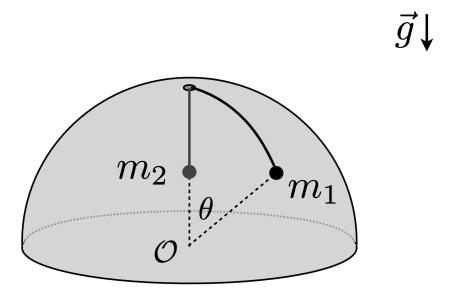


Auxiliar 18

Lagrangiano


Profesor: Gonzalo Palma

Auxiliares: Eduardo Droguett, Javier Huenupi Ayudante: Thiare González, Lukas Philippi, Claudia San Martín

P1.- P2 Control 3 2023

Un casquete semi-esférico de radio R tiene un orificio pequeño en su parte superior. Por él, pasa una cuerda ideal inextensible de largo $\pi R/2$ con dos masas m_1 y m_2 en sus extremos. La masa m_2 cuelga verticalmente desde el orificio, mientras que m_1 permanece en contacto con la superficie del casquete (ver figura). Inicialmente, la masa sobre el casquete es tal que $\theta = \pi/3$, $\dot{\theta} = 0$, $\phi = 0$, $\dot{\phi} = \omega_0$

- a) Obtenga una expresión para el Lagrangiano del sistema en función de las coordenadas esféricas θ y φ que denotan la posición de m_1 sobre el casquete
- b) Derive las ecuaciones de Euler-Lagrange asociadas a θ y φ
- c) A partir de la ecuación de Euler-Lagrange asociada a φ , determine una expresión para $\dot{\varphi}$ en función de θ tomando en cuenta las condiciones iniciales del sistema
- d) Use el resultado de la parte c) para eliminar $\dot{\varphi}$ de la ecuación de Euler-Lagrange asociada a θ . A partir de este resultado, determine el valor que debe tener ω_0 para que la trayectoria alrededor del casquete sea circular uniforme (con $\theta = \pi/3$)

Auxiliar 18

Formulario

Lagrangianc

El lagrangiano L se calcula como

$$L = K - U,$$

donde K es la energía cinética y U la energía potencial del sistema. Se debe considerar **todas** las partículas del sistema y la energía potencial puede tener múltiples contribuciones. Las ecuaciones de Euler-Lagrange se calculan como

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0,$$

donde q es una coordenada generalizada, puede ser: $q=x,\,q=\theta,\,q=r,$ etc. Estas ecuaciones de E-L nos dan las ecuaciones de movimiento del sistema.

Auxiliar 18