional al inverso del cuadrado de la distancia entre los dos cuerpos.

Esto último sugiere que la dinámica de los planetas está gobernada por una fuerza central. Si la fuerza es central de la forma $f(r)\hat{r}$, la única aceleración que sufren los planetas es la centrípeta, descrita en (1.4.12). ¿Qué

forma tiene tal ley de fuerza?

Aun cuando los planetas se mueven en órbitas elípticas, éstas son muy poco excéntricas, es decir, son casi circunferenciales. La velocidad media del planeta *a* es prácticamente su velocidad real todo el tiempo, y se puede estimar dividiendo el camino recorrido en una órbita: $2\pi R_a$ por el tiempo T_a que tarda, es decir, $V_a = 2\pi R_a/T_a$. Se sabe, ver (1.4.12), que la aceleración centrípeta $a_c^{(a)}$ es de magnitud V_a^2/R_a ,

$$a_c^{(a)} = \frac{1}{R_a} \left(\frac{2\pi R_a}{T_a}\right)^2 = \frac{4\pi^2 R_a}{T_a^2} = \frac{4\pi^2}{R_a^2} \frac{R_a^3}{T_a^2} = \frac{4\pi^2 k}{R_a^2}$$
(3.1.1)

Con la última expresión a la derecha se ha podido escribir la aceleración centrípeta en términos tan solo de la constante $4\pi^2 k$ y de la distancia al centro de fuerza (distancia al sol). Por tanto, la magnitud de la fuerza sobre el planeta *a* tiene que estar dada por esta aceleración multiplicada por la masa del planeta y tiene que apuntar hacia el centro,

$$\vec{F}_{a} = -\frac{4\pi^{2}kM_{a}}{R_{a}^{2}}\hat{r}$$
(3.1.2)

El planeta Júpiter tiene muchas lunas y ese sistema se comporta como un sistema solar autónomo. Cuando se estudió si la ley de Kepler (3.1.1) se cumplía para ese sistema se obtuvo que se cumple, pero la constante k que resulta es otra. Hoy sabemos, gracias a la ley de gravitación universal de Newton, que esa constante k es proporcional a la masa del objeto masivo que crea la fuerza central (el sol en un caso y Júpiter en el otro).

El argumento dado al comienzo, en torno a (3.1.1), tiene sentido tan solo si la órbita es circunferencial o muy próxima a serlo. Pero la conclusión de ese caso particular, ayuda a entender cómo se puede llegar a concebir la ley de validez universal que ahora se introduce.

La ley universal de gravitación enunciada por Newton dice que la fuerza de atracción que ejerce un punto material de masa m_A sobre un punto material de masa m_B es

$$\vec{F}_{\text{sobre B}} = -G \frac{m_A m_B}{r_{AB}^2} \hat{r}$$
(3.1.3)

donde \hat{r} es el vector unitario que apunta desde el centro A de fuerza hacia B.

^{3.1.} LEY DE GRAVITACIÓN UNIVERSAL

La constante universal de gravitación G vale

Figura 3.1: La fuerza de atracción gravitacional que A ejerce sobre B es paralela a $\vec{r}_B - \vec{r}_A$.

Esta misma ley se puede también escribir utilizando vectores posición \vec{r}_A y \vec{r}_B respecto a cualquier origen \mathcal{O} . La fuerza sobre *B* debido a *A* es

$$\vec{F}_{BA} = -G \frac{m_A m_B}{\|\vec{r}_B - \vec{r}_A\|^3} \left(\vec{r}_B - \vec{r}_A\right)$$
(3.1.5)

El movimiento que se deduce con esta fuerza, en particular el movimiento planetario, será discutido más adelante.

3.1.2. Aceleración de gravedad

De acuerdo a (3.1.3) la magnitud de la fuerza que la Tierra ejerce sobre un cuerpo de masa *m* es

$$F = G \frac{Mm}{(R+h)^2} \tag{3.1.6}$$

donde *M* es la masa de la Tierra, *R* es su radio al nivel del mar y *h* es la altura sobre el nivel del mar que está el cuerpo de masa *m*. Siempre se identifica esta fuerza con el producto mg_h , por tanto, la aceleración de gravedad resulta valer

$$g_h = \frac{GM}{(R+h)^2} = \frac{GM}{R^2 \left(1 + \frac{h}{R}\right)^2} \approx \frac{GM}{R^2} \frac{1}{1 + \frac{2h}{R}} = \frac{GM}{R^2} \left(1 - \frac{2h}{R}\right)$$
(3.1.7)

Universidad de Chile

que depende de la altura *h*. En el calculo anterior se ha supuesto que la altura *h* es mucho menor que el radio de la Tierra, $h \ll R$. El radio de la Tierra es $R = 6,3710^6$ m lo que garantiza que la aproximación hecha es excelente aun si *h* es la altura del monte Everest ($h_{\text{Everest}} \approx 8,810^3$ m).

Se llamará g_0 a la aceleración de gravedad al nivel del mar. Puesto que la masa de la Tierra es $M = 5,98 \, 10^{24} \, \text{Kg}$, resulta

$$g_0 = \frac{GM}{R^2} = 9.8 \frac{\mathrm{m}}{\mathrm{s}^2} \tag{3.1.8}$$

El semieje mayor de laórbita terrestre vale $a \approx 1.5 \times 10^{11}$ Km.

Demuestre que la aceleración de gravedad en Santiago difiere en menos del 1 % de g₀.

3.2. Fuerza elástica ideal

3.2.1. Generalidades

Figura 3.2: Un resorte con un extremo en A tiene en su otro extremo P una masa m.

El tipo de problemas que se va a abordar en esta sección tiene un grado de aplicabilidad que va mucho más allá de lo que podría aparentar. Superficialmente esta sección trata de una partícula de masa *m* en el extremo de un resorte cuyo otro extremo está fijo en un punto que se ha designado *A* en la figura adjunta. Lo que se estudia es cómo oscila este sistema pero

3.2. FUERZA ELÁSTICA IDEAL

los resultados que se obtiene son generalizables a todo tipo de sistemas elásticos.

La fuerza que ejerce un resorte ideal de *largo natural* D_0 sobre un cuerpo P depende linealmente de la deformación (alargamiento o acortamiento) que sufre el resorte y es proporcional a la *constante elástica k* del resorte,

$$\vec{F}_e = -k \left(D(t) - D_0 \right) \hat{r}$$
(3.2.1)

donde, $D(t) = \|\vec{r} - \vec{r}_A\|$ es el largo actual del resorte y \hat{r} es el vector unitario en la dirección del resorte,

$$\hat{r} = \frac{\vec{r} - \vec{r}_A}{\|\vec{r} - \vec{r}_A\|}$$
(3.2.2)

En particular si *A* es el origen, es decir $\vec{r}_A = 0$, y $\hat{r} = \frac{\vec{r}}{\|\vec{r}\|}$. La diferencia $D(t) - D_0$ se suele denominar la *deformación*.

Un resorte se dice duro si su constante k es grande y blando en el otro extremo.

La *ley de Hooke* se refiere a sistemas en los que, al ser sacados de su posición de reposo (o posición de equilibrio), aparece una fuerza que es proporcional a la deformación, tal como en (3.2.1). Esta ley es aplicada en los más variados contextos. Cuando una cuerda de guitarra es sacada de su posición de equilibrio (es *pulsada*) aparece una fuerza que, de alguna manera, puede ser asimilada a (3.2.1). Al deformar levemente cualquier cuerpo sólido aparece una fuerza elástica para restituirlo a su posición original. Como se verá, (3.2.1) conduce a una dinámica típicamente oscilante, aunque no siempre lo es.

Un sistema oscilante normalmente pierde energía y, si está libre de influencias que le mantengan sus oscilaciones, regresa al reposo. La ley que rige esta pérdida de energía se verá más adelante cuando se trate al *oscilador amortiguado*.

Otra variante de los osciladores se refiere al caso real en que el sistema no es sacado levemente de su posición de equilibrio, sino que se aleja bastante de ella. En tales casos es muy típico que la ley (3.2.1) deje de ser válida. Puede ocurrir que la ley sea más complicada, como es el caso del péndulo, (2.3.13) versus el péndulo de pequeñas oscilaciones descrito por la ecuación (2.3.14). También esto ocurre, por ejemplo, cuando el sistema ya no sufre una deformación elástica sino una deformación plástica. Plástica es la deformación que cambia la naturaleza del material, como es el caso

de un resorte que es estirado más allá de un cierto límite y se deforma irreversiblemente.

3.2.2. Caso unidimensional sencillo

En el caso unidimensional, en que la partícula *P* en el extremo del resorte cuyo otro extremo está en el origen— se mueve siempre con x(t) > 0, no es necesario usar vectores y la fuerza se puede escribir como $F = -k(x-D_0)$ lo que conduce a la ecuación

$$m\ddot{x}(t) = -k [x(t) - D_0]$$
(3.2.3)

Figura 3.3: La posición x(t) oscila en torno al valor de x para la cual se puede tener reposo.

Se puede comprobar que la ecuación anterior tiene como solución particular trivial $x(t) = D_0$. Ella corresponde al caso en que el oscilador está en reposo en una posición especial llamada *posición de equilibrio*. La solución general del problema se puede integrar fácilmente si se hace el cambio de función: $x(t) = \bar{x}(t) + D_0$, porque la ecuación queda

$$m\ddot{\bar{x}}(t) = -k\bar{x}(t) \tag{3.2.4}$$

Se define la frecuencia angular característica del sistema por

$$\omega_0 = \sqrt{\frac{k}{m}} \tag{3.2.5}$$

La frecuencia propiamente tal se denota *v* y se relaciona a ω_0 por $\omega_0 = 2\pi v$ El período de tales oscilaciones es $T = \frac{2\pi}{\omega_0} = \frac{1}{v}$.

3.2. FUERZA ELÁSTICA IDEAL

Se puede comprobar que la solución más general de la ecuación es $\bar{x}(t) = A \sin(\omega_0 t) + B \cos(\omega_0 t)$. Volviendo a la función original x(t) esta solución es

$$x(t) = D_0 + A\sin(\omega_0 t) + B\cos(\omega_0 t)$$
(3.2.6)

Las constantes *A* y *B* dependen de las condiciones iniciales. Por ejemplo, si $x(0) = x_0$ y $\dot{x}(0) = v_0$ entonces la solución se convierte en

$$x(t) = D_0 + \frac{v_0}{\omega_0} \sin(\omega_0 t) + (x_0 - D_0) \cos(\omega_0 t)$$
(3.2.7)

(compruébelo).

Escriba la solución anterior en la forma

$$x(t) = D_0 + C\sin(\omega_0 t + \gamma_0)$$
 (3.2.8)

y encuentre la relación entre (C, γ_0) y (x_0 , v_0).

La función x(t) que ha quedado definida oscila en el tiempo en forma sinusoidal, tomando iguales valores en tiempos separados por un múltiplo entero de $T = \frac{2\pi}{\omega_0}$ (*T* es el período de la función x(t)), ver la figura asociada a la solución de la ec. (3.2.4).

♠ Demuestre, a partir de (3.2.6), que $(x(t) - D_0)$ es una función cuyos valores máximo y mínimo son

$$[x(t) - D_0]_{\text{max min}} = \pm \sqrt{A^2 + B^2}$$
(3.2.9)

Estos valores son la *amplitud* de las oscilaciones y describen cuánto se aleja la partícula oscilante de su posición de reposo.

La solución que se ha visto está caracterizada por una frecuencia $\omega_0 = \sqrt{k/m}$. Si el resorte es duro (*k* grande) la frecuencia es más grande, pero si se aumenta el valor de la masa la frecuencia baja.

Este comportamiento se puede apreciar de la siguiente forma. Un vehículo diseñado para acarrear grandes cargas tiene resortes (sus amortiguadores) muy duros, de tal modo que cuando va bien cargado las vibraciones que le provoca las irregularidades del camino se convierten en frecuencias bajas (*suaves* se diría en lenguaje coloquial), pero si ese mismo vehículo va vacío (masa chica) vibrará a alta frecuencia y se sentirá *áspero*.

Universidad de Chile

En la notación de (3.2.6) la función *x* toma valores extremos cuando $\dot{x} = 0$, lo que ocurre en $t = t_1$ si $A \cos \omega_0 t_1 = B \sin \omega_0 t_1$ lo que ocurre si

$$\tan \omega_0 t_1 = \frac{A}{B} \tag{3.2.10}$$

Al reemplazar este valor en (3.2.7) se obtiene

$$x_{\pm} = D_0 \pm \sqrt{\frac{v_0^2}{\omega_0^2} + (x_0 - D_0)^2}$$
(3.2.11)

Con signo + se tiene el valor máximo de x y con el signo menos se tiene el valor mínimo. Esta expresión es equivalente a (3.2.9).

3.3. Fuerza de roce estático y dinámico

Ya se ha dicho que si dos cuerpos están en contacto, sobre cada uno de ellos actúa una fuerza llamada *de contacto*. Esta fuerza tiene una descomposición única en una componente perpendicular a la superficie tangente al contacto, que se denomina *normal*, \vec{N} , y una componente paralela al contacto, que es la *fuerza de roce*.

Si no hay *movimiento relativo* entre las dos superficies en contacto, la fuerza paralela al contacto que actúa sobre cada uno de los dos cuerpos se llama *fuerza de roce estático*, \vec{F}_{RE} , mientras que si hay movimiento relativo, se llama *fuerza de roce dinámico*, \vec{F}_{RD} .

3.3.1. Roce estático

Figura 3.4: Al aplicar una fuerza externa sobre un cuerpo que está apoyado sobre una superficie puede ocurrir que este cuerpo no se mueva.

Al aplicar una fuerza \vec{F} sobre un cuerpo *A* apoyado en una superficie, puede ocurrir que *A* no se mueva. Esto se debe a que en la región de contacto entre *A* y la superficie aparece la fuerza, llamada de *roce estático*, que se opone al movimiento. Esta fuerza de roce estático anula la componente F_{\parallel} de la fuerza \vec{F} que es paralela al contacto. Si F_{\parallel} sobrepasa un cierto valor, el cuerpo ya no podrá permanecer en reposo. El valor máximo alcanzado por \vec{F}_{RE} obedece la siguiente ley, que depende del valor de la magnitud de la fuerza normal, \vec{N} presente en el contacto,

$$\|\vec{F}_{RE}\| \le \mu_e \,\|\vec{N}\|$$
 (3.3.1)

donde \vec{N} es la fuerza normal mencionada más arriba y μ_e es el llamado *coeficiente de roce estático*. Este coeficiente depende de la naturaleza de los materiales en contacto y de la calidad, por ejemplo la rugosidad, de las superficies.

<u>EJEMPLO</u>: Las fuerzas sobre un vaso sobre una mesa inclinada son: su peso, $m\vec{g}$, que apunta vertical hacia abajo, la normal \vec{N} que apunta perpendicular a la mesa (dirección \hat{k} , ver figura) y la fuerza de roce estático, \vec{F}_{RE} que apunta en una dirección paralela a la mesa.

Figura 3.5: Un vaso en reposo sobre una mesa inclinada. La suma de la normal y el roce estático cancelan exactamente al peso.

Puesto que el vaso está inmóvil la aceleración es nula y por tanto la fuerza total es cero, es decir, $\vec{N} + \vec{F}_{RE} + m\vec{g} = 0$. Las fuerzas se pueden escribir:

$$\vec{N} = N\hat{k} \tag{3.3.2}$$

Escuela de Ingeniería y Ciencias

$$m\vec{g} = -mg(\hat{k}\cos\alpha + \hat{\imath}\sin\alpha) \qquad (3.3.3)$$

Puesto que estas dos fuerzas más la fuerza de roce deben sumar cero, y la fuerza de roce por definición no tiene componente en la dirección \hat{k} , necesariamente se cumple que la fuerza de roce es paralela a \hat{i} y

$$\vec{F}_{RE} = \hat{\imath} mg \sin \alpha \tag{3.3.4}$$

$$\vec{N} = \hat{k} mg \cos \alpha \qquad (3.3.5)$$

Como se puede apreciar, la magnitud de la fuerza de roce estático queda determinada por el valor de otras fuerzas a través de la condición de que la suma total garantice (en este ejemplo) el reposo. La condición (3.3.1) implica que tan $\alpha \leq \mu_e$.

<u>EJEMPLO</u>: Una cinta como la que se muestra en la figura adjunta, tiene la forma del manto de un cilindro de eje vertical y de sección circular de radio R, y gira con velocidad angular uniforme ω .

Figura 3.6: Una cinta circular gira con velocidad angular uniforme ω en torno a un eje vertical. En el interior de la cinta se mantiene fijo un objeto gracias al roce estático.

En el interior de la cinta está apoyado un cuerpo de masa m como lo muestra la figura adjunta. Si se conoce el coeficiente de roce estático entre este cuerpo y la cinta, se verá que se puede determinar el mínimo valor que debe tener ω para que el cuerpo de masa m no caiga.

Usando coordenadas cilíndricas, la fuerza normal, que actúa sobre el cuerpo tiene que apuntar perpendicular a la superficie de la cinta: $\vec{N} = -N\hat{\rho}$, pero el valor del escalar *N* aun no se conoce. El peso es $m\vec{g} = -mg\hat{k}$. Se puede adivinar que la fuerza de roce \vec{F}_{RE} apunta en la dirección \hat{k} : $\vec{F}_{RE} = F\hat{k}$. Esta vez la suma de todas las fuerzas debe ser igual al producto de la masa por la aceleración del cuerpo que tiene movimiento circular con velocidad angular uniforme. Esta aceleración, de acuerdo a (1.2.4), en este caso es $-R\omega^2 \hat{\rho}$. Todo esto conduce entonces a dos relaciones escalares:

$$F = mg \qquad \mathbf{y} \qquad N = mR\,\omega^2 \tag{3.3.6}$$

Pero la ley (3.3.1) de roce estático exige que $F \le \mu_e m R \omega^2$, con lo que finalmente se obtiene que

$$\omega \ge \sqrt{\frac{g}{\mu_e R}} \tag{3.3.7}$$

Si la velocidad angular tuviera un valor menor que éste, el cuerpo no podría tener roce estático y cae.

A Resuelva el problema de la cinta que aparece en el texto principal, pero esta vez la velocidad angular de la cinta no es uniforme sino que $\omega = \Omega - \alpha_0 t$. La velocidad angular inicial Ω satisface la desigualdad (3.3.7).

A Sobre una superficie que corresponde al interior de un cono vertical con vértice abajo está apoyado un cuerpo de masa *m*. Cuerpo y superficie giran con velocidad angular ω constante, en torno al eje vertical, sin que el cuerpo deslice. Encuentre las condiciones para que esto ocurra. Al analizar este problema debe cuidadosamente analizar diversos casos. Por ejemplo, se debe separar los casos en que ($g \cos \theta - \rho \omega^2 \sin \theta$) es positivo o negativo. Aquí θ es el ángulo entre la vertical y una generatriz del cono, *g* es la aceleración de gravedad y *ρ* es la distancia entre el cuerpo y el eje de rotación.

3.3.2. Roce dinámico

El roce dinámico existe cuando hay movimiento relativo entre las superficies en contacto. La fuerza de roce en este caso depende de la velocidad relativa entre el cuerpo que se estudia y la superficie con la que está en contacto: $\vec{v}_{rel} = \vec{v} - \vec{v}_s$, donde \vec{v} es la velocidad del cuerpo y \vec{v}_s es la velocidad de la superficie. La ley de roce dinámico es

$$\vec{F}_{RD} = -\mu_d N \,\hat{v}_{\rm rel} \tag{3.3.8}$$

donde μ_d es un coeficiente que depende de la naturaleza de las superficies en contacto, $N = \|\vec{N}\|$ es la magnitud de la fuerza normal sobre el cuerpo que desliza y $\hat{v}_{rel} = \vec{v}_{rel} / \|\vec{v}_{rel}\|$ es el vector unitario que apunta en la dirección

Figura 3.7: Un péndulo apoyado en un plano que produce roce. A la derecha una vista lateral del sistema.

de la velocidad <u>relativa</u> entre ambas superficies. Es muy notable que esta fuerza no depende de la magnitud de la superficie de contacto.

El contacto entre dos cuerpos, entonces, está caracterizado en general por dos coeficientes de roce, el coeficiente de roce estático y el coeficiente de roce dinámico. Siempre se cumple que

$$\mu_e \ge \mu_d \tag{3.3.9}$$

<u>EJEMPLO</u>: Consideremos un péndulo de largo *R* apoyado en un plano inclinado. El plano forma un ángulo α con el plano horizontal. Se escoge coordenadas cilíndricas con eje que pasa por el punto fijo del hilo y con eje *Z* perpendicular al plano inclinado.

Entonces la coordenada ρ siempre vale *R* y la coordenada *z* siempre es nula. Para describir el estado del péndulo basta el ángulo ϕ que se indica en la figura adjunta. El vector posición es $\vec{r} = R\hat{\rho}$. Se da como condiciones iniciales $\phi(0) = 0$ y $\dot{\phi}(0) = 0$. Además se sabe que se detiene en $\phi = \phi_1$ sin haber retrocedido nunca. Veremos que estos datos determinan el valor del coeficiente de roce μ_d .

La fuerza normal es $\vec{N} = N\hat{k}$, la tensión del hilo es $\vec{T} = -T\hat{\rho}$, la fuerza de roce es $\vec{F}_{\text{RD}} = -\mu_d N\hat{\phi}$, el peso es $m\vec{g} = mg(-\hat{k}\cos\alpha + \sin\alpha(\hat{\phi}\cos\phi + \hat{\rho}\sin\phi))$. La fuerza total entonces vale

$$\vec{F} = (mg\sin\alpha\sin\phi - T)\,\hat{\rho} + (mg\sin\alpha\cos\phi - \mu_d N)\,\hat{\phi} + (N - mg\cos\alpha)\,\hat{k}$$
(3.3.10)

pero como no hay movimiento en la dirección \hat{k} la correspondiente componente de la fuerza tiene que ser nula, lo que implica que

$$N = mg\cos\alpha \tag{3.3.11}$$

3.3. FUERZA DE ROCE ESTÁTICO Y DINÁMICO

Facultad de Ciencias Físicas y Matemáticas

El torque es $\vec{\tau} = R\hat{\rho} \times \vec{F}$, por tanto el torque tiene sólo componente a lo largo de \hat{k} .

De (1.2.4) se obtiene que la velocidad y la aceleración están dadas, en el caso actual, por

$$\vec{v} = R\dot{\phi}\,\hat{\phi} \qquad \vec{a} = -R\,\dot{\phi}^2\,\hat{\rho} + R\,\ddot{\phi}\,\hat{\phi} \qquad (3.3.12)$$

Entonces el momento angular vale

$$\vec{\ell} = m(R\hat{\rho}) \times (R\dot{\phi}\hat{\phi}) = mR^2 \dot{\phi}\hat{k}$$
(3.3.13)

y de aquí

$$\frac{d\vec{\ell}}{dt} = mR^2 \,\ddot{\phi} \,\hat{k} \tag{3.3.14}$$

que es consistente con que el torque también apunta en la dirección \hat{k} . La ecuación dinámica que resulta es

$$R\ddot{\phi} = g\sin\alpha\cos\phi - \mu_d g\cos\alpha \qquad (3.3.15)$$

Si esta ecuación es multiplicada por ϕ se puede integrar fácilmente y se obtiene

$$\frac{1}{2}R\dot{\phi}^2 = (\sin\alpha\sin\phi - \mu_d\,\phi\,\cos\alpha)\,g \qquad (3.3.16)$$

Si en este resultado se reemplaza por el valor ϕ_1 para el cual el péndulo se detiene, se debe tener que el lado izquierdo sea nulo y entonces

$$0 = (\sin\alpha\sin\phi_1 - \mu_d\phi_1\cos\alpha)g \qquad (3.3.17)$$

que implica

$$\mu_d = \frac{\sin \phi_1}{\phi_1} \tan \alpha \,. \qquad \blacktriangleleft \tag{3.3.18}$$

♠ Considere el sistema que se muestra en la figura. Se trata de un bloque de masa *m* sobre una cinta sin fin que se mueve con rapidez uniforme v_0 . El bloque está además unido a un resorte de constante elástica *k* y largo natural D_0 . El bloque tiene coeficientes de roce estático y dinámico μ_e y μ_d con la cinta. Haga un análisis exhaustivo del tipo de movimiento que tiene el bloque según el valor de v_0 cuando los demás parámetros están fijos. Puede darse las condiciones iniciales que estime conveniente.

Universidad de Chile

Figura 3.8: Un bloque apoyado en una cinta sin fin está también unido a un resorte. Puede haber momentos en que hay roce estático.

3.4. Roce viscoso

3.4.1. Generalidades

Figura 3.9: El roce viscoso depende de la forma del objeto y también del ángulo entre esa forma y la velocidad relativa al medio fluido.

Cualquiera que haya tratado de correr con el agua hasta la cintura sabe que el paso de un cuerpo a través de un medio fluido encuentra una resistencia al movimiento. A esta fuerza la llamaremos *fuerza de roce viscoso*. Este fenómeno es complejo porque depende de muchos parámetros. Por ejemplo depende de la forma del sólido, pero además—dada una forma depende del ángulo con que el cuerpo enfrenta al fluido. Depende además de la naturaleza de la superficie (suave, áspera ..), depende de la forma específica como el fluido se relaciona con la superficie sólida (por ejemplo, importa si un líquido moja o no moja a ese sólido), depende de la temperatura etc.

Simplificando mucho el fenómeno se puede decir que hay dos regímenes: el fluido rodea al sólido en forma suave (se dice, flujo *laminar*), o bien el fluido forma turbulencias. En el primer caso la ley de roce queda bien descrita por una ley lineal (ver más abajo en la sec.§3.4.2) o, si es turbulento,

3.4. ROCE VISCOSO

por una ley cuadrática, descrita en la sec. §3.4.3.

3.4.2. Roce viscoso lineal

La ley de roce viscoso lineal establece que esta fuerza es proporcional a la velocidad relativa entre el sólido y el fluido y el coeficiente de proporcionalidad es negativo

$$\vec{F}_{\rm rvl} = -c\,\vec{v} \tag{3.4.1}$$

donde c > 0, y c, como ya se ha dicho depende de una gran cantidad de parámetros particulares a cada caso.

<u>EJEMPLO</u>: Consideremos el lanzamiento de un proyectil tomando en cuenta el roce viscoso del aire, el cual supondremos que es de tipo lineal. La ecuación de movimiento es

$$m\frac{d^2\vec{r}}{dt^2} = -c\frac{d\vec{r}}{dt} + m\vec{g}$$
(3.4.2)

En coordenadas cartesianas con eje *Z* vertical, y escogiendo la orientación del eje *X* tal que la velocidad inicial conocida sea $\vec{v}_0 = \hat{v}_{x0} + \hat{k}v_{z0}$, todo el movimiento transcurre en el plano *XZ* y la ecuación se puede escribir por componentes en la forma

$$m\frac{dv_x}{dt} = -cv_x$$
$$m\frac{dv_z}{dt} = -cv_z - mg$$

que son dos ecuaciones independientes.

La segunda ecuación se puede escribir en la forma

$$\frac{\frac{dv_z}{dt}}{v_z + \frac{mg}{c}} = -\frac{c}{m} \qquad \text{o bien} \qquad \frac{dv_z}{v_z + \frac{mg}{c}} = -\frac{c}{m}dt \qquad (3.4.3)$$

Recordando que la primitiva asociada a integrar sobre v_z al lado izquierdo es

$$\ln\left(v_z + \frac{mg}{c}\right)$$

y la primitiva al integra sobre *t* al lado derecho es *t* mismo entonces, integrando entre t = 0 y *t* a la derecha y, correspondientemente, entre v_{z0} y $v_z(t)$ a la izquierda, se obtiene

$$v_z(t) = v_{z0} e^{-ct/m} - \frac{mg}{c} \left(1 - e^{-ct/m}\right)$$
(3.4.4)

Universidad de Chile

Escuela de Ingeniería y Ciencias

Figura 3.10: Cualquiera que sea la condición inicial para v_z esta componente de la velocidad, con el transcurso del tiempo $v_z(t)$ se acerca siempre a un mismo valor asintótico.

3

5

4

6

2

En particular, se puede ver que cuando $t \to \infty$, $v_z \to -\frac{mg}{c}$. En la figura adjunta se muestra la evolución de v_z con diversos valores iniciales v_{z0} .

Puesto que la velocidad asintótica en este ejemplo, es negativa se puede observar que si el valor inicial es positivo, en algún momento se anula. Esto quiere decir que el proyectil está inicialmente subiendo $v_z(0) > 0$, en algún momento t^* su velocidad vertical se anula $v_z(t^*) = 0$ para finalmente comenzar a descender, $v_z(t) < 0$.

b Demuestre que la función z(t) que surge de lo anterior es

-3 ^L

1

$$z(t) = z_0 + \frac{m}{c} (v_{z0} - gt) + \frac{m^2 g}{c^2} - \frac{m}{c} \left(\frac{mg}{c} + v_{z0}\right) e^{-ct/m}$$
(3.4.5)

Una trayectoria balística con este tipo de viscosidad se obtiene usando (3.4.5) y una expresión similar para x(t). La única diferencia es que en la dirección X se debe eliminar los términos que contienen g,

$$x(t) = x_0 + \frac{m}{c} v_{x0} - \frac{m}{c} v_{x0} e^{-ct/m}$$
(3.4.6)

Combinando (3.4.5) y (3.4.6) se obtiene trayectorias como la que se muestra en la figura.

^{3.4.} ROCE VISCOSO

Figura 3.11: Trayectoria de un proyectil para el cual la viscosidad del aire tiene un efecto apreciable. Para calcular esta curva se utiliza la ley de roce viscoso lineal siguiendo el método que se indica bajo (3.4.5)

Marginalmente se hace notar que de (3.4.6) se puede despejar *t* para utilizar esa forma en (3.4.5) lo que da a *z* como función de *x*. En efecto

$$t = \frac{m}{c} \ln \left[1 - \frac{c \left(x - x_0 \right)}{m v_{x0}} \right]$$
(3.4.7)

y entonces

$$z(x) = z_0 + \frac{mg}{cv_{x0}} + \frac{v_{z0}}{v_{x0}}(x - x_0) + \frac{m^2g}{c^2} \ln\left[1 - \frac{c(x - x_0)}{mv_{x0}}\right]$$
(3.4.8)

es la trayectoria del lanzamiento balístico con roce viscoso lineal.

• Se sabe que en lanzamiento balístico sin roce viscoso desde un punto a otro a igual altura, el alcance máximo se obtiene cuando la velocidad inicial forma un ángulo de $\frac{\pi}{4}$ con respecto a la vertical. Obtenga la expresión para el alcance máximo en una situación similar pero cuando el roce viscoso lineal es tomado en cuenta.

Tanto la solución (3.4.4) y (3.4.5) parecen ser singulares para c = 0, ya que c aparece en denominadores. Esto, sin embargo, es solo aparente. Si se analiza, por ejemplo, el caso de (3.4.4), el primer término sencillamente tiende a v_{z0} mientras que el paréntesis en el último término contiene (1 –

```
Universidad de Chile
```

 $\exp[-ct/m]) = 1 - 1 + \frac{ct}{m} - \frac{c^2t^2}{2m^2} + \dots$ Si esta expresión se multiplica por mg/cy se hace el límite $c \to 0$ se obtiene gt y el resultado neto es $v_z(t; c = 0) = v_{z0} - gt$ que es la solución conocida en el caso sin roce viscoso.

3.4.3. Roce viscoso cuadrático

En el caso del roce viscoso cuadrático la fuerza de roce es

$$\vec{F}_{\rm rvc} = -\eta \|\vec{v}\| \vec{v} \tag{3.4.9}$$

donde η depende del fluido de que se trate. En el caso en que el fluido sea un gas una expresión aproximada para η es

$$\eta = 2\rho_{gas}A$$

donde ρ_{gas} es la densidad del gas y *A* es el área que define la proyección del proyectil al plano perpendicular a la velocidad relativa. Si el proyectil es una esfera, $A = \pi R^2$.

3.4.3.1. Sin gravedad:

Como primer ejemplo resolvamos el sencillo caso en que ésta es la única fuerza y el movimiento es en una sola dirección. Supondremos que v > 0 todo el tiempo, entonces

$$m\dot{v} = -\eta v^2$$

que se resuelve primero escribiendo la ecuación anterior en la forma

$$\frac{dv}{v^2} = -\frac{\eta}{m}dt$$

Si el lado derecho se integra entre t = 0 y un valor arbitrario de t, el lado derecho debe integrase entre el valor de v en t = 0, que se denotará v_0 y un valor arbitrario v(t). Se obtiene entonces

$$-\frac{1}{v(t)} + \frac{1}{v_0} = -\frac{\eta t}{m}$$
$$v(t) = \frac{v_0}{1 + \frac{\eta v_0}{m}t}$$
(3.4.10)

Se puede notar que la velocidad inicial es realmente v_0 y que la velocidad decrece monótonamente con el tiempo acercándose cada vez más a cero.

que da

^{3.4.} ROCE VISCOSO

3.4.3.2. Con gravedad:

Ahora se analizará un caso en que además hay gravedad. Este caso es intrínsecamente mucho más complicado que el caso de viscosidad lineal y solo se estudiará el movimiento rectilíneo. Se supondrá que el eje Z es vertical hacia arriba y que hay una fuerza constante -mg.

La fuerza de roce viscoso apunta hacia arriba si la partícula desciende y apunta hacia abajo si va ascendiendo, es decir,

$$m\ddot{z}(t) = -\eta \, |\dot{z}(t)| \, \dot{z} - mg \tag{3.4.11}$$

Como siempre, la aceleración es $\ddot{z} = \dot{v}$ y la velocidad es $\dot{z} = v$.

EL DESCENSO, v(t) < 0. En este caso $|\dot{z}| = -v$ y entonces la ecuación es

$$m\dot{v} = \eta \, v^2 - mg \tag{3.4.12}$$

Existe una solución en que la velocidad vale $v = -\sqrt{mg/\eta}$ todo el tiempo, ya que con ella el lado derecho de la ecuación anterior es nulo. A esta velocidad (negativa) tan particular la llamaremos $-v_{\infty}$, con

$$v_{\infty} = \sqrt{\frac{mg}{\eta}} \tag{3.4.13}$$

que es una cantidad positiva.

Para hacer más transparente el método de solución se hará el cambio de función v(t) = -V(t) y como se trata del caso v < 0 entonces V > 0. La ecuación dinámica con esta nueva variable es

$$m\dot{V} = -\eta V^2 + mg \qquad \text{o bien} \qquad \dot{V} = -\frac{\eta}{m} \left(V^2 - v_{\infty}^2 \right) \qquad (3.4.14)$$

y se puede escribir como una relación diferencial,

$$\frac{dV}{V^2 - v_{\infty}^2} = -\frac{\eta}{m}dt \qquad (3.4.15)$$

Que, al lado izquierdo, se integra desde V_1 que es el valor inicial (t = 0) de V(t)

$$\int_{V_1}^{V(t)} \frac{dV}{V^2 - v_{\infty}^2} = -\frac{\eta}{m} \int_0^t dt' = -\frac{\eta}{m} t$$
(3.4.16)

La integral del lado izquierdo solo tiene sentido si el denominador en el integrando no se anula en el rango de la integración. Veremos que este denominador nunca se anula.

La primitiva de la integral a la izquierda es

$$\frac{1}{2v_{\infty}}\ln\left(\frac{v_{\infty}-V(t)}{v_{\infty}+V(t)}\right)$$

Universidad de Chile

Escuela de Ingeniería y Ciencias

P. Cordero S. & R. Soto B.

Figura 3.12: Se puede apreciar el comportamiento de V(t) dado en (3.4.17) para diversas velocidades iniciales y un v_{∞} común.

y del lado derecho es $-\eta t/m$. Al integrar se obtiene entonces

$$\frac{1}{2v_{\infty}}\ln\left(\frac{v_{\infty}-V(t)}{v_{\infty}+V(t)}\cdot\frac{v_{\infty}+V_{1}}{v_{\infty}-V_{1}}\right) = -\frac{\eta t}{m}$$

Si para algún instante finito ocurriera que $V(t) = v_{\infty}$ el argumento del logaritmo se anularía lo que implicaría un lado izquierdo igual a $-\infty$ que contradice que se trate de un instante finito. Por tanto $V(t) \neq v_{\infty}$ para todo *t* finito.

El lado izquierdo se anula cuando $V(t) = V_1$ que es lo que se debe esperar ya que V_1 es la velocidad cuando t = 0. La solución explícita es

$$V(t) = \frac{V_1 \cosh\left(\frac{gt}{v_{\infty}}\right) + v_{\infty} \sinh\left(\frac{gt}{v_{\infty}}\right)}{v_{\infty} \cosh\left(\frac{gt}{v_{\infty}}\right) + V_1 \sinh\left(\frac{gt}{v_{\infty}}\right)} v_{\infty}$$
(3.4.17)

Cuando $t \to \infty$ la fracción tiende a 1 y se obtiene v_{∞} como debe ser mientras que si se toma t = 0 los senos hiperbólicos se anulan mientras los cosenos hiperbólicos se hacen 1 y se obtiene $V(0) = V_1$. Esta función es monótona entre t = 0 y $t = \infty$.

En el caso especial $V_1 = 0$ el resultado es

$$V(t; V_1 = 0) = v_{\infty} \tanh\left(\frac{gt}{v_{\infty}}\right)$$
(3.4.18)

Otro caso especial de (3.4.17) es aquel en que no hay gravedad. Lo más sencillo es resolver la ecuación desde el comienzo con velocidad inicial V_1 y g = 0. Pero si se toma el límite de (3.4.17) cuando $v_{\infty} \rightarrow 0$. Se obtiene

$$V(t;g=0) = \frac{V_1}{1 + \frac{\eta V_1}{m}t}$$
(3.4.19)

3.4. ROCE VISCOSO

Facultad de Ciencias Físicas y Matemáticas

que es el resultado ya visto (3.4.10).

Ahora se deducirá la velocidad v_f que tiene un cuerpo, que comienza a caer desde el reposo y altura z = h, al llegar al punto z = 0. Cuando no hay roce un cuerpo lanzado verticalmente hacia arriba, regresa al punto de partida con una velocidad igual a la de partida excepto por el signo. Con viscosidad se verá que eso no es cierto.

La forma más cómoda de llegar a este resultado se consigue desde (3.4.15) retomando que V = -v y por tanto dV = -dv

$$\frac{dv}{v^2 - v_{\infty}^2} = \frac{g \, dt}{v_{\infty}^2} \tag{3.4.20}$$

Al multiplicar esta relación por *v*, en el numerador de la izquierda aparece $v dv = \frac{1}{2} dv^2$ y al derecho $\dot{v} dt = dz$

$$\frac{1}{2} \int_{0}^{v_{f}^{2}} \frac{dv^{2}}{v^{2} - v_{\infty}^{2}} = \int_{h}^{0} \frac{g \, dz}{v_{\infty}^{2}} \tag{3.4.21}$$

Lo que se acaba de escribir es que la velocidad varía desde cero a v_f mientras la posición va desde z = h hasta z = 0. Al integrar se obtiene

$$h = -\frac{v_{\infty}^2}{2g} \ln\left(1 - \frac{v_f^2}{v_{\infty}^2}\right)$$
(3.4.22)

o bien,

$$v_f = \sqrt{1 - \exp\left[-\frac{2gh}{v_{\infty}^2}\right]} v_{\infty}$$
(3.4.23)

A Haga el límite de (3.4.23) cuando el coeficiente de roce viscoso η se anula.

EL ASCENSO, v > 0. La ecuación es

$$m\dot{v}(t) = -\eta v^2 - mg$$
 obien $\dot{v}(t) = -\frac{\eta}{m} \left(v^2 + v_{\infty}^2 \right)$ (3.4.24)

Puesto que v > 0 esta ecuación representa una partícula *P* moviéndose en dirección opuesta a la fuerza constante -mg, lo que permite adivinar que *P* acabará por detenerse. Seguidamente comenzará a moverse en la dirección opuesta pero ese es el otro caso ya estudiado v < 0.

De (3.4.24) se obtiene que

$$\int_{v_0}^{v(t)} \frac{dv}{v^2 + v_{\infty}^2} = -\frac{\eta}{m} \int_0^t dt'$$
(3.4.25)

Universidad de Chile

Escuela de Ingeniería y Ciencias

Figura 3.13: Forma como decrece v(t) en un movimiento ascendente, según (3.4.27), por efecto del peso y de una viscosidad cuadrática.

que conduce a

$$\frac{1}{v_{\infty}} \left[\arctan\left(\frac{v(t)}{v_{\infty}}\right) - \arctan\left(\frac{v_0}{v_{\infty}}\right) \right] = -\frac{\eta}{m}t$$
(3.4.26)

que puede ser reescrito como

$$v(t) = \tan\left(\arctan\left(\frac{v_0}{v_{\infty}}\right) - \frac{gt}{v_{\infty}^2}\right)v_{\infty}$$
(3.4.27)

Esta expresión que tiene una apariencia algo complicada está representada en la figura asociada a (3.4.27), vale v_0 cuando t = 0 y luego decrece monótonamente hasta anularse en un tiempo finito t_1 . Si se toma el límite $g \rightarrow 0$ da el límite correcto descrito por (3.4.10).

La solución se hace cero cuando el argumento de la función tangente se anula, lo que ocurre en el instante t_1 tal que

$$t_1 = \frac{v_{\infty}^2}{g} \arctan\left(\frac{v_0}{v_{\infty}}\right) \tag{3.4.28}$$

La distancia *h* que recorre desde la posición inicial hasta el la posición de máxima altura en el instante t_1 en que el cuerpo se detiene se puede obtener a partir de multiplicar los integrandos de la ecuación inicial (3.4.24) por v(t)

$$\int_{v_0}^0 \frac{v \, dv}{v^2 + v_\infty^2} = -\frac{\eta}{m} \int_0^h dz \tag{3.4.29}$$

que lleva a

$$h = \frac{m}{2\eta} \ln\left(\frac{v_0^2}{v_{\infty}^2} + 1\right)$$
(3.4.30)

3.4. ROCE VISCOSO

Facultad de Ciencias Físicas y Matemáticas

Si esta expresión se iguala con la que se obtuvo en (3.4.22) se despeja

$$v_f^2 = \frac{v_0^2}{1 + \frac{v_0^2}{v^2}} \tag{3.4.31}$$

que claramente muestra que $v_f^2 < v_0^2$. La igualdad se da tan solo si $\eta = 0$.

♠ Deduzca que el viaje de regreso tarda un tiempo ∆,

$$\Delta = \frac{v_{\infty}}{g} \arctan\left(\frac{v_0}{\sqrt{v_0^2 + v_{\infty}^2}}\right)$$
(3.4.32)

3.5. Problemas

Este capítulo tiene varios problemas propuestos en medio del texto. Ellos están señalados con el signo . Acá se ofrece otros más.

- 3.1 Cuando comienza a girar un disco horizontal con aceleración angular $\ddot{\phi} = d\omega/dt = \alpha_0$ una hormiga se encuentra durmiendo a distancia *R* del centro de rotación. Cuando la velocidad angular alcanza el valor ω_0 la hormiga comienza a deslizar. Obtenga el valor de coeficiente de roce estático hormigadisco.
- 3.2 Sobre una superficie horizontal hay un cuerpo de masa *m* unido a un resorte horizontal de contante elástica *k* y longitud natural D_0 . El coeficiente de roce dinámico entre el cuerpo y la superficie es μ . Si desde el reposo el cuerpo es liberado cuando el resorte está estirado un largo $D(0) = D_0 +$ *d* discuta cuantas veces el cuerpo alcanza a oscilar antes de detenerse. Analice distintas situaciones.
- 3.3 Un anillo desliza, en ausencia de gravedad y con coeficiente de roce μ en un riel circunferencial de radio R. Si en t = 0, $\phi(0) = 0$ y $\dot{\phi}(0) = \omega_0$, determine $\phi(t)$.

Universidad de Chile

3.4 Un cilindro de radio R y eje horizontal rota sobre su eje a velocidad angular constante ω . En el instante t = 0 están moviéndose solidariamente con el cilin dro dos cuerpos de masa m, el primero está a la misma altura que el eje, en la zona descendiente y el segundo está en el punto más bajo. Determine los valores posibles para el coeficiente de roce estático para que estos cuerpos no deslicen en ese instante. Analice qué puede ocurrir en momentos posteriores.

3.5 Un cuerpo en reposo se deja caer al agua desde una altura h_1 por sobre la superficie. Desprecie las fuerzas de roce que pudiera haber con el aire. Cuando el cuerpo penetra el agua aparecen dos fuerzas, la de

roce viscoso, $\vec{F}_{rvl} = -c \vec{v}$ y una fuerza llamada empuje, vertical hacia arriba de magnitud λmg . Determine el valor máximo que puede tomar h_1 para que el cuerpo no toque el fondo, que está a distancia h_2 de la superficie.

3.6 Un cuerpo A de masa m está sobre una mesa, unido a la pared por un resorte de constante elástica k y largo natura D₀. De A sale un hilo tirante horizontal que pasa por un apoyo ideal (sin roce) y luego de este hilo cuelga un cuerpo B que también tiene masa m.

Se conoce los coeficientes $\mu_e < 1$ y μ_d de *A* con la mesa y el sistema se suelta desde el reposo en el momento en que el resorte tiene su largo natural. *a*) Determine el largo máximo que alcanza el resorte; *b*) encuentre el valor máximo que toma la rapidez desde el instante inicial hasta el momento del estiramiento máximo; *c*) ¿cuál es el valor mínimo de μ_d para que los bloques queden en reposo en el momento del estiramiento máximo?

^{3.5.} PROBLEMAS

3.7 Se tiene una superficie cónica que gira con velocidad angular contante ω en torno a su propio eje de simetría, que se mantiene vertical. El ángulo entre el eje y una generatriz es $\frac{\pi}{4}$. En la superficie interna está apoyado un cuerpo de masa *m*, a distancia ρ_0 del eje, el cual, debido al roce con coeficiente μ_e , no desliza a pesar de su peso. **a**) Obtenga la velocidad angular $\omega = \omega_c$ necesaria para que tal fuerza sea exactamente nula. **b**) Suponga que ahora $\omega > \omega_c$ y obtenga el máximo valor que puede tener ω para que el cuerpo no deslice.

3.8 Hay un hilo enrollado alrededor de un cilindro de radio *R*. En la punta del hilo hay un cuerpo de masa *m* que se suelta, cuando $\phi(0) = 0$, con velocidad inicial \vec{v}_0 perpendicular al hilo, lo que determina que el hilo se comienza a enrollar.

La distancia inicial entre el cuerpo y el punto *B* de tangencia del hilo con el cilindro es L_0 (ver figura). **a)** Determine la ecuación de movimiento. **b)** Obtenga la velocidad angular ϕ en función de ϕ . **c)** Suponiendo que el hilo se corta si la tensión sobrepasa el valor T_{max} obtenga el valor de ϕ en el momento del corte.

<u>Indicación</u>: Puede convenir tomar el origen en el eje del cilindro y escribir el vector posición del cuerpo en función de vectores unitarios $\hat{\rho}$ y $\hat{\phi}$ asociados al punto *B* de tangencia del hilo. Es decir, el vector posición del cuerpo masivo es suma de los vectores posición del punto *B* y el vector que apunta en la dirección del hilo y que es tangente al cilindro, en la dirección $\hat{\phi}$.

Universidad de Chile

Capítulo 4

Trabajo y energía

4.1. Trabajo y energía cinética

El trabajo dW que efectúa una fuerza aplicada \vec{F} sobre un cuerpo P que se desplaza una distancia $d\vec{r}$ es

Figura 4.1: El trabajo de una fuerza \vec{F} cuando el cuerpo se desplaza desde un punto a a un punto b a lo largo de un camino C. Sólo en casos especiales la integral (4.1.2) no depende del camino C seguido al hacer la integral.

$$dW = \vec{F} \cdot d\vec{r} \tag{4.1.1}$$

Si no hay desplazamiento no hay trabajo.

Si la fuerza varía de punto en punto: $\vec{F}(\vec{r})$ y el cuerpo *P* se mueve desde el punto *a* hasta el punto *b*, por el camino *C*, entonces el trabajo efectuado por la fuerza es

$$W_{a\to b}(C) = \int_{a}^{b} \vec{F} \cdot d\vec{r}$$
(4.1.2)

El trabajo se mide en Joule, que es una unidad de energía.

Figura 4.2: En el ejemplo se definen dos caminos, C_1 y C_2 para calcular la integral de trabajo.

<u>EJEMPLO:</u> Considérese un cuerpo que se mueve en el plano *XY* debido a una fuerza dada por la expresión

$$\vec{F} = -\frac{Ax^2y^5}{5}\hat{\imath} - \frac{Bx^3y^4}{3}\hat{j}$$
(4.1.3)

Se hará la integral de trabajo asociada a esta fuerza, entre los puntos (0,0) y (\bar{x},\bar{y}) siguiendo dos caminos: C_1 es el camino que primero va en forma recta desde el origen hasta $(\bar{x},0)$ y luego en forma recta desde este último punto a (\bar{x},\bar{y}) y C_2 es el camino recto entre los dos puntos extremos.

La integral de trabajo por C_1 es

$$W(C_1) = \int_0^{\bar{x}} \vec{F} \cdot \hat{i} dx + \int_0^{\bar{y}} \sum_{x=\bar{x}(y=0)}^{\bar{y}} \vec{F} \cdot \hat{j} dy$$

= $0 - \frac{\bar{x}^3}{3} \frac{B\bar{y}^5}{5}$
= $-\frac{B\bar{x}^3\bar{y}^5}{15}$

Para poder hacer la integral por C_2 se debe tener claro que (a) la recta C_2 es descrita por la ecuación $\bar{x}y = \bar{y}x$, entonces se puede, por ejemplo, integrar con respecto a *x* usando un integrando donde se ha reemplazado $y = \bar{y}x/\bar{x}$; (*b*) se debe usar $d\vec{r} = \hat{i}dx + \hat{j}dy = (\hat{i} + \hat{j}\frac{\bar{y}}{\bar{x}}) dx$. (*c*) Ahora es trivial hacer el producto punto $\vec{F} \cdot d\vec{r}$ e integrar con respecto a *x* lo que da:

$$W(C_2) = -\left(\frac{A}{40} + \frac{B}{24}\right)\bar{x}^3\bar{y}^5$$

4.1. TRABAJO Y ENERGÍA CINÉTICA

Facultad de Ciencias Físicas y Matemáticas

que no coincide con $W(C_1)$ salvo que A = B.

♣ Obtenga la forma de *d* \vec{r} en el ejemplo anterior con $\bar{x} = \bar{y}$ para el caso en que se desee hacer la integral a lo largo de una semicircunferencia que parte del origen hacia arriba y tiene su centro en (\bar{x} ,0). Calcule la integral de camino en el caso A = B.

En la definición (4.1.2) no se ha dicho que \vec{F} sea la única causa del movimiento. Cuando sobre el cuerpo *P* están actuando varias fuerzas \vec{F}_k , se puede definir un trabajo $W_{a\to b}^{(k)}(C)$ asociado a cada una de ellas usando el camino *C* de *a* a *b*,

$$W_{a \to b}^{(k)}(C) = \int_{a}^{b} \vec{F}_{k} \cdot d\vec{r}$$
 (4.1.4)

Si el desplazamiento es perpendicular a la fuerza considerada, esa fuerza no ejerce trabajo.

El trabajo total es el que efectúa la fuerza total,

$$W_{a \to b}^{\text{total}}(C) = \int_{a}^{b} \vec{F}^{\text{total}} \cdot d\vec{r}$$

$$= m \int_{a}^{b} \frac{d\vec{v}}{(C)} d\vec{r} \cdot d\vec{r}$$

$$= m \int_{t_{a}}^{t_{b}} \frac{d\vec{v}}{dt} \cdot \vec{v} dt$$

$$= m \int_{\vec{v}_{a}}^{\vec{v}_{b}} \vec{v} \cdot d\vec{v}$$

$$= \frac{m}{2} \int_{v_{a}^{2}}^{v_{b}^{2}} dv^{2}$$

$$= \frac{m}{2} v_{b}^{2} - \frac{m}{2} v_{a}^{2} \qquad (4.1.5)$$

Se define la *energía cinética* K de un cuerpo de masa m y velocidad \vec{v} como

$$K = \frac{1}{2}mv^2$$
 (4.1.6)

Y de aquí que el trabajo total pueda expresarse como la diferencia entre la energía cinética final menos la energía cinética inicial.

$$W_{a \to b}^{\text{total}}(C) = K_b - K_a \tag{4.1.7}$$

Universidad de Chile

Escuela de Ingeniería y Ciencias

El signo de W^{total} indica si el sistema ha ganado (W > 0) o perdido (W < 0) energía cinética. Por ejemplo, si una partícula es lanzada verticalmente hacia arriba con rapidez inicial v_0 y en algún momento se detiene, el trabajo efectuado por la fuerza total a lo largo de la trayectoria, sobre esa partícula, desde que fue lanzada hasta que se detiene, es $-\frac{1}{2}mv_0^2$.

El trabajo de la fuerza total en el caso de un cuerpo que se mueve con roce sobre una superficie a rapidez constante, es nulo. Pero, para comprender bien los conceptos es preferible separar el trabajo efectuado por la fuerza f que arrastra al cuerpo, W_f , del trabajo W_r asociado a la fuerza de roce. El trabajo W_f es positivo porque el desplazamiento apunta en la misma dirección que la fuerza, mientras que W_r es negativo y se cumple que $W_f +$ $W_r = 0$.

 \gg En un movimiento circunferencial con velocidad angular constante la fuerza total no efectua trabajo, por dos razones: ella es perpendicular al desplazamiento y la rapidez no cambia.

Si un cuerpo desliza con roce sobre una superficie en reposo, la fuerza normal \vec{N} no efectúa trabajo, porque es perpendicular al desplazamiento.

Figura 4.3: El camino recorrido ds y la altura descendida dz se relacionan trivialmente con la pendiente.

Cuando un carro baja por una montaña rusa sin roce, ¿depende el trabajo que efectúa el peso de la forma de la montaña? Al avanzar una distancia $ds = ||d\vec{r}||$ en una zona en la cual el riel forma un ángulo θ con la vertical, el carro desciende una altura $dz = ds \cos \theta$. El trabajo infinitesimal es $dW = m\vec{g} \cdot d\vec{r} = mg dz$. Al integrar se obtiene que el trabajo solo depende de la altura descendida *z*: W = mgz, que no depende de la forma del riel.

<u>EJEMPLO</u>: Se ilustra una forma como se puede utilizar la relación (4.1.7) para resolver un problema. Se considerará el ejemplo visto en §3.3.2 de un péndulo de largo *R* apoyado en un plano inclinado, con el cual tiene roce, figura 3.7, asociada a la ecuación (3.3.9). El desplazamiento es $d\vec{r} = \hat{\phi} R d\phi$.

4.1. TRABAJO Y ENERGÍA CINÉTICA

De las fuerzas, tanto la tensión \vec{T} del hilo, como la normal \vec{N} son perpendiculares al desplazamiento, por tanto no efectúan trabajo. Las fuerzas que sí contribuyen son la fuerza de roce $\vec{F}_{\rm RD} = -\mu N \hat{\phi}$, (con $N = mg \cos \alpha$) y la componente del peso a lo largo de $\hat{\phi}$, que es $\hat{\phi} mg \sin \alpha \cos \phi$. El trabajo de la fuerza total, entonces, es el trabajo que efectúan estas dos fuerzas:

$$W_{\phi=0\to\phi=\phi_1}^{\text{total}} = \int_0^{\phi_1} \left(mg\sin\alpha\cos\phi - \mu mg\cos\alpha \right) R \, d\phi \tag{4.1.8}$$

donde ϕ_1 es el ángulo en el cual el péndulo se detiene. Como ha partido del reposo el trabajo total tiene que ser cero y entonces la integral anterior debe ser nula

$$mg\sin\alpha\sin\phi_1 - \mu\,mg\cos\alpha\,\phi_1 = 0 \tag{4.1.9}$$

que implica la relación

$$\mu = \frac{\sin \phi_1}{\phi_1} \tan \alpha$$

que es (3.3.18).

4.2. Potencia

Se define la potencia como la variación del trabajo con el tiempo

$$P = \frac{dW}{dt} \tag{4.2.1}$$

Si esta potencia es positiva se trata de potencia entregada al sistema y, si es negativa, es potencia que el sistema pierde. Cuando se trata de la potencia asociada a la fuerza total, P es energía cinética por unidad de tiempo que el sistema gana (P > 0) o pierde (P < 0).

Si una de las fuerzas actuando sobre un cuerpo es \vec{F} y en ese instante su velocidad en \vec{v} entonces

$$dW = \vec{F} \cdot d\vec{r} = \vec{F} \cdot \vec{v} dt \tag{4.2.2}$$

y la potencia asociada a esta fuerza es

$$P = \vec{F} \cdot \vec{v} \tag{4.2.3}$$

Si la dependencia de *P* en el tiempo es conocida, el trabajo puede calcularse como

$$W = \int_{t_0}^t P(t') \, dt'$$

Universidad de Chile

 \gg Un cuerpo en caída libre tiene velocidad $\vec{v} = -gt\hat{k}$ y la fuerza que está actuando es el peso $\vec{F} = -mg\hat{k}$. La potencia que el peso le está entregando al cuerpo que cae es $P = (-gt\hat{k}) \cdot (-mg\hat{k}) = mg^2t$.

Pero si el cuerpo ha sido lanzado hacia arriba, entonces $\vec{v} = (v_0 - gt)\hat{k}$ y, mientras $t < v_0/g$, se está perdiendo potencia: $P = -(v_0 - gt)mgt$, porque el trabajo de la fuerza peso en ese lapso es negativo.

 \gg La fuerza efectiva que mantiene a velocidad constante a un automóvil es opuesta al roce viscoso cuadrático, y es $F = \eta v^2$. La potencia entonces es $P = \eta v^3$, lo que muestra lo rápido que aumenta la potencia consumida a medida que aumenta la velocidad.

4.3. La energía cinética de un sistema

Recordando que $\vec{r}_a = \vec{R}_G + \vec{\rho}_a$ se puede demostrar que la energía cinética puede ser separada en la energía cinética del sistema en su conjunto y la energía cinética total con respecto al centro de masa:

$$K^{\text{tot}} = \frac{1}{2} \sum_{a=1}^{N} m_a v_a^2$$

= $\frac{1}{2} \sum_{a=1}^{N} m_a \left(\vec{V}_G + \dot{\vec{\rho}}_a \right)^2$
= $\frac{1}{2} \sum_{a=1}^{N} m_a \left(V_G^2 + \dot{\rho}_a^2 + 2\dot{\vec{\rho}}_a \cdot \vec{V}_G \right)$

pero el último término en el paréntesis es nulo debido a que $\sum_{a} m_{a} \vec{p}_{a} = 0$. De aquí que

$$K^{\text{tot}} = \frac{1}{2}MV_G^2 + \frac{1}{2}\sum_{a=1}^N m_a \dot{\rho}_a^2$$
(4.3.1)

La energía cinética total se divide en la energía cinética asociada a la masa total con la velocidad del centro de masa más la energía cinética con respecto al sistema de referencia G.

4.3. LA ENERGÍA CINÉTICA DE UN SISTEMA

Figura 4.4: El trabajo de una fuerza \vec{F} conservativa que se calcula con caminos C_1 , C_2 etc. entre puntos \vec{r}_0 y \vec{r} es siempre el mismo.

4.4. Fuerzas conservativas y energía potencial

4.4.1. Energía mecánica

Se dice que una fuerza es *conservativa* cuando la integral de trabajo (4.1.2) que se le asocia no depende del camino *C* escogido. Si se integra—por diversos caminos—entre un punto \vec{r}_0 , que se fija arbitrariamente, y un punto \vec{r} , siempre se obtiene el mismo valor $W(\vec{r})$.

Resulta natural, entonces, definir la función asociada a la integral trabajo.

Supongamos que se escoge un punto arbitrario \vec{r}_0 y se hace la integral de trabajo desde este punto a un punto cualquiera \vec{r} . En general esta integral depende del camino escogido. Si la fuerza que se está considerando es tal que el trabajo que se le asocia <u>no</u> depende del camino de integración, sino que da el mismo valor cada vez que se integra desde \vec{r}_0 hasta \vec{r} , adquiere sentido definir una función

$$U(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{r}$$
(4.4.1)

a la que se llama *energía potencial* asociada a la fuerza \vec{F} . Estrictamente debiera decirse que U depende tanto de \vec{r} como de \vec{r}_0 , pero ya se verá que \vec{r}_0 siempre es dejado fijo mientras que el otro punto es variable y juega un papel interesante.

 \gg En el párrafo anterior se ha dicho que existen fuerzas, llamadas *conservativas*, para las cuales la integral de trabajo no depende del camino de integración y para estas fuerza se puede definir una función escalar $U(\vec{r})$ llamada energía potencial.

P. Cordero S. & R. Soto B.

Si la fuerza total \vec{F}^{total} , actuando sobre un cuerpo, es una fuerza conservativa, entonces el trabajo que esta fuerza efectúa cuando el cuerpo se desplaza de *a* a *b* es

$$W_{a \to b} = \int_{\vec{r}_a}^{\vec{r}_b} \vec{F}^{\text{total}} \cdot d\vec{r}$$

$$= \int_{\vec{r}_a}^{\vec{r}_0} \vec{F}^{\text{total}} \cdot d\vec{r} + \int_{\vec{r}_0}^{\vec{r}_b} \vec{F}^{\text{total}} \cdot d\vec{r}$$

$$= -\int_{\vec{r}_0}^{\vec{r}_a} \vec{F}^{\text{total}} \cdot d\vec{r} + \int_{\vec{r}_0}^{\vec{r}_b} \vec{F}^{\text{total}} \cdot d\vec{r}$$

$$= U(\vec{r}_a) - U(\vec{r}_b) \qquad (4.4.2)$$

pero ya se sabe que también es

$$W_{a \to b} = K_b - K_a \tag{4.4.3}$$

lo que implica que

$$K_b + U(\vec{r}_b) = K_a + U(\vec{r}_a)$$
 (4.4.4)

Pero los puntos *a* y *b* son arbitrarios, por lo cual se puede afirmar que la *energía mecánica total*

$$E = \frac{1}{2}mv^2 + U(\vec{r})$$
(4.4.5)

permanece constante durante la evolución del movimiento.

» Conclusión: fuerza total conservativa implica que la energía mecánica total, (4.4.5) es una cantidad conservada, es decir, mantiene un mismo valor durante la evolución del sistema.

Reiterando la conservación de *E* se puede calcular dE/dt a partir de (4.4.5),

$$\frac{dE}{dt} = m\vec{v}\cdot\vec{v} + \nabla U\cdot\vec{r} = \vec{v}\cdot\left(m\dot{v} + \nabla U\right) = 0$$

^{4.4.} FUERZAS CONSERVATIVAS Y ENERGÍA POTENCIAL FACULTAD de Ciencias Físicas y Matemáticas

donde se ha hecho uso que $dU/dt = "dU/d\vec{r}'' d\vec{r}/dt$. En efecto $\nabla U = \sum_j \partial U/\partial x_j$ y $dU/dt = \sum (\partial U/\partial x_j)(dx_j/dt) = \nabla U \cdot \vec{v}$.

Más arriba se ha dicho que si \vec{F} es conservativa, entonces su integral de trabajo no depende del camino de integración. Equivalentemente *una fuer*za es conservativa si y solo si ella puede ser escrita como el gradiente de la función U de energía potencial,

$$\vec{F} = -\nabla U(\vec{r}) \equiv \begin{pmatrix} -\frac{\partial U}{\partial x} \\ -\frac{\partial U}{\partial y} \\ -\frac{\partial U}{\partial z} \end{pmatrix}$$
(4.4.6)

La expresión anterior, escrita en componentes cartesianas, es

$$F_x = -\frac{\partial U}{\partial x}, \qquad F_y = -\frac{\partial U}{\partial y}, \qquad F_z = -\frac{\partial U}{\partial z}.$$
 (4.4.7)

Si se toma cualesquiera dos de estas relaciones y se las deriva una vez más, pero con respecto a otra coordenada, se obtiene, por ejemplo,

$$\frac{\partial F_x}{\partial y} = -\frac{\partial^2 U}{\partial x \partial y}, \qquad \qquad \frac{\partial F_y}{\partial x} = -\frac{\partial^2 U}{\partial x \partial y}$$

Una fuerza es conservativa si y solo si

$$\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x}, \qquad \qquad \frac{\partial F_y}{\partial z} = \frac{\partial F_z}{\partial y}, \qquad \qquad \frac{\partial F_z}{\partial x} = \frac{\partial F_x}{\partial z}$$
(4.4.8)

que puede ser descrito en forma más compacta como la condición

$$\nabla \times \vec{F} = 0 \tag{4.4.9}$$

<u>EJEMPLO:</u> Si se usa (4.4.8) en el ejemplo visto inmediatamente después de (4.1.2), se obtiene $\partial F_x/\partial y = Ax^2y^4$ mientras que $\partial F_y/\partial x = Bx^2y^4$, es decir, la fuerza de ese ejemplo es conservativa si y solo si A = B lo que antes se pudo meramente sospechar después de hacer dos integrales. Si A = B se concluye que $U(x, y) = x^3y^5/15$.

4.4.2. Energía mecánica de un sistema

Para un sistema de *N* partículas de masas m_a (a = 1, 2...N) en el que sólo hay fuerzas conservativas entre las partículas y también externas (conservativas) al sistema, la energía mecánica total es

$$E = \sum_{a=1}^{N} \frac{1}{2} m_a v_a^2 + \sum_{a < b} U_{ab}(\vec{r}_a - \vec{r}_b) + \sum_a U_a(\vec{r}_a)$$
(4.4.10)

El primer término es la energía cinética total, el segundo es la suma de las energías potenciales asociadas a las fuerzas internas y el último es la suma de las energías potenciales asociadas a las fuerzas externas conservativas.

Un ejemplo interesante de pensar es el sistema Tierra-Luna con la fuerza externa debida al Sol. Para simplificar se ignora el resto de las fuerzas planetarias. La energía cinética es $K = K_{\text{Tierra}} + K_{\text{Luna}}$. La fuerza interna al sistema es la atracción gravitacional Tierra-Luna y su energía potencial es $U_{TL} = -G\frac{m_Tm_L}{r^2}$. El último término en este caso es la suma de energía potencial de la Tierra debido al Sol y de la Luna debida al Sol. No consideramos más contribuciones a la energía mecánica total, porque las que faltan son muy pequeñas. Pero eso no es todo. Existen también las mareas: parte de la energía del sistema Tierra-Luna se gasta en deformar los océanos. Tal energía mecánica se pierde porque se convierte en un ligero aumento de la temperatura del agua. También la Luna, cuyo interior no es enteramente sólido, se deformaba en un remoto pasado y había pérdida debido a esto. Este último proceso de pérdida de energía se optimizó (minimizando la pérdida de energía) en miles de millones de años haciendo que la Luna siempre muestre la misma cara a la Tierra.

Comprobación de que en el caso conservativo *E* **dada por (4.4.10) se conserva:** Parte del cálculo es saber hacer $\sum_{a < b} dU_{ab}/dt$ y aun antes se debe notar que $\nabla_{\vec{r}_a}U_{ab} = \nabla_{\vec{r}_a-\vec{r}_b}U_{ab} = -\nabla_{\vec{r}_b}U_{ab}$.

$$\frac{d}{dt}\sum_{a < b} U_{ab} = \sum_{a < b} \nabla_{ab} U_{ab} \cdot (\vec{v}_a - \vec{v}_b) = \sum_{a < b} \nabla_{\vec{r}_a} U_{ab} \cdot \vec{v}_a + \sum_{b < a} \nabla_{\vec{r}_b} U_{ab} \cdot \vec{v}_b = \sum_{a, b} \nabla_{\vec{r}_a} U_{ab} \cdot \vec{v}_a$$

De aquí que

$$\frac{dE}{dt} = \sum_{a} \vec{v}_a \cdot \left(m_a \vec{v}_a + \sum_{b} \nabla_{\vec{r}_a} U_{ab} + \nabla_{\vec{r}_a} U_a \right)$$

4.4. FUERZAS CONSERVATIVAS Y ENERGÍA POTENCIAL

Facultad de Ciencias Físicas y Matemáticas

y el paréntesis redondo es cero porque al producto masa por aceleración de cada partícula *a* se le resta la fuerza total (conservativa) proveniente de los potenciales.

4.5. Energía mecánica total no conservada

En general la fuerza total que actúa sobre un cuerpo puede ser separada en una suma de fuerzas conservativas más una suma de fuerzas no conservativas,

$$\vec{F}^{\text{total}} = \vec{F}_{\text{C}} + \vec{F}_{\text{NC}} \tag{4.5.1}$$

En consecuencia, el trabajo total efectuado desde *a* hasta *b* puede ser separado,

$$W^{\text{total}} = \int_{\vec{r}_{a}}^{\vec{r}_{b}} \vec{F}_{C} \cdot d\vec{r} + \int_{\vec{r}_{a}}^{\vec{r}_{b}} \vec{F}_{NC} \cdot d\vec{r} = W_{C} + W_{NC} = \frac{1}{2} m \left(v_{b}^{2} - v_{a}^{2} \right)$$
(4.5.2)

pero

$$W_{\rm C} = U_a - U_b \tag{4.5.3}$$

por lo cual

$$K_b - K_a = U_a - U_b + W_{\rm NC} \tag{4.5.4}$$

de donde resulta que

$$W_{\rm NC} = (K_b + U_b) - (K_a + U_a) \tag{4.5.5}$$

que se puede expresar como: el trabajo de las fuerzas no conservativas es igual a la diferencia: energía mecánica total final menos la energía mecánica total inicial,

$$W_{\rm NC} = E_{\rm final\,total} - E_{\rm inicial\,total} \tag{4.5.6}$$

El trabajo infinitesimal de las fuerzas no conservativas es $dW_{\rm NC} = \frac{dE_{\rm mec.tot}}{dt} dt$ de donde se ve que

$$P_{\rm NC} = \frac{dW_{\rm NC}}{dt} = \frac{dE_{\rm mec.tot}}{dt}$$
(4.5.7)

La potencia asociada a las fuerzas no conservativas es igual a la derivada de la energía mecánica total.

```
Universidad de Chile
```

Este resultado se puede ilustrar muy sencillamente con el sistema unidimensional descrito en la Fig. 4.5. Es un sistema de dos partículas unidas por un resorte. La partícula P oscila libremente, mientras que Q es mantenida a velocidad uniforme debido a una fuerza externa. En el sistema de referencia en que Q está fija la energía es constante

P. Cordero S. & R. Soto B.

$$E_Q = \frac{mv^2}{2} + \frac{k}{2}(y-D)^2$$
, con $v = \dot{y}$

Figura 4.5: La partícula P oscila debido al resorte. La partícula Q es mantenida con velocidad uniforme por efecto de una fuerza externa no conservativa.

En este sistema de referencia la fuerza externa no hace trabajo porque Q no se desplaza. Pero en el sistema de referencia en que Q se mueve con velocidad uniforme v_0 el trabajo de la fuerza externa es $W_{NC} = F_{\text{externa}} v_0$. La energía en el sistema de referencia en que Q se mueve con v_0 es

$$E_O = \frac{m}{2} (v + v_0)^2 + \frac{k}{2} (y - D)^2$$
$$= E_Q + \frac{mv_0^2}{2} + mvv_0$$

Al calcular dE_O/dt el único término no constante es mvv_0 cuya derivada es $mav_0 = Fv_0$, donde F = -k(y-D) es la fuerza que el resorte ejerce sobre P (que es la misma en ambos sistemas de referencia). Pero si el resorte ejerce sobre P una fuerza F, P ejerce sobre el resorte una fuerza -F. Sobre el resorte actúa esta fuerza -F y además la fuerza F_{externa} y, como se mueve a velocidad uniforme, la fuerza total sobre el resorte tiene que ser nula, es decir

$$F_{\text{externa}} = F \implies \frac{dE_O}{dt} = F_{\text{externa}} v_0$$

que es lo que dice (4.5.7). Esta fuerza depende del estado de movimiento del cuerpo por lo que no puede ser escrita como función de punto (distancia entre $O \neq P$) independiente de las condiciones iniciales del problema. Puede ser vista como una fuerza "normal" actuando en O.

4.5. ENERGÍA MECÁNICA TOTAL NO CONSERVADA Facultad de Ciencias Físicas y Matemáticas

4.6. Fuerzas centrales y energía potencial

4.6.1. Energía potencial de fuerzas centrales

Se verá a continuación que toda fuerza central de la forma

$$\vec{F} = f(r)\vec{r}$$
, con $r = \|\vec{r}\| = \sqrt{x^2 + y^2 + z^2}$ (4.6.1)

es conservativa. Para verlo primero se nota que

$$\frac{\partial r}{\partial x} = \frac{x}{r}, \qquad \frac{\partial r}{\partial y} = \frac{y}{r}, \qquad \frac{\partial r}{\partial z} = \frac{z}{r}$$

y de aquí

$$\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y} (f(r)x) = \frac{\partial f}{\partial y} x = \frac{\partial f}{\partial r} \frac{\partial r}{\partial y} x = \frac{xy}{r} f'$$
(4.6.2)

Figura 4.6: Para integrar desde \vec{r}_0 hasta \vec{r} conviene tomar un camino que primero es un arco de circunferencia hasta el punto P que se muestra en la figura y luego seguir por un camino recto y radial hasta \vec{r} .

que es simétrica en x e y y por tanto se satisfacen las condiciones (4.4.8).

Una vez que se sabe que estas fuerzas son conservativas se puede determinar la función energía potencial escogiendo un camino de integración conveniente entre dos puntos cualesquiera \vec{r}_0 y \vec{r} . Llamaremos r_0 a la distancia entre \vec{r}_0 y el centro \mathcal{O} asociado a la fuerza central y r a la distancia de \mathcal{O} a \vec{r} .

Ya que se tiene tres puntos especiales: \vec{r}_0 , $\vec{r} \neq \mathcal{O}$, ellos definen un plano (el plano del papel en la figura adjunta). El camino se puede construir avanzando desde \vec{r}_0 por un arco de circunferencia con centro en \mathcal{O} hasta un punto p (definido por \vec{r}_p) que está en la recta que une a \mathcal{O} con \vec{r} y desde p se sigue en línea recta hasta \vec{r} . La integral de camino tiene dos partes: (a) la integral $\int \vec{F} \cdot d\vec{r} \, de \, \vec{r}_0$ hasta \vec{r}_p es nula porque mientras la fuerza es en la dirección \hat{r} , el elemento de camino $d\vec{r}$ es en la dirección tangente a la curva, que es ortogonal a \hat{r} ; (b) la integral desde \vec{r}_p hasta \vec{r} que es una integral a lo largo de una línea radial (pasa por el centro de fuerza) como muestra la figura adjunta. Siendo así, el desplazamiento a lo largo de este camino es radial: $d\vec{r} = \hat{r} dr$ lo que lleva a

$$U(r) = -\int_{r_0}^r f(r)\vec{r}\cdot\hat{r}\,dr = -\int_{r_0}^r f(r)\,r\,dr \tag{4.6.3}$$

Es inmediato de lo anterior ver que la función de energía potencial depende tan solo de la coordenada radial *r*.

El gradiente de una función que solo depende de *r*, escrito en coordenadas esféricas, se reduce a $\nabla U(r) = \hat{r} dU/dr$ es decir,

$$\vec{F} = -\frac{dU}{dr}\hat{r} \tag{4.6.4}$$

lo que muestra que la fuerza que implica una función de energía potencial U(r) que solo depende de la coordenada radial r es una fuerza central del tipo restringido descrito en (4.6.1). Lo que se ha expresado en la fórmula de arriba se puede decir en forma más básica: si U(r) entonces $F_x = -\frac{\partial U}{\partial x} = -\frac{\partial U}{\partial r}\frac{\partial r}{\partial x} = -U'\frac{x}{r}$. Pero como \vec{r} es el vector (x, y, z) entonces $\vec{F} = -\frac{1}{r}U'\vec{r} = -U'\hat{r}$. La función f(r) es $-\frac{1}{r}U'$.

4.6.2. La energía potencial asociada a la fuerza de gravitación universal

La ley de gravitación universal

$$\vec{F} = -G\frac{Mm}{r^3}\vec{r} \tag{4.6.5}$$

4.6. FUERZAS CENTRALES Y ENERGÍA POTENCIAL

ya fue mencionada en §3.1. Para determinar la función energía potencial basta con hacer la integral a lo largo de un radio tal como se explicó en §4.6.1, es decir, $d\vec{r} = \hat{r}dr$. En tal caso

$$U = GMm \int_{r_0}^{r} \frac{\hat{r} \cdot \vec{r}}{r^3} dr = GMm \int_{r_0}^{r} \frac{dr}{r^2} = GMm \left(-\frac{1}{r} + \frac{1}{r_0} \right)$$
(4.6.6)

Lo normal es escoger $r_0 = \infty$ de donde

$$U(r) = -\frac{GMm}{r} \tag{4.6.7}$$

4.6.3. La energía potencial del oscilador armónico tridimensional

El potencial

$$U(r) = \frac{k}{2}r^2$$
 (4.6.8)

implica una fuerza,

$$\vec{F} = -\nabla U(\vec{r}) = -k\vec{r} \tag{4.6.9}$$

que corresponde a la de un oscilador armónico tridimensional de largo natural nulo.

Casos más generales son

$$U(\vec{r}) = \frac{k}{2} (r - D_0)^2 \tag{4.6.10}$$

o incluso

$$U(\vec{r}) = \frac{k_1}{2} (x - D_1)^2 + \frac{k_2}{2} (y - D_2)^2 + \frac{k_3}{2} (z - D_3)^2$$
(4.6.11)

4.7. Problemas

4.1 Una argolla de masa *m* puede deslizar libremente a lo largo de una vara y esta vara gira, en torno a un punto fijo \mathcal{O} , barriendo un plano horizontal con velocidad angular $\dot{\phi} = \omega$ constante. Inicialmente es liberada a distancia ρ_0 del origen con $\dot{\rho} = 0$. Determine el trabajo que efectúa la normal desde el instante inicial hasta un tiempo *t*. Se conocen ρ_0 , *m* y ω .

```
Universidad de Chile
```

4.2 Un ascensor cargado tiene masa total M_1 y está conectado a través de una polea A a un motor y por otra polea a un contrapeso de masa M_2 ($M_2 < M_1$). Las poleas tienen roce despreciable pero el ascensor tiene roce viscoso lineal. Para simplificar el problema suponga que los dos cables nacen del mismo punto del techo del ascensor, que no hay ángulo entre ellos y que la inercia de las poleas es despreciable, de modo que el trabajo que se busca es el que hace la tensión del cable de la izquierda.

a) Determine el trabajo que debe hacer el motor para que el ascensor suba una altura h a velocidad constante v_0 .

b) Lo mismo que antes pero para que el ascensor suba con aceleración constante entre una posición y otra *h* metros más arriba si $v(t) = a_0 t$, con $a_0 < g$ entre esas dos posiciones.

Datos: las masas, g, v_0 , a_0 , el coeficiente de roce lineal, la altura h.

- 4.3 Si se lanza una partícula de masa *m* verticalmente hacia arriba con velocidad inicial \vec{v}_0 y hay roce viscoso $\vec{F} = -\eta \|\vec{v}\| \vec{v}$, determine el trabajo total efectuado por \vec{F} hasta que la partícula vuelve a su punto de partida.
- 4.4 Dos bloques de masas m_1 y m_2 están apoyados en una superficie horizontal con la que ambos tienen coeficientes de roce estático y dinámico μ_e y μ_d .

Los bloques están además unidos por un resorte de constante elástica *k* y largo natural *D*.

En el instante inicial el resorte no está deformado, el bloque de masa m_2 está en reposo y el bloque de la izquierda tiene rapidez v_1 . (a) Determine la compresión máxima del resorte para que el bloque 2 no alcance a moverse. (b) Determine el valor máximo de v_1 para que 2 no deslice si $m_2 = 2m_1$ y $\mu_d = \mu_e/2$.

^{4.7.} PROBLEMAS

4.5 Una partícula de masa *m* puede deslizar sobre una superficie horizontal con la que tiene coeficiente de roce dinámico μ . La masa está unida a una cuerda, la cual pasa por una polea en Q y su extremo es recogido con rapidez $V_0 =$ cte. La polea tiene un radio despreciable y· se encuentra a una altura *h* del suelo.

99

- a) Determine la tensión como función de la posición
- b) Determine en qué posición la partícula se despega del suelo.

c) Determine el trabajo hecho por la fuerza de roce desde que la partícula estaba a una distancia x_0 del punto *O* hasta la posición en que se despega de la superficie.

Capítulo 5

Equilibrio y oscilaciones

5.1. Energía potencial y equilibrio

5.1.1. Punto de equilibrio

La energía mecánica total de un cuerpo cuya fuerza total es conservativa es

$$E_{\rm mec \ total} = \frac{1}{2} m v^2 + U(\vec{r})$$
 (5.1.1)

y esta cantidad es fija durante toda la evolución del sistema, es decir, si se la calcula en cualquier momento de su historia se obtiene el mismo valor. La energía $E_{\text{mec total}}$ queda determinada por las condiciones iniciales.

En general el movimiento no puede extenderse en cualquier dirección arbitrariamente. Al despejar la magnitud de la velocidad:

$$\|\vec{v}\| = \sqrt{\frac{2}{m}}\sqrt{E_{\text{mec total}} - U(\vec{r})}$$
(5.1.2)

que obviamente es real y positiva—se observa que en ningún momento la energía potencial U puede ser mayor que la energía total E. Si la partícula alcanza un punto en el cual se cumple que E = U, este es un punto con velocidad nula pero normalmente la fuerza

$$\vec{F} = -\nabla U(\vec{r}) \tag{5.1.3}$$

no lo es. El movimiento entonces se reinicia hacia puntos donde E > U.

 \gg El gradiente de una función escalar cualquiera $h(\vec{r})$ siempre apunta en la dirección en que la función h crece más rápido, esto es, en la dirección en que su derivada es más grande y positiva. Por ejemplo si h(x,y) es la función altura sobre el nivel del mar de la descripción de una zona de nuestra geografía en un mapa (plano *XY*), entonces ∇h apunta en la dirección en que la altura crece más rápido.

El gradiente de la función energía potencial apunta en la dirección en que crece la energía potencial con mayor derivada, pero como en (5.1.3) hay un signo menos, se concluye que la fuerza apunta en la dirección opuesta, en la dirección en que U decrece con mayor derivada.

Se llama punto de equilibrio a una posición \vec{r}_e en la cual la fuerza total es cero: $\nabla U(\vec{r}_e) = 0$. Para que el equilibrio sea *estable* se debe cumplir que al colocar en reposo a la partícula en un punto suficientemente cercano a \vec{r}_e , la partícula adquiera un movimiento oscilatorio en torno a ese punto.

5.1.2. Análisis unidimensional

Figura 5.1: La energía potencial en un problema unidimensional puede presentar puntos de interés como mínimos y máximos.

En un caso unidimensional la energía potencial es una simple función U(x) y la fuerza es F = -dU/dx. La fuerza apunta hacia la izquierda en los puntos en que U es creciente y apunta hacia la derecha en los puntos donde es decreciente.

En particular, en la vecindad de un mínimo x_e la fuerza que hay a la izquierda de este punto apunta hacia la derecha (también hacia x_e) y la fuerza que hay a la derecha de x_e apunta hacia la izquierda (o sea hacia x_e). Esto permite entender porqué un mínimo de U es un punto de equilibrio. Si una partícula está sometida a una fuerza total conservativa, se llama *punto de equilibrio estable* a un punto \vec{r}_e para el cual se cumple que:

(i) si la partícula es dejada en reposo en ese punto permanece en reposo en él; (ii) si se la deja en \vec{r}_e con una velocidad suficientemente pequeña, la partícula oscila en torno a ese punto.

Figura 5.2: Ejemplo de función U(x) con dos mínimos. Las líneas a trazos representan algunos valores posibles de la energía mecánica total. Puesto que (5.1.1) asegura que esta energía es siempre mayor (a lo sumo igual) a U entonces para los valores indicados de E el movimiento no puede extenderse indefinidamente en el eje x.

Como la fuerza total es conservativa, existe una energía potencial U(x) y la fuerza total es F = -dU/dx. En las zonas donde U es creciente F es negativo (es decir, la fuerza apunta hacia la izquierda) y en las zonas donde U es decreciente, F es positivo. Esto muestra que si x_e es un mínimo de Ula fuerza en una zona en torno a x_e apunta hacia x_e y es nula justo en x_e . Esto quiere decir que si se da como condición inicial $x(0) = x_e$ y una velocidad suficientemente pequeña, entonces la partícula va a ser frenada por la fuerza hasta que invierta el sentido de su movimiento. Debido a (5.1.1), en el punto x_1 en el cual la velocidad se hace cero se cumple que $E = U(x_1)$. En la figura 5.2 se puede ver gráficamente en qué puntos la partícula soltada desde x_e con la energía total indicada por línea de trazos, llega un punto en que su velocidad se hace cero—los *puntos de retorno*—y se devuelve. Para los tres valores de E indicados en la figura 5.2 el movimiento ocurre en una zona limitada del eje X. También se puede adivinar que si la energía es suficientemente alta el movimiento puede ser no acotado.

<u>EJEMPLO</u>: La energía potencial debida a la fuerza peso es mgz. Una pelota ideal rebotando *ad infinitum* contra el suelo está sometida a esta energía potencial más la que representa el suelo: U(z > 0) = mgz y $U(z < 0) = \frac{k}{2}z^2$ representado en la figura 5.3. Dada una energía cinética inicial, la partícula tiene una energía total *E* fija para siempre y, como se ve en el diagrama, el movimiento es acotado entre un z_{min} y una altura máxima.

OTRO EJEMPLO: Un caso muy ilustrativo es el del péndulo plano formado

Figura 5.3: La energía potencial asociada a una partícula rebotando en un suelo se modela con es mgz para z > 0 y con $\frac{k}{2}z^2$ para z < 0.

por una vara rígida sin masa de largo R en cuyo extremo hay una masa puntual m.

Figura 5.4: Un péndulo simple tiene la energía potencial planteada en (5.1.4).

La energía cinética como siempre es $K = \frac{1}{2}mv^2$ pero en este caso $v = R\dot{\phi}$. La energía potencial esencialmente es mgh y, como se ve de la figura 5.4, $h = R (1 - \cos \phi)$. El cero de energía potencial se ha escogido en el punto más bajo que tiene el recorrido de la masa *m*.

De aquí que la ecuación para la energía total conservada sea

$$E_{MT} = \frac{m}{2} R^2 \dot{\phi}^2 + mgR \left(1 - \cos\phi\right)$$
(5.1.4)

que muestra que la energía potencial en este caso es $mgR(1 - \cos \phi)$ y cuya forma se puede apreciar en la figura 5.5.

Se puede comprobar que derivando (5.1.4) una vez con respecto al tiempo, se obtiene la conocida ecuación para el péndulo.

5.1. ENERGÍA POTENCIAL Y EQUILIBRIO

Figura 5.5: La energía potencial asociada al péndulo.

-3 -2 -1 0

<u>Y OTRO EJEMPLO MÁS:</u> Consideremos un caso con energía potencial U dado por

$$U(x) = -\frac{a}{x} + \frac{b}{x^2}$$
(5.1.5)

y *x* siempre positivo. Esta energía potencial, representada en la figura 5.6 es divergente en el origen, tiene un único mínimo en $x_e = 2b/a$ y tiende a cero cuando *x* crece indefinidamente. Para cualquier valor negativo de la energía total el movimiento está acotado entre dos valores x_{\min} y x_{\max} , (puntos de retorno)

$$x_{\min} = \frac{a}{2|E|} \left(1 - \sqrt{1 - \frac{4|E|b}{a^2}} \right), \qquad x_{\max} = \frac{a}{2|E|} \left(1 + \sqrt{1 - \frac{4|E|b}{a^2}} \right)$$
(5.1.6)

Cuando la partícula alcanza uno de estos valores extremos la velocidad se hace cero pero $dU/dx \neq 0$, es decir, la fuerza es no nula y la partícula tiene una aceleración que apunta alejándose del valor extremo. En una situación así, el movimiento consiste en ir y volver entre estos dos valores extremos de *x*. El movimiento es periódico pero en general es diferente a un movimiento armónico simple.

En cambio, para cualquier valor positivo de la energía el movimiento tiene una cota inferior x_{min} pero no tiene cota superior: una vez que la partícula adquiere velocidad hacia la derecha no cambiará más la dirección de su movimiento.

Si se escoge un punto cualquiera $x = x_0$ como posición inicial, ¿cuál es la mínima velocidad inicial para que la partícula logre tener un movimiento no acotado hacia la derecha? La respuesta se obtiene exigiendo que en el

```
Universidad de Chile
```


Figura 5.6: La energía potencial $-\frac{a}{x} + \frac{b}{x^2}$ tiene un solo mínimo, en $x = x_e = 2b/a$, y tiende a cero cuando $x \to \infty$.

momento inicial (y siempre) la energía sea no negativa, es decir, $\frac{1}{2}mv_0^2 + U(x_0) \ge 0$, es decir,

$$v_0^2 \ge -\frac{2}{m} U(x_0) \,. \tag{5.1.7}$$

En las zona en que $U(x_0)$ es positivo esta relación no es restricción alguna y la partícula escapa a infinito siempre; en cambio en la gran zona en que $U(x_0)$ es negativo (5.1.7) da una cota a la rapidez inicial. Esta cota inferior se denomina *velocidad de escape.*

 \gg Completamente en general la *velocidad de escape*—que depende de la posición inicial \vec{r}_0 —es la velocidad mínima necesaria para que la partícula pueda tener movimiento no acotado.

Para una función de energía potencial arbitraria U(x) que tiende a un valor constante U_{∞} cuando $x \rightarrow \infty$ la velocidad de escape en un punto x cualquiera está dada por

$$v_{\rm esc}(x) = \sqrt{\frac{2}{m}} \sqrt{U_{\infty} - U(x)}$$
(5.1.8)

Determine el valor en metros por segundo de la velocidad para escapar de la atracción gravitacional de la Tierra partiendo desde el nivel del mar.

5.1. ENERGÍA POTENCIAL Y EQUILIBRIO

5.1.2.1. Integración de caso conservativo unidimensional

La ecuación (5.1.2) unidimensional en un rango en que la velocidad es

$$\frac{dx}{dt} = \sqrt{\frac{2}{m}}\sqrt{E - U(x)}$$

la cual puede escribirse en la forma integral

$$t = \sqrt{\frac{m}{2}} \int_{x_0}^{x(t)} \frac{dx}{\sqrt{E - U(x)}}$$
(5.1.9)

válida, como se ha dicho, mientras la velocidad no cambie de signo. Esta es una solución formal de todos los problemas unidimensionales.

5.1.2.2. Caso sencillo en que la energía no se conserva

En lo anterior se ha explotado el análisis en el que las fuerzas son todas conservativas. Sin embargo si se toma el caso en que se agrega una fuerza contante no conservativa como es el caso del roce dinámico, también se tiene un gráfico de energía suficientemente sencillo para poder hacer un análisis fácil de interpretar.

Considérese el caso de un oscilador sobre un plano horizontal: $m\ddot{x} = -kx$ al que se agrega la fuerza de roce dinámico. Este roce apunta hacia la izquierda cuando el movimiento es hacia la derecha ($\dot{x} > 0$) y viceversa, es decir, $F_{\text{roce}} = -\varepsilon \,\mu mg$ donde ε es el signo de \dot{x} . Mientras el desplazamiento es hacia la derecha, la fuerza es negativa y el trabajo que esta fuerza no conservativa efectúa es proporcional a *x*. En efecto, de la ecuación de movimiento completa: $m\ddot{x} = -kx - \varepsilon \,\mu mg$ se puede integrar una vez para obtener

$$\frac{1}{2}m\dot{x}^2 = -\frac{k}{2}x^2 - \varepsilon\,\mu mgx$$

que se puede escribir como

$$E_{MT}(t) = E_{MT}^{(0)} - \varepsilon \,\mu mg x(t)$$

Esta última relación describe la forma como la energía mecánica total inicial $E_{MT}^{(0)}$ va disminuyendo a medida que el sistema evoluciona.

Resuelva un caso específico para el cual pueda hacer un gráfico que ilustre la evolución $E_{MT}(t)$.

```
Universidad de Chile
```

5.1.3. Discusión avanzada: Tiempos de frenado en puntos de retorno

Estas notas no son necesarias para la comprensión de los capítulos posteriores, pero pueden aportar a la compresión de ciertos temas avanzados de este capítulo.

Cuando se analiza la dinámica de una partícula usando diagramas de energía en casos unidimensionales o en tres dimensiones con conservación de momentum angular, surge el concepto de *punto de retorno*. Si la partícula tiene una energía constante *E*, los puntos de retorno son aquellos donde la energía potencial (o la energía potencial efectiva) se iguala a la energía $U(x^*) = E$. Al acercarse a un punto de retorno, la rapidez de la partícula se hace cada vez más pequeña hasta anularse en x^* . Una pregunta que surge es cuánto tiempo tarda la partícula en frenarse para luego rebotar y si ese tiempo es finito o infinito. La respuesta depende de las propiedades del punto de retorno.

5.1.3.1. Primer caso: El punto de retorno no corresponde a un máximo de la energía potencial

Se considera el caso representado en la figura 5.7, donde la partícula viaja hacia la derecha. Si x_0 es la posición inicial de la partícula, se puede determinar el tiempo que tarda en llegar a x^* utilizando la ecuación de la energía, donde se despeja la velocidad

$$\frac{dx}{dt} = \sqrt{\frac{2}{m}(E - U(x))}$$

Figura 5.7: Cuando la posición de la partícula alcanza un punto en el cual la energía total coincide con la energía potencial, se tiene un punto x^* de retorno.

que también se puede escribir como

$$\frac{1}{\sqrt{\frac{2}{m}(E-U(x))}}\frac{dx}{dt} = 1$$

5.1. ENERGÍA POTENCIAL Y EQUILIBRIO

Facultad de Ciencias Físicas y Matemáticas
Integrando la última expresión entre t = 0 y t^* , el instante de detención, y usando el teorema del cambio de variable, se tiene

$$\int_{x_0}^{x^*} \frac{dx}{\sqrt{\frac{2}{m} \left[E - U(x)\right]}} = t^*$$

Para calcular esta última integral se necesita conocer la forma explícita de la energía potencial. Sin embargo, es posible decir si es finita o no. Como x^* no corresponde a un máximo de la energía potencial, localmente U(x) se puede aproximar por una línea recta $U(x) \approx E + U'(x^*)(x - x^*)$. Luego, si se considera una distancia δ pequeña, se tiene que

$$t^* = \int_{x_0}^{x^*-\delta} \frac{dx}{\sqrt{\frac{2}{m}[E-U(x)]}} + \int_{x^*-\delta}^{x^*} \frac{dx}{\sqrt{\frac{2}{m}[-U'(x^*)(x-x^*)]}}$$

Haciendo el cambio de variable $y = x^* - x$ en la segunda integral se obtiene

$$\begin{split} t^* &= \int_{x_0}^{x^*-\delta} \frac{dx}{\sqrt{\frac{2}{m} [E-U(x)]}} + \int_0^\delta \frac{1}{\sqrt{\frac{2}{m} U'(x^*)y}} dy \\ &= \int_{x_0}^{x^*-\delta} \frac{dx}{\sqrt{\frac{2}{m} [E-U(x)]}} + \sqrt{\frac{2m\delta}{U'(x^*)}}, \end{split}$$

que es un valor finito.

Luego, en el caso analizado, el tiempo que tarda la partícula en frenarse es finito.

5.1.3.2. Segundo caso: El punto de retorno es un máximo de la energía potencial

Figura 5.8: Si el punto de retorno es un máximo de la energía potencial el tiempo para llegar a él diverge.

Universidad de Chile

Al igual que en el caso anterior, hacemos una aproximación para la energía potencial cerca del punto de retorno. Como es un máximo, la aproximación correspondiente (serie de Taylor) da una parábola: $U(x) \approx E + U''(x^*)(x - x^*)^2/2$, con $U''(x^*) < 0$. De esta forma se tiene

$$t^* = \int_{x_0}^{x^* - \delta} \frac{dx}{\sqrt{\frac{2}{m} [E - U(x)]}} + \int_{x^* - \delta}^{x^*} \frac{dx}{\sqrt{\frac{2}{m} [-U''(x^*)(x - x^*)^2/2]}}$$
$$= \frac{dx}{\sqrt{\frac{2}{m} [E - U(x)]}} + \sqrt{\frac{m}{-U''(x^*)}} \int_0^{\delta} \frac{dy}{y}$$

La última integral diverge, lo que muestra que en esta condición la partícula tarda un tiempo infinitamente grande en detenerse completamente.

Un ejemplo de esta última situación corresponde a un péndulo (barra rígida y masa en el extremo) que es soltado desde el reposo, con la partícula en la altura máxima. Demuestre que la partícula tarda un tiempo infinito en volver a la posición vertical. También tarda un tiempo infinito en despegarse de la cúspide.

5.2. Pequeñas oscilaciones en torno a un punto de equilibrio.

5.2.1. Oscilaciones 1D.

Consideremos el caso de una energía potencial U(x) que tiene un mínimo en $x = x_e$. No tendrá importancia si U tiene además otros mínimos. Puesto que se trata de un mínimo, está garantizado que $(dU/dx)_{x=x_e} = 0$. Supondremos que el movimiento tiene una energía total levemente superior a $U(x_e)$, es decir, la energía cinética es siempre muy pequeña y la partícula permanece todo el tiempo muy cerca de $x = x_e$. El punto x_e tiene a ambos lados puntos de retorno muy cercanos. En tal caso, la expansión de U(x)en torno a x_e que solo llega hasta la segunda derivada de la función puede ser una excelente aproximación para U,

$$U(x) \approx U(x_e) + \frac{1}{2} \left(\frac{d^2 U}{dx^2}\right)_{x=x_e} (x - x_e)^2$$
(5.2.1)

Esta energía potencial aproximada da como fuerza aproximada

$$F(x) = -k(x - x_e) \qquad \text{con} \qquad k = \left(\frac{d^2U}{dx^2}\right)_{x = x_e} \tag{5.2.2}$$

^{5.2.} PEQUEÑAS OSCILACIONES EN TORNO A UN PUNTO DE EQ Fiancial tad de Ciencias Físicas y Matemáticas

que es la fuerza de un resorte de largo natural x_e y constante elástica dada por la segunda derivada de U evaluada en el mínimo.

Se ha obtenido que un sistema mecánico cualquiera, cuando está cerca de una posición de equilibrio puede ser descrito como el movimiento de una masa unida a un resorte ideal. Esta aproximación es válida cuando el desplazamiento respecto a la posición de equilibrio es pequeño. El estudio en detalle del movimiento de una partícula unida a un resorte describe, entonces, el movimiento de cualquier sistema mecánico cerca del equilibrio.

La ecuación de movimiento de la partícula cerca del punto de equilibrio es entonces

$$m\ddot{x} = -k [x - x_e],$$
 donde $x = x(t)$ (5.2.3)

ecuación que fue estudiada en el capítulo 3, donde se obtuvo que el movimiento que resulta es una oscilación armónica en torno a x_e con una frecuencia característica dada por $\omega_0 = \sqrt{\frac{k}{m}}$.

Luego, cuando una partícula se mueve en las cercanías de un punto de equilibrio, la fuerza puede ser aproximada por un resorte ideal y el movimiento que resulta es armónico simple. La frecuencia angular de oscilación en torno al punto de equilibrio estable está dada por

$$\omega_0 = \sqrt{\frac{U''(x_e)}{m}} \tag{5.2.4}$$

que se llama la frecuencia de las pequeñas oscilaciones. Hay que notar que como x_e es un mínimo de la energía potencial (equilibrio estable), la segunda derivada es positiva de U, lo que garantiza que la raíz existe.

En algunas situaciones la derivada U'' en el punto de equilibrio es nula, resultando en oscilaciones no armónicas; por ejemplo, en el movimiento en torno al origen en el caso $U = ax^4$. Este caso, sin embargo, no se estudiará en este curso.

 \gg Cuando una partícula se mueve muy cerca del punto en que U tiene un mínimo, $U = U_{\min}$, y la energía total es levemente superior a este valor U_{\min} , el movimiento de la partícula es aproximadamente un movimiento armónico simple en torno al punto de equilibrio.

El movimiento oscilatorio que ocurre en estas circunstancia se denomina *pequeñas oscilaciones* en torno a un punto de equilibrio.

Universidad de Chile

5.2.1.1. Cuando la coordenada relevante no es una longitud

Si la energía de un sistema se expresa en términos de una coordenada que no es una longitud, como en,

$$E = \frac{\alpha}{2}\dot{\phi}^2 + U(\phi) \tag{5.2.5}$$

la ecuación dinámica, dE/dt = 0, aquí resulta ser $\ddot{\phi} = -\frac{1}{\alpha}U'$. Si $\phi = \phi_e$ es un punto de equilibrio estable, se cumple que $U'(\phi_e) = 0$ y $U''(\phi_e) > 0$ (condición de mínimo). La ecuación dinámica en una pequeña vecindad del mínimo en ϕ_e aproximadamente es $\ddot{\phi} \approx -\frac{1}{\alpha}U''(\phi_e) (\phi - \phi_e)$, que se reconoce como una ecuación de movimiento armónico simple con frecuencia

$$\omega = \sqrt{\frac{U''(\phi_e)}{\alpha}} \tag{5.2.6}$$

En este caso la prima indica $d/d\phi$.

5.2.2. Ejemplo de energía y pequeñas oscilaciones

Figura 5.9: Dos partículas de masa m unidas por varas ideales (masa despreciable) de largos a y b y que forman un ángulo recto.

Para ilustrar varios de los conceptos recientes se analizará el caso de un péndulo que tiene dos masas en varas que forman un ángulo recto, como muestra la figura 5.9. Veremos cuál es el ánulo máximo si el sistema se suelta del reposo con $\phi = 0$. Veremos cuánto vale la velocidad angular cuando $\phi = \pi/2$ y finalmente veremos la frecuencia en el caso de pequeñas oscilaciones en torno al ángulo ϕ_e de equilibrio estático.

^{5.2.} PEQUEÑAS OSCILACIONES EN TORNO A UN PUNTO DE EQ Fiancial tad de Ciencias Físicas y Matemáticas

La energía del sistema es la suma *K* de las energías cinéticas más la suma *U* de las energías potenciales:

$$E = \frac{m}{2} (a\dot{\phi})^2 + \frac{m}{2} (\sqrt{a^2 + b^2} \dot{\phi})^2 - mga\sin\phi$$
$$-mg(a\sin\phi + b\cos\phi)$$

• Si se suelta desde el reposo (esto es, $\dot{\phi} = 0$) con $\phi = 0$ la energía inicial es

$$E_{\rm ini} = -mgb$$

y este es el valor que tendrá durante todo el movimiento.

El ángulo máximo lo alcanza en otro punto en el cual $\dot{\phi} = 0$. Se debe exigir que la energía es ese momento sea

$$-mg(2a\sin\phi + b\cos\phi) = -mgb$$

que tiene dos soluciones, una es la condición inicial $\phi = 0$ y la otra es para el máximo valor posible ϕ_M para el ángulo

$$\sin\phi_M = \frac{4ab}{4a^2 + b^2}$$

Para saber la velocidad angular cuando $\phi = \pi/2$ se vuelve a aplicar conservación de energía:

$$\frac{m}{2}\left(2a^2+b^2\right)\dot{\phi}^2-mg2a=-mgb$$

que implica

$$\dot{\phi}(\phi = \frac{\pi}{2}) = \sqrt{\frac{2g(2a-b)}{2a^2+b^2}}$$

Este resultado no tiene sentido salvo cuando $2a \ge b$. Esto se debe a que si tal desigualdad no se obedece el péndulo nunca llega a $\phi = \pi/2$ a partir de la condición inicial escogida.

• Veamos ahora cuánto vale la energía si el sistema está en equilibrio estable. En tal situación $\dot{\phi} = 0$ y el sistema está en un mínimo de energía potencial. La derivada de la energía potencial con respecto a ϕ es

$$U' = -mg\left(2a\cos\phi - b\sin\phi\right)$$

que se anula cuando

$$\tan\phi_e = \frac{2a}{b}$$

Universidad de Chile

Escuela de Ingeniería y Ciencias

y se comprueba que para este valor del ángulo la energía potencial, que es la energía total en el caso estático, vale

P. Cordero S. & R. Soto B.

$$E_{\min} = -mg\sqrt{4a^2 + b^2}$$

Con lo visto en (5.2.6) resulta muy fácil determinar que en el presente ejemplo la frecuencia al cuadrado es

$$\omega^2 = \frac{g\sqrt{4a^2 + b^2}}{2a^2 + b^2}$$

5.2.3. Otra vez el péndulo simple

Figura 5.10: Péndulo simple.

Ya se obtuvo en (2.3.13) que la ecuación del péndulo simple, como en la figura 5.10, es

$$\ddot{\phi} = -\frac{g}{R}\sin\phi \tag{5.2.7}$$

Si esta ecuación se multiplica por $\dot{\phi}$, ambos lados de la ecuación son derivadas perfectas y se puede integrar desde un tiempo inicial t = 0 hasta tarbitrario. Si se escoge $\phi(0) = \phi_0$, $\dot{\phi}(0) = 0$ se obtiene

$$\dot{\phi}^2(t) = \frac{2g}{R} \left(\cos \phi(t) - \cos \phi_0 \right)$$
(5.2.8)

Se ha obtenido la velocidad angular $\dot{\phi}$ como función del ángulo ϕ . El péndulo comienza desde el reposo con amplitud $\phi = \phi_0$ y se mueve disminuyendo

^{5.2.} PEQUEÑAS OSCILACIONES EN TORNO A UN PUNTO DE EQUERIA de Ciencias Físicas y Matemáticas

Figura 5.11: El péndulo tiene período diferente para diferentes amplitudes. La figura da $\phi(t)$ del mismo péndulo lanzado tres veces coc06.tex saved n velocidad inicial nula desde ángulos iniciales $\phi(0) = \phi_0$ diferentes.

 ϕ , pasando por el punto más bajo que corresponde a $\phi = 0$ y luego llega a $\phi = -\phi_0$. En ese recorrido se cumple la mitad del período *T*.

En ese lapso $\frac{T}{2}$ la velocidad angular $\dot{\phi}$ es negativa por lo que se debe escribir

$$\dot{\phi} = -\sqrt{\frac{2g}{R}}\sqrt{\cos\phi - \cos\phi_0} \qquad \text{con} \quad 0 \le t \le \frac{T}{2} \tag{5.2.9}$$

Para obtener la dependencia de ϕ en *t* es necesario integrar una vez más. Se integra desde *t* = 0 hasta un valor *t* menor a $\frac{T}{2}$ en el que ϕ toma el valor $\phi(t)$

$$\int_{\phi(t)}^{\phi_0} \frac{d\phi}{\sqrt{\cos\phi - \cos\phi_0}} = \sqrt{\frac{2g}{R}}t$$

La integral al lado izquierdo pertenece a una clases de integrales llamadas *elípticas* y el resultado no puede expresarse en término de funciones elementales.

Si en la expresión anterior se escoge $t = \frac{T}{2}$, la integral angular es desde $-\phi_0$ hasta ϕ_0 y se tiene una relación entre el período *T* y la amplitud de la oscilación.

En la figura 5.11 se muestra gráficamente el resultado de integrar numéricamente la ecuación del péndulo en tres casos que tienen el mismo valor para $\sqrt{\frac{g}{R}}$, y que parten del reposo. Difieren en el valor de $\phi(0)$.

* * *

En general $\sin \phi = \phi - \frac{1}{3!} \phi^3 \pm ...$, pero si el péndulo tiene oscilaciones de

Universidad de Chile

amplitud pequeña, el lado derecho de (5.2.7) puede aproximarse por $\sin \phi \approx \phi$ y la ecuación aproximada de movimiento es

$$\ddot{\phi} = -\frac{g}{R}\phi \tag{5.2.10}$$

que es la ecuación de un oscilador armónico con frecuencia angular $\omega_0 = \sqrt{\frac{g}{R}}$. La solución de esta ecuación entonces es muy fácil de escribir.

5.2.4. Equilibrio y pequeñas oscilaciones en 2D y 3D

Figura 5.12: Ejemplo de la forma de una energía potencial U(x,y) con dos puntos de equilibrio estable.

En dos o tres dimensiones la situación es más compleja que en una dimensión pues hay más casos posibles. En la figura 5.12 se representa una energía potencial U(x,y) que tiene dos mínimos, es decir, dos puntos de equilibrio estable, un mínimo más profundo que el otro. Si esta superficie se cortara por un plano horizontal a alguna altura *E* se tendría la zona en la cual el movimiento puede darse ($E \ge U$). En la base de esta figura se puede ver las curvas de nivel las cuales representan precisamente curvas U = constante. Considérese, por ejemplo, la curva cerrada en torno al mínimo izquierdo que aparece en la base de la figura. Ella corresponde a un cierto valor $U = E_0$. La zona interior a esa curva cumple con $E_0 \ge U(\vec{r})$. Es decir, si la partícula tiene energía total E_0 y su posición inicial fue da-

5.2. PEQUEÑAS OSCILACIONES EN TORNO A UN PUNTO DE EQ FACULTAD DE CONCIAS FÍSICAS Y MATEMÁTICAS

da dentro de esta zona, el movimiento será todo el tiempo dentro de esta zona.

Hay otro punto interesante de esta energía potencial: es un punto entre los dos mínimos y él es un máximo en la dirección X y un mínimo en la dirección Y. A tales puntos se les llama *punto silla* y son puntos de equilibrio inestables.

No veremos en general la forma del movimiento armónico simple en el caso de una energía potencial U(x, y) y tan solo se dice a modo de complementación cultural que es necesario considerar la matriz de valores $M_{ab} = \partial^2 U / \partial x_a \partial x_b$, se debe diagonalizar y estudiar sus autovalores.

Sin embargo, un caso simple ocurre en el movimiento en dos o tres dimensiones de una partícula unida a un resorte ideal. En este caso, la energía potencial tiene un sólo mínimo que es igual en todas las direcciones. Se tiene, entonces el llamado **oscilador armónico tridimensional**.

La ecuación para un oscilador armónico tridimensional de largo natural nulo ubicado en el origen es

$$m\ddot{\vec{r}}(t) = -k\vec{r}(t) \tag{5.2.11}$$

Se trata de un problema con fuerza central, por tanto, como el momento angular respecto al centro de fuerza se conserva, el movimiento es plano, como se discutió en la sección 2.5. Todo el movimiento, entonces, ocurre en un plano, el que queda determinado por las condiciones iniciales. Conviene escoger al plano *XY* coincidiendo con el plano del movimiento. En tal caso la ecuación anterior se separa en dos ecuaciones independientes,

$$m\ddot{x}(t) = -kx(t)$$

$$m\ddot{y}(t) = -ky(t)$$
(5.2.12)

Cada una de estas dos ecuaciones tiene solución del tipo (3.2.6) con constantes determinadas por las condiciones iniciales,

$$\begin{aligned} x(t) &= A_1 \sin(\omega_0 t) + B_1 \cos(\omega_0 t) \\ y(t) &= A_2 \sin(\omega_0 t) + B_2 \cos(\omega_0 t) \end{aligned}$$
 (5.2.13)

Si se da una posición inicial $\vec{r}_0 = (x_0, y_0)$ y una velocidad inicial $\vec{v}_0 = (v_{x0}, v_{y0})$, entonces se tiene cuatro condiciones para determinar a las cuatro constantes $A_1 ... B_2$.

♠ Demuestre que (5.2.13) implica que la trayectoria en el plano XY es siempre una elipse con centro en el origen.

```
Universidad de Chile
```

5.3. Oscilador forzado

5.3.1. La ecuación del oscilador forzado

En variadas ocasiones una partícula que se encuentra cerca de un punto de equilibrio estable es forzada externamente. El movimiento que resulta es en general complejo, dependiendo del tipo de fuerza externa que actúa y de la amplitud de ésta. Si la amplitud de la fuerza no es muy grande, entonces la partícula se alejará poco del punto de equilibrio estable, pudiéndose aplicar el formalismo de pequeñas oscilaciones. La fuerza externa puede ser de muchos tipos, pero un caso particularmente interesante corresponde en que esta depende explícitamente del tiempo. Un ejemplo cotidiano se da con un temblor que hace vibrar a los edificios en torno a su posición de equilibrio.

P. Cordero S. & R. Soto B.

Consideremos una partícula de masa *m* en una dimensión que se mueve bajo la acción de una fuerza conservativa que viene de una energía potencial *U* el cual tiene un punto de equilibrio estable en x_e , más una fuerza que depende del tiempo pero no de la posición $F_e(t)$. Cerca del punto de equilibrio estable, la ecuación de movimiento es

$$m\ddot{x} = -k(x - x_e) + F_e(t)$$

donde

$$k = \left(\frac{d^2U}{dx^2}\right)_{x=x_e}$$

Como el movimiento natural (sin forzamiento) de la partícula es armónico, resulta natural estudiar el caso en que la fuerza externa también es armónica (sinusoidal). Diremos que la fuerza externa se puede escribir como $F_e(t) = kQ\sin(\omega t)$, donde Q mide la amplitud de la fuerza y ω es la frecuencia angular de la misma, que no necesariamente coincide con la frecuencia angular de las pequeñas oscilaciones.

La ecuación de movimiento que resulta es

$$m\ddot{x} = -k\left[x(t) - Q\sin(\omega t)\right] \tag{5.3.1}$$

donde por simplicidad se puso $x_e = 0$. Si $x_e \neq 0$, entonces basta con hacer el cambio de variables $y(t) = x(t) - x_e$ y se obtiene la misma ecuación.

^{5.3.} OSCILADOR FORZADO

5.3.2. Solución, resonancia y batido

Este tipo de ecuación lineal inhomogénea tiene la siguiente propiedad. Si dos funciones $\bar{x}(t)$ y x(t) la satisfacen, entonces su diferencia,

$$y(t) \equiv x(t) - \bar{x}(t) \tag{5.3.2}$$

satisface la correspondiente ecuación homogénea

$$m\ddot{\mathbf{y}}(t) = -k\mathbf{y}(t) \tag{5.3.3}$$

cuya solución, como ya sabemos, es de la forma $y(t) = A \sin(\omega_0 t) + B \cos(\omega_0 t)$.

A continuación se verá que existe una solución de (5.3.1), que se denominará $\bar{x}(t)$, que tiene la forma

$$\bar{x}(t) = D\sin\omega t \tag{5.3.4}$$

siempre y cuando *D* tenga un valor muy preciso. Puesto que $\ddot{x} = -\omega^2 D \sin \omega t$, entonces al exigir que se satisfaga (5.3.1) se deduce que

$$D = \frac{\omega_0^2 Q}{\omega_0^2 - \omega^2}$$
(5.3.5)

y la solución x(t) general es $x = y + \bar{x}$,

$$x(t) = \frac{\omega_0^2 Q}{\omega_0^2 - \omega^2} \sin \omega t + A \sin(\omega_0 t) + B \cos(\omega_0 t)$$
(5.3.6)

El primer término de la solución tiene frecuencia angular ω asociada a la *forzante* y tiene coeficiente fijo, mientras que el resto tiene la frecuencia ω_0 asociada al sistema masa-resorte (m,k). Se tiene un *resonancia* cuando la frecuencia ω es muy cercana a la frecuencia ω_0 .

La superposición de dos dependencias temporales con distinta frecuencia puede producir el fenómeno de *batido* que se ilustra en la figura 5.13: las funciones se suman y restan sucesivamente, produciendo una función con una envolvente de período mucho más largo que las funciones que lo componen.

Esta solución tiene una propiedad muy especial. El punto oscilante puede llegar a alejarse bastante de su posición de reposo debido al primer término en (5.3.6). Si se comienza a variar lentamente la frecuencia angular ω de

Universidad de Chile

Figura 5.13: Un oscilador de frecuencia natural ω_0 forzado por una fuerza periódica con frecuencia ω cercana a la frecuencia ω_0 muestra un comportamiento temporal en paquetes como se aprecia en la figura. Si dos cuerdas de guitarra se afinan a notas muy cercanas el sonido que resulta al tocarlas simultaneamente tiene esta propiedad que se llama de batido, claramente audible. Esta es una propiedad de la solución (5.3.6).

la *forzante* acercando ω a ω_0 , el coeficiente $\frac{\omega_0^2 Q}{\omega_0^2 - \omega^2}$ crece indefinidamente, permitiendo que la amplitud de las oscilaciones también crezca sin límite. La amplitud $\frac{\omega_0^2 Q}{\omega_0^2 - \omega^2}$ del término resonante cambia de signo cuando se pasa de $\omega < \omega_0$ a $\omega > \omega_0$.

En un sistema real este proceso tiene un límite porque, si bien para pequeñas oscilaciones (amplitud pequeña) un sistema puede comportarse como aquel que hemos estado describiendo, para amplitudes más grandes la ley de fuerza se hace notoriamente diferente y el sistema deja de comportarse en forma puramente elástica.

El movimiento descrito por (5.3.6) es una primera forma de ver un fenómeno de enorme importancia práctica llamado *resonancia*. Cuando la frecuencia de una forzante ω coincide (o es muy parecida) a la frecuencia natural ω_0 del sistema, se produce una *resonancia*. Desde el punto de vista meramente matemático (5.3.6) es divergente si $\omega \rightarrow \omega_0$. En la práctica, como se discutirá más adelante, el sistema oscila mucho más fuertemente.

5.3. OSCILADOR FORZADO

5.3.3. Ejemplos en la práctica

Este fenómeno se puede ver en numerosos ejemplos de la vida cotidiana.

- Cuando el ruido de un motor acelerando llega a una ventana, el vidrio suele, en un determinado momento, vibrar fuertemente. Esto se debe a que el panel de vidrio de esa ventana tiene una frecuencia natural de vibración y el ruido que llega a través del aire (ondas de compresión) actúa como forzante. La frecuencia del motor va variando, porque está acelerando, y en algún momento coincide con la frecuencia del panel.
- El movimiento de cabeceo de un barco tiene una frecuencia natural de oscilación. Si el barco se ve enfrentado a un oleaje suave que tiene la misma frecuencia, puede llegar a cabecear tan fuerte que podría hundirse. Hundimiento en día claro y tranquilo.
- Por lo compleja que es la estructura de un edificio, estos tienen varias frecuencias naturales de vibración. Si ocurriera que la frecuencia de un temblor coincide con alguna de las frecuencias naturales del edificio este se puede llegar a romper. Técnicas actuales permiten que esto no ocurra.
- En un camino irregular no muy duro las ruedas de los automóviles rebotan y luego golpean fuertemente al camino. La repetición de este proceso termina haciendo una superficie ondulada bastante regular que se conoce como *calamina*. Los vehículos que transitan sobre un camino calaminado pueden entrar en resonancia y deben cambiar de velocidad para evitarlo.

5.3.4. Un ejemplo sencillo

Un ejemplo mecánico simple que presenta forzamiento ocurre cuando se considera el caso de un resorte unidimensional de largo natural nulo y en ausencia de gravedad, cuyo extremo *A* extremo oscila en torno al origen: $x_A(t) = Q \sin(\omega t)$ con frecuencia angular ω , en general, distinta a $\omega_0 = \sqrt{k/m}$.

El resultado efectivo es que aparece un nuevo término de fuerza en la ecuación de movimiento, y es una fuerza oscilante que llamaremos *forzan-te*.

Figura 5.14: El punto A se mueve oscilando en torno al origen: $x_A = Q\sin(\omega t)$.

La ecuación de movimiento es $m\ddot{x} = -k (x(t) - x_A(t))$. Al reemplazar el movimiento del extremo se obtiene

$$m\ddot{x} = -k(x(t) - Q\sin(\omega t))$$

que es la ecuación ya vista del oscilador armónico forzado.

5.4. Oscilador amortiguado

Como se vio en las secciones anteriores, cualquier partícula cerca de un punto de equilibrio estable presenta oscilaciones armónicas con una frecuencia bien característica. En muchas ocasiones, además de las fuerzas conservativas que dan lugar a la energía potencial que presenta el punto de equilibrio estable, hay roce viscoso. Como sabemos, el roce viscoso tiende a frenar a las partículas y por lo tanto a disminuirles su energía. Si una partícula comienza su movimiento cerca de un punto de equilibrio estable x_e y además hay roce viscoso, parece natural esperar que haya oscilaciones en torno a x_e y al mismo tiempo que disminuya su energía, manteniéndose siempre cerca del punto de equilibrio. La situación real es más compleja pudiendo no haber oscilaciones del todo, pero como se verá, la partícula se mantiene cerca del punto de equilibrio.

De esta forma, la ecuación de movimiento que describe a una partícula cerca de un punto de equilibrio estable en presencia de roce viscoso es

$$m\ddot{x}(t) = -kx(t) - c\dot{x}(t)$$
(5.4.1)

o equivalentemente

$$\ddot{x}(t) + \frac{c}{m}\dot{x}(t) + \omega_0^2 x(t) = 0$$
(5.4.2)

donde

$$k = \left(\frac{d^2U}{dx^2}\right)_{x=x_e=0}$$

5.4. OSCILADOR AMORTIGUADO

Facultad de Ciencias Físicas y Matemáticas

y se ha escogido el origen en la posición de equilibrio ($x_e = 0$). Nuevamente, si no fuese así, un cambio de variable permite obtener la ecuación anterior.

Para resolver este tipo de ecuaciones primero se plantea la ecuación algebraica $z^2 + \frac{c}{m}z + \omega_0^2$, cuyas raíces son $-\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \omega_0^2}$, que pueden ser complejas. En efecto, la naturaleza de las soluciones de (5.4.2) depende del signo de

$$\Delta = \left(\frac{c}{2m}\right)^2 - \omega_0^2 \tag{5.4.3}$$

<u>Caso $\Delta > 0$ </u>: Este caso, denominado *caso sobreamortiguado*, la solución se puede escribir en general en la forma

$$x(t) = \left(A_1 e^{t \sqrt{\left(\frac{c}{2m}\right)^2 - \omega_0^2}} + A_2 e^{-t \sqrt{\left(\frac{c}{2m}\right)^2 - \omega_0^2}}\right) e^{-\frac{c}{2m}t}$$
(5.4.4)

El factor exponencial que está fuera del paréntesis domina y la función x(t) decrece exponencialmente cuando el tiempo crece. Las constantes A_1 y A_2 se determinan cuando se conoce las condiciones iniciales. Compruebe que se cumple que

$$A_{1} = \frac{x_{0}}{2} + \frac{cx_{0}}{4m\sqrt{\Delta}} + \frac{v_{0}}{2\sqrt{\Delta}}$$

$$A_{2} = \frac{x_{0}}{2} - \frac{cx_{0}}{4m\sqrt{\Delta}} - \frac{v_{0}}{2\sqrt{\Delta}}$$
(5.4.5)

A pesar de su nombre, este sistema no oscila porque el efecto de la amortiguación es muy fuerte.

<u>Caso $\Delta < 0$ </u>: En este caso los efectos de la amortigación son menos intensos y el sistema oscila. La solución podría escribirse prácticamente en la misma forma que antes

$$x(t) = \left(A_1 e^{it\sqrt{\omega_0^2 - \left(\frac{c}{2m}\right)^2}} + A_2 e^{-it\sqrt{\omega_0^2 - \left(\frac{c}{2m}\right)^2}}\right) e^{-\frac{c}{2m}t}$$

pero como la solución debe ser real para que tenga sentido, entonces las constantes A_1 y A_2 deben ser complejas. Al exigir que $x = x^*$ para todo t se deduce que $A_1 = A_2^*$. Para hacer explícita esta propiedad se cambia de notación,

$$A_1 = \frac{D}{2} e^{i\beta} \qquad \qquad A_2 = \frac{D}{2} e^{-i\beta}$$

y entonces

$$x(t) = D e^{-\frac{c}{2m}t} \cos\left(t \sqrt{\omega_0^2 - \left(\frac{c}{2m}\right)^2} + \beta\right)$$
(5.4.6)

Universidad de Chile

Escuela de Ingeniería y Ciencias

Figura 5.15: Las oscilaciones de un oscilador amortiguado van decreciendo con el tiempo, manteniendo su frecuencia tal como se describe en (5.4.6).

solución que está representada en la figura 5.15.

Se aprecia que la frecuencia angular de oscilación en este sistema es

$$\omega_c = \sqrt{\omega_0^2 - \left(\frac{c}{2m}\right)^2} \tag{5.4.7}$$

que es una frecuencia menor que ω_0 . Si el coeficiente de viscosidad *c* aumenta la frecuencia ω_c disminuye aun más, es decir el período de oscilación $T = \frac{2\pi}{\omega_c}$ aumenta si *c* aumenta.

En este caso las dos constantes que deben ser fijadas una vez que se tiene las condiciones iniciales son D y β .

5.5. Oscilador forzado y amortiguado

Finalmente, consideramos el caso general de una partícula que se mueve en proximidad de un punto de equilibrio estable, donde además hay roce viscoso y una fuerza externa periódica. La ecuación que describe este movimiento es

$$m\ddot{x}(t) = -kx(t) - c\dot{x}(t) + kQ\sin\omega t$$

que se escribe equivalentemente como

$$\ddot{x}(t) + \frac{c}{m}\dot{x}(t) + \omega_0^2 x(t) = \omega_0^2 Q \sin \omega t$$
(5.5.1)

^{5.5.} OSCILADOR FORZADO Y AMORTIGUADO

El último término es el que describe a la forzante periódica.

Tal como se comentó en la sección 5.3 estas ecuaciones lineales inhomogéneas tiene una solución general que se obtiene de la solución general de la correspondiente ecuación homogénea (en este caso la del oscilador amortiguado sin forzar) más una solución particular de la ecuación inhomogénea.

Puesto que ya se conoce la solución general del oscilador amortiguado sin forzar solo resta calcular una solución de la ecuación inhomogénea (5.5.1). Ésta será obtenida a partir de suponer que existe solución x(t) de la forma

$$x(t) = A \sin(\omega t - \delta)$$

= $A (\sin \omega t \cos \delta - \cos \omega t \sin \delta)$ (5.5.2)

De donde es directo obtener que

$$\dot{x}(t) = A \omega (\cos \omega t \cos \delta + \sin \omega t \sin \delta)$$

$$\ddot{x}(t) = -A \omega^2 (\sin \omega t \cos \delta - \cos \omega t \sin \delta)$$
(5.5.3)

Figura 5.16: La amplitud A(w), dada en (5.5.6), de un oscilador de frecuencia natural ω_0 , amortiguado y forzado por una fuerza periódica con frecuencia ω (la forzante) muestra para diversos valores del parámetro de amortiguación q un máximo (resonancia) en w = w_r (definido en (5.5.7)). Mientras menor el amortiguamiento mayor es la amplitud A.

En lo que sigue se va a usar un parámetro q para describir el amortiguamiento, en lugar de c. La relación, por definición es

$$q = \frac{c \, \omega}{m}$$

Universidad de Chile

Escuela de Ingeniería y Ciencias

Al reemplazar estas expresiones en (5.5.1) se obtiene una ecuación que se factoriza en dos partes, una proporcional a $\cos \omega t$ y otra proporcional a $\sin \omega t$. Puesto que esta ecuación debe ser válida para todo tiempo, cada una de estas dos partes debe ser nula independientemente y se obtiene

P. Cordero S. & R. Soto B.

$$q\cos\delta = \left(\omega_0^2 - \omega^2\right)\sin\delta \qquad (5.5.4)$$

$$\omega_0^2 Q = A \left[\left(\omega_0^2 - \omega^2 \right) \cos \delta + q \sin \delta \right]$$
(5.5.5)

De la primera de estas ecuaciones se despeja inmediatamente que

$$\tan \delta = \frac{q}{\omega_0^2 - \omega^2}$$

y entonces

$$\sin \delta = \frac{q}{\sqrt{\left(\omega^2 - \omega_0^2\right)^2 + q^2}}$$
$$\cos \delta = \frac{\omega_0^2 - \omega^2}{\sqrt{\left(\omega^2 - \omega_0^2\right)^2 + q^2}}$$

Si el coeficiente de roce viscoso c se anula,

es decir, q = 0, entonces el seno se anula y el coseno vale 1.

De (5.5.5) resulta (comparar con (5.3.5))

$$A = \frac{\omega_0^2 Q}{(\omega_0^2 - \omega^2) \cos \delta + q \sin \delta}$$

=
$$\frac{\omega_0^2 Q}{\sqrt{(\omega_0^2 - \omega^2)^2 + q^2}}$$
(5.5.6)

y ahora se ve que el primer término en el denominador es siempre positivo tal como el segundo término.

Entonces la amplitud *A* nunca es divergente. Su forma, como función de ω , se muestra en la figura 5.16. La función *A* tiene un máximo cuando

$$\omega^{2} = \omega_{r}^{2} = \omega_{0}^{2} - 2\left(\frac{c}{2m}\right)^{2}$$
(5.5.7)

Esto contrasta con lo que ocurre con el oscilador forzado sin amortiguación donde la amplitud que resulta matemáticamente es divergente en la resonancia.

5.5. OSCILADOR FORZADO Y AMORTIGUADO

Figura 5.17: La función x(t) de un oscilador de frecuencia natural ω_0 , amortiguado y forzado por una fuerza periódica con frecuencia ω (la forzante) muestra un comportamiento inicial transitorio donde las dos frecuencias compiten, pudiendo haber batido en esta etapa. A tiempos largos el comportamiento es oscilatorio simple con la frecuencia ω de la forzante como se desprende de (5.5.9).

El valor de *A* en el punto $\omega = \omega_r$ es

$$A = \frac{\omega_0 Qm}{c} \frac{\omega_0}{\sqrt{\omega_0^2 - \frac{c^2}{4m^2}}}$$
(5.5.8)

que diverge en el caso de un oscilador forzado y no amortiguado, es decir, cuando $c \rightarrow 0.$

La solución general de la ecuación del oscilador forzado y amortiguado se expresa como la solución general de la ecuación homogénea más la solución particular recién obtenida. Suponiendo que no hay sobreamortiguación esta solución es

$$x(t) = D \cos\left(t \sqrt{\omega_0^2 - \left(\frac{c}{2m}\right)^2} + \beta\right) \exp\left[-\frac{c}{2m}t\right] + \frac{\omega_0^2 Q}{\sqrt{(\omega_0^2 - \omega^2)^2 + \left(\frac{\omega c}{m}\right)^2}} \sin(\omega t - \delta)$$
(5.5.9)

La primera parte de esta expresión, que proviene de la ecuación lineal homogénea (oscilador no forzado), decrece con el tiempo en forma exponencial. A tiempos largos, entonces, la solución que domina sin competencia es la parte proporcional a $sin(\omega t - \delta)$. A largo plazo la forzante impone totalmente la frecuencia de oscilación.

Universidad de Chile

5.6. Problemas

- 5.1 Una partícula *P* de masa *m* está sometida a la fuerza de dos resortes. Estos dos resortes de constantes elásticas $k_A = 2k$ y $k_B = k$ tienen largos naturales 3d y 2d respectivamente y tienen puntos fijos, como lo muestra la figura, en un punto *A* el primero y el segundo en un punto *B* verticalmente sobre él a distancia 6d. Determinar las frecuencias a pequeñas oscilaciones verticales y a pequeñas oscilaciones horizontales.
- 5.2 El sistema de poleas sin roce que describe la figura tiene una masa colgante m_1 a la izquierda y la masa total al centro es m_2 . Dé a este sistema una geometría sencilla para la situación de equilibrio. Encuentre la frecuencia de las pequeñas oscilaciones en torno a ese punto.
- 5.3 Se tiene un péndulo plano que consta de un hilo de largo *D* que tiene una partícula puntual de masa *m* en su extremo inferior. Pero no es un péndulo común porque su origen superior está en el punto de contacto entre dos circunferencias de radio *R*, como lo muestra la figura. Cuando el péndulo oscila se enrolla un poco en forma alternada en las dos circunferencias, de modo que su largo instantáneo no es *D* sino $(D - R\phi)$ y su centro instantáneo de giro es el punto *P* de tangencia (ver figura).

a) Obtenga las ecuaciones escalares de movimiento, una de ellas sirve para determinar la tensión del hilo y la otra es la interesante. b) Escriba la energía cinética, $K(\phi, \dot{\phi})$ y la energía gravitacional $U(\phi)$. c) Demuestre que la exigencia de conservación de la energía mecánica, dE/dt = 0, conduce a la ecuación interesante de movimiento. d) Escriba la ecuación asociada a pequeñas oscilaciones.

5.6. PROBLEMAS

5.4 Considere una partícula de masa *m* que está apoyada sobre un resorte de constante *k* y largo natural l_0 , bajo la acción de la gravedad. El punto *B* de donde se sostiene el resorte se encuentra en t = 0 al nivel de la mesa.

a) Encuentre la altura de equilibrio de la masa. **b)** En t = 0, cuando la masa está quieta y en la posición de equilibrio, el punto *B* comienza a oscilar verticalmente. El movimiento de *B* puede ser descrito como $\vec{r}_B(t) = A_0 \sin(\omega t) \hat{j}$. Encuentre la ecuación que describe el movimiento de la masa. **c)** Resuelva la ecuación de movimiento para las condiciones iniciales dadas. **d)** Manteniendo la amplitud A_0 fija, considere que la frecuencia ω es menor que la frecuencia de resonancia.

¿Cuál es la frecuencia máxima para que la masa nunca choque con la mesa?

5.5 Considere el movimiento de una partícula de masa *m* que se mueve bajo la acción de la fuerza

$$\vec{F} = b \left(x \left(y^2 + z^2 \right) \hat{\imath} + y \left(x^2 + z^2 \right) \hat{j} + z \left(x^2 + y^2 \right) \hat{k} \right)$$

a) Demostrar que esta fuerza es conservativa. b) Encontrar la energía potencial U(x, y, z) asociada a esta fuerza, tal que sea nula en el origen. c) Si la partícula es soltada desde el origen con rapidez v_0 , determine la rapidez en un punto cualquiera (x_1, y_1, z_1) .

Capítulo 6

Fuerzas centrales y planetas

6.1. Barrera centrífuga y potencial efectivo U^*

6.1.1. La noción

Barrera centrífuga es una noción que puede ser comprendida a partir de la conservación del momento angular. Aparece naturalmente cuando la fuerza total es central con centro en \mathcal{O} . En forma poco precisa se puede decir que el momento angular $\ell_{\mathcal{O}}$ es proporcional a la distancia *R* de la partícula al centro \mathcal{O} y también es proporcional a la velocidad angular, $\ell_{\mathcal{O}} \sim R \dot{\phi}$. Puesto que $\ell_{\mathcal{O}}$ es constante, si *R* está decreciendo, $\dot{\phi}$ tiene que ir creciendo en la misma proporción. La aceleración centrípeta, por otro lado es $a_n \sim v^2/R \sim R \dot{\phi}^2$, es decir, a_n crece también. En otras palabras, para disminuir *R* se necesita cada vez una mayor fuerza hacia el centro (centrípeta), lo que se siente como si se estuviera contrarrestando una barrera que expulsa del centro (centrífuga).

Cuando la fuerza total es central, proveniente de una energía potencial U(r),

$$\vec{F} = -\nabla U = -\frac{dU}{dr}\hat{r}$$
(6.1.1)

el momento angular se conserva y el movimiento es plano. En tal caso se puede describir todo el movimiento con las coordenadas polares (r, ϕ)

$$\vec{r} = r\hat{r}$$

$$\vec{v} = \dot{r}\hat{r} + r\dot{\phi}\,\hat{\phi} \tag{6.1.2}$$

$$\vec{a} = (\ddot{r} - r\dot{\phi}^2) \hat{r} + (2\dot{r}\dot{\phi} + r\ddot{\phi}) \hat{\phi}$$

$$= \vec{a}_r + \vec{a}_\phi \tag{6.1.3}$$

El momento angular con respecto al centro de fuerzas, que sabemos que se conserva en el caso de fuerza central, es

$$\vec{\ell} = m\vec{r} \times \vec{v} = mr^2 \dot{\phi} \hat{k}$$
(6.1.4)

Al coeficiente que multiplica a \hat{k} lo denominaremos ℓ ,

$$\ell = mr^2 \dot{\phi} \tag{6.1.5}$$

Figura 6.1: A la izquierda el potencial del oscilador armónico $U = k(r - D_0)^2/2$ que se anula en $r = D_0$ y el potencial efectivo U^{*} asociado. A la derecha se compara la función U con U^{*} en el caso del potencial gravitacional. El potencial gravitacional U es infinitamente negativo en el origen y crece asintóticamente a cero. El potencial efectivo U^{*} diverge a +∞ en el origen, para cierto r se anula, pasa a valores negativos, llega a un mínimo y luego crece acercándose cada vez más a U.

Siendo central la fuerza total, la aceleración \vec{a}_{ϕ} tiene que ser cero, lo que equivale a

$$0 = 2\dot{r}\dot{\phi} + r\ddot{\phi} = \frac{1}{r}\frac{d}{dt}\left(mr^{2}\dot{\phi}\right)$$

que es cierto porque el momento angular es constante. Usando la definición de ℓ dada más arriba se puede hacer el reemplazo

$$\dot{\phi} = \frac{\ell}{mr^2} \tag{6.1.6}$$

Esta es la velocidad angular expresada como función del radio.

6.1. BARRERA CENTRÍFUGA Y POTENCIAL EFECTIVO U* Facultad de Ciencias Físicas y Matemáticas

La energía mecánica total del sistema es E = K + U donde $K = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2)$ que ahora se puede escribir, gracias a (6.1.6), en la forma

$$E_{MT} = \frac{m}{2}\dot{r}^2 + \frac{\ell^2}{2mr^2} + U(r)$$
(6.1.7)

El primer término es la contribución a la energía cinética del movimiento radial y el segundo es la contribución a la energía cinética debida a la velocidad angular ϕ .

La ecuación de movimiento en el caso actual puede escribirse en la forma $ma_r = -dU/dr$:

$$m\left(\ddot{r} - \frac{\ell^2}{m^2 r^3}\right) = -\frac{dU}{dr} \tag{6.1.8}$$

que se reescribe como

$$m\ddot{r} = -\frac{d}{dr}\left(U + \frac{\ell^2}{2mr^2}\right) = -\frac{d}{dr}U^*(r) \tag{6.1.9}$$

y puede ser deducida directamente de (6.1.7) sencillamente calculando $dE_{MT}/dt = 0$. Se obtiene una ecuación (6.1.9) para r(t). Ya se estableció la dependencia de ϕ en r en (6.1.6).

Lo notable es que esta ecuación de movimiento es equivalente a la ecuación de movimiento de una partícula en el eje *X* con energía potencial $U^* = \frac{A}{x^2} + U(x)$, siempre que en ambos casos se tome la misma función *U* y $A = \ell^2/(2m)$.

Se ha demostrado las siguientes propiedades del movimiento de un cuerpo de masa m bajo el efecto de una fuerza total central de la forma (4.6.1):

• La fuerza es conservativa y es $-\hat{r}dU(r)/dr$, donde U(r) es función energía potencial.

• Hay momento angular conservado implicando que el movimiento es plano. Queda ligada la velocidad angular con el radio r por medio de (6.1.6).

• La ecuación de movimiento, que es en un plano, se reduce a la ecuación tan solo para r(t), es decir, se convierte en el problema unidimensional (6.1.9).

• Esta ecuación es matemáticamente equivalente a la ecuación de un movimiento unidimensional, solo que en lugar de tener a U(r) como energía potencial, juega este papel la función potencial efectivo U^* ,

$$U^{*}(r) = U(r) + \frac{\ell^{2}}{2mr^{2}}$$
(6.1.10)

barrera centrífuga

Al último término en U^* se le conoce como barrera centrífuga.

Para el importante caso gravitacional definido con (4.6.7) el potencial efectivo tiene un mínimo. En efecto, si $U^* = -\frac{a}{r} + \frac{b}{r^2}$ entonces U^* es mínimo en $r_0 = 2b/a$.

6.1.2. Ejemplo sencillo

Una partícula libre es un caso trivial de "fuerza central": $\vec{F} = 0$ y puede tomarse U = 0. Sin embargo U^* no es nulo. Nada malo hay en ilustrar este caso con el movimiento descrito en la figura en §1.3, $\vec{r} = b \hat{j} + \hat{\iota} t v_0$.

Este movimiento también puede ser descrito utilizando coordenadas $(r(t), \phi(t))$: $x = v_0 t = r \sin \phi$ y $y = b = r \cos \phi$. Mirando la figura en §1.3 debiera resultar obvio que si la partícula inicia su movimiento desde una posición bien a la izquierda, la variable r(t) irá disminuyendo con el tiempo, alcanzará un mínimo r = b y luego r(t) comenzará a crecer, de modo que si el movimiento es visto solamente desde el punto de la variable r pareciera que ha habido un bote a distancia b en una *barrera centrífuga* para comenzar a alejarse.

De la definición de las coordenadas usadas se deduce que

$$\dot{r} = v_0 \sin \phi$$
 $\dot{\phi} = \frac{v_0 \cos \phi}{r}$

de donde es inmediato calcular que

$$m\ddot{r} = mv_0\,\dot{\phi}\cos\phi = \frac{mv_0^2\cos^2\phi}{r} = \frac{mv_0^2b^2}{r^3} = \frac{\ell^2}{mr^3} = -\frac{d}{dr}\frac{\ell^2}{2mr^2}$$

Es decir, el simple movimiento con velocidad uniforme $v_0 \hat{i}$ de una partícula libre puede ser visto como un movimiento bajo los efectos de una barrera centrífuga.

6.1. BARRERA CENTRÍFUGA Y POTENCIAL EFECTIVO U* Facultad de Ciencias Físicas y Matemáticas

6.1.3. Órbitas circunferenciales

La energía cinética expresada con las coordenadas polares (r, ϕ) es

$$\frac{m}{2}v^{2} = \frac{m}{2}(\dot{r}^{2} + r^{2}\dot{\phi}^{2})$$
$$= \frac{m}{2}\dot{r}^{2} + \frac{\ell^{2}}{2mr^{2}}$$
(6.1.11)

En el segundo paso se reemplazó la velocidad angular ϕ por la expresión (6.1.6) ya encontrada en términos de ℓ .

Una órbita es circunferencial cuando su velocidad radial es constantemente nula, es decir, cuando tanto $\dot{r} = 0$ como $\ddot{r} = 0$. Esto último implica que debe encontrarse un radio $r = r_c$ tal que $dU^*/dr = 0$

$$\frac{dU^*}{dr} = 0 \tag{6.1.12}$$

Si se resuelve (6.1.12) se deduce un valor particular $r = r_c$ el que depende paramétricamente del valor ℓ . Éste es el radio de la órbita circunferencial.

La energía cinética en el caso de la órbita circunferencial se reduce a

$$K_{\text{orbitacircunf}} = \frac{\ell^2}{2mr^2} \tag{6.1.13}$$

Puede verse que esta última expresión coincide con la expresión del término que se agrega a U para formar U^* , es decir, la barrera centrífuga.

Conociendo el valor de la energía cinética y de la energía potencial, la energía mecánica total es K + U y está dada por

$$E = \frac{\ell^2}{2mr_c^2} + U(r_c)$$
(6.1.14)

Ella está totalmente determinada por el radio r_c.

<u>EJEMPLO:</u> Si se toma el caso gravitacional U = -GMm/r la solución de (6.1.12) arroja

$$r_c = \frac{\ell^2}{GMm^2} \tag{6.1.15}$$

Aquí se puede apreciar que las órbitas planetarias circunferenciales tienen un radio que está dado por su momento angular ℓ . Pero tal vez una forma

```
Universidad de Chile
```

más satisfactoria de decir lo mismo se logra recordando que éste es un movimiento circunferencial con velocidad angular uniforme $\omega = \dot{\phi} = \ell/(mr_c^2)$ de donde

$$r_c = \left(\frac{GM}{\omega^2}\right)^{1/3} \tag{6.1.16}$$

que no depende de la masa m del planeta sino tan solo de su velocidad angular. Con este valor la energía total es

$$E = -\frac{G^2 M^2 m^3}{2\ell^2} \tag{6.1.17}$$

Los satélites geocéntricos son satélites alrededor de la Tierra, en el plano ecuatorial, que tienen una velocidad angular igual a la velocidad angular de la Tierra. Para un observador en la Tierra el satélite parece estar detenido. Estas son las órbitas que usan los satélites de comunicaciones.

Las pequeñas oscilaciones de r(t) en torno a una órbita circunferencial con un momento angular ℓ fijo se obtiene de (5.2.4) usando como potencial potencial efectivo del caso gravitacional,

$$U^* = -\frac{GMm}{r} + \frac{\ell^2}{2mr^2}$$

Su segunda derivada con respecto a r es $U^{*''} = -2GMm/r^3 + 3\ell^2/mr^4$. Si se reemplaza $\ell = mr^2\omega$ (donde $\omega = \dot{\phi}$ es la velocidad angular del satélite), el último término ya no depende de r. Si seguidamente se reemplaza r por su valor dado en (6.1.16), se obtiene que la frecuencia de estas pequeñas oscilaciones de r en torno al valor r_c es

$$\omega_{\mathsf{peq. osc.}} = \omega$$

Esto significa que el tiempo que tarda el valor de *r* en tomar dos veces consecutivas su valor mínimo coincide con el tiempo que tarda el satélite en dar una vuelta, lo que implica que la órbita $r(\phi)$ es cerrada.

Calcule a qué distancia del centro de la Tierra debe estar un satélite para que sea geoestacionario. Compruebe que están a decenas de miles de kilómetros. (Los satélites más usuales están a pocos cientos de kilómetros de altura).

Si la fuerza total sobre un cuerpo es $\vec{F} = k r^a \hat{r} + \alpha \vec{v} \times \vec{r}$, ¿Cómo varía la energía mecánica total con el tiempo? (k, a y α son constantes conocidas).

6.1. BARRERA CENTRÍFUGA Y POTENCIAL EFECTIVO U* Facultad de Ciencias Físicas y Matemáticas

6.1.4. Ecuación de Binet

Si se considera la ecuación genérica con fuerza central

$$m\ddot{\vec{r}} = F(r)\,\hat{r}$$

Al escribirla en coordenadas polares y reemplazando $\dot{\phi} = rac{\ell}{mr^2}$ se obtiene

$$m\ddot{r} = \frac{\ell^2}{mr^3} + F(r)$$
(6.1.18)

El método de Binet consiste en reemplazar esta ecuación para r(t) en una ecuación en que se considera tan solo la dependencia de r en el ángulo, $r(\phi)$. La razón para hacer esto es que es más fácil resolver la nueva ecuación que se obtiene que la ecuación original. Para obtener la dependencia en ϕ se hace uso de la regla de la cadena $(dg/dt = d\phi/dt dg/d\phi = \dot{\phi} g')$. En lo que sigue la prima indica derivada con respecto a ϕ ,

$$\frac{d}{d\phi} = (\)'$$

con lo cual

$$\dot{r} = \dot{\phi} r' \qquad = \frac{\ell}{m} \frac{r'}{r^2} \\ \ddot{r} = \frac{\ell}{m} \frac{\ell}{mr^2} \left(\frac{r'}{r^2}\right)' = \frac{\ell^2}{m^2 r^2} \left(\frac{r''}{r^2} - \frac{2r'^2}{r^3}\right)$$
(6.1.19)

A continuación se define la función

$$w(\phi) \equiv \frac{1}{r(\phi)}$$

de modo que

$$r' = -\frac{w'}{w^2} \qquad \qquad r'' = -\frac{w''}{w^2} + \frac{2{w'}^2}{w^3}$$

Si se hace estos reemplazos en (6.1.18) se obtiene

$$w'' = -w - \frac{m}{\ell^2} \frac{F(1/w)}{w^2}$$
(6.1.20)

que es la ecuación de Binet.

Universidad de Chile

Escuela de Ingeniería y Ciencias

6.2. Planetas y todo eso

6.2.1. La ecuación de la órbita y su integral

Ya se sabe que la ecuación de movimiento reducida a la ecuación sólo para r(t) es

$$m\ddot{r} = -\frac{GMm}{r^2} + \frac{\ell^2}{mr^3}$$
(6.2.1)

Al reemplazar todo esto en (6.2.1) resulta la ecuación la ecuación de Binet para el caso gravitacional

$$w'' + w = \frac{GMm^2}{\ell^2}$$
(6.2.2)

que es un tipo de ecuación que ya se conoce, como por ejemplo: $m\ddot{x} = -kx + mg$. Su solución general es,

$$w(\phi) = A\cos\left(\phi + \delta\right) + \frac{GMm^2}{\ell^2}$$
(6.2.3)

donde *A* y δ son las dos constantes de integración. Siempre se puede escoger el eje a partir del cual se mide ϕ de tal modo que $\delta = 0$ que es lo que se hace a partir de ahora. Tal elección corresponde a cónicas orientadas en forma simétrica con respecto al cambio $y \rightarrow -y$.

Puesto que el inverso de w es r, (6.2.3) implica que

$$r(\phi) = \frac{\frac{\ell^2}{GMm^2}}{1 + \frac{A\ell^2}{GMm^2}\cos\phi}$$
(6.2.4)

Antes de continuar se hace un repaso de la forma como se puede escribir una cónica.

6.2.2. Cónicas

A continuación se va a demostrar que $r(\phi)$ dado por

$$r(\phi) = \frac{R}{1 + e\cos\phi} \tag{6.2.5}$$

define diversas cónicas según el valor de la *excentricidad e*. El parámetro *R* define la escala de longitud de la cónica.

6.2. PLANETAS Y TODO ESO

Si (6.2.5) se escribe como $r + er \cos \phi = R$ o equivalentemente como $x^2 + y^2 = (R - ex)^2$ donde se ha usado

 $x = r\cos\phi \qquad \qquad y = r\sin\phi \qquad (6.2.6)$

se obtiene

$$(1 - e^2)x^2 + 2eRx + y^2 = R^2$$
(6.2.7)

que es una de las formas conocidas que describe cónicas. En efecto, todo polinomio cuadrático Poli(x,y) = 0 representa una cónica en el plano *XY*.

Si en (6.2.7) se hace el desplazamiento (válido tan solo si $e^2 \neq 1$)

$$x = \bar{x} - \frac{eR}{1 - e^2} \tag{6.2.8}$$

la ecuación puede ser reescrita como

$$\frac{\bar{x}^2}{\frac{R^2}{(1-e^2)^2}} + \frac{y^2}{\frac{R^2}{1-e^2}} = 1$$
(6.2.9)

Esta forma describe elipses e hipérbolas centradas en el origen. En efecto, si $e^2 < 1$ esta es fácilmente reconocible como la ecuación de una elipse. En particular, si e = 0 se obtiene una circunferencia. Si $e^2 > 1$ lo es de una hipérbola. La ecuación (6.2.7) en cambio deja a uno de los focos de la cónica en el origen.

6.2.2.1. Elipses: $e^2 < 1$

Una elipse es una curva que se caracteriza porque la suma $L_1 + L_2$ de las distancia de cualquier punto *P* de la elipse a dos puntos especiales llamados *focos*, vale siempre lo mismo. Estos dos focos están en el interior

```
Universidad de Chile
```

de la elipse sobre su eje mayor. El caso particular en que los dos focos se funden en un solo punto produce una circunferencia.

En la forma original descrita en (6.2.7) esta es una elipse con uno de sus focos en el origen y tiene sus radios mínimo y máximo sobre el eje X. Se tomará el caso e > 0.

Para $\phi = 0$ se obtiene r_{\min} y para $\phi = \pi$ se tiene r_{\max}

a

$$r_{\min} = \frac{R}{1+e}$$
 $r_{\max} = \frac{R}{1-e}$ (6.2.10)

Los semiejes mayor y menor son

$$=\frac{R}{1-e^2}$$
 $b=\frac{R}{\sqrt{1-e^2}}$ (6.2.11)

6.2.2.2. Hipérbolas: $e^2 > 1$

Una hipérbola es una cónica disconexa, constando de dos ramas. Al igual que en el caso de una elipse, hay dos puntos especiales llamados focos. Esta vez la diferencia de las distancias: $|L_1 - L_2|$ entre cualquier punto P de la hipérbola y los dos focos es una constante. Las hipérbolas son curvas infinitas que tienden, a grandes distancia, a coincidir con dos rectas llamadas las *asíntotas*. La distancia entre ambos focos es $2eR/(e^2 - 1)$. La menor distancia entre las dos ramas de una hipérbola es $2R/(e^2 - 1)$.

6.2.2.3. Parábola: $e^2 = 1$

Una parábola tiene un solo punto llamado foco, el cual está sobre el único eje de simetría de la curva. La distancia entre el punto de máxima curvatura y el foco es *R*.

Si en un punto *P* de la parábola se traza la recta hasta el foco y la paralela al eje de simetría, la bisectriz es perpendicular a la tangente a la parábola. Esta propiedad es la que hace tan útiles los espejos parabólicos para hacer desde focos de linterna hasta telescopios y antenas.

El caso $e^2 = 1$ debe ser analizado antes de dividir por $e^2 - 1$. Por ejemplo de (6.2.7) se tiene con $e = \pm 1$

$$y^2 = R^2 \pm 2Rx \tag{6.2.12}$$

que son ecuaciones para dos parábolas.

6.2. PLANETAS Y TODO ESO

6.2.3. El caso planetario

Ahora que se sabe la forma de describir las cónicas se puede identificar

$$R = \frac{\ell^2}{GMm^2}, \qquad e = \frac{A\ell^2}{GMm^2}$$
 (6.2.13)

A continuación se verá cómo relacionar A con la energía total E y el momento angular ℓ .

La energía está dada por

$$E = \frac{m}{2}v^2 + U_G(r) \tag{6.2.14}$$

pero de (6.1.2) y luego de (6.1.19)

$$v^{2} = \dot{r}^{2} + r^{2} \dot{\phi}^{2} + \frac{\ell^{2}}{m^{2} r^{4}} \left(r^{2} + r'^{2}\right)$$
(6.2.15)

entonces

$$E = \frac{\ell^2}{2mr^4} \left(r^2 + {r'}^2\right) - \frac{GMm}{r} \\ = \frac{\ell^2}{2m} \left(w^2 + {w'}^2\right) - GMmw$$
(6.2.16)

Al reemplazar la forma explícita de la función w se obtiene

$$E = \frac{\ell^2 A^2}{2m} - \frac{m}{2} \left(\frac{GMm}{\ell}\right)^2 \tag{6.2.17}$$

lo que permite establecer que A depende de E y ℓ en la forma

$$A = \pm \frac{GMm^2}{\ell^2} \sqrt{1 + \frac{2E\,\ell^2}{(GMm)^2m}}$$
(6.2.18)

De todo lo anterior se reconoce que

$$R = \frac{\ell^2}{GMm^2}, \qquad e^2 = 1 + \frac{2E\,\ell^2}{(GM)^2\,m^3}. \tag{6.2.19}$$

Si se reemplaza el valor (6.1.17) de la energía de una órbita circunferencial se comprueba que e = 0.

```
Universidad de Chile
```

	excentri-	radio medio
	cidad	de la órbita
	е	$[10^8 \times \text{Km}]$
Mercurio	0.206	0.58
Venus	0.007	1.08
Tierra	0.017	1.50
Marte	0.093	2.28
Júpiter	0.048	7.78
Saturno	0.056	14.27
Urano	0.047	28.89
Neptuno	0.008	44.98
Plutón	0.249	59.00
Sedna	$0.857^{(?)}$	1367.00
Cometa Halley	0.967	

Cuadro 6.1: Los planetas y otros objetos, las excentricidades de sus órbitas y el radio medio de las respectivas órbitas. Los datos de Sedna no han sido revisados.

Para elipses,	$e^{2} < 1$	y entonces $E < 0$.
Para parábolas,	$e^2 = 1$	y entonces $E = 0$.
Para hipérbola,	$e^2 > 1$	y entonces $E > 0$.

<u>EJEMPLO</u>: Desde una distancia r_0 del centro de fuerza se lanza un satélite con velocidad \vec{v}_0 , perpendicular al vector posición inicial \vec{r}_0 .

La energía es $E = \frac{m}{2}v_0^2 - \frac{GMm}{r_0}$ y $\ell^2 = m^2 r_0^2 v_0^2$.

El caso límite es el de la parábola, es decir, el caso con E = 0,

$$v_0^2 = v_P^2 \equiv 2GM/r_0.$$

Si $v_0 < v_P$ la órbita es una elipse. Para el caso particular $v_0 = \sqrt{GM/r_0}$ se obtiene una circunferencia. Para $v_0 > v_P$ la órbita que resulta es una hipérbola.

6.2.4. La tercera ley de Kepler

De la segunda ley de Kepler, (2.5.4), se desprende que el período *T* del movimiento planetario se relaciona al área de la elipse, $S = \pi ab$,

$$T = \frac{2mS}{\ell} = \frac{2m\pi ab}{\ell} = \frac{2m\pi}{\ell} \frac{R^2}{(1-e^2)^{3/2}}$$

pero se sabe que $\ell^2 = GMm^2R$. Calculando T^2 se puede reemplazar ℓ^2 por la relación recién escrita, resultando

$$T^2 = \frac{4\pi^2 a^3}{GM}$$

que es la tercera ley de Kepler expresada con el semieje mayor, a.

6.3. Problemas

6.1 Determine la fuerza \vec{F} que implica la función de energía potencial

$$U = \frac{k}{2} \left(r - B \right) r$$

donde *B* es una constante positiva. ¿En qué situación realista se puede tener una fuerza como esta?

6.2 Una partícula se mueve sin roce por la superficie interior de un cono de eje vertical, vértice abajo y ángulo α entre una generatriz y la vertical. Demuestre que la energía potencial efectiva U^* es

$$\frac{\ell^2 \sin^2 \alpha}{2m\rho^2} + mg\rho \cot \alpha$$

donde ρ es la coordenada radial de coordenadas cilíndricas. Encuentre la frecuencia de las pequeñas oscilaciones cuando ρ oscila levemente en torno a un valor ρ_0 .

6.3 Se tiene en órbita geoestacionaria una gran esfera hueca. Al centro de esa esfera flota una pequeña masa. Si se le da un pequeño impulso, ¿cuál es su frecuencia de oscilación en torno al centro de la gran esfera?

```
Universidad de Chile
```

- 6.4 Un satélite artificial tiene una distancia máxima y mínima a la superficie terrestre de *R* y 3*R*, siendo *R* el radio de la Tierra. Determine el período de rotación en función de la masa de la Tierra y de su radio. Suponga que en el momento en que el satélite está en su punto más bajo se activa su sistema de propulsión que lo deja en órbita circunferencial. ¿Cuál es el período de esta nueva órbita?
- 6.5 Una partícula P está sometida a la fuerza central dada por

$$\vec{F}(r) = -12B\left(\frac{a^6}{r^7} - \frac{a^{12}}{r^{13}}\right)\hat{r}$$

donde *B* y *a* son constantes positivas conocidas. Si ésta es la única fuerza sobre *P* determine, a) cuál es la rapidez mínima que debe tener *P* en r = a para que la partícula pueda escapar sin retorno; b) cuál es la distancia máxima (o mínima) entre *P* y el centro de fuerzas si *P* se está moviendo radialmente de tal modo que pasa por r = a con una rapidez que es la mitad de la encontrada en la pregunta anterior.

- 6.6 Un satélite está describiendo una órbita circular de radio *R* alrededor de la Tierra. En cierto momento los cohetes del satélite se encienden brevemente dándole una aceleración puramente tangencial. Si el período de la nueva órbita es $\frac{27}{8}$ del período que tenía antes, determine la rapidez de la nave cuando pasa por el punto en que se encuentra más alejada de la Tierra (apogeo).
- 6.7 Un satélite es colocado en órbita alrededor de la Tierra desde una altura de 600 Km sobre la superficie con una velocidad inicial de 30 mil kilómetros por hora, paralela a la superficie terrestre. Suponiendo que el radio de la Tierra es de 6378 kilómetros y su masa es de $5,976 \times 10^{24}$ Kg, determine la excentricidad de la órbita y la velocidad del satélite en su apogeo.
- 6.8 Desde muy lejos y con rapidez v_0 se dispara una partícula de masa *m* contra un blanco que está definido como un campo de fuerza central repulsiva de magnitud Am/r^2 . La recta en la que la partícula inicia su movimiento pasa a distancia *b* del centro de fuerza. Calcule la distancia r^* mínima que logra tener la partícula con el centro de fuerza.
- 6.9 Dos satélites de la Tierra, S_1 y S_2 , cada uno de masa *m*, están describiendo órbitas cerradas en un mismo plano y en el mismo sentido. S_1

6.3. PROBLEMAS
está en una órbita circunferencial de radio R y S_2 está en una órbita elíptica caracterizada por $r_{min} = R$ y $r_{max} = 8R$. En un cierto instante ambos satélites se acoplan (la duración del proceso de acoplamiento se supone nulo) formando un satélite compuesto S_{12} . Durante el acoplamiento se conserva el momentum total pero no la energía. Determine a) el cuociente entre la suma de las energías cinéticas $K_1 + K_2$ y K_{12} . b) Determine las características de la órbita de S_{12} .

- 6.10 Sea R_0 el radio de la Tierra. Una nave espacial gira en torno a la Tierra en órbita elíptica de radio mínimo $8R_0$ y radio máximo $16R_0$. Para regresar a la Tierra procede como sigue: en t = 0 se encuentra en su apogeo ($r_A = 16R_0$). Al llegar a su perigeo ($r_B = 8R_0$) enciende sus cohetes por un instante para frenar tangencialmente quedando en una órbita elíptica con radios máximo y mínimo: $8R_0$ y $4R_0$. Tan pronto alcanza por primera vez $r = 4R_0$ nuevamente frena de igual manera quedando en una tercera órbita elíptica caracterizada por $4R_0$ y $2R_0$. Finalmente, la primera vez que se encuentra en $r = 2R_0$ frena para estar el una órbita [$2R_0$, R_0] con lo que logra terminar su misión. Obtenga las variaciones de energía cinética cada vez que frena y obtenga el tiempo que tarda en llegar a la Tierra.
- 6.11 Un satélite está en órbita circunferencial de radio r_0 sometida a una fuerza central que implica la función de energía potencial U(r) = -k/r. En un instante recibe un impacto que produce un cambio en la dirección de la velocidad, sin cambiar su magnitud. El cambio de dirección es en un ángulo $\pi/3$. Determine las distancias mínima y máxima que el satélite pasa del centro de fuerzas en su nueva órbita.

Capítulo 7

Movimiento relativo

7.1. Cinemática relativa

7.1.1. Fuerzas y seudofuerzas

Las fuerzas que se han estudiado hasta ahora son: las de contacto (que abarcan normal, roce estático, roce dinámico, roce viscoso, tensión), elásticas y gravitacional. Y se podría agregar fuerzas eléctricas, magnéticas, nucleares y unas pocas más.

Se conocen relativamente pocas fuerzas en la naturaleza y de ellas sólo tenemos acceso directo a las fuerzas: gravitacional y electromagnéticas (se deja afuera las fuerzas nucleares y subnucleares que sólo se pueden observar en laboratorios muy especializados).

Casi todas las fuerzas mencionadas en el párrafo anterior son consecuencias de las interacciones electromagnéticas entre las moléculas que componen la materia. Tan sólo la gravitación es una fuerza aparte. Todas las fuerzas de contacto se deben a las fuerzas intermoleculares que ocurren en el contacto. La tensión en una cuerda es una fuerza debida a la cohesión electromagnética entre las moléculas que constituyen la cuerda. La fuerza elástica que ejerce, por ejemplo, un resorte, se debe a estas fuerzas intermoleculares que tratan de mantener el orden en que están las moléculas en el sólido.

No hay más fuerzas en los sistema de referencias que se denominan iner-

ciales. Sin embargo, la experiencia en un vehículo que aumenta o disminuye fuertemente su velocidad es de una fuerza que no está entre las anteriores. El pasajero también siente una fuerza cuando el vehículo toma una curva a cierta velocidad. Estas fuerzas son propias de los *sistemas de referencias no inerciales.* Ellas no se deben a fuerzas moleculares o gravitacionales, sino a que nuestro sistema de referencia no tiene una velocidad uniforme.

En un sistema de referencia no inercial ya no vale la ley

$$m\vec{a} = \vec{F}_{inercial}^{tot}$$

La aceleración definida con respecto a un sistema de referencia no inercial obedece una ley más complicada y este capítulo describe esta nueva ley y sus usos.

7.1.2. Sistemas de referencia y su relación

Siempre un sistema de referencia será descrito por su origen de coordenadas y por *ejes cartesianos* asociados a él.

No importa qué sistema de coordenadas (cartesianas, cilíndricas, esférica...) se use, un sistema de referencia está definido por su origen \mathcal{O} y sus ejes cartesianos X, Y, Z, es decir, por definición los ejes cartesianos X, Y, Zson fijos en el sistema de referencia en el cual se definen. Lo mismo se puede decir de los vectores unitarios asociados $(\hat{i}, \hat{j}, \hat{k})$ a los ejes.

Si los ejes X', Y', Z' de un sistema de referencia S' están rotando con respecto a los ejes X, Y, Z de un sistema S, entonces, por ejemplo, el vector \hat{k}' asociado al eje Z' de S' cambia en el tiempo con respecto al sistema S pero, como ya se dijo, no cambia con respecto a S'. Formalmente esto se expresa

$$\left(\frac{d\hat{k}'}{dt}\right)_{S} \neq 0$$

pero, por definición

$$\left(\frac{d\hat{k}'}{dt}\right)_{S'} = 0$$

Esto ilustra que las derivadas temporales calculadas en sistemas de referencia distintos pueden ser diferentes.

7.1. CINEMÁTICA RELATIVA

Figura 7.1: Dos sistemas de referencia cuyos orígenes de coordenadas se conectan por el vector $\vec{R}(t)$.

Para definir la relación entre un sistema de referencia S y otro S' se utilizan dos vectores:

- el vector $\vec{R}(t)$ que va desde el origen de *S* al origen de *S'* y

- el vector $\vec{\Omega}(t)$ que describe cómo giran los ejes de S' con respecto a los ejes de S.

Una buena forma de comprender el significado de $\vec{\Omega}$ se logra considerando una réplica de los ejes $\{X', Y', Z'\}$ que se obtiene por traslación paralela de los ejes de *S'* hasta \mathcal{O} , El vector $\vec{\Omega}$ es la velocidad angular de estos ejes (representados con líneas a trazos en la figura adjunta) con respecto a los ejes de *S*.

<u>EJEMPLO</u>: Se puede tener ejes fijos a una mesa (sistema *S*). El sistema *S'* puede ser un libro que es movido en círculos sobre la mesa, manteniendo sus aristas siempre paralelas a las de la mesa. En tal caso $\vec{\Omega} = 0$ porque los ejes de *S'* no rotan con respecto a los ejes de *S*. El movimiento circular del libro es descrito por $\vec{R}(t)$.

Una notación compacta es

$$(S,S') \sim [\vec{R}(t), \vec{\Omega}(t)] \tag{7.1.1}$$

Los vectores \vec{R} y $\vec{\Omega}$ están definidos en *S*. Por otro lado, desde *S'* los ejes de

```
Universidad de Chile
```

S rotan en $-\vec{\Omega}(t)$ y la posición de \mathscr{O} con respecto a \mathscr{O}' es $-\vec{R}(t)$. Entonces $(S',S) \sim [-\vec{R}(t), -\vec{\Omega}(t)]$

7.1.3. Derivadas temporales en distintos sistemas de referencia

En esta sección se define movimiento entre sistemas de referencia que tiene movimiento relativo muy general.

Se hace notar que la derivada con respecto al tiempo depende del sistema de referencia. Un caso obvio en que se aprecia esta afirmación es el caso de dos sistemas de referencia que difieren tan solo en que *S'* se mueve con velocidad $\vec{V} = v_0 \hat{i}$ con respecto a *S*. Un cuerpo que está en reposo en *S'* se mueve con velocidad \vec{V} con respecto a *S*, es decir, mientras $(dx'/dt)_{S'} = 0$, se tiene que $(dx/dt)_S = v_0$.

La aplicación más sencilla de la ley (1.3.6) es la de variación de los vectores cartesianos $(\hat{i}', \hat{j}', \hat{k}')$ propios de *S*' con respecto al sistema de referencia *S*. El resultado es

$$\left(\frac{d\,\hat{\imath}'}{dt}\right)_{S} = \vec{\Omega}(t) \times \hat{\imath}' \tag{7.1.2}$$

y relaciones similares para los otros vectores base en S'.

Una vez que se tiene esta relación resulta fácil obtener la derivada de una función vectorial cualquiera

$$\vec{B}(t) = b_1(t) \hat{i}' + b_2(t) \hat{j}' + b_3(t) \hat{k}'$$

Al hacer la derivada de este vector hay dos tipos de términos: aquellos en que aparecen las derivadas de los coeficientes $b_a(t)$ y otros en que aparece la derivada de los vectores unitarios. Al agruparlos se obtiene

$$\left(\frac{d\vec{B}}{dt}\right)_{S} = \left(\frac{db_{1}}{dt}\hat{\imath}' + \dots\right) + \vec{\Omega} \times \left(b_{1}\hat{\imath}' + \dots\right)$$
(7.1.3)

pero el primer paréntesis a la derecha es la derivada de \vec{B} en S' ya que en S' los vectores unitarios prima son fijos. De aquí que el resultado final sea

$$\left(\frac{d\vec{B}}{dt}\right)_{S} = \left(\frac{d\vec{B}}{dt}\right)_{S'} + \vec{\Omega} \times \vec{B}$$
(7.1.4)

7.1. CINEMÁTICA RELATIVA

Figura 7.2: Un vector visto desde dos sistemas de referencia que comparten el mismo origen.

Por ejemplo: el vector \overrightarrow{CD} que describe la longitud de un sistema de dos partículas unidas por un resorte que se mueve en el plano *XY* de *S* girando con velocidad angular $\dot{\phi}(t)$. Este vector tiene longitud variable h(t). Este vector también puede ser descrito con respecto a un sistema de referencia *S'* que tiene el mismo origen que *S* pero cuyo eje *X'* se mantiene paralelo al sistema, es decir, $\overrightarrow{CD} = h(t)\hat{i}'$. En *S'* por definición el vector es siempre paralelo a *X'*, y solo su longitud cambia en el tiempo, $(d\overrightarrow{CD}/dt)_{S'} = \dot{h}\hat{i}'$, mientras que en *S* también cambia su orientación.

<u>AFIRMACIÓN</u>: Si $(S_0, S_1) \sim [\vec{R}_1, \vec{\Omega}_{01}]$ y $(S_1, S_2) \sim [\vec{R}_2, \vec{\Omega}_{12}]$ se puede afirmar que $(S_0, S_2) = [\vec{R}_1 + \vec{R}_2, \vec{\Omega}_{02} = \vec{\Omega}_{01} + \vec{\Omega}_{12}]$. En palabras: si la velocidad angular de S_1 es $\vec{\Omega}_{01}$ con respecto a S_0 y la velocidad angular de S_2 es $\vec{\Omega}_{12}$ con respecto a S_1 entonces la velocidad angular de S_2 con respecto a S_0 es

$$\vec{\Omega}_{02} = \vec{\Omega}_{01} + \vec{\Omega}_{12} \tag{7.1.5}$$

Lo anterior se puede resumir diciendo que las velocidades angulares relativas se suman vectorialmente.

Para demostrar esto se hace uso de (7.1.4) con \vec{B} un vector variable cualquiera

$$\left(\frac{d\vec{B}}{dt}\right)_{S_0} = \left(\frac{d\vec{B}}{dt}\right)_{S_1} + \vec{\Omega}_{01} \times \vec{B}$$

$$= \left(\frac{d\vec{B}}{dt}\right)_{S_2} + \vec{\Omega}_{02} \times \vec{B}$$
(7.1.6)

Universidad de Chile

Escuela de Ingeniería y Ciencias

pero también es cierto que

$$\left(\frac{d\vec{B}}{dt}\right)_{S_1} = \left(\frac{d\vec{B}}{dt}\right)_{S_2} + \vec{\Omega}_{12} \times \vec{B}$$
(7.1.7)

Si esta última relación se reemplaza en la primera y el resultado se compara con la segunda relación se concluye (7.1.5).

7.2. Velocidad y aceleración en un sistema no inercial

La fórmula general (7.1.4) será utilizada para relacionar la cinemática descrita desde dos sistemas de referencia diferentes.

Consideremos la descripción del movimiento de un punto *P* visto desde los sistemas de referencia *S* y *S'* que tienen una velocidad angular relativa $\vec{\Omega}$. La posición de *P* es $\vec{r}(t)$ con respecto a *S* y es $\vec{r}'(t)$ con respecto a *S'* y la relación entre ambos vectores posición es

$$\vec{r}(t) = \vec{R}(t) + \vec{r}'(t) \tag{7.2.1}$$

El vector \vec{R} es el que va desde \mathcal{O} a \mathcal{O}' .

Figura 7.3: El punto móvil P es visto desde un sistema de referencia S con origen en \mathcal{O} y desde un sistema de referencia S' con origen en \mathcal{O}' tal que el vector posición \vec{R} de \mathcal{O}' . Los ejes de S' rotan con respecto a S con velocidad angular $\vec{\Omega}$.

Directamente de (7.1.4) se obtiene que

$$\left(\frac{d\vec{r}'(t)}{dt}\right)_{S} = \vec{v}'(t) + \vec{\Omega}(t) \times \vec{r}'(t)$$
(7.2.2)

^{7.2.} VELOCIDAD Y ACELERACIÓN EN UN SISTEMA NO INERCIALFACUITAD de Ciencias Físicas y Matemáticas

Combinando las dos últimas relaciones se deduce que

$$\vec{v}(t) = \vec{R} + \vec{v}'(t) + \vec{\Omega}(t) \times \vec{r}'(t)$$
 (7.2.3)

Al tomar la derivada de la relación anterior con respecto al tiempo en el sistema *S* se debe calcular primero

$$\left(\frac{d\vec{v}'}{dt}\right)_{S} = \left(\frac{d\vec{v}'}{dt}\right)_{S'} + \vec{\Omega} \times \vec{v}'$$
(7.2.4)

El primer término de la derecha es la aceleración \vec{a}' en S'. La derivada del segundo término en (7.2.3) es

$$\left(\frac{d\vec{\Omega} \times \vec{r}'}{dt} \right)_{S} = \left(\frac{d\vec{\Omega}}{dt} \right)_{S} \times \vec{r}' + \vec{\Omega} \times \left(\frac{d\vec{r}'}{dt} \right)_{S}$$
$$= \vec{\Omega} \times \vec{r}' + \vec{\Omega} \times \left(\vec{v}' + \left(\vec{\Omega} \times \vec{r}' \right) \right)$$
(7.2.5)

Entonces la aceleración es

$$\vec{a} = \left(\frac{d\vec{v}}{dt}\right)_{S}$$

$$= \ddot{\vec{R}} + \left(\frac{d\vec{v}'}{dt}\right)_{S} + \left(\frac{d\vec{\Omega} \times \vec{r}'}{dt}\right)_{S}$$

$$= \ddot{\vec{R}} + \vec{a}' + \vec{\Omega} \times \vec{v}' + \dot{\vec{\Omega}} \times \vec{r}' + \vec{\Omega} \times \vec{v}' + \vec{\Omega} \times \left(\vec{\Omega} \times \vec{r}'\right)$$

que se puede ordenar para obtener finalmente

$$\vec{a}' = \vec{a} - \ddot{\vec{R}} - \vec{\Omega} \times \left(\vec{\Omega} \times \vec{r}'\right) - 2\vec{\Omega} \times \vec{v}' - \dot{\vec{\Omega}} \times \vec{r}'$$
(7.2.6)

De los cinco términos del lado derecho, el tercero, $-\vec{\Omega} \times (\vec{\Omega} \times \vec{r}')$, se llama *aceleración centrífuga* y el cuarto, $-2\vec{\Omega} \times \vec{v}'$, se llama *aceleración de Coriolis*.

7.3. La ecuación de movimiento en un sistema no inercial

La ecuación de Newton $m\vec{a} = \vec{F}$, válida en el sistema de referencia inercial *S*, toma en el sistema de referencia arbitrario *S'*, la forma

$$m\vec{a}' = \vec{F} - m\vec{\vec{R}} - m\vec{\Omega} \times \left(\vec{\Omega} \times \vec{r}'\right) - 2m\vec{\Omega} \times \vec{v}' - m\vec{\dot{\Omega}} \times \vec{r}'$$
(7.3.1)

Universidad de Chile

El primer término de la derecha es la fuerza total que se tiene en el sistema de referencia inercial *S*. Los cuatro términos restantes a la derecha se les suele llamar *seudofuerza*. De ellos, aquel que es cuadrático en $\vec{\Omega}$ es la *(seudo)fuerza centrífuga* y el que sigue es la *(seudo)fuerza de Coriolis*. El último término se denomina *(seudo)fuerza trasversal*.

En un sentido estricto la Tierra no es un sistema inercial y se verá algunos ejemplos que muestran los efectos las seudofuerzas asociadas. Sin embargo para muchos otros fenómenos los efectos noinerciales de la Tierra son tan pequeños que es razonable despreciarlos.

<u>EJEMPLO</u>: El sistema de referencia *S'* de un ascensor al que se le acaban de cortar los cables es no inercial. Cae a lo largo del eje *Z* con aceleración $\vec{R} = \vec{g}$. Respecto al edificio *S* no hay rotación, esto es, $\vec{\Omega} = 0$ por lo que la ecuación de movimiento de un objeto *P* soltado dentro del ascensor *S'* que cae es $m\vec{a}' = m\vec{g} - m\vec{g} = 0$, es decir, *P* se mueve con velocidad \vec{v}' uniforme. En *S'* el cuerpo flota libremente.

<u>EJEMPLO</u>: Normalmente una plomada es un péndulo en reposo y sirve para determinar la dirección vertical: la dirección de la tensión—péndulo en reposo—define la vertical.

Figura 7.4: En el interior de un carro que tiene aceleración constante a hay una plomada.

En el caso de un vehículo *S'* con aceleración horizontal constante $\vec{R} = \vec{a} = a\hat{i}$, con respecto a un suelo *S* inercial, la masa en el extremo del hilo de un péndulo en reposo—con respecto al vehículo—está sometida a las fuerzas: tensión \vec{T} del hilo y a su propio peso, $m\vec{g} = -mg\hat{k}$. La ecuación (7.3.1), tomando en cuenta que $\vec{a}' = 0$ se reduce a $\vec{T} = -m(\vec{g} - \vec{a})$. Es decir, la plomada determina una "vertical" que apunta en diagonal hacia atrás si a > 0. Si alguien camina hacia adelante dentro del vehículo tendrá la sensación de estar subiendo por un plano inclinado caracterizado por una pendiente α tal que tan $\alpha = a/g$.

^{7.3.} LA ECUACIÓN DE MOVIMIENTO EN UN SISTEMA NO INERCIACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

EJEMPLO:

Figura 7.5: Se puede describir el movimiento de un planeta desde dos sistemas de referencias centrados en el Sol. Uno de ellos es inercial y el otro gira de modo que el planeta está siempre sobre el eje X'.

Consideremos un sistema S' de ejes coordenados con origen en el centro del Sol y tal que un satélite (puede ser la Tierra) está siempre sobre el eje X'.

Este sistema *S'* está rotando a la velocidad angular ϕ del satélite. Esta vez $\vec{\Omega} = \phi \hat{k}$ mientras que $\vec{R} = 0$ todo el tiempo. Entonces $\vec{r}' = x' \hat{i}'$, pero es natural llamar *r* a *x'*, por lo cual $\vec{r}' = r\hat{i}'$, $\vec{v}' = \dot{r}\hat{i}'$ y $\vec{a}' = \ddot{r}\hat{i}'$, es decir, por elección de las coordenadas en el sistema *S'* la aceleración sólo apunta en la dirección del eje \hat{i}' .

Trabajando la ecuación (7.3.1) se obtiene que

$$m\ddot{r}\hat{i}' = \vec{F}_{\text{gravit}} + m\,\dot{\phi}^2\,r\,\hat{i}' - \frac{m}{r}\frac{d}{dt}\left(\dot{\phi}\,r^2\right)\,\hat{j}' \tag{7.3.2}$$

Al igualar separadamente los coeficientes de los dos vectores unitarios se obtiene que $\frac{d}{dt} (\phi r^2) = 0$, es decir, $m \phi r^2 = \ell$ es constante y la ecuación de movimiento en *S*' se reduce a

$$m\ddot{r} = -\frac{GMm}{r^2} + \frac{\ell^2}{mr^3} = -\frac{d}{dr} \left(-\frac{GMm}{r} + \frac{\ell^2}{2mr^2} \right)$$
(7.3.3)

Así se ha obtenido la ecuación de movimiento unidimensional de una partícula sometida a un potencial $-\frac{GMm}{r} + \frac{\ell^2}{2mr^2}$ que contiene al potencial gravitacional y al potencial asociado a la seudofuerza centrífuga.

Universidad de Chile

7.4. Nave espacial que rota

Para hacer largos viajes espaciales parece conveniente que los astronautas vivan en un ambiente que simule la gravedad terrestre. Esto se logra con una nave que esté rotando. Consideremos una nave que se mueve en el espacio interestelar con velocidad uniforme, esto es con $\ddot{\vec{R}} = 0$, que tiene forma de un gran anillo de radio r_0 como la que se describe en la figura adjunta.

Figura 7.6: Nave espacial en la forma de un gran anillo que rota. El radio desde el centro al suelo es r_0 y hay un "techo" a altura h del suelo, como lo muestra la figura. La nave gira con velocidad angular $\vec{\Omega}$ perpendicular al plano de la figura. Los ejes (X',Y') están fijos a la nave.

Se considerará ejes cartesianos *X Y* para el sistema inercial y ejes *X' Y'* fijos a la nave. Ambos sistemas de ejes tienen su origen en el centro de giro de la nave. La velocidad angular de la nave, con respecto a un sistema de referencia inercial, es $\vec{\Omega} = \Omega \hat{k}$.

Sobre un cuerpo soltado muy cerca del suelo no está actuando fuerza real

^{7.4.} NAVE ESPACIAL QUE ROTA

alguna. Le ecuación de movimiento (7.3.1) para este caso es

$$\ddot{x}' = \Omega^2 r_0 \tag{7.4.1}$$

y numéricamente se desea que esta sea precisamente la aceleración de gravedad terrestre, es decir, el diseño tiene la condición

$$\Omega^2 r_0 = g \tag{7.4.2}$$

Puede verse que si r_0 es de alrededor de un kilómetro entonces la nave debe girar aproximadamente dando una vuelta por minuto.

Un cuerpo que se mueve por el "corredor central" de la nave mantiene $\rho = r_0$ constante ($\dot{\rho} = 0$) y tanto la seudofuerza centrífuga como la de Coriolis apuntan radialmente:

$$\vec{F}_{centrof} + \vec{F}_{Coriolis} = m\Omega r_0 \left(2\dot{\phi} + \Omega\right)\hat{\rho}$$

y puede hacerse cero. La ecuación de movimiento completa tiene aceleración y fuerzas solo en la dirección $\hat{\rho}$, incluyendo la normal $\vec{N} = -N\hat{\rho}$, y es

 $-m(r_0\dot{\phi}^2) = -N + m\Omega r_0(2\dot{\phi} + \Omega) \quad \Rightarrow \quad N = mr_0(\dot{\phi} + \Omega)^2$

de donde se ve que la normal se anula cuando $\dot{\phi} = -\Omega$.

7.5. Efectos de la rotación de la Tierra

7.5.1. Cuestiones generales

Si un sistema $S' = \{ \mathcal{O}, (X', Y', Z) \}$ (Tierra) rota con velocidad angular $\vec{\Omega}$ constante con respecto al sistema inercial $S = \{ \mathcal{O}, (X, Y, Z) \}$, y $\vec{R} = 0$ y Z' = Z, entonces $\vec{\Omega} = \Omega \hat{k}$. Los vectores posición, velocidad y aceleración de un cuerpo *P* en la Tierra son, como siempre,

$$\vec{r}' = z\hat{k} + \rho\hat{\rho}$$

$$\vec{v}' = \dot{z}\hat{k} + \dot{\rho}\hat{\rho} + \rho\dot{\phi}\hat{\phi}$$

$$\vec{a}' = \ddot{z}\hat{k} + (\ddot{\rho} - \rho\dot{\phi}^2)\hat{\rho} + (2\dot{\rho}\dot{\phi} + \rho\ddot{\phi})\hat{\phi}$$
(7.5.1)

donde ρ es la distancia desde el punto móvil *P* y el eje de rotación de la Tierra y el ángulo ϕ define el meridiano en el cual está *P*, es decir, es la

coordenada cilíndrica ϕ de *P* con respecto al eje *X'* fijo al sistema noinercial *S'*.

Se considerará a la Tierra como un sistema con velocidad angular $\vec{\Omega}$ constante con respecto a un eje fijo—que une al polo norte con el polo sur. La velocidad angular de la Tierra es aproximadamente

 $\Omega_T \approx 7 \times 10^{-5} = 0,00007$ radianes/segundos

El radio de la Tierra es $R_T = 6.37 \times 10^6$ m.

Las únicas seudofuerzas en S' (descritas en coordenadas cilíndricas) son

$$\vec{F}_{\text{centrif}} = m\Omega^2 \rho \,\hat{\rho} \qquad \qquad \vec{F}_{\text{Coriolis}} = 2m\Omega \left(\rho \dot{\phi} \,\hat{\rho} - \dot{\rho} \,\hat{\phi}\right) \qquad (7.5.2)$$

La aceleración centrífuga en el ecuador es $R_T \Omega_T^2 = 0.03 \frac{m}{seg^2}$.

Todo el análisis se hará como si la Tierra estuviese aislada de toda influencia externa y su centro puede ser considerado fijo en un sistema de referencia inercial. En particular, entonces, se despreciará los efectos que pudieran provenir de la rotación de la Tierra alrededor del Sol.

Figura 7.7: Coordenadas esféricas sobre la superficie de la Tierra.

El vector radial desde el centro de la Tierra y el vector unitario, tangencial a la superficie esférica y hacia el Sur, expresados en la base de vectores asociados a coordenadas cilíndricas son

$$\hat{r} = \frac{z\hat{k} + \rho\hat{\rho}}{\sqrt{z^2 + \rho^2}}, \qquad \hat{\theta} = \frac{z\hat{\rho} - \rho\hat{k}}{\sqrt{z^2 + \rho^2}}$$
(7.5.3)

7.5. EFECTOS DE LA ROTACIÓN DE LA TIERRA

El vector $\hat{\phi}$ común a coordenadas cilíndricas y esféricas apunta en dirección Este.

Se analizará los efectos de la rotación de la Tierra sobre un cuerpo que se mueve cerca de la superficie de ella, es decir, se toma \vec{g} con valor fijo. La fuerza total sobre este cuerpo, entonces, es

$$\vec{F}^{\text{total}} = \vec{f} + m\vec{g} \tag{7.5.4}$$

donde \vec{f} es la suma de las fuerzas reales: de resorte, de roce, de viscosidad etc excepto el peso que se ha escrito aparte.

La ecuación de movimiento del cuerpo es

$$m\vec{a}' = \vec{f} + m\vec{g} - m\vec{\Omega} \times \left(\vec{\Omega} \times \vec{r}'\right) - 2m\vec{\Omega} \times \vec{v}'$$
(7.5.5)

La fuerza centrífuga: Si se analiza el término centrífugo se verá que es una fuerza perpendicular al eje de la Tierra, apunta hacia afuera y depende de la latitud, es decir, depende del ángulo θ de coordenadas esféricas. Esta fuerza solo depende de la posición en la Tierra del objeto y resulta natural sumarla con el término de peso produciendo:

$$\vec{g}_{\text{local}} = \vec{g} - \vec{\Omega} \times \left(\vec{\Omega} \times \vec{r}'\right)$$

$$= \vec{g} + \Omega^2 \rho \,\hat{\rho}$$

$$= -\frac{g z}{\sqrt{z^2 + \rho^2}} \hat{k} - \left(\frac{g}{\sqrt{z^2 + \rho^2}} - \Omega^2\right) \rho \,\hat{\rho} \qquad (7.5.6)$$

que define la *aceleración de gravedad* que efectivamente actúa en ese lugar. Nótese que \vec{g}_{local} no apunta hacia el centro de la Tierra debido a la aceleración centrífuga. En particular, por tanto, una plomada apunta hacia el centro de la Tierra sólo en el Ecuador y en los Polos. A la aceleración de gravedad se le agrega un vector en la dirección $\hat{\rho}$ que es perpendicular al eje de rotación de la Tierra. El denominador $\sqrt{z^2 + \rho^2}$ puede ser aproximado al valor R_0 del radio de la Tierra.

De lo anterior justifique que la desembocadura del río Mississippi está más distante del centro de la Tierra que su superficie varios kilómetros "río arriba".

Calcule, para un punto a nivel del mar, la razón entre el valor de la aceleración centrífuga en el ecuador, debido a la rotación de la Tierra sobre su eje, y la aceleración de gravedad.

Universidad de Chile

Compruebe que al comparar numéricamente los dos términos que hay en el gran paréntesis redondo en (7.5.6), el primero es más de 200 veces más grande que el segundo.

La fuerza de Coriolis: La fuerza de Coriolis es $\vec{F}_{\text{Coriolis}} = -2m\vec{\Omega} \times \vec{v}'$. La Tierra gira hacia el Este, por lo que la regla de la mano derecha da que $\vec{\Omega}$ apunta del polo Sur al polo Norte. La expresión para esta fuerza en coordenadas esféricas es

$$\vec{F}_{\mathsf{Coriolis}} = 2m\Omega \left(\hat{r} r' \dot{\phi} \sin^2 \theta + \hat{\theta} r' \dot{\phi} \sin \theta \cos \theta - \hat{\phi} \left\{ \dot{r}' \sin \theta + r' \dot{\theta} \cos \theta \right\} \right)$$

Los vectores unitarios apuntan: \hat{r} hacia arriba, $\hat{\theta}$ hacia el Sur y $\hat{\phi}$ hacia el Este.

Cuerpo que sube: Este es un caso en el cual $\dot{r} > 0$, $\dot{\theta} = 0$ y $\dot{\phi} = 0$ y la fuerza de Coriolis se reduce a

$$\hat{\phi} \left(-2m\Omega \dot{r}' \sin \theta \right)$$

que es una fuerza que apunta hacia el Oeste. Por ejemplo, el aire que se calienta en contacto con el suelo caliente en las zonas tropicales sube y la fuerza de Coriolis hace que se desvíe hacia el Oeste. En todo el globo, los vientos que dominan en el Ecuador van hacia el Oeste. Si, por el contrario se deja caer un cuerpo desde el reposo, la fuerza de Coriolis lo desvía hacia el Este.

Combinada con el efecto sobre los aires que en latitudes polares se enfrían y bajan se obtiene el efecto neto que los vientos y océanos en zonas de tamaño continental tienden a tener un movimiento rotatorio que es (mirado en un mapa) tipo punteros de un reloj en el hemisferio Norte y en el sentido contrario en el hemisferio Sur. Ejemplo, la corriente de Humbolt. El efecto sobre costas Oeste es que acercándose al trópico los aires son cada vez más secos y de ahí la existencia del desierto de Atacama, el de California y el de Namibia.

Cuerpo que se mueve hacia el Sur: Este es un caso en el cual $\dot{r} = 0$, $\dot{\theta} > 0$ y $\dot{\phi} = 0$ y la fuerza de Coriolis se reduce a

$$\hat{\phi}\left(-2m\Omega r'\dot{\theta}\cos\theta\right)$$

que apunta hacia el Oeste en el hemisferio Norte ($\theta < \pi/2$) y apunta hacia el Este en el hemisferio Sur ($\pi/2 < \theta < \pi$).

footnotesize Por ejemplo, el tren que va de Santiago a Concepción se apoya más en el riel Este. Las aguas del Nilo, que en el hemisferio Norte fluyen hacia el Norte ($\dot{\theta} < 0$) sienten una fuerza hacia el Este las aguas en esa rivera están un poco más altas.

Cuerpo que se mueve hacia el Este: Este es un caso en el cual $\dot{r} = 0$, $\dot{\theta} = 0$ y $\dot{\phi} > 0$ y la fuerza de Coriolis se reduce a una expresión que se escribe en forma muy sencilla en coordenadas cilíndricas

$2m\Omega\phi\rho\hat{\rho}$

Esta fuerza es paralela a la fuerza centrífuga y aumenta o disminuye el efecto de la centrífuga según el signo de ϕ . En efecto, un cuerpo que se mueve horizontalmente de Oeste a Este experimenta una fuerza de Coriolis paralela a la fuerza centrífuga. Si se mueve de Este a Oeste estas dos fuerzas son antiparalelas.

Figura 7.8: La fuerza de Coriolis es la responsable principal del sentido de las corrientes marinas en los grandes océanos.

 \gg De todo lo anterior se puede comprender que Buenos Aires tiene clima húmedo y Santiago tiene clima seco.

***** Tómese un sistema de referencia S' con origen en el centro \mathcal{O} de la Tierra y que gira solidariamente con ella, y otro sistema S con el mismo origen pero que no gira. Si un cuerpo, en reposo con respecto a la Tierra S', es soltado desde una

altura *h* del suelo, tiene un momento angular en *S* que es $\ell = (R_0 + h)^2 \Omega$ donde R_0 es la distancia desde \mathcal{O} hasta el suelo. Se sabe que ℓ se conserva porque solo está actuando una fuerza central, pero *h* va cambiando a medida que el cuerpo cae, por tanto la velocidad angular del cuerpo, visto desde *S*, también va a ir cambiando para poder conservar el valor de ℓ . Analice desde este punto de vista en qué dirección se desvía de la vertical el movimiento a media que cae (norte, sur, este, oeste).

>> PÉNDULO DE FOUCAULT: El siguiente problema es sólo para quienes les atrae hacer análisis prolijos y complejos. Ya se sabe que un péndulo plano es un péndulo que oscila en un plano fijo. Sin embargo, al decir plano fijo se quiere decir más específicamente que el plano es fijo con respecto a un sistema de referencia inercial. Esto es equivalente a decir que la velocidad angular de la masa en el extremo del hilo cambia de magnitud en el tiempo pero su dirección (horizontal) no cambia ya que es siempre ortogonal al plano de oscilación. La Tierra al girar, sin embargo, hace que el movimiento se vea diferente. Un caso trivial de analizar es el de un péndulo oscilando justo en el polo Sur. El péndulo mantiene su plano fijo mientras el terreno bajo el péndulo gira en torno al eje que pasa justo por el punto fijo en el extremo superior del hilo. Para alguien parado junto al péndulo le va a parecer que el plano del péndulo va girando (es la Tierra y no el péndulo guien gira) y completa una vuelta completa en 24 horas. Analice el caso de un péndulo en Santiago y compruebe que el plano del péndulo hace un giro completo en un tiempo $T = 2\pi/(\Omega \cos \theta)$ donde Ω es la velocidad angular de la Tierra y $\frac{\pi}{2} - \theta$ expresado en grados es la latitud de Santiago. Un péndulo suficientemente estable que permita observar este fenómeno se denomina péndulo de Foucault.

7.6. Problemas

7.1 Una vara con un extremo en un punto \mathcal{O} fijo al sistema inercial *S*, gira con velocidad angular constante $\vec{\Omega}_1$ en torno a \mathcal{O} en el plano *XY* de *S*. El otro extremo de la vara de largo R_0 es el punto \mathcal{O}' . Se pide escribir la ecuación de movimiento (7.3.1) para el punto masivo *P*, masa *m*, que gira, en torno a \mathcal{O}' con velocidad uniforme $\vec{\Omega}_2$ con respecto a la vara, como lo indica la figura. (a) Obtenga la ecuación de movimiento de *P* en el sistema de

referencia S' centrado en O' y que mantiene sus ejes paralelos a los del sistema inercial S; (b) idem para el sistema S'', también centrado en O' pero con sus ejes girando de tal modo que P siempre está sobre el eje X''.

7.2 Dos partículas de masa *m*, unidas por un alambre rígido de masa despreciable y largo *R*, pueden moverse a lo largo del interior de un tubo. El tubo está girando barriendo un plano horizontal con velocidad angular constante ω .

a) Decida si la posición simétrica (las partículas en reposo y a igual distancia del centro de giro) es estable o no. b) Si el punto medio del alambre ahora es colocado a una pequeña distancia d del centro de giro ¿Qué rapidez, con respecto del tubo, tiene el sistema cuando esa distancia crece hasta el valor R? c) Compare la energía inicial y final del movimiento anterior y comente.

7.3 Un anillo de masa *m* se puede mover solo a lo largo de un vara que tiene un extremo fijo \mathcal{O} y gira en el plano *XY* del sistema inercial *S*. El anillo está unido a un resorte (enrollado a lo largo de la vara), de largo natural ρ_0 y constante elástica *k*. Escriba la ecuación de movimiento del anillo en el sistema *S*' que gira junto a la vara (la vara es el eje *X*'),

Universidad de Chile

obtenga su punto de equilibrio y las pequeñas oscilaciones en torno a él.

- 7.4 En el caso de la nave espacial descrita en el texto principal, compruebe que cuando un astronauta sale a trotar a lo largo del gran corredor central, el peso que sus piernas deben soportar puede aumentar o disminuir considerablemente si lo hace en un sentido o el otro del corredor.
- 7.5 Desde un punto *B* en el techo se suelta un cuerpo en reposo con respecto a la nave y cae sobre en el punto *A'* del suelo. Luego se coloca una plomada en B y se determina el punto *A* del suelo justo bajo *B*. ¿Qué distancia hay entre *A* y *A'*? Calcule todo numéricamente suponiendo que el techo está 5 metros sobre el suelo, $r_0 = 1000$ metros, que la "aceleración de gravedad" en el suelo es *g*. ¿Cuánto tarda el cuerpo en golpear el suelo?
- 7.6 Una vara gira horizontalmente a velocidad angular Ω constante. Una cuenta de collar puede deslizar a lo largo de la vara. El contacto tiene asociados los coeficientes de roce μ_e y μ_d . Si la cuenta es soltada desde una distancia ρ_0 del eje de giro con velocidad relativa nula con respecto a la vara, determine el movimiento.
- 7.7 Una vara gira en un plano con velocidad angular constante $\vec{\Omega} = \Omega \hat{k}$ barriendo un plano fijo. Una cuenta de collar de masa *m* puede deslizar por la vara. El contacto cuenta-vara se caracteriza por los coeficientes de roce μ_e y μ_d . No hay gravedad. Si *S* es un sistema de referencia inercial fijo al plano de giro y *S'* es un sistema de referencia noinercial cuyo eje *X'* coincide todo el tiempo con la vara, determine (a) la fuerza centrífuga y de Coriolis que actúan sobre la cuenta en el sistema de referencia *S'*. (b) Obtenga la ecuación de movimiento de la cuenta y la ecuación que determina la fuerza normal. Decida bajo qué condiciones (si es que hay alguna) la cuenta podría estar estática con respecto a la vara. (c) Resuelva la ecuación de movimiento suponiendo que en el instante t = 0 la cuenta parte del centro de giro con rapidez v_0 , con respecto a la vara.

7.8 Se tiene una cuña de ángulo α , oscilando horizontalmente tal que $\overline{\mathscr{OO}'} = x = A \sin \omega t$. Sobre la cara inclinada de la cuña, a altura *h* sobre el eje *X*, hay un cuerpo de masa *m* que tiene, con la superficie inclinada, un coeficiente de roce estático μ . Se da como dato que si la cuña no oscilara el cuerpo no deslizaría. Si se conoce *A*, se pide una condición sobre ω para que el cuerpo no se mueva con respecto a la cuña.

Capítulo 8

Sistemas extendidos

8.1. Repaso

8.1.1. Centro de masa

En la sección §2.2 se dio algunas de las definiciones básicas necesarias para describir sistemas de muchas partículas. Entre ellos, la masa total del sistema y la posición y velocidad del centro de masa,

$$M = \sum_{k=1}^{N} m_a, \qquad \vec{R}_G = \frac{1}{M} \sum_{a=1}^{N} m_a \vec{r}_a, \qquad \vec{V}_G = \frac{1}{M} \sum_{a=1}^{N} m_a \vec{v}_a$$
(8.1.1)

El centro de masa tiene como ecuación de movimiento

$$M \frac{dV_G}{dt} = \vec{F}^{\text{total}}$$
 donde $\vec{F}^{\text{ext}} = \sum_{k=1}^{N} \vec{F}_a$ (8.1.2)

y se demostró que la fuerza a la derecha es la suma de las fuerzas externas sobre el sistema.

8.1.2. Posiciones con respecto al centro de masa

8.1.2.1. Momento angular

En §2.2 también se definió el momento angular total del sistema y se vio que obedece a la ecuación

$$\frac{d\ell_{\mathscr{O}}}{dt} = \sum_{a} \vec{r}_{a} \times f_{a}^{\text{ext}}$$
(8.1.3)

Hasta aquí se ha trabajado sólo con un sistema inercial S.

También se define

$$\vec{\ell}_{G} = \sum_{a} m_{a} \vec{\rho}_{a} \times \vec{v}_{a}$$
$$= \sum_{a} m_{a} \vec{\rho}_{a} \times \vec{\rho}_{a}$$
(8.1.4)

y el momento angular de la masa total ubicada en el centro de masa

$$\vec{\ell}_{\mathcal{O}}^{G} = M\vec{R}_{G} \times \vec{V}_{G} \tag{8.1.5}$$

de modo que se cumple que

$$\vec{\ell}_{\mathcal{O}} = \vec{\ell}_{\mathcal{O}}^G + \vec{\ell}_G \tag{8.1.6}$$

La dinámica de $\vec{\ell}_G$ se obtiene a partir de tomar la derivada $\vec{\ell}_G = \sum m_a \vec{\rho}_a \times \vec{\rho}_a$ y hacer uso de que $m_a \vec{\rho}_a = m_a \vec{r}_a - m_a \vec{R}_G$. El primer término es la fuerza total \vec{F}_a sobre la partícula *a* mientras que el segundo, al sumar sobre *a* se anula porque queda $(\sum_a m_a \vec{\rho}_a) \times \vec{R}_G$ por lo cual

$$\vec{\ell}_G = \vec{\tau}_G \equiv \sum_a \vec{\rho}_a \times \vec{F}_a \tag{8.1.7}$$

Todo esto fue visto en el capítulo 2. También se vio que

$$\tau_{\mathscr{O}} = \vec{R}_G \times \sum_a \vec{f}_a^{\text{ext}} + \sum_a \vec{\rho}_a \times f_a^{\text{ext}}$$
$$= \vec{\tau}_{\mathscr{O}}^G + \vec{\tau}_G$$
(8.1.8)

8.1. REPASO

169

Figura 8.1: Si G es el centro de masa, \vec{R}_G es la posición de G y $\vec{\rho}_k$ es el vector posición de la partícula k desde G.

8.1.2.2. Energía cinética

Ya se ha visto que la energía cinética puede ser separada en la energía cinética del sistema en su conjunto y la energía cinética total con respecto al sistema de referencia que acompaña al centro de masa:

$$K^{\text{tot}} = \frac{1}{2} \sum_{a=1}^{N} m_a v_a^2$$

= $\frac{1}{2} \sum_{a=1}^{N} m_a \left(\vec{V}_G + \dot{\vec{\rho}}_a \right)^2$
= $\frac{1}{2} \sum_{a=1}^{N} m_a \left(V_G^2 + \dot{\rho}_a^2 + 2\dot{\vec{\rho}}_a \cdot \vec{V}_G \right)$

pero el último término en el paréntesis es nulo debido a (2.3.24). De aquí que

$$K^{\text{tot}} = \frac{1}{2}MV_G^2 + \frac{1}{2}\sum_{a=1}^N m_a \dot{\rho}_a^2$$
(8.1.9)

8.2. Sistemas rígidos discretos y continuos

Un cuerpo es *rígido* si las distancias relativas entre sus puntos materiales permanecen fijos en el tiempo. Para tales cuerpos es conveniente considerar, aparte de un sistema inercial $S = (\mathcal{O}, X, X, Z)$, un sistema inercial S' fijo al cuerpo. En lo que sigue el origen del sistema S' = (G, X', Y', Z') estará en el centro de masa G del cuerpo.

Si un cuerpo rígido es continuo debe ser descrito ya no es descrito por un conjunto discreto de masas m_a sino por medio de una función *densidad de masa*. Si el cuerpo puede ser asimilado a una línea (el caso de una delgada barra ideal), la densidad de masa es una densidad por unidad de largo y se designa $\lambda(\vec{r})$. Si el cuerpo es una lámina entonces es descrito por una densidad de masa por unidad de superficie, la que se denota $\sigma(\vec{r})$ y si se trata de un volumen se usa la densidad volumétrica $\rho(\vec{r})$. Por definición la integral de la densidad sobre todo el cuerpo da la masa total *M* del cuerpo.

La masa total del cuerpo continuo se obtiene integrando su densidad. Según la dimensión y lo dicho en el párrafo anterior la masa se calcula

$$M = \int \lambda(\vec{r}) ds$$

$$M = \int \sigma(\vec{r}) d\mathscr{S}$$
(8.2.1)

$$M = \int \rho(\vec{r}) dV$$

donde ds es un elemento de línea, $d\mathscr{S}$ es un elemento de área (como dxdyó $\rho d\rho d\phi$) y dV es un elemento de volumen (como dxdydz ó $\rho d\rho d\phi dz$ ó $r^2 dr \sin \theta d\theta d\phi$).

Genéricamente se denomina *dm* al producto de la densidad de masa por el elemento de línea, superificie o volumen según lo que corresponda,

$$dm = \begin{cases} \lambda \, ds \\ \sigma \, dS \\ \rho \, dV \end{cases} \tag{8.2.2}$$

El centro de masa en estos casos continuos es una integral de $\frac{1}{M}\vec{r}$ multipli-

8.2. SISTEMAS RÍGIDOS DISCRETOS Y CONTINUOS Facultad de Ciencias Físicas y Matemáticas

cado por la densidad que corresponda y se integra sobre todo el cuerpo,

$$\vec{R}_G = \frac{1}{M} \int \vec{r} \, dm \tag{8.2.3}$$

El vector posición de cada masa m_a del cuerpo es \vec{r}_a con respecto a *S* y $\vec{\rho}_a$ con respecto a *S'* y la relación entre ellos es ya conocida: $\vec{r}_a = \vec{R}_G + \vec{\rho}_a$, pero teniendo en cuenta que $\vec{\rho}_a$ señala un punto fijo en *S'*, se tiene que $\vec{v}_a' = (d\vec{\rho}_a/dt)_{S'} = 0$ la relación (7.2.3) se reduce a

$$\vec{v}_a = \vec{R}_G + \vec{\Omega} \times \vec{\rho}_a \tag{8.2.4}$$

En este último párrafo se ha usado la notación del caso discreto, pero vale en general.

8.2.1. Momento angular y matriz de inercia

Ya se ha visto, en (8.1.6) que el momento angular es $\vec{\ell}_{\mathcal{O}} = M\vec{R}_G \times \vec{V}_G + \vec{\ell}_G$ donde

$$\vec{\ell}_G = \begin{cases} \sum_a m_a \vec{\rho}_a \times \dot{\vec{\rho}}_a & \text{caso discreto} \\ \\ \int \rho \times \dot{\vec{\rho}} \, dm & \text{caso continuo} \end{cases}$$

pero, ya que la velocidad en S' es nula, se cumple, debido a (7.2.4), que

$$\vec{\rho} = \Omega \times \vec{\rho} \tag{8.2.5}$$

esto es, para un sistema rígido

$$\vec{\ell}_{\mathcal{O}} = M\vec{R}_{G} \times \vec{V}_{G} + \begin{cases} \sum_{a} m_{a} \vec{\rho}_{a} \times (\Omega \times \vec{\rho}_{a}) \\ \int \vec{\rho} \times (\Omega \times \vec{\rho}) \, dm \end{cases}$$
(8.2.6)

El último término escrito por componentes (usando la notación discreta) es

$$(\vec{\ell}_{G})_{i} = \sum_{a} m_{a} \left[\rho_{a}^{2} \Omega_{i} - \sum_{j} \rho_{aj} \Omega_{j} \rho_{ai} \right]$$

$$= \sum_{a} m_{a} \sum_{j} \left[\rho_{a}^{2} \delta_{ij} - \rho_{ai} \rho_{aj} \right] \Omega_{j}$$

$$= \sum_{j} I_{ij}^{G} \Omega_{j} \qquad (8.2.7)$$

Universidad de Chile

Escuela de Ingeniería y Ciencias

lo que se resume como

$$\vec{\ell}_G = \mathbf{I}^G \vec{\Omega} \tag{8.2.8}$$

donde la matriz de inercia con respecto al centro de masa G es

$$I_{ij}^G = \sum_a m_a \left(\rho_a^2 \delta_{ij} - \rho_{ai} \rho_{aj} \right)$$
(8.2.9)

Más adelante se define la matriz de inercia con respecto a otros puntos.

En los casos de distribución continua de masa los momentos de inercia se definen como

$$\begin{split} I_{ij}^{G} &= \int \lambda(\vec{\rho}) \left(\rho^{2} \delta_{ij} - \rho_{i} \rho_{j}\right) ds & \text{caso lineal} \\ I_{ij}^{G} &= \int \sigma(\vec{\rho}) \left(\rho^{2} \delta_{ij} - \rho_{i} \rho_{j}\right) d\mathscr{S} & \text{caso laminar} \\ I_{ij}^{G} &= \int \rho(\vec{\rho}) \left(\rho^{2} \delta_{ij} - \rho_{i} \rho_{j}\right) dV & \text{caso volumétrico} \end{split}$$

o más económicamente

$$I_{ij} = \int \left(\rho^2 \,\delta_{ij} - \rho_i \rho_j\right) \, dm \tag{8.2.11}$$

El momento angular queda finalmente en la forma

$$\vec{\ell}_{\mathscr{O}} = M\vec{R}_G \times \vec{V}_G + \mathbf{I}^G \vec{\Omega}$$
(8.2.12)

8.2.2. Matriz de inercia y teorema de Steiner

En forma explícita la matriz de inercia en el caso discreto es

$$I^{G} = \sum_{a} m_{a} \begin{pmatrix} y_{a}^{2} + z_{a}^{2} & -x_{a}y_{a} & -x_{a}z_{a} \\ -x_{a}y_{a} & z_{a}^{2} + x_{a}^{2} & -y_{a}z_{a} \\ -x_{a}z_{a} & -y_{a}z_{a} & x_{a}^{2} + y_{a}^{2} \end{pmatrix}$$
(8.2.13)

y en el continuo es

$$I^{G} = \int \begin{pmatrix} y^{2} + z^{2} & -xy & -xz \\ -xy & z^{2} + x^{2} & -yz \\ -xz & -yz & x^{2} + y^{2} \end{pmatrix}$$
(8.2.14)

que es real y simétrica. Se verá también que sus autovalores son nonegativos. En ambos casos *x*, *y* y *z* se refieren a las componentes cartesianas de $\vec{\rho}$ en el sistema *S*'.

8.2. SISTEMAS RÍGIDOS DISCRETOS Y CONTINUOS Facultad de Ciencias Físicas y Matemáticas

Hasta aquí se ha definido la matriz de intercia I^G relativa al centro de masa. A continuación se define con respecto a cualquir punto.

Sea P un punto cualquiera fijo en el sistema de referencia S' del cuerpo y que es usado como origen alternativo a las posiciones. Se relaciona con G según la forma que indica la figura8.2. Los vectores posición según ambos orígenes están relacionados por

$$\vec{r}_a = \vec{R} + \vec{\rho}_a$$

y se cumple que

Figura 8.2: El teorema de Steiner relaciona la matriz de inercia I_P con respecto a un punto P con la matriz de inercia I_G con respecto al centro de masa G.

$$\sum m_a r_a^2 = \sum_a m_a \left(\rho_a^2 + R^2 + 2\vec{\rho}_a \cdot \vec{R} \right)$$
$$= \sum_a m_a \rho_a^2 + MR^2$$

mientras que

$$\sum_{a} m_a x_{ai} x_{aj} = \sum_{a} m_a \left(\rho_{ai} \rho_{aj} + R_i \rho_{aj} + \rho_{ai} R_j + R_i R_j \right) = \sum_{a} m_a \rho_{ai} \rho_{aj} + M R_i R_j$$

lo que determina, al reemplazar en (8.2.9), que

$$I_{ij}^{P} = I_{ij}^{G} + M \left(R^{2} \delta_{ij} - R_{i} R_{j} \right)$$
 teorema de Steiner (8.2.15)

donde

$$I_{ij}^{P} = \sum_{a} m_a \left(r_a^2 \,\delta_{ij} - x_{ai} x_{aj} \right) \tag{8.2.16}$$

EJERCICIO: Escriba la relación anterior para dos puntos P_1 y P_2 (ejes paralelos) y reste ambas relaciones. Vea que obtiene una relación entre \mathbf{I}^{P_1} e \mathbf{I}^{P_2} .

8.2.3. Energía cinética y matriz de inercia

Reemplazando (8.2.5) en la expresión (8.1.9) para la energía cinética se obtiene (aquí se usa la notación discreta y fácilemente todo puede ser reescrito para el caso continuo reemplazando sumas por integrales)

$$K^{\text{tot}} = \frac{1}{2}MV_{G}^{2} + \frac{1}{2}\sum_{a=1}^{N}m_{a}\left(\Omega \times \vec{\rho}_{a}\right)^{2}$$

$$= \frac{1}{2}MV_{G}^{2} + \frac{1}{2}\sum_{a=1}^{N}m_{a}\vec{\rho}_{a}\cdot\left(\vec{\Omega}\times\vec{\rho}_{a}\right)$$

$$= \frac{1}{2}MV_{G}^{2} + \frac{1}{2}\sum_{a=1}^{N}m_{a}\vec{\Omega}\cdot\left(\vec{\rho}_{a}\times\vec{\rho}_{a}\right)$$

$$= \frac{1}{2}MV_{G}^{2} + \vec{\Omega}\cdot\vec{\ell}_{G}$$

$$= \frac{1}{2}MV_{G}^{2} + \vec{\Omega}\cdot\mathbf{I}^{G}\vec{\Omega}$$
(8.2.17)

8.2.4. Sobre la dinámica

Las leyes necesarias para resolver la dinámica de cuerpos rígidos son las del movimiento del centro de masa y la dinámica de $\vec{\ell}_{\mathcal{O}}$ y de $\vec{\ell}_{G}$:

$$\vec{\ell}_{\mathscr{O}} = M\vec{R}_{G} \times \vec{V}_{G} + \vec{\ell}_{G} \qquad \vec{\ell}_{G} = \mathbf{I}_{G}\vec{\Omega}$$

$$K = \frac{M}{2}V_{G}^{2} + \frac{1}{2}\vec{\Omega} \cdot \mathbf{I}_{G}\vec{\Omega} \qquad M\frac{d^{2}\vec{R}_{G}}{dt^{2}} = \vec{F}_{\text{tot}} \qquad (8.2.18)$$

$$\frac{d\vec{\ell}_{\mathscr{O}}}{dt} = \sum_{a}\vec{r}_{a} \times f_{a}^{\text{ext}} \qquad \frac{d\vec{\ell}_{G}}{dt} = \sum_{a}\vec{\rho}_{a} \times f_{a}^{\text{ext}}$$

8.2.4.1. Varias veces el mismo ejemplo

Un ejemplo muy elemental es el de un cilindro de radio *a*, masa total *M* y momento de inercia, con respecto a su centro de masa, *I* (*I* es el momento a lo largo del eje del cilindro, que es I_{33}). Hay roce estático, de modo que el cilindro rueda sin deslizar por un plano de inclinación α . Se tomará ejes cartesianos con los ejes *XY* apoyados en el plano inclinado y *Z* perpendicular a él. La dirección de descenso es *X*. La dirección *Y* no jugará papel alguno. Las fuerzas presentes son el peso $Mg(\hat{i}\cos\alpha - \hat{k}\sin\alpha)$, la normal, $\vec{N} = N\hat{k}$ y el roce estático $\vec{F} = -F\hat{i}$. El desplazamiento debiera ser descrito

Figura 8.3: Un cilindro rueda por un plano inclinado sin deslizar.

por la coordenada *x* del centro de masa, pero como el cilindro no desliza, cuando ha girado un ángulo ϕ ha avanzado una distancia $R\phi$, esto es $x = R\phi$.

El torque con respecto a *G* es aquel que ejerce la fuerza de roce y es $\tau_G = RF$ mientras que $\ell_G = I\dot{\phi}$, de modo que

$$I\ddot{\phi} = \frac{I}{R}\ddot{X} = RF \tag{8.2.19}$$

La ecuación de movimiento en la dirección X del centro de masa es

$$M\ddot{X} = -F + mg\sin\alpha \tag{8.2.20}$$

mientras que no existe movimiento en la dirección Z, lo que implica

$$-F + mg\sin\alpha = 0 \tag{8.2.21}$$

De (8.2.19) se despeja *F* y se reemplaza en (8.2.20) obteniéndose que desciende con aceleración constante:

$$\ddot{X} = \frac{MR^2g\sin\alpha}{I + MR^2}$$

Si se trata de un cilindro de densidad uniforme $I = \frac{1}{2}MR^2$ y se obtiene $\ddot{X} = \frac{2}{3}g\sin\alpha$. Este resultado debe compararse con la aceleración de un cuerpo puntual que desciende por el plano sin roce. Se obtiene $\ddot{x} = g\sin\alpha$.

8.3. Sistemas rígidos con punto fijo

El movimiento de sistemas rígidos puede ser bastante complejo. Es conveniente plantear el tema a partir de casos relativamente sencillos. Se co-

Universidad de Chile

mienza por el caso en que el sistema rígido se mueve manteniendo un punto fijo. Los trompos suelen girar manteniendo fijo el punto de contacto con el suelo.

La expresión "sistema rígido con punto fijo" significa que la distancia entre los puntos del sistema permanecen fijos y que la distancias entre los puntos del sistema y el punto fijo también permanecen constantes.

8.3.1. Momento angular y matriz de inercia

Si *P* es el punto fijo y existe un sistema inercial S = (P;X,Y,Z), interesa además introducir un sistema de referencia S' = (P;X',Y',Z') en el cual el sistema rígido está fijo. Puesto que el vector \vec{R} de posición relativa de ambos sistemas en nulo y puesto que $\vec{v}' = 0$, la expresión (7.2.3) se reduce a

$$\vec{v}(t) = \vec{\Omega} \times \vec{r}'$$

En particular, la velocidad de cada masa m_a del sistema es

$$\vec{v}_a = \vec{\Omega} \times \vec{r}_a' \tag{8.3.1}$$

teniendo presente que en general $\vec{\Omega}$ cambia en el tiempo. Además notamos que, puesto que $\vec{R} = 0$ se cumple que $\vec{r}_a = \vec{r}_a'$ (ver (7.2.1)). De aquí que

$$\vec{\ell}_P = \sum_a m_a \vec{r}_a \times \left(\vec{\Omega} \times \vec{r}_a\right)$$
$$= \sum_a m_a \left(r_a^2 \vec{\Omega} - \vec{r}_a \cdot \vec{\Omega} \vec{r}_a\right)$$

que por componentes es

se usa la notación
$$x_{ai} \equiv (\vec{r}_a)_i$$

$$(\vec{\ell}_{P})_{i} = \sum_{a} m_{a} \left[r_{a}^{2} \Omega_{i} - \sum_{j} x_{aj} \Omega_{j} x_{ai} \right]$$

$$= \sum_{a} m_{a} \sum_{j} \left[r_{a}^{2} \delta_{ij} - x_{ai} x_{aj} \right] \Omega_{j}$$

$$= \sum_{i} I_{ij}^{P} \Omega_{j} \qquad (8.3.2)$$

lo que se resume como

$$\vec{\ell}_P = \mathbf{I}^P \,\vec{\Omega} \tag{8.3.3}$$

8.3. SISTEMAS RÍGIDOS CON PUNTO FIJO

Facultad de Ciencias Físicas y Matemáticas

donde la matriz de inercia es

$$I_{ij}^{P} = \sum_{a} m_a \left(r_a^2 \delta_{ij} - x_{ai} x_{aj} \right)$$
(8.3.4)

La definición de matriz de inercia contiene *N* sumandos, uno por cada partícula del sistema. La expresión (8.3.3) permite ver que en general el momento angular no es paralelo a la velocidad angular. En el caso particular en que la velocidad angular es proporcional a uno de los autovectores de \mathbf{I}^{P} los vectores $\vec{\ell}_{P}$ y $\vec{\Omega}$ sí son paralelos.

En algunos casos puede ser útil separar a un sistema rígido en dos sistemas con N_1 y N_2 partículas cada uno, $N = N_1 + N_2$ y en tal caso la matriz de inercia se puede separar en dos, una con índices *a* que toma N_1 valores y la otra que toma el resto de los valores. La matriz de inercia del sistema completo no es más que la suma de las dos matrices de inercia parciales,

$$I_{ij}^{P} = {}^{(1)}I_{ij}^{P} + {}^{(2)}I_{ij}^{P}$$
(8.3.5)

Un paréntesis sobre notación: el producto escalar entre dos vectores tridimensionales puede ser escrito como la suma de los productos de sus componentes cartesianas,

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z = a_1 b_1 + a_2 b_2 + a_3 b_3$$

donde las componentes son designadas sub- una letra (como a_y) y luego por un número (como a_2). Esta última notación nos resultará más cómoda, porque ahora se puede escribir

$$\vec{a} \cdot \vec{b} = \sum_{i=1}^{3} a_i b_i$$

También el producto de una matriz por un vector, Ad se puede escribir por componentes,

$$(A\vec{a})_i = \sum_{j=1}^3 A_{ij}a_j$$

Y por último δ_{ij} se usa para designar a los elementos de la matriz identidad, es decir, δ_{ij} vale cero si $i \neq j$ y vale la unidad si i = j.

Las componentes en la diagonal de la matriz I^{P} se llaman los *momentos de inercia*. Por ejemplo

$$I_{11}^{P} = \sum_{a} m_{a}(r_{a}^{2} - x_{a}^{2}) = \sum_{a} m_{a}(y_{a}^{2} + z_{a}^{2})$$

Universidad de Chile

Escuela de Ingeniería y Ciencias

y los tres son:

$$I_{11} = \sum_{a} m_{a} (y_{a}^{2} + z_{a}^{2})$$

$$I_{22} = \sum_{a} m_{a} (z_{a}^{2} + x_{a}^{2})$$

$$I_{33} = \sum_{a} m_{a} (x_{a}^{2} + y_{a}^{2})$$
(8.3.6)

En el caso de I_{ii} el paréntesis en la sumatoria contiene la distancia entre la partícula *a* y el eje en dirección X_i que pasa por *P*. La matriz de inercia en forma explícita es

$$I = \sum_{a} m_{a} \begin{pmatrix} y_{a}^{2} + z_{a}^{2} & -x_{a}y_{a} & -x_{a}z_{a} \\ -x_{a}y_{a} & z_{a}^{2} + x_{a}^{2} & -y_{a}z_{a} \\ -x_{a}z_{a} & -y_{a}z_{a} & x_{a}^{2} + y_{a}^{2} \end{pmatrix}$$
(8.3.7)

que es real y simétrica. Se verá también que sus autovalores son nonegativos.

La expresión anterior define el momento de inercia de un sistema de partículas de masa m_a y coordenadas (x_a, y_a, z_a) con respecto a ejes cartesianos con origen en un punto que no necesariamente es un punto fijo. Más adelante, en §8.4.2 esta definición va a ser generalizada al caso de distribuciones continuas de masa.

♠ Obtenga el valor de la tensión de la barra en el punto 𝒪 como función del ángulo.

8.3.2. Ejes apropiados para la matriz de inercia

Normalmente es conveniente calcular la matriz de inercia con respecto al sistema inercial S' que se mueve junto al sistema rígido. Puede existir más de una elección de ejes "acompañantes" en los cuales esto se logra.

La matriz de inercia es real y simétrica como se comentó bajo (8.3.7). Además se verá con (8.3.10) que es positiva semidefinida, lo que implica que es diagonalizable y en la diagonal quedan cantidades no negativas. La orientación de los ejes en que se logra esta forma para I_P se llaman los *ejes principales* y son autovectores de I_P .

Si un cuerpo es simétrico existen planos distintos (perpendiculares entre sí) respecto a los cuales, al reflejar el sistema, este queda igual. El caso extremo es una esfera que queda igual al ser reflejada con respecto

a cualquier plano que pase por su centro. Un cubo es un caso donde no cualquier plano sirve. Un cilindro es simétrico con respecto al plano perpendicular a su eje y que pasa por su punto medio, y también lo es con respecto a cualquier plano que contenga al eje del cilindro.

8.3.3. Ejemplo: péndulo cónico doble

8.3.3.1. Descripción en sistema S'

Consideremos un péndulo cónico doble como el de la figura. Está caracterizado por un ángulo θ fijo y por brazos para las masas m_1 y m_2 colineales de largos *b* y *c* respectivamente. El sistema *S*' tiene *Z*' = *Z* y *X*'*Y*' son ejes

Figura 8.4: Un péndulo cónico doble. La proyección de la barra al plano horizontal que pasa por P define la dirección de vector acompañante \hat{i}'

horizontales tal como sistema inercial pero está rotando con la misma velocidad angular ω que el péndulo, de modo que los vectores \vec{r}_1 y \vec{r}_2 siempre están en el plano X'Z y son

$$\vec{r}_1 = \hat{i}' b \sin \theta + \hat{k} b \cos \theta$$
, $\vec{r}_2 = -\hat{i}' c \sin \theta - \hat{k} c \cos \theta$

Universidad de Chile

expresados con los vectores base asociados a S'. En esta base se obtiene, de (8.3.7), que

$$\mathbf{I} = \begin{bmatrix} (m_1b^2 + m_2c^2)\cos^2\theta & 0 & -(m_1b^2 + m_2c^2)\sin\theta\cos\theta \\ 0 & b^2 & 0 \\ -(m_1b^2 + m_2c^2)\sin\theta\cos\theta & 0 & (m_1b^2 + m_2c^2)\sin^2\theta \end{bmatrix}$$

mientras que $\Omega = \omega \hat{k}$. Se determina entonces que

$$\vec{\ell}_P = \mathbf{I}\vec{\Omega} = \omega (m_1 b^2 + m_2 c^2) \sin \theta \begin{pmatrix} -\cos \theta \\ 0 \\ \sin \theta \end{pmatrix}$$
$$= \omega (m_1 b^2 + m_2 c^2) \sin \theta (\hat{k} \sin \theta - \hat{i}' \cos \theta)$$
(8.3.8)

8.3.3.2. Descripción en el sistema S"

Ahora se describirá lo mismo pero usando, por un lado, la matriz de inercia descrita en otro sistema referencia S''.

Figura 8.5: Vista lateral del péndulo doble.

Este sistema *S*["] se define de modo que su eje *Z*" coincide con la dirección de la barra del péndulo y se escoje el eje *X*" en el plano *ZZ*". La matriz de inercia de la barra con dos masas en sus extremos es particularmente sencilla en el sistema *S*" porque las coordenadas de las dos masas son $\vec{r}_1' = (0,0,b)$ y $\vec{r}_2' = (0,0,-c)$ lo que da la matriz de inercia

$$\mathbf{I} = \begin{pmatrix} m_1 b^2 + m_2 c^2 & 0 & 0 \\ 0 & m_1 b^2 + m_2 c^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

8.3. SISTEMAS RÍGIDOS CON PUNTO FIJO
La matriz de inercia que se definió con respecto a los ejes de S' es correcta pero conduce a una descripción más complicada. En la base de S'' la velocidad angular es

$$\vec{\Omega} = \omega \left(\hat{k}'' \cos \theta - \hat{i}'' \sin \theta \right) = \omega \begin{pmatrix} -\sin \theta \\ 0 \\ \cos \theta \end{pmatrix}$$

con lo cual el momento angular es

$$\vec{\ell}_{P} = \begin{pmatrix} m_{1}b^{2} + m_{2}c^{2} & 0 & 0\\ 0 & m_{1}b^{2} + m_{2}c^{2} & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -\omega\sin\theta \\ 0\\ \omega\cos\theta \end{pmatrix}$$
$$= \begin{pmatrix} -\omega\sin\theta(m_{1}b^{2} + m_{2}c^{2})\\ 0\\ 0 \end{pmatrix}$$
$$= -\omega \left(m_{1}b^{2} + m_{2}c^{2}\right)\sin\theta i''$$
(8.3.9)

expresión que es equivalente a (8.3.8).

8.3.3.3. Torque y velocidad angular

Si se desea que la única fuerza externa que ejerza torque desde *P* sea el peso, entonces ω debe tener un valor muy preciso. Para determinar ω se exige que $\dot{\vec{\ell}}_P = \vec{\tau}_P$.

De (8.3.9), y puesto que $\left(\frac{d\hat{i}'}{dt}\right)_{S} = \vec{\Omega} \times \hat{i}'' = \omega \hat{j}'' \cos \theta$ se tiene que

$$ec{\ell}_P = -\omega^2 \left(m_1 b^2 + m_2 c^2
ight) \sin heta \cos heta \ \hat{j}''$$

Por otro lado, puesto que $\vec{g} = -g\hat{k} = g(\hat{i}''\sin\theta - \hat{k}''\cos\theta)$ por lo que

$$\vec{\tau}_P = (m_1 b - m_2 c) \sin \theta \, g \hat{j}''$$

Así, se obtiene que la condición para que el péndulo sea cónico es

$$\omega^{2} = \frac{(m_{2}c - m_{1}b)g}{(m_{1}b^{2} + m_{2}c^{2})\cos\theta}$$

Pareciera que el numerador pudiera ser negativo, pero se puede ver que tal situación es inestable. En efecto, para que este sistema sea estable el centro de masa G, que está en la recta que une a las dos masas, tiene que estar debajo de P.

```
Universidad de Chile
```

8.3.4. Propiedades de la matriz de inercia

8.3.4.1. Teorema de Steiner

8.3.4.2. Expresión para la energía cinética

Aprovechando que $\vec{v}_a = \vec{\Omega} \times \vec{r}_a$ se puede deducir:

$$K = \frac{1}{2} \sum_{a} m_{a} \vec{v}_{a} \cdot \left(\vec{\Omega} \times r_{a}\right)$$
$$= \frac{1}{2} \sum_{a} m_{a} \vec{\Omega} \cdot \left(\vec{r}_{a} \times \vec{v}_{a}\right)$$
$$= \frac{1}{2} \vec{\Omega} \cdot \vec{\ell}_{P}$$
$$= \frac{1}{2} \vec{\Omega} \cdot \mathbf{I}_{P} \vec{\Omega} \qquad (8.3.10)$$

Puesto que esta propiedad es válida para cualquier velocidad angular $\vec{\Omega}$ que se le dé al sistema, y puesto que $K \ge 0$ entonces la matriz I_P es positiva semidefinida. Esto implica que I_P es diagonalizable y sus autovalores son nonegativos.

P. Cordero S. & R. Soto B.

Si se define \hat{n} como el vector unitario que en cada instante apunta en la dirección de $\vec{\Omega}$, es decir,

 $\vec{\Omega} = \Omega \hat{n}$

entonces

$$K = \frac{1}{2}\Omega^2 \hat{n} \cdot \mathbf{I}_P \, \hat{n} = \frac{1}{2} I_{P,n} \, \Omega^2 \tag{8.3.11}$$

donde el escalar $I_{P,n}$ es

$$I_{P,n} = \hat{n} \cdot \mathbf{I}_P \,\hat{n} \tag{8.3.12}$$

y es el momento de inercia relativo al eje que pasa por *P* y tiene dirección \hat{n} , (P, \hat{n}) . Por componentes es

$$I_{P,n} = \sum_{a} m_a \left(r_a^2 - (\vec{r}_a \cdot \hat{n})^2 \right)$$
(8.3.13)

8.3.4.3. Relación con el momento de inercia con respecto a G

Es útil notar que

$$(\vec{r} \times \hat{n}) \cdot (\vec{r} \times \hat{n}) = \vec{r} \cdot (\hat{n} \times (\vec{r} \times \hat{n}))$$

$$= \vec{r} \cdot (\vec{r} - \hat{n} \cdot \vec{r} \hat{n})$$

$$= r^2 - (\vec{r} \cdot \hat{n})^2 \qquad (8.3.14)$$

lo que permite ver que otra forma de escribir la matriz de inercia es

$$I_{P,n} = \sum_{a} m_a(\vec{r}_a \times \hat{n}) \cdot (\vec{r}_a \times \hat{n})$$
(8.3.15)

Figura 8.6: Se puede establecer una sencilla relación entre el momento de inercia con respecto al punto fijo P y el momento de inercia con respecto al centro de gravedad G.

Si *G* es el centro de masa, el que suponemos que no está en el eje (P, \hat{n}) , se puede relacionar los momentos de inercia $I_{P,n}$ y $I_{G,n}$ donde el segundo se define relativo a un eje (G, \hat{n}) con la misma dirección \hat{n} . Si se denota por \vec{r}_a la posición de m_a desde *P* y $\vec{\rho}_a$ la posición desde *G*, y el vector de *P* a *G* se le designa \vec{R} entonces

$$\vec{r}_a = \vec{R} + \vec{\rho}_a$$

A partir de (8.3.15) se obtiene que

$$I_{P,n} = \sum_{a} m_{a} (\vec{r}_{a} \times n)^{2}$$

=
$$\sum_{a} m_{a} (\vec{\rho}_{a} \times \hat{n})^{2} + \sum_{a} m_{a} (\vec{R} \times \hat{n})^{2} + 2 \sum_{a} m_{a} (\vec{R} \times \hat{n}) \cdot (\vec{\rho}_{a} \times \hat{n})$$

La última de las sumatorias se anula debido a (2.3.23) lo que finalmente conduce a

$$I_{P,n} = I_{G,n} + M\left(\vec{R} \times \hat{n}\right)^2 \tag{8.3.16}$$

Si *G* estuviese sobre el eje (P, \hat{n}) , entonces $\vec{R} \times \hat{n} = 0$ y ambos momentos resultarían iguales.

8.4. Límite al caso continuo

8.4.1. Ejemplo: Péndulo de N masas y su límite al continuo

8.4.1.1. Del discreto al continuo

A continuación se estudia el caso de una barra de masa despreciable, largo R = Na a la cual están fijas N masas m, tal que M = Nm y ellas están a intervalos regulares separadas por una distancia a. En el sistema S' que se define por la figura, el vector posición de la q-ésima partícula es $\vec{r}_q = qa(0,0,1)$, por lo que $r_q^a = q^2a^2$, mientras que el eje de giro define al vector unitario $\hat{n} = \hat{j}$, por lo que $\vec{r}_q \cdot \hat{n} = 0$ y, usando (8.3.13)

Figura 8.7: Péndulo de N masas unidas a una barra ideal rígida.

$$I_{P,\hat{n}} = ma^2 \sum_{q=1}^{N} q^2 = \frac{ma^2 N(N+1)(2N+1)}{6}$$

y el momento angular en torno a este eje es (un escalar)

$$\ell_P = I_{P,\hat{n}} \,\dot{\phi} = ma^2 \sum_{q=1}^N q^2 = \frac{ma^2 N(N+1)(2N+1)}{6} \,\dot{\phi}$$

El torque que produce el peso se obtiene

$$\vec{\tau}_P = -\frac{m}{2}N(N+1)ag\sin\phi\hat{k}$$
 (8.4.17)

Se concluye que la ecuación dinámica es

$$\ddot{\phi} = -\frac{3g}{(2N+1)a}\sin\phi \tag{8.4.18}$$

^{8.4.} LÍMITE AL CASO CONTINUO

El caso N = 1 recupera lo que ya se conocía del péndulo simple.

Otro caso interesante es aquel en que se toma el límite $N \rightarrow \infty$ con $a \rightarrow 0$ tal que R = Na quede fijo. En tal límite se trata de un péndulo en forma de barra con masa distribuida a todo lo largo en forma continua y

$$I_{P,\hat{n}} = \frac{M}{3}R^2 \tag{8.4.19}$$

La ecuación queda

$$\ddot{\phi} = -\frac{g}{\frac{2}{3}R}\sin\phi \tag{8.4.20}$$

La diferencia entre la ecuación para el péndulo simple y esta ecuación es que en la primera aparece *R* donde acá aparece $\frac{2}{3}R$.

♠ Determinar la energía cinética y potencial para el péndulo de *N* masas y luego determinar los casos extremos N = 1 y $N \rightarrow \infty$. En particular demuestre que la energía cinética es

$$K = \frac{m}{2} \frac{N(N+1)(2N+1)}{6} a^2 \dot{\phi}^2 = \frac{I}{2} \dot{\phi}^2$$
(8.4.21)

La cantidad *I* es el ya definido *momento de inercia* que juega un papel importante en la dinámica de cuerpos rígidos.

En el caso límite ya discutido la energía cinética toma la forma

$$K = \frac{1}{2}I\dot{\phi}^2$$
 con $I = \frac{1}{3}MR^2$ (8.4.22)

8.4.1.2. Directamente el caso continuo

Existe una forma diferente de estudiar el caso de la barra continua. En el planteamiento se reemplaza *a* por un diferencial de largo $a = d\rho$, se reemplaza $\frac{m}{a}$ por una densidad lineal de masa, $\frac{m}{a} \rightarrow \lambda = \frac{M}{R}$ y en lugar del producto *ka* se escribe la variable continua de longitud ρ . Entonces el momento angular es

$$\vec{\ell}_P = \int_0^R \rho \hat{\rho} \times \left(\lambda \rho \phi \hat{\phi}\right) d\rho = \hat{k} \lambda \phi \int_0^R \rho^2 d\rho = \hat{k} \lambda \phi \frac{R^3}{3}$$
(8.4.23)

En forma semejante el torque es

$$\vec{\tau}_P = -\hat{k}g\sin\phi\lambda\int_0^R \rho\,d\rho = -\hat{k}\lambda\,g\sin\phi\,\frac{R^2}{2} \tag{8.4.24}$$

lo que permite recuperar (8.4.20).

• Obtenga la ecuación de péndulos continuos para los cuales la densidad lineal no es uniforme, sino que depende de s, $\lambda(s)$. Hágalo para el caso general y también aplique sus resultados para algunas funciones $\lambda(s)$ sencillas.

8.4.2. Densidades de masa, el centro de masa y matriz de inercia

En forma semejante las otras expresiones que se vieron en el caso discreto ahora son

$$I_{P,\hat{n}} = \int \left(\vec{r} \times \hat{n}\right)^2 dm \qquad (8.4.25)$$

$$I_{G,\hat{n}} = \int \left(\vec{\rho} \times \hat{n}\right)^2 dm \qquad (8.4.26)$$

$$I_{P,\hat{n}} = I_{G,\hat{n}} + M \left(R_G \times \hat{n} \right)^2$$
(8.4.27)

8.4.2.1. Ejemplos

8.4.2.1.1. Una semicircunferencia con densidad lineal uniforme La densidad de masa lineal es uniforme, $\lambda = \frac{M}{R\pi}$ donde *R* es el radio de la semicircunferencia. Se toma como *P* el centro de curvatura por lo que el vector que señala los puntos de la curva es $\vec{r} = R \left(\hat{k}' \cos \phi + \hat{i}' \sin \phi \right)$ donde $\phi = -\pi/2...\phi/2$. El elemento de arco es $Rd\phi$, por lo que $dm = \lambda ds = \frac{M}{R\pi}Rd\phi = \frac{M}{\pi}d\phi$

$$\vec{R}_G = \frac{1}{M} \frac{M}{\pi} \int R\left(\hat{k}' \cos\phi + \hat{\imath}' \sin\phi\right) d\phi = \frac{2R}{\pi} \hat{k}' \approx 0.64 R \hat{k}'$$

8.4. LÍMITE AL CASO CONTINUO

Figura 8.8: Semicircunferencia de radio R y masa M.

Puesto que $\vec{r} = R \left(\hat{k}' \cos \phi + \hat{i}' \sin \phi \right)$ entonces $x = R \sin \phi$, y = 0 y $z = R \cos \phi$. La matriz $\left[r^2 \delta_{ij} - x_i x_j \right]$ es

$$\begin{pmatrix} R^2\cos^2\phi & 0 & -R^2\sin\phi\cos\phi \\ 0 & R^2 & 0 \\ -R^2\sin\phi\cos\phi & 0 & R^2\sin^2\phi \end{pmatrix}$$

por lo que

$$\mathbf{I}^{P} = \int \begin{pmatrix} R^{2}\cos^{2}\phi & 0 & -R^{2}\sin\phi\cos\phi \\ 0 & R^{2} & 0 \\ -R^{2}\sin\phi\cos\phi & 0 & R^{2}\sin^{2}\phi \end{pmatrix} \frac{M}{\pi} d\phi = MR^{2} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

Si este sistema es un péndulo que oscila en torno al eje Y' = Y estonces $\vec{\Omega} = \dot{\alpha} \hat{j}'$ donde α es el ángulo que forma Z' con el eje vertical Z (que en este ejemplo apunta hacia abajo. El momento angular en tal caso es

$$\vec{\ell}_P = \mathbf{I}^P \Omega = M R^2 \dot{\alpha} \, \hat{j}$$

Por otro lado el torque es

$$\tau = M\vec{R}_G \times \vec{g} = M\frac{2R}{\pi}\hat{k}' \times g\left(\hat{k}'\cos\alpha - \hat{i}'\right) = -\frac{2MgR}{\pi}\sin\alpha\,\hat{j}$$

lo que conduce a

$$\ddot{\alpha} = \frac{2g}{\pi R} \sin \alpha$$

Con todo lo anterior también puede resolverse en forma semejante el caso en que el arco oscila en torno al eje X' = X, lo que lleva a un resultado parecido pero no indéntico.

8.4.2.1.2. Un semicírculo de densidad uniforme Esta vez la densidad uniforme es $\sigma = \frac{2M}{\pi R^2}$ y el vector $\vec{r} = \rho \left(\hat{k}' \cos \phi + \hat{i}' \sin \phi\right)$ donde con $0 \le \rho \le R$ recorre los puntos del semicírculo. El elemento de superficie es $dS = \rho d\rho d\phi$ por lo que $dm = \frac{2M}{\pi R^2} \rho d\rho d\phi$ y

$$\vec{R}_{G} = \frac{1}{M} \frac{2M}{\pi R^{2}} \int_{0}^{R} \rho^{2} d\rho \int_{-\pi/2}^{\pi/2} \left(\hat{k}' \cos \phi + \hat{i}' \sin \phi \right) d\phi = \frac{4R}{3\pi} \hat{k}' \approx 0.42R \hat{k}'$$

Semejante al caso anterior, acá se tiene $x = \rho \sin \phi$, y = 0 y $z = \rho \cos \phi$ y ahora

$$\mathbf{I}^{P} = \int \left(\begin{array}{ccc} \rho^{2} \cos^{2} \phi & 0 & -\rho^{2} \sin \phi \cos \phi \\ 0 & \rho^{2} & 0 \\ -\rho^{2} \sin \phi \cos \phi & 0 & \rho^{2} \sin^{2} \phi \end{array} \right) \frac{2M}{\pi R^{2}} \rho \, d\rho \, d\phi$$
$$= \frac{2M}{\pi R^{2}} \left(\begin{array}{ccc} \frac{R^{4}}{4} \frac{\pi}{2} & 0 & 0 \\ 0 & \frac{R^{4}}{4} \pi & 0 \\ 0 & 0 & \frac{R^{4}}{4} \frac{\pi}{2} \end{array} \right)$$
$$= MR^{2} \left(\begin{array}{ccc} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} \end{array} \right)$$

Figura 8.9: Semicírculo oscilando en torno al eje X.

Si este sistema oscila como péndulo en torno a su diámetro, esto es, en torno al eje X = X', la velocidad angular es $\vec{\Omega} = \dot{\alpha} \hat{i}$ y el momento angular es

$$\vec{\ell}_P = \frac{MR^2}{2} \dot{\alpha} \,\hat{\imath}$$

8.4. LÍMITE AL CASO CONTINUO

donde α es el ángulo entre el eje Z' y el eje vertical Z. El torque que produce el peso es

$$\vec{\tau} = M\vec{R}_G \times \vec{g} = M\frac{4R}{3\pi}\hat{k}' \times g\left(\hat{k}'\cos\alpha - \hat{j}'\sin\alpha\right) = -\frac{4MgR}{3\pi}\sin\alpha\,\hat{i}'$$

de donde es directo obtener la ecuación para $\ddot{\alpha}$.

8.4.2.2. Elementos de superficie y de volumen en coordenadas esféricas

Figura 8.10: En gris un paralelepípedo con lados: $r \sin \theta d\phi y r d\theta$.

La figura adjunta muestra un elemento de superficie en coordenadas esféricas. Como se explica en la leyenda de la figura, ese elemento de superficie vale $dS = r^2 \sin \theta \, d\theta \, d\phi$. Integrando sobre ϕ entre cero y 2π y sobre θ entre cero y π se cubre la superficie completa. $\int d\phi = 2\pi$ mientras que $\int \sin \theta \, d\theta = 2$, con lo cual se obtiene que $S = 4\pi r^2$, como debe ser.

Usando la misma figura se puede agregar una tercera dimensión colocando una pequeña superficie semejante a distancia dr de la anterior. Se obtiene algo como un pequeño cubo de volumen $dV = r^2 dr \sin\theta d\theta d\phi$. Si se integra este elemento de volumen usando los mismos límites angulares e integrando sobre *r* entre cero y *R* se obtiene $\frac{4}{3}\pi R^3$.

8.4.2.2.1. Ejemplo Esto se puede ilustrar calculando la posición del centro de masa de la semiesfera z > 0 cuyo centro está en el origen y radio *R*. Por simetría se infiere que \vec{R}_G tiene tan solo componente a lo largo del eje

Figura 8.11: Se puede calcular la posición del centro de masa de una semiesfera.

Z, $\vec{R}_G = (0,0,z_G)$ y z_G se calcula integrando *z* por la densidad que supondremos uniforme.

Una forma cómoda de integrar hace uso de coordenadas esféricas. El elemento de volumen es $dV = d\cos\theta \, d\phi \, r^2 \, dr$ mientras que $z = r \cos\theta$. Entonces

$$z_G = \frac{1}{V} \int_0^1 \cos \theta \, d\cos \theta \, \int_0^{2\pi} d\phi \, \int_0^R r^3 \, dr = \frac{3R}{8} \tag{8.4.28}$$

8.4.2.3. Matriz de inercia de un cilindro

Cálculo de los momentos de inercia con respecto a su centro de masa de un cilindro de radio *R*, eje es el eje *Z*, altura *h*, con densidad uniforme ρ_0 ,

$$\rho_0 = \frac{M}{\pi R^2 h}$$

El elemento de volumen es

$$dV = \rho \, d\rho \, d\phi \, dz \tag{8.4.29}$$

por lo que

$$dm = \frac{M}{\pi R^2 h} \rho \, d\rho \, d\phi \, dz$$

donde $0 \le \rho \le R$, $0 \le \phi \le 2\pi$ y $-\frac{h}{2} \le z \le \frac{h}{2}$. El vector posición de un punto interior cualquiera del cilindro es $\vec{r} = x\hat{i}' + y\hat{j}' + z\hat{k}' \operatorname{con} x = \rho \cos \phi$ y $y = \rho \sin \phi$. De aquí que

$$\mathbf{I}^{G} = \frac{M}{\pi R^{2}h} \int \begin{pmatrix} \rho^{2} \sin^{2}\phi + z^{2} & -\rho^{2} \sin\phi \cos\phi & -z\rho \cos\phi \\ -\rho^{2} \sin\phi \cos\phi & \rho^{2} \cos^{2}\phi + z^{2} & -z\rho \sin\phi \\ -z\rho \cos\phi & -z\rho \sin\phi & \rho^{2} \end{pmatrix} \rho \, d\rho \, d\phi \, dz$$

^{8.4.} LÍMITE AL CASO CONTINUO

Figura 8.12: La matriz de inercia de un cilindro es fácil de calcular.

Usando que

$$\int z^2 dz = \frac{h^3}{12} \qquad \int dz = h$$

$$\int \rho^3 d\rho = \frac{R^4}{4} \qquad \int d\rho = R$$

$$\int \sin^2 \phi \, d\phi = \pi \qquad \int d\phi = 2\pi$$

se obtiene

$$\mathbf{I}_{\text{cilindro}}^{G} = M \begin{pmatrix} \frac{R^{2}}{4} + \frac{h^{2}}{12} & 0 & 0\\ 0 & \frac{R^{2}}{4} + \frac{h^{2}}{12} & 0\\ 0 & 0 & \frac{R^{2}}{2} \end{pmatrix}$$
(8.4.30)

El sistema es una vara si se toma R = 0,

$$\mathbf{I}_{\mathsf{vara}}^{G} = \frac{Mh^2}{12} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}$$
(8.4.31)

y es un disco si se toma h = 0,

$$\mathbf{I}_{\mathsf{disco}}^{G} = \frac{MR^2}{4} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2 \end{pmatrix}$$
(8.4.32)

Usando el teorema de Steiner se puede calcular la matriz de inercia I^P , a partir de I^G , con respecto a un punto *P* con tan solo saber el vector \vec{R}_G que va desde *P* hasta *G*.

• Calcule la matriz de inercia de una superficie cilíndrica de radio R, altura h centrada en el eje Z, con su parte inferior con coordenada z_0 .

A Determine la matriz de inercia de una cuerpo cónico con Z como su eje de simetría, altura h, radio basal R y densidad uniforme ρ_0 .

```
Universidad de Chile
```

8.4.2.4. Un círculo con punto fijo en su perímetro

La matriz de inercia con respecto al centro es (8.4.32) en el limite h = 0siempre que el eje Z' sea perpendicular al plano del círculo. Para tener I_{disco}^{P} es necesario usar el teorema de Steiner $I_{disco}^{P} = I_{disco}^{G} + M [R^{2} \delta_{ij} - R_{i}R_{j}]$ donde $\vec{R}_{G} = (R, 0, 0)$ es el vector que va desde P hasta G y los R_{i} son las componentes cartesianas de \vec{R}_{G} , esto es

Figura 8.13: Lámina circular que se mueve como un péndulo con P como punto fijo. Los ejes X' e Y' son fijos al sistema S' = círculo.

$$\mathbf{I}^{P} = MR^{2} \begin{pmatrix} \frac{1}{4} & 0 & 0\\ 0 & \frac{1}{4} & 0\\ 0 & 0 & \frac{1}{2} \end{pmatrix} + MR^{2} \begin{pmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$= MR^{2} \begin{pmatrix} \frac{1}{4} & 0 & 0\\ 0 & \frac{5}{4} & 0\\ 0 & 0 & \frac{3}{2} \end{pmatrix}$$
(8.4.33)

a) Si el péndulo oscila en el plano del círculo, es decir en torno al eje Z = Z', la velocidad angular es $\Omega = \dot{\phi}\hat{k}$ lo que lleva inmediatamente a

$$\vec{\ell}_P = \frac{3MR^2}{2} \dot{\phi} \, \hat{k}'$$

El torque del peso, con $\vec{g} = g \hat{i} = g (\hat{i}' \cos \alpha - \hat{j}' \sin \alpha)$

$$\vec{\tau} = M(R\hat{i}') \times g(\hat{i}'\cos\alpha - \hat{j}'\sin\alpha) = -MgR\sin\alpha\,\hat{k}'$$

Con lo cual se obtiene la ecuación dinámica

$$\ddot{\alpha} = -\frac{2g}{3R}\sin\alpha$$

8.4. LÍMITE AL CASO CONTINUO

b) Más interesante es el caso en que el círculo oscila en torno a un eje Y' tangente a él. La matriz de inercia con respecto a *G* expresada en el sistema *S'* de la figura es precisamente la dada en (8.4.32). La velocidad angular es $\vec{\Omega} = \dot{\alpha}\hat{j}$, donde $\hat{j} = \hat{j}'$. Por lo tanto

Figura 8.14: Una lámina circular perpendicular al plano de la figura, oscila con su punto P fijo.

$$\vec{\ell}_G = \frac{MR^2}{4} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ \dot{\alpha} \\ 0 \end{pmatrix} = \frac{MR^2}{4} \dot{\alpha} \hat{j}'$$

Mientras que $\vec{\ell}_p^G$ es el momento angular con respecto a *P* de una masa *M* ubicada en *G*: $\vec{\ell}_p^G = MRi' \times (-R\dot{\alpha}\hat{k}') = MR^2\dot{\alpha}\hat{j}'$ lo que da un momento angular total $\vec{\ell}_P = \frac{5}{4}MR^2\dot{\alpha}\hat{j}'$.

Al igual que antes, el torque total coincide con el torque de una masa M ubicada en G, $\vec{\tau} = R\hat{i}' \times M\vec{g}$ pero $\vec{g} = g(\hat{i}' \cos \alpha + \hat{k}' \sin \alpha)$ lo que da $\vec{\tau} = -MRg \sin \alpha \hat{j}$ y la ecuación es

$$\ddot{\alpha} = -\frac{4g}{5R}\sin\alpha$$

Este resultado también puede obtenerse directamente de (8.4.33).

8.4.3. Disco que rota en círculo sobre un plano

Se tiene un eje perpendicular a un plano horizontal. De este eje nace, a altura R sobre el plano, un brazo horizontal de largo L—en la dirección del eje Z'—y en cuyo extremo hay un disco de radio R. El disco tiene densidad uniforme, masa total M y gira en torno a su eje Z' con una velocidad angular

Figura 8.15: Una rueda gira sobre un plano sin resbalar. Su eje mantiene un punto fijo sobre el eje Z.

dada $\vec{\omega}_1$. Puesto que no desliza sobre el plano, además gira en torno al eje vertical con velocidad angular $\vec{\omega}_2$, totalmente determinada por la anterior. Se desea determinar el momento angular del disco.

Se escoge coordenadas polares, con lo cual

$$\vec{\omega}_1 = \hat{k}' \omega_1, \qquad \vec{\omega}_2 = -\hat{j}' \omega_2$$

lo que determina que la velocidad angular total del disco sea

$$\vec{\Omega} = \hat{k}' \omega_1 - \hat{j}' \omega_2 = \begin{pmatrix} 0 \\ -\omega_2 \\ \omega_1 \end{pmatrix}$$
(8.4.34)

El punto material *C* del disco que en el instante actual está apoyado sobre el plano tiene velocidad nula en ese instante, pero, porque es parte de un sistema rígido con punto fijo, tiene que valer $\vec{v}_C = \vec{\Omega} \times \vec{r}_C$, esto es,

$$0 = \vec{\Omega} \times \vec{r}_C = (\hat{k}'\omega_1 - \hat{j}'\omega_2) \times (L\hat{k}' - R\hat{j}') \implies \omega_2 = \frac{R}{L}\omega_1$$

Para calcular el momento angular se va a usar la matriz de inercia del disco, I_{disco}^{G} a la que hay que agregar la matriz $[R^{2}\delta_{ij} - R_{i}R_{j}]$. donde $\vec{R} = (0, 0, L)$,

$$\mathbf{I}_{\text{disco}}^{P} = \frac{MR^{2}}{4} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} + ML^{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

8.4. LÍMITE AL CASO CONTINUO

$$= \frac{M}{4} \begin{pmatrix} 4L^2 + R^2 & 0 & 0\\ 0 & 4L^2 + R^2 & 0\\ 0 & 0 & 2R^2 \end{pmatrix}$$
(8.4.35)

y se la va a multiplicar por $\vec{\Omega}$ y como matriz de inercia se va a usar directamente (8.4.35). Entonces $\vec{\ell} = I_{disco}\vec{\Omega}$ se escribe

$$\vec{\ell} = \frac{M}{4} \begin{pmatrix} 4L^2 + R^2 & 0 & 0\\ 0 & 4L^2 + R^2 & 0\\ 0 & 0 & 2R^2 \end{pmatrix} \begin{pmatrix} 0\\ -\frac{R}{L}\omega_1\\ \omega_1 \end{pmatrix}$$
$$= \frac{M}{4} \begin{pmatrix} 0\\ -(4L^2 + R^2)\frac{R}{L}\omega_1\\ 2R^2\omega_1 \end{pmatrix}$$
$$= \frac{MR\omega_1}{4} \left(\hat{k}' 2R - \hat{j}' \frac{4L^2 + R^2}{L}\right)$$
(8.4.36)

8.4.4. Trompo en movimiento cónico

Se considera un trompo que consiste en un brazo de largo *L* que nace de un punto *P* en cuyo extremo hay un disco de densidad uniforme, radio *R* y masa *M*. Esto es $\vec{R}_G = -L\hat{k}'$ usando la base asociada al sistema {*P*, *X'*, *Y'*, *Z'*} de la figura 8.16.

El brazo mantendrá un ángulo θ =constante con la vertical tal como indica la figura. En cada instante el disco está girando con velocidad angular $\vec{\omega}_1$ respecto a un sistema fijo al brazo, pero el brazo mismo está girando con una velocidad angular $\vec{\omega}_2$ en torno al eje vertical. Estas velocidades se expresan en la forma

 $\vec{\omega}_1 = \omega_1 \hat{k}', \qquad \vec{\omega}_2 = \omega_2 \left(\hat{k}' \cos \theta + \hat{j}' \sin \theta \right) \quad \Rightarrow \quad \vec{\Omega} = \hat{k}' (\omega_1 + \omega_2 \cos \theta) + \hat{j}' \omega_2 \sin \theta$

Este movimiento es posible tan solo si ω_1 y ω_2 satisfacen una condición que se deduce más adelante. En general el ángulo θ no es constante y el movimiento del trompo es bastante complicado.

La matriz de inercia $\mathbf{I}^{P} = [R^{2}\delta_{ij} - R_{i}R_{j}] + \mathbf{I}^{G}$ y, tal como en el ejemplo anterior, resulta se

$$\mathbf{I}^{P} = \frac{M}{4} \begin{pmatrix} 4L^{2} + R^{2} & 0 & 0\\ 0 & 4L^{2} + R^{2} & 0\\ 0 & 0 & 2R^{2} \end{pmatrix}$$

Figura 8.16: Un disco gira en torno a un eje de largo L. El otro extremo del eje está fijo al punto P. El sistema S' tiene eje Z' que coincide con el brazo de largo L y el eje Y' está en el plano de Z' y la vertical.

por lo que el momento angular $\vec{\ell}_P = \mathbf{I}^P \vec{\Omega}$ es

$$\ell_P = \frac{M}{4} \left[\left(4L^2 + R^2 \right) \omega_2 \sin \theta \ \hat{j}' + 2R^2 \left(\omega_1 + \omega_2 \cos \theta \right) \ \hat{k}' \right]$$

En esta expresión todas las cantidades son constantes en el sistema de referencia inercial excepto por oos vectores unitarios asociados a *S'*, de modo que $\vec{\ell}_P$ se calcula sencillamente usando producto cruz con $\vec{\omega}_2$:

$$\vec{\ell}_P = \vec{\omega}_2 \times \vec{\ell}_P = \frac{M}{4} \left[-\left(4L^2 + R^2\right) \omega_2^2 \sin\theta \cos\theta + 2R^2 \left(\omega_1 + \omega_2 \cos\theta\right) \omega_2 \sin\theta \right] \vec{i}'$$

que debe igualarse al torque que produce el peso

$$\vec{\tau} = M\vec{R}_G \times \vec{g}$$

$$= M(-L\hat{k}') \times (-g) \left(\hat{k}'\cos\theta + \hat{j}'\sin\theta\right)$$

$$= -MgL\sin\theta\,\hat{i}' \qquad (8.4.37)$$

por lo que finalmente puede escribirse que

$$\frac{M}{4}\left[-(4L^2+R^2)\omega_2^2\sin\theta\cos\theta+2R^2(\omega_1+\omega_2\cos\theta)\omega_2\sin\theta\right] = -MgL\sin\theta$$
(8.4.38)

que es la relación que deben satisfacer ω_1 y ω_2 para que el trompo tenga un movimiento cónico. Nótese que si se cambia el signo de ω_1 y de ω_2 la

ecuación no cambia. Esta ecuación implica que el caso $\omega_2 = 0$ es posible tan solo si $\theta = 0$ lo que es intuitivo.

Suponieneo que $\theta \neq 0$ la ecuación anterior se puede reescribir en la forma

$$\left(\frac{R^2}{4} - L^2\right)\omega_2^2\cos\theta + \frac{1}{2}R^2\omega_1\omega_2 + gL = 0$$
(8.4.39)

A continuación un par de casos especiales.

El caso $\theta = \frac{\pi}{2}$:

$$\omega_1 \omega_2 = -\frac{2Lg}{R^2}$$

El caso L = 0 :

$$\cos\theta = -\frac{2\omega_1}{\omega_2}$$

Nótese que para pasar de (8.4.38) a (8.4.39) se eliminó un factor global $\sin \theta$, lo que supone que $\theta \neq 0$. Sin embargo si en (8.4.38) se impone que $\omega_2 = 0$ se desprende que necesariamente $\theta = 0$.

8.5. Problemas

8.1 Una placa cuadrada de lado *a* y masa total *M* puede girar libremente en torno a un eje perpendicular al plano de la figura y que pasa por su vértice *P* (ver figura). Inicialmente el cuadrado está sujeto por un hilo horizontal como indica la figura.
(a) Obtenga la tensión del hilo. (b) Si el hilo se corta obtenga la velocidad angular máxima que puede alcanzar el sistema. (c) Obtenga la frecuencia de pequeñas oscilaciones en torno a su posición de equilibrio.

Universidad de Chile

Escuela de Ingeniería y Ciencias

8.2 Una placa rectangular de masa *M*, lados *a* y *b* y espesor despreciable se hace girar con velocidad angular constante Ω_0 por un eje que pasa por la diagonal del rectángulo. El movimiento ocurre en ausencia de gravedad. Determine las fuerzas que ejercen los soportes en cada extremo del eje. Comente.

198

8.3 Sistema: un disco de densidad uniforme, radio *R* y masa *M* y un eje de masa despreciable que une un punto fijo de un plano horizontal con el centro del disco. El disco gira apoyado en el plano horizontal. (a) Determine el momento angular. (b) Determine el torque total que actúa sobre el disco.

versión de 7 de marzo de 2008

8.4 Se tiene una especie de péndulo que consta de una vara de masa despreciable y largo *L* que solo puede girar en un plano vertical en torno a un punto fijo *P*. En su extremo libre la vara tiene un disco de densidad uniforme, radio *R* y masa *M* en forma perpendicular a la vara. El disco gira, con respecto a la vara (ella como eje), con velocidad angular uniforme $\vec{\omega}$. (a) Determine el momento angular del sistema. (b) Si el sistema se suelta cuando la vara está vertical apuntando hacia arriba, una ecuación para la velocidad angular de la vara con respecto al vara (angulo que ella forma con la vertical.

8.5. PROBLEMAS

8.5 Considere una barra rígida de masa despreciable que tiene *N* masas *m* a distancia *a* entre ellas. La barra está apoyada en el suelo e inicialmente en posición vertical. Estudie el movimiento de la barra cuando ella es levemente desviada de esa posición. Suponga que el roce estático con el suelo es suficiente para que el punto de apoyo nunca deslice. ¿Existe algún momento en que

el punto de apoyo se despega del suelo? Estudie además el límite simultaneo $N \rightarrow \infty$, $a \rightarrow 0$, $m \rightarrow 0$ tal que permanecen fijas las cantidades R = Na y M = Nm.

- 8.6 Resuelva ahora el caso anterior con una sola variante: el sistema tiene dos masas diferentes m_1 y m_2 en los extremos de la barra. Responda las mismas preguntas que antes excepto, naturalmente, la del límite.
- 8.7 Una barra de largo L y masa M y densidad lineal uniforme, puede girar libremente sobre un eje horizontal colocado en uno de sus extremos. En el punto medio de la barra se encuentra un anillo de masa m que tiene un coeficiente de roce estático μ con la barra.

Si el sistema se libera desde el reposo con la barra en posición horizontal, se observa que el anillo comienza a deslizar cuando la barra forma un ángulo $\pi/4$ con la horizontal. Determine (a) el momento de inercia del sistema antes que el anillo comience a deslizar, (b) la velocidad angular y aceleración angular de la barra en el instante en que el anillo va a comenzar a deslizar, (c) la fuerza que ejerce sobre la barra el punto de apoyo.