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ABSTRACT: To control disinfection byproduct (DBP)
formation in drinking water, an understanding of the source
water total organic carbon (TOC) concentration variability can
be critical. Previously, TOC concentrations in water treatment
plant source waters have been modeled using streamflow data.
However, the lack of streamflow data or unimpaired flow
scenarios makes it difficult to model TOC. In addition, TOC
variability under climate change further exacerbates the
problem. Here we proposed a modeling approach based on
local polynomial regression that uses climate, e.g. temperature,
and land surface, e.g., soil moisture, variables as predictors of
TOC concentration, obviating the need for streamflow. The
local polynomial approach has the ability to capture non-
Gaussian and nonlinear features that might be present in the
relationships. The utility of the methodology is demonstrated using source water quality and climate data in three case study
locations with surface source waters including river and reservoir sources. The models show good predictive skill in general at
these locations, with lower skills at locations with the most anthropogenic influences in their streams. Source water TOC
predictive models can provide water treatment utilities important information for making treatment decisions for DBP regulation
compliance under future climate scenarios.

1. INTRODUCTION

Variations in source water quality can affect the ability of
drinking water utilities to meet regulations and provide safe
potable water. Variations can be short-term, such as seasonal
patterns, or long-term, related to changes in land use or climate
change. Source water dissolved organic matter (DOM) is an
important water quality component, as certain organic matter
(OM) fractions react with chlorine, the most commonly used
disinfectant in water treatment, to form disinfection byproducts
(DBPs).1 Some DBPs are of health concern and two groups of
DBPs, total trihalomethanes (TTHM), and five haloacetic acids
(HAA5), are regulated under the EPA Stage 2 D/DBP Rule.2

Under this rule, the maximum contaminant level (MCL) for
TTHM is set at 80 μg/L and that for HAA5 at 60 μg/L. DBP
formation begins in water treatment plant (WTPs) and
continues into the distribution system, as U.S. EPA regulations
for systems that utilize surface water (SW) sources also require
a detectable disinfectant residual throughout the distribution
system, i.e., secondary disinfection. The Stage 2 D/DBP Rule
became effective in 2012, requiring DBP compliance
monitoring at locations with the highest formation.2 For
TTHMs this is typically at the end of the distribution system.
Organic carbon (OC), both as total OC (TOC) and dissolved
OC (DOC), concentration, is the most commonly used OM
measure and has been shown to be well related to TTHM and

HAA5 formation, especially when other water quality and
treatment factors are controlled,3 and has been used in
regression models to predict the formation of these DBPs.4,5

In addition to the TOC concentration, other factors, in
particular, higher water temperature, lead to increased DBP
formation.4,6,7

To control DBP formation, WTPs typically remove OM
prior to disinfection, which can be more effective than directly
removing preformed DBPs.8 WTPs that utilize SW must also
remove OM to meet the required percent TOC removal based
on source water TOC and alkalinity concentrations.9 Conven-
tional surface WTPs remove OM in coagulation−flocculation−
sedimentation−filtration processes. In this process, coagulants,
added to the water during the rapid mix process, react with
particles and OM to form flocs, which settle out in a
sedimentation basin, removing a part of the OM.10,11

WTPs that cannot meet either the distribution system-based
DBP MCLs or the TOC removal requirement through
conventional SW treatment must use advanced treatment
options. Two examples of advanced treatment are granular
activated carbon (GAC), to remove additional levels of OM
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and therefore reduce DBP formation, and chloramines as a
secondary disinfectant. Compared to free chlorine, chloramines
are less reactive with OM forming fewer regulated DBPs and
are used in the distribution system to meet residual disinfectant
requirements.12,13

Variations in SW TOC concentrations impact a WTP’s
ability to meet regulations and may influence decisions on
implementing advanced treatment options, which have
significant costs and operational complexities. Identifying OM
sources is important in understanding variability in source
water TOC concentrations. OM can enter SWs due to
mobilization of leaf litter, crop residue and OM in soil,14,15

and its transport is affected by soil and topographic
conditions.16,17 Soil leaching is the principle source of DOM
in nonwastewater impacted SWs.18 We refer the reader to
Köhler et al.,14 Worrall et al.,19 and Christ and David,20 for
information about DOM production in soil. The amount and
type of catchment area vegetation also influences TOC.16,21

Previous studies have investigated temporal and spatial
changes in SW OC14,15,18,21−35 and changes in terrestrial OC
export to SW.16,36 The SW TOC concentrations vary
seasonally, especially in regions with snowmelt driven source,36

including semiarid regions37 and boreal regions,14,22 where they
peak during spring and early summer. Increased SW DOM has
been observed during periods of elevated temperatures.28,29,38

Temperature influences DOM dissolution and desorption and
microbial activity, consequently, affecting OM production,
decay, and mobilization.39 During rainfall events increased SW
OC concentrations have been observed.31,35 Heavy rainfall
increases surface runoff, therefore increasing TOC transport to
SW.38 However, droughts have also been found to increase SW
DOC.40 A short period of heavy rainfall followed by a long
drought tends to increase SW DOC32wherein rainfall leads
to vegetation growth and the subsequent dry period leads to its
demise and decay, that is then mobilized in the following rainy
period. While a large quantity of annual DOM transport occurs
during rainfall events, rainfall intensity and frequency can
decrease this relationship.39 Interplay between temperature and
precipitation is important, as Köhler et al.22 observed increased
SW TOC during warm summers in wet years, but not in dry
years.
Increasing SW OM concentrations in recent decades have

been observed in North America and Europe,18,19,26,28,29,37,41

indicating increasing DBP precursors in SW sources, potentially
forcing utilities into expensive treatment options. Thus, a
robust and simple modeling tool that can simulate and predict
current and future TOC variability for a given source water is
important for such decision-making. Understanding relation-
ships between climate and source water TOC could allow for
the use of climate change projections to predict future TOC
concentrations, which can help project DBP formation4,5,42 in
the finished water and the distribution system.
Several SW OC models15,18,24,25,27,33,34,36 have been

developed. Recently, regression models have been developed
for TOC using runoff and temperature as predictors,14 and
using Normalized Difference Vegetation Index (NDVI), runoff
and fraction of area covered by bogs.21 All of these models
incorporated SW catchment hydrology, exploiting the strong
relationships between OM and streamflow.30,31 However,
streamflow data are not widely available and many free-flowing
streams are impacted by human activities such as diversions,
dams, and reservoirs. Therefore, streamflow-based TOC
models are not easily developed or applicable to model TOC

under climate change where streamflow data are hard to
generate.
Motivated by this need, the objective of this work was to

develop a unique statistical methodology for predicting SW
TOC concentrations that directly uses climate and land surface
predictors, bypassing the need for streamflow. We demon-
strated the utility of the methodology by applying it at three
case study locations covering diverse climate regions, SW
sources, and treatment processes. The models developed in this
study select the most influential climate and land surface factors
on SW TOC in each SW catchment to allow future predictions
of TOC variability. This demonstrated methodology can be
applied to other SW catchments to develop models with
appropriate predictors. In this paper, the data sets and the
development of climate and land surface predictors of TOC are
first described followed by the methodology development. The
Results and Discussion section describes the selected climate
and land surface predictors and the model performance.

2. STUDY REGION DATA SETS AND DEVELOPMENT
OF PREDICTOR VARIABLES

2.1. Case Studies. Three water utilities were used as case
studies in this study: Greater Cincinnati Water Works in
Cincinnati, Ohio, Newport News Waterworks in Newport
News, Virginia, and City of Boulder Water Utilities Division in
Boulder, Colorado. Monthly source water TOC concentrations
for these facilities are shown in the Supporting Information
(SI) Figure S1; additional source water quality, climate and
land surface data for each case study location are summarized in
Table S1.
The Harwood’s Mill WTP in Newport News, Virginia treats

SW from the Chickahominy River and five reservoirs, using
coagulation, sedimentation, ozonation, and biofiltration. This
plant supplies approximately 91% of the Newport News
Waterworks drinking water. Approximately weekly source water
TOC concentration data from January 2001 to March 2012
were used in this study.
The Greater Cincinnati Water Works’ Richard Miller WTP

treats Ohio River water and supplies approximately 88% of the
customers. The Ohio River is an impacted source water with
substantial anthropogenic influence. Streamflow in the Ohio
River is controlled by various navigation dams. The Miller Plant
uses conventional SW treatment followed by GAC as an
advanced treatment. The source water TOC concentration data
used are approximately monthly from January 1988 to
December 2001 and approximately weekly from January 2002
to April 2007.
The City of Boulder’s Betasso WTP is the primary drinking

water facility serving Boulder residents and uses conventional
SW treatment. It receives its source water from two reservoirs,
Lakewood Reservoir and Barker Reservoir, located west of
Boulder at an elevation of approximately 2500 m above sea
level. Approximately weekly source water TOC concentration
data from the Lakewood Reservoir (the primary source water)
from January 1995 to April 2013 were used in this study. High
OM peaks in source water occur in spring months, when
snowmelt occurs, compared with relatively low concentrations
during the rest of the year. Beggs et al.37 show similar results
from a nearby utility. For this analysis, April−July source water
TOC concentrations were modeled, as these months have
greater TOC concentration and variability than other months,
causing concern for increased DBP formation during treatment.
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2.2. Development of Predictor Variables. Predictor
variables were developed using climate and land surface data
sets. For each case study, predictor variable data sets include
temperature, precipitation, NDVI, and Palmer Drought Severity
Index (PDSI) dataNDVI captures vegetation,21,43 a main
source of OM, and PDSI captures soil moisture,44 a property
affecting mobilization of OM from the soil, respectively. For
each study location, daily temperature and precipitation data
were collected from the National Oceanic and Atmospheric
Administration (NOAA) Daily Global Historical Climatology
Network (GNCN-Daily) and supplemented by Weather
Underground (http://www.wunderground.com/), monthly
and 15-day averaged NDVI data for the grid nearest to the
location of the source water were obtained from the
International Research Institute (IRI) for Climate and Society
Data Library (http://iridl.ldeo.columbia.edu/), and monthly
average PDSI data for the nearest climate division were
obtained from NOAA. For each location, a suite of predictor
variables were developed using averages, or totals in the case of
precipitation, to best represent the climate and land surface
scenarios which would impact source water TOC concen-
tration.
Predictor variables representing seasonal and short-term

climatic influences were developed, including temperature
averages ranging from 7-day averages to 30-day averages and
precipitation totals ranging from 7-day totals to 30-day totals.
To account for delays in the resulting effect on TOC transport
to SWs after periods of high or low temperature, one-month
temperature averages that occurred one to three months prior
were also included in the predictor variable set. Relationships
between raw lake water DOC and monthly temperature
averages, ranging from 1-month to 36-month averages, and
monthly precipitation totals, ranging from 1-month to 24-
month totals, have been investigated previously.41 Both rainfall
intensity and frequency impacts DOM transport;39 therefore,
the frequency of precipitation events and the intervening dry
spell were also included in the suite of predictor variables. PDSI
is a widely used measure of the severity of drought in a
region,44 which is believed to influence OM production14 and
play a role in OM decomposition,41 therefore affecting
subsequent OM transport from soil to water. We refer readers
to Evans et al.,41 Kalbitz et al.,45 and Dai et al.46 for further
information about the relationship between PDSI, soil
moisture, and OM production and transport. NDVI is a
measure of vegetation determined by the detection of reflected
visible and near-infrared sunlight by the vegetation. It has
shown consistent correlation with vegetation biomass and
dynamics47 and has been used previously in TOC predictive
regression models.21 Month-averages of PDSI and NDVI values
were included in the predictor set.
Thus, a large suite of 18 climate and land surface predictors

was computed (Table S2). The temperature variables are
named “TXD”, corresponding to the X-day average temperature
prior to the TOC observation, were X is equal to 7, 15 and 30,
and “T30DYM”, corresponding to the 30-day average temper-
ature prior to the TOC observation with a Y-month lag, where
Y is 1, 2, and 3. Similarly, the precipitation totals are labeled as
“PXD”, corresponding to the X-day total precipitation prior to
the TOC observation where X is 7, 15, and 30, and the
precipitation frequencies include “ddweek” and “ddmonth”,
which are the number of dry days in the week and month
prior to the TOC observation. The PDSI variables are named
“PDSIXM” for the average PDSI X months prior to the TOC

observation, and similarly, the NDVI variables are “NDVIXM”
for the average NDVI X months prior. In both cases, X is equal
to 1, 2, and 3. Finally, “NDVI” is the variable representing the
average NDVI at the time of the TOC observation.

3. PROPOSED MODEL
3.1. Local Polynomial Regression. Preliminary analysis of

the source water TOC concentrations at each case study
location and the 18 predictor variables showed nonlinear
relationships between TOC and predictors (Figure S3),
suggesting that any modeling approach should have the ability
to capture these nonlinear relationships. Therefore, we
proposed to replace the linear aspect of the generalized linear
model (GLM)48 with a nonlinear functional estimation based
on local polynomials.49 The local polynomial regression model
is in the form:

μ ε= +Y x( )i i i (1)

In this, the function μ is estimated “locally” for any desired
point x. A small set of neighbors (K = αN; N is the total
number of data points, and α is a value in the range of 0 to 1) of
x are identified and a polynomial of order p is fitted via
weighted least-squares methodwherein, the nearest neigh-
bors are assigned highest weight and the farthest the least, using
a bisquare or tricubic weight function.49 The fitted polynomial
is used to estimate the response variable Y at the desired point
x. This process is repeated for all desired points of estimate.
Note that if α and p are set to 1 and the neighbors assigned
equal weights, then this reduces to the standard linear
regression. The local estimation method provides an additional
degree of flexibility to the GLM framework, making it GNLM
(or Generalized NonLinear Model). The choice of α and p are
obtained using a Generalized Cross Validation criteria (GCV),
which penalizes higher order models and strives for parsimony.
The GCV can be used to obtain the local polynomial
parameters (α and p) and also the best set of predictors.50

Local polynomial based GLMs have been widely usedfor
seasonal streamflow forecasting,51−53 flood frequency estima-
tion,54 turbidity threshold exceedance modeling,55,56 and for
modeling attributes of stream temperature.57

The residuals from the above models are assumed to be
uncorrelated; however, often the predictors are not efficient at
capturing the autocorrelation present in the data. In the linear
regression framework the residuals are modeled as another
companion model at the second level of hierarchy. Both the
models are fitted together, also known as regression with
correlated errors.58−60 Another approach is to include lagged
values of the dependent variable along with the suite of
predictors for auto regressive models with external varia-
bles61,62this is possible if the data of the dependent variable is
continuous in time, such as the case with TOC data at
Harwood’s Mill WTP. If not continuous, such as the case with
Miller WTP, then we propose fitting a best model to the
residuals separately using the same suite of predictors, except
the predictors selected for the TOC model. Then the TOC
model and the residual model are added together to create an
additive model. In this research, we apply both these
approaches for modeling residual correlation in TOC.

3.2. Model Validation. The best model is fitted for the
TOC data at each of the three plants separatelywhich
involves obtaining the best alpha (α), p, the best subset of
predictors, and the appropriate link. The goodness of fit of the
modeled source water TOC is visually inspected along with the
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corresponding Nash-Sutcliffe Efficiency (NSE)63 value. The
NSE is an efficiency criteria used to assess model performance,
similar to the well-recognized coefficient of determination R2

statistic, and is defined by the following equation:

= −
∑ − ̂

∑ − ̅
=

=

Y Y

Y Y
NSE 1

( )

( )
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i i
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i

1
2
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2

(2)

where, in this study, Yi are the observed TOC concentrations, ̂Yi
are the predicted TOC concentrations, and Y̅ is the mean of the
observed TOC concentrations. A NSE value of 1 indicates a
perfect fit for the model. Model diagnostics are performed; here
the model residuals are checked for homoscedasticity, normal
distribution and autocorrelation. Normality is tested by creating
Q−Q plots and histograms of model residuals with a fitted
normal distribution. Correlation is tested by plotting and
analyzing the autocorrelation function for the residuals. A
goodness of fit test is also conducted to compare that the local

polynomial regression model is significantly better than a global
linear regression model.49

Finally, the skill of the model is tested using a drop-10%
cross-validation method. This is done by conducting 500
simulations in which 10% of the historic source water TOC
concentrations are dropped, the model is fit to the remaining
90% of the data, and then the dropped points are predicted
using the new model. The median root-mean-square error
(RMSE) and the NSE value for comparing the predicted
dropped points to the true dropped points for each simulation
are reported. This is a robust approach for evaluating model
performance and has been used in several water quality
modeling studies.52,64−66

4. RESULTS AND DISCUSSION

4.1. Summary of Results. A summary of the regression
models for the three case studies is presented in Table 1. This
includes the best set of predictors, the Gamma family link

Table 1. Summary of the Best Local Polynomial Regression Models for each Case Study

case studies predictor variables link function
alpha
(α)

p
(degree)

gcv
score NSE statistic

hypothesis test
p-value

Harwood’s Mill WTP,
Newport News, VA

−T30D3M log 0.97 2 0.004 0.92 9.79 × 10−06
−P7D
−previous TOC
concentration (lag 1)

Miller WTP, Cincinnati, OH base model: inverse 0.11 1 0.030 0.51 (for additive model) 2.77 × 10−08
−T30D2M
−PDSI1M
residual model: identity

(Gaussian family)
0.06 1 0.179 1.94 × 10−04

−NDVI1M

Betasso WTP,
Boulder, CO

April and May −T15D inverse 0.35 1 0.069 0.82 0.0367
−PDSI1M
−PDSI3M

June and July −T30D1M log 0.60 1 0.057 0.75 0.0576
−P30D
−PDSI1M

Figure 1. Final model (with lag 1 predictor): Scatterplot of modeled and observed source water TOC concentration for Harwood’s Mill WTP in
Newport News, Virginia, with a 1:1 line as reference (left); autocorrelation function for the initial model (without lag 1 predictor) residuals with 95%
confidence intervals as dashed lines (upper right) and the autocorrelation function for the final model (with lag 1 predictor) residuals (lower right).
The final model shown here has three predictor variables: T30D3M, P7D and the lag 1 (previous TOC concentration).
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function, neighborhood size alpha (α), degree of polynomial
(p), the NSE statistic of modeled TOC and observed TOC
concentrations, and the p-value of the hypothesis test
comparing the local polynomial regression model to the
corresponding global linear model. Details of the residual
model are also presented for the Miller WTP case study, where
an additive model was developed to treat autocorrelation in the
base model’s residuals. The results from each case study are
described in sequence below.
4.2. Case Study 1: Harwood’s Mill Water Treatment

Plant, Newport News, Virginia. The regression model
selected for the Harwood’s Mill source water TOC
concentration used three predictor variables: the 30-day
Average Temperature with a 3-month Lag (T30D3M), the 7-
day Total Precipitation (P7D) and the Previous TOC
Concentration (lag 1). A second order polynomial (p = 2)
was selected with a neighborhood size (α = 0.97) close to using
all the observations, and a log link function was found to be
optimal. This indicates that there are local nonlinearities (the
reason for a second order polynomial) and the log link function
captures high values well.
To demonstrate the utility of the lag 1 predictor, the initial

model without this variable was evaluated. The observed TOC
concentration and modeled values (without the lag 1 predictor
variable) are plotted (Figure S4) and while the model estimates
the observed values very well (NSE = 0.87), the residuals from
the model are skewed (Figure S5) and exhibit significant
autocorrelation (Figure 1). The presence of autocorrelation
among the residuals is problematic as it allows one model
prediction to affect the following model prediction, but can be
corrected by including information about previous concen-
trations in the model.67 Thus, the lag 1 predictor was
incorporated in the final model.
The modeled versus observed TOC concentration (n = 587)

for the final model with the lag 1 predictor is shown in Figure 1.
This scatter is tighter along the 1:1 line compared to the
previous model and has a higher NSE of 0.92. The significant
reduction in autocorrelation in the residuals is illustrated in
Figure 1, which compares the autocorrelation function for the
initial model to that of the final model, where the
autocorrelation in the residuals is virtually absent. The final
model residuals are also normally distributed (Figure S5). The
inclusion of the lag 1 predictor variable captures the variability
of source water TOC very well and satisfies the assumptions of
the residuals. To test the model performance in a blind
forecasting mode, the RMSE and NSE from 500 simulations of
drop-10% cross validation were calculated (Figure S6); the
median RMSE and NSE are 0.19 and 0.91, respectively.
The results of this regression model indicate that temper-

ature, precipitation, and the prior TOC concentrations provide
significant information to model TOC variability at current
time. While the temperature variable selected describes
temperature 3 months prior to the TOC observation, the 7-
day precipitation variable selected suggests that recent rainfall
may play an important role in transporting OM to the
Harwood’s Mill WTP. It is interesting to note that PDSI
variables were selected in the preliminary model, which did not
incorporate a lag 1 predictor variable, suggesting that while soil
moisture may still be an important physical factor affecting
TOC transport from soil to SW, much of this relationship may
be captured in previous TOC concentrations, therefore
eliminating PDSI as a predictor.

4.3. Case Study 2: Miller Water Treatment Plant,
Cincinnati, Ohio. The regression model selected for the Miller
Plant source water TOC concentration is an additive model, in
which two predictor variables, the 30-day Average Temperature
with a 2-month Lag (T30D2M) and the PDSI 1 Month Prior
(PDSI1M), are used to model the source water TOC
concentration, creating the base model. The residuals from
this base model are then modeled using another local
polynomial regression model with the NDVI 1 Month Prior
(NDVI1M) as the sole predictor variable. Both models are
added together to create the additive regression model. The
best polynomial order selected was one for both models, and
the neighborhood size selected was 0.11 and 0.06 for the base
and residual models, respectively. The smaller neighborhood
size indicates substantial local nonlinearities, which can be
captured using a local linear model. The data for this source
water were not continuous, unlike the previous case study; thus,
the lag 1 predictor cannot be incorporated meaningfully.
Hence, it was necessary to model the residuals separately and
create an additive model. Additive models have been
introduced in various forms, such as the class of generalized
additive models68 and nonparametric regression additive
models.69,70

Plotting the observed and modeled TOC concentrations (n
= 407) from the base model shows the model performance is
poor (NSE = 0.39) with overestimation of lower values and
significant underestimation of high values (Figure S7). In
addition, model diagnostics illustrate that the residuals show
significant autocorrelation and skew (Figure S7). To address
the structure in the residuals, a second local polynomial
regression model was created in which best predictor variables
and the parameters (α and p) were selected. Since the residuals
are unbounded a normal distribution assumption is appropriate.
The best predictor selected was the NDVI 1 Month Prior
(NDVI1M) with a polynomial of order one (i.e., local linear)
and a neighborhood size of 0.06−indicating local nonlinearities.
The modeled TOC concentration from the additive “full”
model (estimates from base model + estimates from the
residual model) plotted against the observed concentrations
demonstrates a better fit (with NSE = 0.51) than that from just
the base model (Figure S8). Furthermore, the residuals show
decreased autocorrelation with a slight autocorrelation at lag 1,
and the residuals are close to normal distribution (Figure S8).
The median RMSE and median NSE from the drop-10% cross
validation are 0.21 and 0.27, respectively (Figure S9).
Comparing the results of the Miller WTP regression model

to those of the Harwood’s Mill WTP regression model, it is
apparent that the climate and land surface variables do not
capture as much of the source water TOC variability,
suggesting that other significant factors need to be considered.
The Ohio River, the source water for the Miller WTP, drains
catchment areas for which almost half of the area is agricultural
or urban,71 and there are 20 navigational dams along the river
affecting its flow. In addition, wastewater discharges enter the
waterway at many points with the closest just 17.5 km upstream
of the Miller WTP’s water intake source. Municipal wastewater
discharge and agricultural and urban runoff can be important
contributions to source water OM. The predictor variables
selected do suggest that the temperature a few months prior is
an important variable, as was in the Harwood’s Mill WTP
regression model. Recent soil moisture, represented by PDSI,
also proved to be an important predictor variable, as this
indicates terrestrial primary production, microbial decomposi-
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tion of OM, as well as OM transport to the Ohio River. Lastly,
recent vegetation coverage, represented by NDVI, was selected
as a predictor variable for the model, which suggests that recent
terrestrial primary production is an important source of OM for
this river.
4.4. Case Study 3: Betasso Water Treatment Plant,

Boulder, Colorado. Dramatic seasonal variation in source
water TOC concentration, specifically in spring and early
summer months, presents a challenge for the Betasso WTP in
meeting DBP regulations. The physical processes influencing
the transport of OM to SW in the months of April and May is
prominently driven by snowmelt, while precipitation plays a
greater role in June and July. Preliminary analysis also suggested
important climate predictors for TOC differed in April and May
versus June and July, with different relationships observed
between TOC and temperature variables, in particular (Figure
S2). Hence, two separate models are created for TOC
concentrations in Apr−May and Jun−Jul. TOC concentrations
were typically very low during the remainder of the year, and
generally do not present any threat of DBP concentrations
exceeding their regulatory MCLs.
For both the Apr−May and Jun−Jul model, all of the NDVI

predictor variables were removed because the NDVI data set
only included data until 2006, and its incorporation would
drastically reduce the size of the TOC data set. From the
preliminary analysis, the incorporation of NDVI would improve
the regression models’ abilities to estimate source water TOC,
and further analysis may produce improved regression models.
4.4.1. April and May. The best model selected consisted of

three predictor variables: the 15-day Average Temperature
(T15D), the PDSI 1 Month Prior (PDSI1M) and the PDSI 3
Months Prior (PDSI3M). The inverse link function with a first
order polynomial and neighborhood size of 0.35 indicates local
nonlinearities present in the relationship. The scatterplot of
modeled and observed TOC concentrations (n = 78) is shown
in Figure 2 and the corresponding NSE is 0.83. The residuals
exhibit no significant autocorrelation and are normally
distributed (Figure S10), indicating that the model captured
almost all of the variability in TOC with white noise residuals,
in compliance with the theoretical framework. The perform-
ance of the model in a prediction mode from the drop-10%

cross validation has median RMSE of 0.72 and median NSE of
0.62 (Figure S11).
Since snowmelt is the main driver of TOC during this period,

the 15-day temperature average is an appropriate predictor, as it
controls the quantity of snowmelt thus influencing the surface
runoff transporting OM to the source water reservoirs. If
enough melt occurs, then water can travel to the base of the
snow cover and to surface of the underlying soil, where it is
either available for runoff and/or infiltration.72 Soil moisture
influences the soil’s capacity for infiltration and therefore, also
influences the quantity of runoff−with higher soil moisture
before snowmelt period reduces infiltration of the snowmelt
and increases runoff. Therefore, the model’s selection of PDSI,
both one month prior and three months prior, suggests the
importance of soil moisture in these physical processes.

4.4.2. June and July. The best model for June and July TOC
concentration consisted of three predictor variables: the 30-day
Average Temperature with a 1-Month Lag (T30D1M), the 30-
day Total Precipitation (P30D), and the PDSI 1 Month Prior
(PDSI1M)with log link function, local linear polynomial and
neighborhood of 0.6, indicating local nonlinearities. The
modeled and observed TOC concentrations (n = 89) are
shown in Figure 2 and the corresponding NSE of 0.75 is very
good as the modeled values are close to the observed with an
underestimation of higher values. The residuals show no
significant autocorrelation and exhibit normal distribution
(Figure S12) indicating that the model is quite effective at
capturing almost all of the variability in the TOC concen-
trations. The drop-10% cross validation has a median RMSE of
0.60 and median NSE of 0.61 (Figure S13), both indicating
very good model performance in a true forecasting mode.
In the early summer months of June and July, some

snowmelt may still occur depending on the temperatures
during the preceding spring months. The temperature predictor
variable selected by the model captures the temperatures during
spring months, which directly influences the quantity of
snowmelt. Rainfall becomes the main physical process leading
to surface runoff during these months, which is captured in the
selected precipitation variable. As in the April and May
regression model, PDSI is an important predictor variable,
because soil moisture influences the soil’s capacity for
infiltration, which in turn affects the surface runoff transporting
OM to the reservoirs supplying water to the Betasso WTP.
Comparing results for all case study locations allows for

identification of common predictors. A temperature variable
was selected as a predictor in every model, although the time
period represented by the variables ranges from a 15-day
temperature average (T15D) to a 30-day average temperature 3
months prior to the TOC observation (T30D3M), suggesting
the time scale of temperature impacting SW TOC concen-
trations may be based on the physical processes leading to
TOC transport to SW. PDSI one month prior to the TOC
observation (PDSI1M) was selected as a predictor for both
Boulder models and the Cincinnati model, and was initially
selected for the Newport News model before the lag 1
predictor was incorporated, illustrating the influence of soil
moisture on SW TOC concentrations in three different
geographic locations and suggesting that recent soil moisture,
measured as PDSI, may be an important predictor of TOC
concentrations in other watersheds. The three case studies
demonstrate that the climate and land surface variables with the
strongest impact on the mobilization and transport of TOC to
SW can vary in different watersheds. This methodology can be

Figure 2. Scatterplot of modeled and observed source water TOC
concentration for the Betasso WTP in Boulder, Colorado in Apr−May
and Jun−Jul, with a 1:1 line as reference (left).
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applied in other SW catchments to determine appropriate
model parameters, which may not be the specific parameters
selected in the three case studies presented.
The three case study locations illustrate the varying degrees

at which a local polynomial regression model with climate and
land surface predictors can model SW TOC variability avoiding
reliance on streamflow data used in previous mod-
els.14,15,18,21,24,25,27,33,34,36 The three case study SW sources
do not have long residence times; this modeling approach may
also have limited results if applied to reservoir sources with long
residence times. The Cincinnati case study demonstrates the
limitations to this modeling approach when substantial
anthropogenic impacts on SW OM are present. The predictor
suite utilized does not account for any OM sources from
wastewater discharge or urban and/or agricultural runoff, and
therefore this modeling technique will have limited predictive
skill if applied to watersheds with these OM sources. The
results for the Newport News model and the Boulder models
suggest that this modeling approach offers good predictive skill
for watersheds dominated by OM with little anthropogenic
sources; applying it to similar watersheds should allow for
predictions on future TOC variability using climate prediction
models. The ability to predict future TOC variability may
become increasingly important as potential climate change
scenarios threaten to increase SW TOC, increasing the
potential for DBP formation and the challenge for water
utilities to meet regulations and protect the public that they
serve.
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