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Ensemble stream flow predictions obtained by forcing rainfall–runoff models with probabilistic weather
forecasting products are becoming more commonly used in operational flood forecasting applications. In
this paper the performance of ensemble flow forecasts at various stations in the Rhine basin are studied
by the means of probabilistic verification statistics. When compared to climatology positive skill scores
are found at all river gauges for lead times of up to 9 days, thus proving the medium-range flow forecasts
to be useful. A preliminary comparison between the low resolution ECMWF-EPS forecast and the high-
resolution COSMO-LEPS forecast products shows that downscaling of global meteorological forecast
products is recommended before use in forcing rainfall–runoff models in flow forecasting.

� 2009 Elsevier B.V. All rights reserved.
Introduction

Hydrological forecasts for the medium range have long been
limited by the quality of quantitative precipitation forecasting,
being the most challenging task in meteorological forecasting
(Roulin, 2007). Meteorological forecasts are nowadays based upon
the numerical solution of the atmospheric equations with Numer-
ical Weather Prediction (NWP) models. These finite, nonlinear dif-
ferential equations prove to have unstable solutions when initial
conditions are slightly changed (Lorenz, 1963) and the recognition
of this fact, as well as the increase in computing power has led to
the development of meteorological ensemble forecasts, which sim-
ulate the evolution of the atmosphere due to perturbed initial
conditions.

For hydrological forecasts it is a logical step to make use of
these meteorological ensemble forecasts, as they provide addi-
tional and valuable information about meteorological forecast
uncertainty, especially future precipitation amounts (Bartholmes
and Todini, 2005; Roulin, 2007). One approach is to use ensemble
forecasts as the input for hydrological rainfall–runoff models, to
ll rights reserved.
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gain an ensemble of hydro-meteorological flow forecasts. This
has been demonstrated for several historical flood events using
the Ensemble Prediction System (EPS) of the European Center for
Medium-range Weather Forecasts (ECWMF) by for example de
Roo et al. (2003), Werner et al. (2004) and Gouweleeuw et al.
(2005).

Although the running of hydrological ensemble forecasts is a
challenge in its own right, there are several key scientific questions
that need to be addressed. These focus on assessing the perfor-
mance of the hydro-meteorological ensemble forecasts, the com-
parison of different ensemble products and understanding the
relationship between the resolution of the meteorological forecast-
ing models and the catchment scale. Furthermore, the question is
how well the meteorological forecast uncertainty is reflected in
the ensemble flow forecast. Forecast verification techniques may
be applied to address these questions with several techniques
developed within the atmospheric sciences being applicable to
the hydrological sciences (Wilks, 2006).

Several authors have verified hydro-meteorological ensemble
forecasts for single events, e.g. the Rhine and Meuse floods in
1993 and 1995 (de Roo et al., 2003) and the Oder flood in 1998
(Gouweleeuw et al., 2005), and although these provide valuable in-
sight in the reliability of the forecast for the single event, the per-
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formance of ensemble flow forecasts may change from event to
event. As a result forecasts should preferably be verified over a
longer period. Gouweleeuw et al. (2005) suggest a period of at least
one hydrological year is required to verify the performance of
ensemble forecasts. Roulin (2007) verified ensemble flow forecasts
made using the ECMWF Ensemble Predictions as an input for two
Belgian catchments covering a period of six years, and Regimbeau
et al. (2007) verified ensemble forecasts for all French basins for a
period of one year. Both studies show that the ensemble forecasts
offer skill. Additionally Roulin (2007) shows that an ensemble fore-
cast has more relative economic value than a deterministic fore-
cast, or even if only the ensemble mean is used.

In contrast, the verification of the global Ensemble Prediction
Systems (EPS) by Buizza et al. (2005) led to the conclusion that
EPS cannot account for all sources of meteorological uncertainty,
as it typically does not display enough variability. As a result the
output of the EPS cannot be considered as reliable and the empir-
ical distribution derived from the ensemble members does not pro-
vide a useful probabilistic flow forecast (Fortin et al., 2006). High-
resolution meteorological ensemble forecast systems, such as the
COSMO-LEPS ensemble system showed an improvement in the
prediction of heavy rainfall events for the 3–5 days lead time fore-
casts (Montani et al., 2003b; Marsigli et al., 2005). The application
of COSMO-LEPS for hydrological ensemble forecasting has been
presented for case studies of extreme events by Diomede et al.
(2006), Walser (2006), Dietrich et al. (2008). Promising verification
results of flow forecasts using COSMO-LEPS over a period of 2 years
have recently been presented by Jaun and Ahrens (2009).

Hydro-meteorological ensemble forecasts have routinely been
made for several years using an operational forecasting system
for the Rhine basin by the forecasting centers of both the Rijkswa-
terstaat – Centre for Water Management in the Netherlands and
the Federal Institute of Hydrology in Germany. In this paper
ensemble forecasts made using the Rhine forecasting system are
verified for the period over which ensemble meteorological input
data are available. The ensembles used in the Rhine forecasting
system include both the global ECMWF-EPS ensemble forecasts
and the higher resolution COSMO-LEPS ensemble forecasts. And
although the latter have only been available for a period of about
nine months, the former have been available for a longer period
of time, thus allowing comparison of the improvement of skill
due to the use of a down-scaled local area ensemble system instead
of the global ensemble input data. As the Rhine forecasting system
provides forecasts for catchments that cover both a wide range of
areas and types of hydrological response, the influence of these fac-
tors on the skill of the prediction at different lead times can be
assessed.
Ensemble flow forecasting in the River Rhine

The River Rhine is the most important waterway in Europe. It is
used intensively and the catchment is highly populated with about
58 million people living within the basin (IKSR, 2005). It is clear
that reliable prediction of the behavior of the fluvial system is
not only interesting for planning purposes, but also within the con-
text of operational flood forecasting, warning and response to al-
low mitigation of risks when floods occur.

Here the performance of ensemble flow forecasts along the
main Rhine stretch from the gauge at Maxau on the Upper Rhine
(catchment area of 50,000 km2) to the gauge at Lobith on the
Dutch–German border (catchment area of 160,000 km2) are stud-
ied. Additionally forecasts for river gauging stations on the main
tributaries, such as the Moselle, Main and Ruhr have been ana-
lyzed. These gauging stations can be found on the map in Fig. 1.
The map also shows isochrones of the estimated time of concentra-
tion of the catchment to the gauging station at Lobith. Because of
the large concentration times, hydrodynamic models of the main
Rhine, or even statistical multi-linear regression models using up-
stream water level observations can be expected to have a high
forecast skill for the short range (1–4 days) for stations on the Mid-
dle and Lower Rhine.

However, hydrological and meteorological conditions may vary
considerably in different parts of the basin. The basin can be di-
vided into the southern, Alpine part which influences the High
and the Upper Rhine, the hilly ranges in the middle influencing
the Middle Rhine, and the Northern lowlands of the Lower Rhine.
The hydrological regime in the Alpine areas is influenced by snow-
melt and summer precipitation runoff, causing floods in the spring
and summer months (e.g. flood events of May 1999, August 2005,
and August 2007). In the Middle and Lower Rhine floods occur after
heavy precipitation in the winter months, with the main flood gen-
esis areas being the catchments of the Neckar, Main and Moselle
(Fig. 1). It has been found that the coincidence of flood waves from
these tributaries leads to the largest floods in the Middle and Low-
er Rhine, for example the events of 1993 and 1995 (Disse and En-
gel, 2001). The diversity of the hydrological regimes of the basin
shows that the spatial and temporal patterns of future heavy pre-
cipitation are highly relevant for hydrological forecasting aiming at
providing reliable forecasts for the medium range (4–10 days).

Forecasting suite

For this study the operational forecasting system was set-up
using the flood forecasting shell Delft-FEWS (Flood Early Warning
System, Werner et al. (2004)). This system serves to assist the fore-
casting departments of both the Federal Institute of Hydrology
(Bundesanstalt für Gewässerkunde – BfG) in Koblenz, Germany
(where the forecasting system is known under the acronym
FEWS-DE) and the Centre for Water Management of Rijkswater-
staat (acronym: FEWS-NL).

Forecasts are made based on the response of the catchment to
observed and future precipitation, which is simulated using a con-
ceptual hydrological model. The HBV hydrological model is used,
developed by the Swedish Meteorological and Hydrological Insti-
tute (SMHI). HBV belongs to the family of conceptual hydrological
models with the response lumped into areas with the same hydro-
logical properties, separated by elevation and vegetation zones.
The routing from each sub-basin downstream is done using the
Muskingum method or simple time lags, whereby each sub-basin
has individual response functions. For more details see Bergström
(2005) and Eberle (2001) for an application of the HBV model for
the Rhine between Basel and Lobith. The model has been calibrated
by the Federal Institute of Hydrology (Eberle et al., 2005) using
observations in the period from 1990 to 1999. The Rhine basin
has been divided into 134 sub-basins, with a river gauge at the out-
let of each, thus allowing each sub-basin to be calibrated
independently.

Within the forecasting suite the model is run in two modes; (i)
historical mode and (ii) forecast mode. In historical mode, interpo-
lated temperature and precipitation observations are used as dy-
namic input to the HBV model. These data are obtained from a
network of meteorological stations across the basin, depicted in
Fig. 1 as triangles. Data are delivered in real time to the operational
forecasting centers and are stored in the data-management envi-
ronment provided by the forecasting system. Prior to its use in
the hydrological model, the data are validated against plausible
ranges and then spatially and temporally interpolated to provide
an input to the HBV model. The model time step was selected as
1 h and the precipitation and temperature data are spatially inter-
polated to provide mean areal values for every sub-basin through
Kriging.



Fig. 1. Map of the Rhine basin. The dashed black lines indicate isochrones of the time of concentration in days to the gauge at Lobith on the German/Dutch border. Note, that
only tributaries and river gauges relevant for the paper are shown (after Parmet and Sprokkereef (1997)).
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In forecast mode, future mean areal precipitation and tempera-
ture are derived from the available probabilistic and deterministic
meteorological forecast models, and are used as input into the HBV
model. For meteorological ensemble forecasts the model is run
sequentially for every ensemble member, thus producing an
ensemble of flow forecasts.

To reduce bias in the flow forecasts thus obtained, an auto-
regressive (AR) error correction algorithm (Broersen and Weerts,
2005) is applied at river stations where discharge observations
are available. The AR module establishes a forecast of the future er-
ror, based on the observed model error over a period (set at 192 h)
prior to the start of the forecast. The model forecast is then cor-
rected using this forecast of the future error. The correction is only
effective for the respective forecast river station and does not
transfer to stations downstream. This error correction method
has proven to increase the performance of forecasts, especially in
the short term. At longer lead times in relation to the hydrological
response time of the catchment, the corrected forecast will con-
verge to the uncorrected forecast.

Meteorological ensemble forecasts

Two meteorological ensemble forecasts were applied; (i) the
ECMWF-EPS ensemble and (ii) the COSMO-LEPS ensemble. The
European Centre for Medium-Range Weather Forecasts (ECMWF)
provides the global circulation model ECMWF-EPS which is de-
scribed e.g. in Molteni et al. (1996) or Buizza (2005). The regional
scale COSMO-LEPS provided by the COnsortium for Small-scale



Fig. 2. Example of a rainfall prediction field for one time step and one member from ECMWF-EPS (left sub figure) and from COSMO-LEPS (on the right).

Table 1
Overview of the ensemble forecast models used.

ECMWF-EPS COSMO-LEPS

Ensemble size 50 + 1 control 16
Grid size 80 km, since 02/2006: 50 km 10 km
Time step 12 h 3 h
Forecast length 240 h 135 h

Table 2
Overview of the availability of the input data.

Data type Time step (h) Available from Available to

Observed data
Discharge

(derived from water levels)
1 15/12/2000 10/10/2007

Precipitation 1–24 11/01/2001 01/10/2007
Temperature 1–24 11/01/2001 01/10/2007

Forecast data
ECMWF-EPS 12 08/06/2004 10/10/2007
COSMO-LEPS 3 10/01/2007 10/10/2007
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MOdeling (COSMO) is a dynamic downscaling approach based on a
local area model (LAM). It uses initial and boundary conditions de-
rived from the ECMWF-EPS over a domain covering a large part of
Europe. Due to computational constraints, the COSMO-LEPS ap-
proach selects 16 members from the 51 member ECMWF-EPS fore-
cast. These are so-called ‘representative members’, selected
through a clustering technique to ensure most of the information
of the global ensemble is preserved (Montani et al., 2003a; Marsigli
et al., 2005). Fig. 2 gives an impression of the difference in scale of
these two forecasts, showing precipitation fields over the Rhine ba-
sin for the same forecast time.

Note that for this study the meteorological forecast data has
been used as it was available to the hydrologic forecasting agen-
cies. These are previously resampled from the original forecast
products to provide meteorological forecast inputs at regular time
intervals (12 h and 3 h, respectively), on a regular longitude–lati-
tude grid. Table 1 provides details of these two ensembles as used
in this study. Also note that in February 2006 the resolution of the
ECMWF-EPS forecast model has been increased. However, any ef-
fects related to this change are not discussed in this article.
Re-analysis of ensemble forecasts – hindcast approach

For the verification study it was necessary to re-run the hydro-
meteorological ensemble forecasts, as the ensemble flow forecasts
made operationally have not been archived. The forecast system
covering the Rhine basin was set to run in a batch mode for the full
verification period, with forecasts run at defined intervals for the
full period. Observed data after the forecast start time ðt0Þ were
not used within these batch forecast runs, despite that data being
available in the database of the system. Flow forecasts for the
Rhine basin are routinely made once a day at 06UTC, whilst the
meteorological forecasts used in this study are issued on a daily ba-
sis with the forecast start time at 12UTC. This means that at the t0

of the hydrological forecast, the meteorological forecasts are al-
ready 18 h ‘old’. The hindcast run was similarly set-up with a daily
forecast start time at 06UTC, thus emulating the use of the system
within the operational forecast environment.

The availability of archived meteorological ensemble forecasts
formed an evident constraint on the length of the verification
period. Table 2 shows the availability of these archived forecasts,
and while the global ECMWF-EPS forecasts are available for over
3 years, the COSMO-LEPS forecasts span only about 9 months. Even
though the original ECMWF-EPS and COSMO-LEPS forecasts have
been available for quite a bit longer, the dates given in the table re-
flect their availability to the forecasting agencies mentioned. Ob-
served data are available for a longer period, which were used to
establish a stable HBV simulation to serve as a baseline for the
hindcast run.

Verification measures for ensemble forecasts

Forecast verification allows the forecast to be monitored, thus
helping to improve forecast quality by discovering the strength
and deficiencies in a set of forecasts and allowing objective com-
parison of different forecasts. The aim of any forecasting activity
is to support decision making, and the added value of a forecast
therefore clearly depends on its error characteristics. These are
established in an objective way through verification statistics,
which delivers the information that is essential for the users to de-
rive the full economic value from the forecasts (Wilks, 1995; WMO,
2007). However, the economic value can not be estimated using
the verification statistics alone, but requires the potential value
of the response to the forecast to be known, as well as the potential
loss should a forecast not be available or not be acted on. The
establishing of these relative economic values for the Rhine basin
is beyond the scope of this paper and is therefore not addressed.

Scores suitable to the verification of ensemble and probabilistic
forecasts are different to common verification scores used for
deterministic forecasts. It is not useful to compare single ensemble
forecast members against the reference, and probabilistic verifica-
tion statistics are needed instead. WMO (2007) defined three prop-
erties of an accurate probabilistic forecast:

Reliability: the agreement between forecast probability of an
event and the mean observed frequency of that event.



M. Renner et al. / Journal of Hydrology 376 (2009) 463–475 467
Sharpness: the tendency to forecast probabilities of an event
occuring being near 0 or 1, as opposed to values clustered
around the mean.
Resolution: the ability of the forecast to resolve the set of sample
events into subsets with characteristically different outcomes.

To assess these properties, several statistical measures should
be considered concurrently (Cloke and Pappenberger, 2008). In this
paper several statistical measures are considered, including the
Brier (Skill) Score and the Ranked Probability (Skill) Score, as well
as the reliability diagram and the rank histogram.

Verification statistics considered

Brier (Skill) Score
The Brier Score is the most common scalar accuracy measure for

dichotomous predictands (Wilks, 1995). To apply the score to con-
tinuous probability forecasts of precipitation or flow, these fore-
casts have to be translated into a binary event, e.g. using a
threshold which can either be exceeded or not. Considering an
ensemble forecast of continuous discharges, the forecast probabil-
ity yi is derived by the relative frequency of ensemble members
exceeding the chosen threshold at the desired lead time. The
observations are translated similar to the forecasts, if the threshold
is exceeded, i.e. there is an event, then the observation oi ¼ 1 or if
the event does not occur oi ¼ 0. The Brier Score BS can then be cal-
culated from a set of m pairs of forecast probabilities yi and corre-
sponding observations oi:

BS ¼ 1
m

Xm

i¼1

ðyi � oiÞ2 ð1Þ

Essentially the Brier Score is the mean-square error of probability
forecasts. It is negatively orientated, with a perfect score of
BS ¼ 0. As observations and probability forecasts are bounded by
0 and 1, the Brier Score equally ranges between 0 and 1. The Brier
Score is the most important score to verify prediction models, be-
cause it accounts both for reliability and sharpness of the forecast.
However, as the score depends on the verification dataset, a model
comparison should be based on that same dataset (Kirk and Fraed-
rich, 1990). To compare with other stations or datasets it is recom-
mended to use the Brier Skill Score
ðBSSÞ;BSS ¼ 1� BSforecast=BSreference. In this way the BS of the forecast
is compared with a reference forecast e.g. climatology or persis-
tence. The skill score ranges from � 1 to 1, with a perfect skill of
1. A value of zero indicates no skill when compared to the reference
forecast.

The reliability diagram
Forecast verification methods typically compare corresponding

forecast–observation pairs. At a more fundamental level forecast
verification involves the investigation of the joint distribution be-
tween forecast and observation pðyi; ojÞ. Applying the definition
of conditional probabilities, the joint distribution can be factored
in two ways. The calibration-refinement (CR) factorization is con-
ditional on the forecast (Wilks, 1995):

pðyi; ojÞ ¼ pðojjyiÞpðyiÞ; with i ¼ 1; . . . ; I; j ¼ 1; . . . ; J: ð2Þ

A conditional probability pðoijyjÞ is derived, which specifies how of-
ten an event occurred, when a forecast yi of that event has been is-
sued. The reliability diagram plots this conditional probability,
which is also referred to as observed relative frequency �oi, against
discrete values of forecast probabilities. The forecast probabilities
are put into I discrete categories. The observed relative frequency
�oi is derived by:
�oi ¼ pðoijyiÞ ¼
1
Di

X
k2Di

ok; with i ¼ 1; . . . ; I; ð3Þ

where Di is the number of forecasts in forecast value category i
(conditional sample size) and ok are the corresponding observa-
tions, which can take the value ok ¼ 1 if the event occurred and
ok ¼ 0 if the event did not occur.

Usually a histogram of the forecast probabilities is shown to-
gether with a reliability diagram. This histogram is an immediate
graphical indication of the sharpness of the probabilistic forecast.
High frequencies for the forecast probabilities 0 and 1 and low fre-
quencies in between indicate a ‘sharp’ forecast. The sharper a fore-
cast, the better it can distinguish between an event and a non-
event. However, sharpness alone does not determine if the predic-
tion was right. Points along the diagonal line of the reliability dia-
gram show that the observed relative frequency matches with
predicted probabilities and therefore indicate a reliable or well cal-
ibrated probabilistic forecast.

Ranked Probability (Skill) Score
In order to verify the whole range of possible outcomes, the

Ranked Probability Score (RPS) can be used (Wilks, 1995). For ver-
ifying flow rates, M categories are defined, which cover all possible
outcomes. For all categories the squared differences between the
cumulative forecast probability and the corresponding cumulative
observation of each category are averaged to gain the RPS:

RPS ¼ 1
M � 1

XM

m¼1

Xm

i¼1

yi

 !
�

Xm

i¼1

oi

 !" #2

: ð4Þ

The RPS is sensitive to distance, e.g. if a forecast falls into a more
distant category than the observation, it will be penalized more.
The Ranked Probability Score is negatively orientated and its skill
score the Ranked Probability Skill Score
ðRPSSÞ;RPSS ¼ 1� RPSforecast=RPSreference is computed using a refer-
ence forecast.

Verification rank histogram
Verification rank histograms or simply rank histograms are

used to check if an ensemble forecast is well calibrated (reliable)
and consistent. The ensemble is called consistent if the actual fu-
ture state of the predictand is drawn from the same distribution
as the ensemble, i.e. the observed value can not be statistically dis-
tinguished from the ensemble members (Wilks, 2006).

The rank histograms can be established for a set of N forecasts at
a specific lead time and an ensemble with nens members. Then for
each forecast N the rank of the observation, within the ensemble is
determined, e.g. if the observed value is smaller than all ensemble
members the rank i is 1 or if the observation is larger then the fore-
cast, the rank i ¼ nens þ 1 is assigned. Finally a histogram of the as-
signed ranks can be drawn as graphical verification means. A good
discussion on the interpretation of rank histograms can be found in
Wilks (2006).

Practical aspects of forecast evaluation

Verification categories and restricted sample size
Within the verification analysis the problem of the restricted

sample size needs to be addressed. Ideally verification would mea-
sure the performance of the forecasting system at important warn-
ing thresholds. However, to establish meaningful verification
statistics, a sufficiently large number of observed events (an event
= flow/level exceeding a certain threshold) is needed. Typically
thresholds that are meaningful within the context of operational
flow forecasting are relatively extreme. As the verification period
considered here is relatively short, these may not have occurred



Table 3
Percentiles of observed 24 h precipitation totals for a sample sub-basin.

Percentile 10% 40% 50% 60% 70% 80% 90% 100%

Threshold (mm) 0 0 0.07 0.60 1.54 2.94 5.11 9.26
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at all or only so infrequently that the number of events is not large
enough to give a meaningful statistic. To resolve this issue, the
method proposed by Roulin (2007) was adopted here, where the
thresholds are defined as the percentiles of the observed sample
to guarantee that there is a fixed and large enough number of
events to verify. An added advantage of this method is that it helps
to compare verification statistics at different locations, which
might have true flood warning levels at different return period
flows.

Thresholds for precipitation forecasts
While thresholds and the associated categories for the RPS of

flow forecasts were simply derived by deciles of observed flows,
the usage of deciles for verification of precipitation forecasts is less
meaningful as there is a high frequency of zero precipitation. Table
3 shows percentiles of the observed 24 h rainfall totals of an exam-
ple sub-basin. It can be seen that dry days occur about 40% of the
time. As a result thresholds, chosen for the RPS are a combination
Table 4
HBV model performance scores at the main river stations on the Rhine and its
tributaries calculated for the verification period June 2004–October 2007. With area =
catchment area, Q obs = observed mean discharge, Q sim = simulated mean discharge,
MAE = mean absolute error, MARE = mean absolute relative error, R = correlation
coefficient, NSE = Nash Sutcliffe efficiency.

Station River Area

(km2)
Qobs

(m3=s)
Qsim

(m3=s)

MAE
(m3=s)

MARE
(%)

R NSE

Lobith Rhine 160,800 2052 1865 254 12 0.94 0.84
Andernach Rhine 139,549 1859 1600 287 15 0.94 0.77
Maxau Rhine 50,196 1137 968 199 16 0.91 0.70
Rheinfelden Rhine 34,550 1097 940 198 17 0.90 0.71
Cochem Moselle 27,262 268 226 72 35 0.92 0.79
Rockenau Neckar 12,616 141 113 42 30 0.78 0.50
Hattingen Ruhr 4124 78 74 20 26 0.90 0.80
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Fig. 3. Baseline simulation of the HBV model (thin black line) compared with observed di
The lower subplot depicts the accumulated volume difference.
of fixed precipitation values (0.01 and 0:1 mm) for dry conditions,
and the percentiles of 50%, 60%, 70%, 80%, 90% and 100% of the ob-
served basin precipitation for wet conditions. The use of fixed val-
ues for wet conditions was not practical because the range of sub-
basin precipitation amounts can differ significantly across the
basin.

Multiple and single category measures
From the definition of the RPS (cf. Eq. (4)) it follows that it is less

sensitive to the choice of thresholds than for the dichotomous
score methods such as the reliability diagram or the commonly
used Brier score, cf. Wilks (2006). Because multiple categories are
used, the RPS and its associated skill score are more versatile to
short verification periods. Single category statistics are more sensi-
tive and may prove unreliable due to under-sampling. Dichoto-
mous event scores have therefore been applied only for the full
ECMWF-EPS verification period to look at forecast attributes such
as bias, reliability, resolution and sharpness at low and high
thresholds. In contrast the RPS is used as the primary verification
statistic for the COSMO-LEPS forecast which is available for a com-
paratively short period.
Results

Performance of the HBV baseline simulation

The HBV model of the Rhine basin was first applied in historical
(simulation) mode over the period from 01/11/2001 to 01/10/2007
to obtain a baseline simulation using the observed precipitation
and temperature. Overall, the model performance of the HBV mod-
el within the verification period from 01/06/2004 to 01/10/2007
was found to be reasonable. Table 4 provides an overview of the
model performance summarized using various various statistics
for selected gauging stations on the Rhine and its major tributaries.
It can be seen that there is a steady underestimation of the flow for
the Rhine river stations. As an example, the hydrograph at Lobith is
shown in Fig. 3. The trend of the accumulated differences seen at
Lobith is repeated at most of the stations and seems to originate
from Alpine catchments, which exhibit an underestimation (cf. Ta-
05 01/06/2006 01/12/2006 01/06/2007

 

05 01/06/2006 01/12/2006 01/06/2007

 
cumdiff Qsim − Qobs

scharges (bold grey line) at the river gauge at Lobith from June 2004 to October 2007.
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Fig. 4. Maps of Ranked Probability Skill Scores of ECMWF-EPS daily precipitation totals of the HBV sub-basins. The left subplot shows the scores for a lead time of one day, the
right one for 5 days. Higher skills are indicated with dark grey, as displayed by the colorbar on the right.
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ble 4, columns observed and simulated mean discharges at Rhein-
felden and Maxau).

Due to river regulation on the larger tributaries (Moselle, Main
and Neckar), the water level–discharge relations are not reliable
during low flows, which results in bad performance scores during
low flows. However, the relatively high correlation showed that
during higher flow regimes the HBV model simulations compare
well with the observed discharges. Despite this poor performance
during low flows as a consequence of regulation, and a generally
poor performance for some of the more minor stations (not in-
cluded in the table), the baseline simulation obtained was consid-
ered acceptable as a basis for the hindcast.
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Verification of ECMWF-EPS precipitation forecasts

As mentioned previously, ECMWF-EPS forecasts were available
for the period from 08/06/2004 to 01/10/2007, and verification of
precipitation forecasts was first done for all forecasts within this
period.

For the full range of precipitation categories, the RPSS was com-
puted on the basis of the 24 h precipitation totals for every sub-ba-
sin and is displayed for lead times of one and five days in the maps
in Fig. 4. These indicate regional patterns in forecast skill, where
some regions show a relatively high skill of around 0.3, while
sub-basins with very low or no skill are isolated. Generally the ba-
sins in the North show higher skill scores than those in the South,
most likely as a result of the increasing heterogeneity of rainfall in
the mountainous areas. These regional patterns are preserved at
higher lead times.

To summarize the behavior of the RPSS with lead time, Fig. 5
presents the median, the first, and the ninth decile of all 134 ba-
sins. Within the first two days, the skill is at a constant high level
and then deteriorates with increasing lead time. After 5–6 days
there is no skill in the precipitation forecasts. The regional patterns
and the decline observed from the RPSS maps is similar for the BSS
for high precipitation amounts, verified at a level of the 80th per-
centile threshold.
1 2 3 4 5 6 7 8 9
−0.2

lead time in days

 

Fig. 5. RPSS of forecast precipitation at sub-basin scale using the ECMWF-EPS
forecasts against sample climatology. The upper line denotes that 90% of all sub-
basins have a RPSS at or below this line. The middle line denotes the median and the
lower one the 10% percentile.
Verification of ensemble flow forecasts using ECMWF-EPS

Verification of the full flow domain
The RPSS was computed for the river gauges Hattingen, Rocke-

nau, Cochem, Rheinfelden, Maxau, Andernach and Lobith and is
presented for different lead times of 1, 3, 5, 7 and 9 days in
Fig. 6. The gauging stations are plotted on the x-axis, ranked in or-
der of ascending catchment area. The skill generally increases with
catchment area, with the exception of Rockenau on the Neckar.
This gauging station is influenced most by regulation at low flows,
thus explaining the low skill. A very high skill is observed at a lead
time of one day, which is primarily due to the effects of the AR er-
ror correction. With increasing lead time the skill deteriorates fas-
ter in smaller basins, such as at the gauge at Hattingen on the Ruhr
than in larger basins, which show a relatively high skill for the
longer lead times.
Reliability of ensemble flow forecasts
Although reliability diagrams were established for all the major

gauging stations in the Rhine and its tributaries, for brevity only
two reliability diagrams are presented here; one for the gauging
station at Maxau (Fig. 7) in the upper Rhine and one for the gauging
station at Andernach (Fig. 8) in the Middle Rhine. Both diagrams
were prepared for a threshold exceedance of the 8th decile of the
observed flows within the verification period, and at a lead time
of 8 days. Two verification pairs are shown. The first evaluates
the reliability of the error corrected forecast ðQcorrÞ against the ob-
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Fig. 7. Reliability diagram for Maxau at a lead time of 8 days exceeding 1460 m3=s.
The dark grey line marked with circles shows the reliability line for the verification
of the error-corrected flow forecast against observations ðQcorr—QobsÞ. The light grey
dashed line marked with triangles shows the reliability of the uncorrected flow
forecast against the baseline simulation ðQforc—QsimÞ. Confidence intervals are given
for a ¼ 0:05. In the upper left and lower right corners respective histograms of
forecast probabilities yi are shown.
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Fig. 8. Reliability diagram for Andernach at a lead time of 8 days exceeding
2370 m3=s. See Fig. 7 for explanation.
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served discharge ðQobsÞ, while the other evaluates the uncorrected
forecast ðQforcÞ against the baseline simulation ðQ simÞ. The first of
these pairs is used to evaluate the reliability of the ensemble fore-
cast, including all meteorological, hydrological and observational
uncertainties, while the second is used to evaluate reliability due
to the meteorological model only. Plotting both in one graph al-
lows the contribution of the different sources of uncertainty to
be compared simultaneously.

To address the effect of the small sample size, confidence inter-
vals ða ¼ 0:05Þ for the reliability lines are shown, using the same
marker symbol, which was used for the reliability line. The confi-
dence intervals were derived by applying a bootstrap with a sam-
ple size of 100. The bootstrap sampling draws forecast event pairs
randomly with replacement from the verification set and then for
each sample reliability lines are calculated. The wide intervals for
forecast probabilities between 0.1 and 0.9 underline the effect of
sample size.

At the gauging station at Andernach, the reliability diagram in
Fig. 8 indicates that the meteorological verification pair (Qforc

against Qsim) is reliable, as the dashed line marked with triangles
follows the diagonal. This is similar for the verification pair Qcorr

against Q obs, although the corrected forecast probabilities yi larger
than 90% are over-predicted, which can be seen in the solid line
marked with circles below the diagonal. Over-prediction in this
case means that for all cases when a forecast probability yi indi-
cated the threshold being exceeded with a chance of more than
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Fig. 9. Maps of Ranked Probability Skill Scores of ECMWF-EPS and COSMO-LEPS precipitation forecasts at sub-basin scale. The sub plot on the left shows the RPSS for ECMWF-
EPS and the right one of COSMO-LEPS forecasts. The comparison is based on daily precipitation totals, shown here for the first 24 h after t0. Higher skills are indicated with
dark grey, as displayed by the colorbar on the right.
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90%, only 80% of these cases resulted in an observed exceedance.
This phenomenon is apparent for most stations, when looking at
the exceedance of the higher thresholds (see also Fig. 7).

At Maxau (Fig. 7), both curves are above the diagonal for low
forecast probabilities yi < 70%. This is a clear indication that the
meteorological input of ECMWF-EPS is biased, thus resulting in
an under-prediction of the observed flows. Similar behavior was
also found at basins of different size, such as Hattingen (Ruhr)
and Rheinfelden (Rhine).
Comparison between COSMO-LEPS and ECMWF-EPS

To be able to compare the verification results of both meteoro-
logical ensemble forecasts, all results presented in this section are
based on the shorter period for which the COSMO-LEPS forecasts
were available (10/01/2007–01/10/2007). This period is only about
9 months in length, with verification being difficult due to under-
sampling. All scores which are based on dichotomous events are
sensitive to under-sampling, and are therefore not presented. Only
the Ranked Probability Score and the Rank Histogram have been
used for verification, as these measures are less affected by un-
der-sampling.
Comparison of precipitation forecasts
Precipitation at the sub-basin scale. The RPSS of precipitation fore-
casts at the sub-basin scale were established analogous to those
of the whole ECMWF-EPS verification period, except that the refer-
ence forecast is based on the sample climatology for the shorter
period. A map of RPSS values for all sub-basins is presented in
Fig. 9, comparing the RPSS of ECMWF-EPS on the left and COS-
MO-LEPS on the right. It can be immediately seen that the COS-
MO-LEPS forecasts show higher skill scores for most basins,
particularly in the Western and Northern Alpine basins. Although
the ECMWF-EPS forecasts show slightly higher RPSS values for this
shorter verification period, the regional pattern does not change,
when compared to Fig. 4. As with the ECMWF-EPS forecasts, the re-
gional skill pattern of the COSMO-LEPS forecasts is preserved over
lead time, with the skill decreasing. At a lead time of one day the
skill of COSMO-LEPS is generally higher in the extent of 10%. The
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Fig. 11. RPSS of error corrected flow forecasts forced by COSMO-LEPS, using ECMWF-EP
shown as lines connecting the stations, which are sorted according to catchment size.
superiority of COSMO-LEPS is slowly decreasing with lead time
(not shown).

Precipitation forecasts at the aggregated basin scale. The skill of the
cumulative precipitation forecasts were additionally compared at
the aggregated basin scale. The upper subplot in Fig. 10 shows
the accumulated forecast precipitation for the entire Rhine basin
to the gauge at Lobith, while the lower subplot presents the accu-
mulated forecasts for the Ruhr basin to the gauge at Hattingen.
COSMO-LEPS (dashed lines) and ECMWF-EPS (grey lines) are com-
pared with the respective cumulative observed precipitation (dot-
dashed line). The accumulation is based on precipitations sums of
108 h and is shown for aggregated basins, which represent the
catchments of river stations used in the text. The dotted curve rep-
resents the ensemble mean of COSMO-LEPS and the bold grey line
the mean of ECMWF-EPS.

It can be seen that the slope of the cumulative curve of COSMO-
LEPS precipitation forecasts is steeper than that of the ECMWF-EPS
forecasts for all aggregated basins. In most basins ECMWF-EPS
forecast show a similar curve when compared to that of the ob-
served catchment precipitation, while in the Ruhr basin at Hattin-
gen, COSMO-LEPS forecasts are closer to the observation and the
cumulative curve of ECMWF-EPS is below the observation curve.
However, there are indications that there is an underestimation
of observed catchment precipitation from rain gauge data, like
the underestimation of the average flow of the baseline simulation
(see Table 4).

Flow forecasts
To measure the skill of the COSMO-LEPS forecasts the RPSS was

established. However, rather than using the climatology of the
(shorter) verification period, the ECMWF-EPS flow forecasts made
for the same period were used as a reference when computing
the RPSS. Fig. 11 presents the derived RPSS at lead times of 1, 3,
5, 7 and 9 days for seven river stations on the main tributaries
and the main Rhine itself. Values greater 0 indicate superiority of
flow forecasts using COSMO-LEPS when compared with ECMWF-
EPS.

It can be seen that COSMO-LEPS driven flow forecasts gain skill
in the range of 1–5 days lead time, with the exception of the gauge
einfelden Maxau Andernach Lobitheinfelden Maxau Andernach Lobith

S flow forecasts as reference. The RPSS is given for lead times 1, 3, 5, 7 and 9 days,



0

50

100

150

fre
qu

en
cy

rank

Hattingen, lead time 4 days

ECMWF−EPS
COSMO−LEPS

0

20

40

60

80

100

120

fre
qu

en
cy

rank

Lobith, lead time 8 days

ECMWF−EPS
COSMO−LEPS

Fig. 12. Rank histograms for Hattingen (a) and Lobith (b). The ranks are 1–52 for ECMWF-EPS and 1–17 for COSMO-LEPS. For display reasons the ranks were put into 10 bins.
Both diagrams comprise daily forecasts of the period for which COSMO-LEPS forecasts were available.

M. Renner et al. / Journal of Hydrology 376 (2009) 463–475 473
at Andernach, which does not show improvement beyond a lead
time of 4 days. For lead times longer than 5 days a negative skill
was found for most stations. However, Hattingen (Ruhr) and Lobith
(Rhine) are positive exceptions, with high skill scores for COSMO-
LEPS. That the increase in skill is only established after 1–2 days is
not surprising as at the shorter lead times the meteorological fore-
casts will have little influence, and the skill is dominated by uncer-
tainties in the hydrological models. At lead times in excess of 5–7
days the skill of the COSMO-LEPS forecast would again be expected
to deteriorate as this is beyond the lead time of the meteorological
forecast.

To compare reliability and consistency of the ensemble flow
forecasts rank histograms are provided in Fig. 12. For display rea-
sons, the ranks have been categorized into 10 bins. Both forecast
models have high frequencies of very low and high ranks, which
is a sign of underdispersion, i.e. showing too little uncertainty.
However, COSMO-LEPS forced flow forecasts tend to be more
equally distributed than the ECMWF-EPS ones and there is a clear
lower frequency of very high ranks, i.e. events when the ensemble
is below the observation. This can be seen at all locations consid-
ered, but to show the effect on small and large catchments Hattin-
gen/Ruhr and Lobith/Rhine have been selected.

Discussion

The performance of hydro-meteorological ensemble forecasts
for the Rhine forecasting system has been evaluated using probabi-
listic verification scores. These allowed to assess probabilistic accu-
racy properties such as reliability, resolution and sharpness of the
ensemble forecasts. Beside the performance itself, forecasts made
with the meteorological ensemble forecast ECMWF-EPS are com-
pared with the downscaled COSMO-LEPS forecasts. The influence
of catchment and hydrological response time are addressed by
evaluating forecasts at several river gauges, with catchment areas
between 4000 and 160,000 km2.

Performance of ensemble flow forecasts across the Rhine basin

Generally a positive forecast skill for the medium range is
found, i.e. 3–9 days lead time, depending on the catchment area.
As expected, skill decreases with decreasing catchment area, and
the smaller the respective catchment, the faster the forecast skill
deteriorates with lead time. This is because the hydrological re-
sponse time determines the lead time at which most of the input
variability from the meteorological ensemble forecast reaches the
basin outlet. Furthermore it was found that there is no skill in
the ECMWF-EPS precipitation forecasts at the sub-basin scale after
5–6 days. This time plus the average hydrological response time
gives a good estimator for the maximal lead time of a flow forecast
with positive skill at the respective basin outlet.
Forecast reliability and resolution of ECMWF-EPS driven flow
forecasts was assessed by means of reliability diagrams. Two main
features were found, which are apparent at most river gauges. First
there is a steady underprediction of lower forecast probabilities yi

exceeding a certain threshold, i.e. when there are just a few ensem-
ble members over the threshold. As this feature is visible for both
verification pairs, forecast ðQforcÞ – simulation ðQ simÞ and error cor-
rected forecast ðQcorrÞ – observation ðQobsÞ, it is clear that this bias
originates from the meteorological forecast. The global ECWMF-
EPS does not produce enough variability as its spatial resolution
is very coarse when compared to the model input scale. This con-
firms through verification of the flow forecast the results of Buizza
et al. (2005) when verifying the precipitation forecast, who found
the ECMWF-EPS forecast does not account for sufficient variability.
The need of a better representation of dispersion through down-
scaling the global ensemble forecasts, for example through a
high-resolution ensemble meteorological model such as COSMO-
LEPS, is thus clear.

The second feature is apparent when most ensemble members
are over the respective threshold, i.e. a high exceedance probability
yi has been predicted. In these cases the Q forc–Q sim pair is quite reli-
able, but the Q corr–Q obs pair tends to over-prediction. In this case
the bias originates from a combination of errors in the forecast
meteorological inputs as well as the hydrological model. Addition-
ally errors in the precipitation observations and the process used to
obtain a mean areal precipitation based on gauge data for the sub-
basins contributes to the error in the forecast. When looking at the
resulting forecasts (Qcorr) a lack of forecast resolution must be
attributed. In other words the ability of the forecast to resolve be-
tween an event and a non-event is relatively low.
Effects of increased meteorological forecast model resolution

The comparison of the flow forecasts forced using ECMWF-EPS
or COSMO-LEPS shows that the higher resolution in time and space
provided by the COSMO-LEPS forecast clearly improves forecast
performance. Firstly there is a significantly higher skill (one day
lead time) in precipitation forecasts at the sub-basin scale, sec-
ondly COSMO-LEPS produces higher precipitation amounts which
consequently transfers to flow forecasts with higher skill and three
times larger forecast variability.

Although Fig. 6 shows that the skill of the forecast generally in-
creases with catchment size as would be expected, a clear relation
between the catchment size and the resolution of the meteorolog-
ical forecast was not found. The flow forecasts forced with COSMO-
LEPS improved forecast skill at all catchment scales considered,
with the rank histograms comparing both meteorological forecast
models showing that the frequency of observations larger than
the ensemble decreases for both small and large catchments.
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Instead it was found that the resolution of the meteorological
forecast output and the input of hydrological model in charge
should be commensurate. In this case the global ECMWF-EPS mod-
el, with an approximate raster size of 10,000 km2, is far to coarse to
be used as an input to a sub-basin of the size of about 400 km2. The
downscaled COSMO-LEPS model with an approximate raster size of
100 km2 is more appropriate in this case. This confirms the results
of Clark and Hay (2004) and Regimbeau et al. (2007), and once
more underlines the argument for downscaling of global weather
prediction products before using in a regional hydrological model.
Sample size and other limitations

The verification statistics have been limited by the small sample
size, i.e. the relatively short re-analysis period. Instead of using
warning thresholds, which are most interesting for decision mak-
ers, the sample size has been increased by using percentiles of ob-
served flows as thresholds. This limits the interest in the study as it
may not be a clear representation of forecast performance for the
more extreme events. However, the approach does allow flow fore-
casts at several gauging stations to be compared. To assess random
effects of single forecast events in the re-analysis record, the boot-
strap method has been applied to gain confidence intervals for reli-
ability diagrams. Another way to manage low sample size, was to
use multicategory verification measures, which make use of the
whole verification data set, but consequently only provides a gen-
eral measure of forecast skill and again not for the interesting
extremes.

Uncertainties in the measurements and in the hydrological
model are important in hydrological forecasting, and depending
on the lead time will have significant effect on forecast skill.
Although these have not been considered in the scope of this study,
the comparison of the two pairs (Qforc against Q sim) and (Q corr

against Qobs) allows the contribution to the error from the meteo-
rological model to be separated from that of the hydrological mod-
el and input data. It should be kept in mind though that when
comparing forecasts to observations, that the observations are also
uncertain. Of particular note is the uncertainty in the ‘‘observed”
areal precipitation, and there is some evidence that the areal pre-
cipitation is systematically underestimated. For example the aver-
age flow of the baseline simulation is significantly smaller than the
observed average flow at most stations. This explains the steeper
slope of COSMO-LEPS accumulated basin precipitation forecasts,
compared to the observed and spatially interpolated data. To con-
strain the uncertainties in the inputs, as well as model uncertain-
ties, data-assimilation methods can be applied, such as for
example the (Extended) Kalman filter, see Weerts and El Serafy
(2006).
Conclusions and recommendations

In this paper the performance of ensemble flow forecasts for the
Rhine basin is assessed using four different verification measures.
Ensemble inputs were available from both the low resolution
ECMWF-EPS global ensemble and the high-resolution COSMO-LEPS
local area ensemble system.

Flow forecasts derived using the forecasts provided by the
ECMWF-EPS ensemble show positive skill over climatology for lead
times of up to nine days, proving the value of these medium-range
ensemble forecasts. As expected, skill was found to deteriorate
with lead time and a general increase of skill with catchment size
was found for all lead times. Despite the value of the forecast, it
was found that the resolution of the global ECMWF-EPS forecast
was insufficient to properly represent the variability of precipita-
tion and consequently flow forecasts. This was found for catch-
ments of all sizes, even for the entire Rhine basin which has an
area an order larger than that of the grid-cell size of the ECMWF
forecast. While the basin itself is an order larger than the grid-cell
size, this is not the case for the much smaller sub-basins that form
part of the hydrological model used.

Although the available ensemble forecasts from COSMO-LEPS
covered a much shorter period of time than the ECMWF-EPS fore-
casts, the increased resolution of the COSMO-LEPS local area model
was found to provide a better representation of the variability,
with higher skills across all catchment sizes, particularly in the
forecast of short term precipitation. This confirms the need for
downscaling of the ensemble forecasts to a more representative
scale for the sub-basins in the hydrological model.

The accuracy of the ensembles of flow forecasts has been as-
sessed using probabilistic verification measures that are common
in the field of meteorology. With the help of skill scores and e.g.
the reliability diagram different ensembles can be compared and
improvements in the forecasting systems can be identified and
measured. However, the verification information itself also pro-
vides useful information to the user of the forecasts as it gives that
forecaster an expectation of model bias, and the forecaster can use
this information effectively in establishing the confidence in a fore-
cast. Particularly the reliability diagram displays most forecast
properties and it can be prepared for any threshold and lead time
of interest. Therefore it should be a tool for the decision maker,
who would like the decision to be made partly with previous fore-
cast performance in mind.
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