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In this article, an approach using Bayesian Generalised Least Squares (BGLS) regression in a region-
of-influence (ROI) framework is proposed for regional flood frequency analysis (RFFA) for ungauged
catchments. Using the data from 399 catchments in eastern Australia, the BGLS-ROI is constructed to
regionalise the flood quantiles (Quantile Regression Technique (QRT)) and the first three moments of
the log-Pearson type 3 (LP3) distribution (Parameter Regression Technique (PRT)). This scheme firstly
develops a fixed region model to select the best set of predictor variables for use in the subsequent
regression analyses using an approach that minimises the model error variance while also satisfying a
number of statistical selection criteria.

The identified optimal regression equation is then used in the ROI experiment where the ROI is chosen
for a site in question as the region that minimises the predictive uncertainty. To evaluate the overall per-
formances of the quantiles estimated by the QRT and PRT, a one-at-a-time cross-validation procedure is
applied. Results of the proposed method indicate that both the QRT and PRT in a BGLS-ROI framework
lead to more accurate and reliable estimates of flood quantiles and moments of the LP3 distribution when
compared to a fixed region approach. Also the BGLS-ROI can deal reasonably well with the heterogeneity
in Australian catchments as evidenced by the regression diagnostics. Based on the evaluation statistics it
was found that both BGLS-QRT and PRT-ROI perform similarly well, which suggests that the PRT is a via-
ble alternative to QRT in RFFA.

The RFFA methods developed in this paper is based on the database available in eastern Australia. It is
expected that availability of a more comprehensive database (in terms of both quality and quantity) will
further improve the predictive performance of both the fixed and ROI based RFFA methods presented in
this study, which however needs to be investigated in future when such a database is available.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Estimation of design floods is needed for the design and plan-
ning of water infrastructure, flood risk assessment and various reg-
ulatory purposes. To estimate design floods, observed streamflow
data is ideally needed; however, in many instances, the observed
flood records are quite short or unavailable (in the case of unga-
uged catchments). Under these situations, regional flood frequency
analysis (RFFA) is usually carried out which in essence attempts to
transfer flood characteristics information from a group of gauged
catchments to an ungauged catchment. In the literature, many
RFFA approaches have been proposed, applied and tested in differ-
ent countries around the world (e.g. Burn 1990a, 1990b; Hosking
ll rights reserved.
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and Wallis, 1993; Rosbjerg and Madsen, 1994; Zrinji and Burn,
1994; Stedinger and Tasker, 1985; Stedinger and Tasker, 1986a;
1986b; Bates et al., 1998; Tasker and Stedinger, 1989; Pandey
and Nguyen, 1999; Ouarda et al., 2001; Chokmani and Ourada,
2004; Rahman, 2005; Reis et al., 2005; Griffis and Stedinger,
2007; Gruber and Stedinger, 2008; Chebana and Ouarda, 2008;
Micevski and Kuczera, 2009; Nezhad et al., 2010). RFFA can also
be used to create larger data samples (using historical, paleoflood
or extreme floods occurring in ungauged catchments) to reduce
the uncertainties on high return period quantiles in a region (e.g.
Gaume et al., in press).

In most of these regional estimation methods, hydrological
statistics of interest (i.e. flood quantiles, mean flood, etc.) are esti-
mated at gauged sites with relatively good data and are then trans-
ferred to an ungauged site to estimate the same statistic of interest.
In transferring the information of at-site data to an ungauged site it
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mailto:a.rahman@uws.edu.au
http://dx.doi.org/10.1016/j.jhydrol.2012.02.012
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


K. Haddad, A. Rahman / Journal of Hydrology 430–431 (2012) 142–161 143
is assumed that the data presents similar hydrological characteris-
tics and that the region forms an ‘acceptably homogenous region’
(Hosking and Wallis, 1993). Formation of homogeneous regions
has traditionally been based on geographic and administrative
boundaries or even on a region-of-influence (ROI) analysis that
seeks to satisfy some criteria (e.g. minimise the number of stations
or the root mean square error of estimates) (I.E. Aust., 1987, 2001).

The degree of homogeneity of a proposed region is often judged
on the basis of a dimensionless coefficient of the annual maximum
flood series, standardised flood quantiles and similar statistics (e.g.
Dalrymple, 1960; Wiltshire, 1986a, 1986b; Chowdhury et al., 1991;
Lu and Stedinger, 1992; Hosking and Wallis, 1993; Fill and Steding-
er, 1995; Cunderlik and Burn, 2006; Castellarin et al., 2008). For an
ungauged site, since recorded streamflow data is not available, its
degree of homogeneity in relation to a proposed homogeneous re-
gion cannot be assessed directly, hence the proximity of the unga-
uged site in geographical or catchment attributes space is used to
assess its similarity with the proposed homogeneous region. Re-
gions purely based on geographic and administrative boundaries
may lack in hydrological similarity/homogeneity (Burn et al.,
1997). It has been shown in several studies (Burn, 1990a, 1990b;
Zrinji and Burn, 1994; Tasker et al., 1996; Eng et al., 2005; Merz
and Blöschl, 2005; Eng et al., 2007a, 2007b) that the ROI approach
performs better than the fixed region approach. In the ROI ap-
proach, regions can be formed based on the proximity in geograph-
ical or catchment attributes space.

Since the inception of the ROI procedure, it has been found the
ROI can result in improved flood quantile estimates in terms of root
mean square error and that ROI gave the flexibility of variable
regions (Zrinji and Burn, 1996). They went on further to refine
the initial ROI approach into a hierarchal ROI approach. The hierar-
chical ROI approach was found to perform well for the estimation
of higher order moments (i.e. skewness), this is the case where
more sites are needed to form a region. It was found in this study
that the hierarchical ROI approach improved flood estimates in the
extreme range. Tasker et al. (1996) compared five different meth-
ods for developing regional regression models to estimate flood
quantiles at ungauged sites in Arkansas, US. The methods looked
at traditional flood estimation regression approaches, multivariate
techniques of cluster and discriminant analysis and a ROI approach
based on geographical and catchment attribute space where the n
gauging sites with the smallest distance make up the ROI for site i.
The results concluded that the ROI approach (based on catchment
attributes space) outperformed the other methods based on the
lowest root mean square error.

Eng et al. (2005) used different ROI approaches for estimating
the 50 years average recurrence interval (ARI) flood quantile at
ungauged sites in a case study for the Gulf Atlantic Rolling Plains
of the southeastern United States. Ordinary Least Squares regres-
sion (OLS) was used to regress flood statistics against catchment
characteristics for each ungauged site based on data from ROI con-
taining the n closest gauging sites in both geographical (GROI) and
catchment attributes space (CROI). Model performance was based
on the prediction errors from independent testing. From this test-
ing, it was shown for the two ROI approaches using the n closest
gauging sites (based on geographical distance) was better than
using a distance measure in catchment attributes space. They also
found that GROI produced lower errors than CROI.

Merz and Blöschl (2005) examined the predictive performance
of several flood regionalisation methods. They performed the
assessment using a jackknife comparison of at-site estimated
regionalised flood quantiles for 575 Austrian catchments. The ROI
methods that only used catchment attributes performed relatively
poorer to the methods that used geographical proximity. The ROI
used in this study was then combined with multiple regression.
Merz and Blöschl (2005) were able to demonstrate that when spa-
tial dependency was incorporated, the ROI showed less random
errors.

Eng et al. (2007a) proposed a hybrid ROI (HROI) which com-
bined the GROI and CROI in a Generalised Least Squares (GLS)
regression framework. They applied this method to 1091 catch-
ments in the southeastern part of the United States to estimate
the 50 years ARI flood quantile. Their study was able to show that
the HROI yielded smaller root mean square estimation errors while
also producing fewer extreme errors often found in either GROI or
CROI. From this study it was concluded that for the 50 years ARI
flood quantile, the similarity with respect to catchment attributes
was important, however it was incomplete and that the consider-
ation of the geographical proximity of the sites provided a useful
surrogate for characteristics that were not included in the analysis.
Eng et al. (2007b) went onto also present an enhanced GLS regres-
sion and ROI framework that is based on a leverage-guided ROI.
This procedure used two newly defined ROI leverage and influence
metrics. They applied their method to 996 catchments in the
southeastern part of the United States. This new leverage-guided
ROI regression provided improvements in terms of lower root
mean square errors while also eliminating all the influential
observations.

In Australia the Index Flood method has been researched (e.g.
Bates et al., 1998; Rahman et al., 1999; Ishak et al., 2011). Bates
et al. (1998) and Rahman et al. (1999) applied the Index Flood
method to the state of Victoria (VIC) and part of New South Wales
(NSW). It was found that no ‘acceptably homogenous region’ could
be identified based on the Hosking and Wallis (1993) test and a
number of different grouping methods. The methods by Bates
et al. (1998) and Rahman et al. (1999) involved the assignment
of ungauged catchments to a particular homogenous group identi-
fied (through the use of L-moments) on the basis of catchment
characteristics as opposed to geographical proximity. The relation-
ships sought were developed by statistical procedures such as
canonical correlation analysis, tree based modelling and other mul-
tivariate statistical techniques. The results of this method also de-
pended upon the correct assignment of an ungauged catchment to
a homogenous group, thus any wrong assignment would greatly
increase error in quantile estimation. Ishak et al. (2011) recently
presented a study for the state of NSW where it was identified that
a simple scaling approach to flood estimation is feasible, however
no homogenous region could be found for the application of the In-
dex Flood method. With the existence of large predictive uncer-
tainty and the heterogeneity that plagues Australian catchments,
an approach is needed that can deal with heterogeneity and pre-
dictive uncertainty in an efficient manner. For instance a method
is needed that may perform reasonably well in the case of slight
to medium heterogeneity.

The ROI method in Australia has recently received much atten-
tion (Hackelbusch et al., 2009; Rahman et al., 2009) because of its
flexible and easy integration with a variety of RFFA methods and
that it may deal effectively with the highly heterogeneous Austra-
lian catchment conditions. In the ROI approach, the site of interest
is assumed to form its own ‘unique’ region. The ROI may be applied
in a variety of ways such as by geographical distance or even in
multi dimensional catchment attributes space defined by catch-
ment slope, rainfall intensity, catchment area or other catchment
and climatic attributes. After applying this delineation, estimation
techniques such as the USGS Quantile Regression Technique (QRT)
(Thomas and Benson, 1970) may be used.

A more efficient approach would be the application of GLS
regression (Kuczera, 1983; Stedinger and Tasker, 1986a, 1986b;
Tasker and Stedinger, 1989; Reis et al., 2005; Griffis and Stedinger,
2007) which accounts for correlated flood data, different record
lengths and moreover distinguishes between sampling error and
model error. The use of regional GLS regression (Tasker et al.,
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1986; Tasker and Stedinger, 1989; Pandey and Nguyen, 1999;
Madsen and Rosbjerg, 1997; Madsen et al., 2002) and moreover
Bayesian GLS estimation methods have been shown to be more
accurate in estimating flood quantiles and statistics than using
at-site flood frequency analysis alone (Reis et al., 2005; Micevski
and Kuczera, 2009).

While both the ROI and GLS regression have been applied before
in a QRT framework (Eng et al., 2007b), we are unaware of any
comprehensive comparison between ROI and fixed regions in a
BGLS framework, moreover there has been no solid comparison be-
tween the estimation of quantiles and the parameters of distribu-
tions in a ROI framework. Regionalising the parameters of a
probability distribution (which is referred to as Parameter Regres-
sion Technique (PRT) in this study) offers three significant advan-
tages over the QRT:

1. It ensures flood quantiles increase smoothly with increasing
ARI, an outcome that may not always be achieved with the
QRT. The flood quantiles obtained from the PRT may also be
used to determine whether the flood quantiles derived from
the QRT provides similar and consistent results.

2. It is straightforward to combine any at-site flood information
with regional estimates using the approach described by
Micevski and Kuczera (2009) to produce more accurate quantile
estimates; and

3. It permits quantiles to be estimated for any ARI within the lim-
its of the developed RFFA method.

The aim of this paper therefore is twofold: comparison of the
predictive performance of (i) fixed regions and ROI; and (ii) the
QRT and PRT. The ROI method used in this paper improves on
the current ROI approaches (e.g. Tasker et al., 1996) where we seek
to minimise the regression models predictive error variance rather
than selecting or assuming a fixed number of sites to minimise a
distance metric.

We focus on the ungauged catchment case for which frequency
regionalisation is more challenging. The selection of the final set of
predictor variables for use with GLS regression usually involves a
stepwise variable selection search based on OLS regression (e.g.
Tasker et al., 1996). This paper improves upon predictor variable
selection by searching for the set of variables that minimises the
model error variance, rather than the total (sampling plus model)
error variance and by satisfying a number of statistical diagnostic
metrics.

We use a comprehensive data set of small to medium sized
catchments in south east Australia covering the states of VIC,
NSW and Queensland (QLD). To make a thorough comparison of
predictive performance between the fixed regions and ROI for both
the QRT and PRT we adopt a one-at-a-time validation approach
where we compare regional flood estimates (by QRT and PRT) to
at-site flood frequency estimates. The one-at-time validation gives
us an independent measure of how well each of the methods
would perform for the ungauged catchment case.

We also present a residual analysis in a GLS framework where
three sources of uncertainty (model error, sampling error and the
uncertainty due to the unknown coefficients being estimated) are
used. The residual analysis presented also provides insight into
the overall regional performance of the methods and identifies
any major outliers that may be affecting model consistency.
2. Study area and data

The catchments used in this paper are all located in the eastern
coast of Australia. The physiography ranges from the lowlands in
the western part of Victoria (VIC) with mean catchment elevations
of less than 300 metres above sea level (ASL), up to higher catch-
ments in the eastern part of VIC and New South Wales (NSW) with
a mean catchment elevation of about 800 ASL. In Queensland (QLD)
the catchments are mainly low to medium lying with mean catch-
ment elevations in the order of 600 ASL.

The mean annual rainfall ranges from 400 mm/year in the north
west of VIC to 3500 mm/year along the eastern parts of QLD. Win-
ter dominated rainfall is common in VIC; while summer dominated
rainfalls are more common for northern NSW and QLD. The loca-
tions of the gauged catchments are shown in Fig. 1.

The analysis undertaken in this paper makes use of (i) ob-
served annual maximum flood series of catchments ranging in
area from 3 to 1010 km2, and (ii) climatic and catchment charac-
teristics data. As a preliminary step, the annual maximum flood
series of candidate catchments were chosen based on (i) catch-
ment area (ii) record length (iii) regulation of catchment (iv)
urbanisation of catchment (v) landuse change (vi) quality of data
and (vii) climate variability and change. Further reading on the
details of these methods can be found in Haddad et al. (2010a,
2010b).

Missing data points in the annual maximum flood series were in
filled where possible by two methods. Method 1 involved compar-
ing the monthly instantaneous maximum data (IMD) with monthly
maximum mean daily data (MMD) at the same station. If a missing
month of IMD flow corresponded to a month of very low MMD
flow, then that was taken to show that the annual maximum did
not occur during that missing month. Method 2 involved a simple
linear regression of the annual MMD flow against the annual IMD
series of the same station. It must be mentioned that the regression
equations developed were used for filling gaps in the IMD record,
but not to extend the overall period of record.

Rating curve extrapolation errors were identified by using a rat-
ing ratio test and treated using the in-built procedure ‘rating curve
error’ case in at-site flood frequency analysis software (FLIKE)
(Kuczera, 1999). Outliers were identified using the Grubbs and
Beck (1972) method, which is also recommended in Bulletin 17B
by the US Water Resources Council (IACWD, 1982). Low outliers
were censored using the FLIKE software (that is, the information
that there was no flood in that year was taken into account). High
outliers were found only in few cases, these however were retained
as there was no evidence of these points being a data error. The se-
lected stations did not show any trend.

The finally selected data set consists of 399 catchments (Fig. 1)
with annual maximum flow record lengths ranging from 25 to
94 years (maximum record length for NSW: 75 years, mean and
standard deviation: 37 and 11 years respectively; maximum
record length for VIC: 52 years, mean and standard deviation: 33
and 5 years respectively and maximum record length for QLD:
94 years, mean and standard deviation: 40 and 15 years respec-
tively). Based on the findings from previous studies in Australia
(e.g. Rahman, 2005), a total of 14 explanatory variables were used,
as outlined below:

(i) catchment area in km2 (area);
(ii) design rainfall intensities for the 2 years ARI with 1 and 12 h

durations (2I1, 2I12), 50 years ARI with 1 h duration (50I1) and
50 years ARI with 12 and 72 h duration (50I12, 50I72), all
expressed in mm/h;

(iii) mean annual rainfall in mm/y (rain);
(iv) mean annual evapo-transpiration expressed in mm/y (evap);
(v) design rainfall intensity values in mm/h IARI,tc (where ARI = 2,

5, 10, 20, 50 and 100 years and tc = time of concentration
(hour), estimated from tc = 0.76(area)0.38);

(vi) stream density expressed in km/km2 (sden);
(vii) main stream slope expressed in m/km (S1085);

(viii) stream length expressed in km;
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(ix) forest cover expressed as a percentage (%) of catchment area
(forest) and

(x) quaternary sediment area expressed as a percentage of
catchment area (QSA, used in VIC only).

To reduce possible biases due to highly skewed log-transformed
explanatory variables, all explanatory variables data were centred
by subtracting its log-mean value, in this case the intercept term in
the regression equation represents the mean of the logarithm of
the observed dependent variable data.
3. Methodology

3.1. At-site flood frequency analysis and quantile and parameter
regression techniques

At-site flood quantiles for ARIs of 2, 5, 10, 20, 50 and 100 years
were estimated by the at-site flood frequency analysis software
FLIKE (Kuczera, 1999) using the log-Pearson type 3 (LP3) distribu-
tion with the Bayesian parameter estimation procedure as de-
scribed in Kuczera (1999). The LP3 distribution was chosen based
on two reasons. Firstly the LP3 distribution is the currently recom-
mended at-site flood frequency distribution in Australian Rainfall
and Runoff (National guideline for flood estimation). Secondly
the LP3 has shown consistently better results in the past studies
for Australian catchments (Haddad et al., 2010a, 2010b; Haddad
et al., 2009) and thus is adopted for this study. No prior informa-
tion was used in fitting the LP3 distribution. The parameters of
the LP3 distribution (i.e. mean, standard deviation and skewness)
were also extracted from the FLIKE software.

To regionalise the flood quantiles the sampling covariance ma-
trix (R) of the LP3 distribution is required. Tasker and Stedinger
(1989) and Griffis and Stedinger (2007) (p. 84, Eq. (4)) provide
the approximate estimator of the components of R matrix of the
LP3 distribution. The skew and standard deviation in the R matrix
are subject to estimation uncertainty. In this study to avoid corre-
lation between the residuals and the fitted quantiles, the
(i) inter site correlation between the concurrent annual maxi-
mum flood series (qij) is estimated as a function of the dis-
tance between sites i and j;

(ii) the standard deviations (of the logarithms of annual maxi-
mum flood series) ri and rj are estimated using a separate
Ordinary Least Squares (OLS) and Generalised Least Squares
(GLS) regression using the explanatory variables used in the
study (given in Section 2); and

(iii) the regional skew (of the logarithms of annual maximum
flood series) is used in place of the population skew c as sug-
gested by Tasker and Stedinger (1989). This analysis above
used the regional estimates of the standard deviation and
skew obtained from Bayesian GLS (BGLS) regression. The
detailed information on the covariance matrices associated
with the standard deviation and skew can be found in Reis
et al. (2005) and Griffis and Stedinger (2007).

For the Parameter Regression Technique (PRT), we adopted the
GLS regression (Tasker and Stedinger, 1989; Griffis and Stedinger,
2007) using a Bayesian framework (Reis et al., 2005) to develop
regression equations for the parameters of the LP3 distribution
(i.e. mean, standard deviation, and skew coefficient of the loga-
rithms of the annual maximum flood series). The regional values
of standard deviation and skew were taken from the R matrix of
the flood quantile modelling as mentioned above. The covariance
matrix for the mean flood was obtained following Stedinger and
Tasker (1985, 1986a, 1986b).

3.2. Generalised Least Squares Regression

The GLS regression assumes that the hydrological variable of
interest (e.g. a flood quantile or a parameter of the LP3 distribu-
tion) denoted by yi for a given site i can be described by a function
of catchment characteristics (explanatory variables) with an addi-
tive error:

yi ¼ b0 þ
Xk

j¼1

bjXij þ di i ¼ 1;2; . . . ;n ð1Þ
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where Xij(j = 1, . . . , k) are explanatory variables, bj are the regression
coefficients, di is the model error which is assumed to be normally
and independently distributed with model error variance r2

d and n
is the number of sites in the region. In all cases only an at-site esti-
mate of yi denoted as ŷi is available. To account for the error in this
data, a sampling error gi must be introduced into the model so that:

ŷ ¼ Xbþ gþ d ¼ Xbþ e where ŷi ¼ yi þ gi; i ¼ 1;2; . . . ;n ð2Þ

Thus the observed regression model errors ei are the sum of the
model errors di and the sampling errors gi. The total error vector
Kðr2

dÞ has mean zero and a covariance matrix:

EbeeTc ¼ Kðr2
dÞ ¼ r2

d Iþ RðŷÞ ð3Þ

where
P
ðŷÞ is the covariance matrix of the sampling errors in the

sample estimators of the flood quantiles or the parameters of the
LP3 distribution. The variance of gi depends on the record length
available at each site and the cross correlation of the sites flood
data. Therefore the observed regression model errors are a combi-
nation of time-sampling error gi and an underlying model error di.

In this regional framework, r2
d can be viewed as a heterogeneity

measure. Madsen and Rosbjerg (1997) and Madsen et al. (2002)
showed that the regional average GLS estimator is a general exten-
sion of the record-length-weighted average commonly applied in
the Index Flood method; however the record-length-weighted
average estimator neglects inter-site correlation and regional het-
erogeneity (Stedinger et al., 1993; Stedinger and Lu, 1995).

The GLS estimator of b and its respective covariance matrices
for known r2

d are given by:

b̂GLS ¼ ½XTKðr2
dÞ
�1X��1XTKðr2

dÞ
�1ŷ ð4Þ

R½b̂GLS� ¼ ½XTKðr2
dÞ
�1X��1 ð5Þ

The model error variance r2
d can be estimated by either general-

ised method of moments (MOM) or maximum likelihood (ML) esti-
mators as described by Stedinger and Tasker (1985, 1986a, 1986b).
The MOM estimator is determined by iteratively solving Eq. (6)
along with the generalised residual mean square error equation:

ŷ � Xb̂GLS

� �T
r̂2

d Iþ RðŷÞ
� ��1ðŷ � Xb̂GLSÞ ¼ n� ðkþ 1Þ ð6Þ

In some situations, the sampling covariance matrix explains all
the variability observed in the data, which means the left-hand
side of Eq. (6) will be less than n � (k + 1) even if r̂2

d is zero. In these
circumstances, the MOM estimator of the model error variance is
generally taken to be zero (Stedinger and Tasker, 1985; 1986a,
1986b).

3.3. Bayesian GLS regression

In a Bayesian framework, the parameters of the model are con-
sidered to be random variables, whose probability density function
should be estimated. The Bayesian approach combines any data
with prior information (if available) about the parameters being
estimated. This information usually is established from other data
sets, previous studies or specific knowledge about the behavior of
the system being analysed. Parameter estimation is made through
the posterior distribution which is developed using Bayes’ rule:
(Zellner, 1971):

pðhjŷÞ ¼ pðŷjhÞfðhÞR
pðŷjhÞfðhÞdh

ð7Þ

Here, pðhjŷÞ is the posterior distribution of the parameter vector
h given the information ŷ in the available data set, pðŷjhÞ is the like-
lihood function for the data, and f(h) is the prior distribution of h.
The denominator is a normalising constant which ensures that the
area under the posterior pdf equals one. Reis et al. (2005)
developed a Bayesian approach to estimate the regional flood
model parameters and showed that the Bayesian approach can
provide a realistic description of the possible values of the modal
error variance, especially in the case where sampling error tend
to dominate over the model errors in the regional analysis.

With the Bayesian approach it is assumed here that there is no
prior information on any of the b coefficients thus a multivariate
normal distribution with mean zero and a large variance (e.g.
greater than 100) is used as a prior for the regression coefficients
as suggested by Reis et al. (2005). This prior is considered to be al-
most non-informative, which produces a probability distribution
function (pdf) that is generally flat in the region of interest. The
prior information for the model error variance r2

d is represented
by an informative one-parameter (k) exponential distribution,
which represents the reciprocal of the prior mean of the model er-
ror variance, which is given by Eq. (8) and can be found in Reis et al.
(2005):

fðr2
d Þ ¼ ð1=kÞe�r

2
d
=k; where r2

d > 0 ð8Þ

The likelihood function for the data as suggested by Reis et al.
(2005) is considered to be a multivariate normal distribution, so
that

Lðb;r2
d jIÞ ¼ ð2pÞ�n=2 1

jKj1=2 exp �0:5ðŷ � XbÞTK�1ððŷ � XbÞ
h i

ð9Þ

where n is the number of sites in a region.
The marginal posterior distribution of the model error variance

can be computed by integrating the joint posterior distribution
over the possible values of the b coefficients

(Reis et al., 2005), to obtain:

f ðr2
d jIÞ ¼

Z
f ðb;r2

d jIÞdb /
Z

f ðIjb;r2
d Þfðb;r2

d Þdb ð10Þ

where f ðb;r2
d jI is the joint posterior of the parameters, f ðIjb;r2

dÞ is
the likelihood function, and fðb;r2

d Þ is the joint prior for b and r2
d .

If one uses a relatively non-informative prior on the b coefficients
as was done in this study, the marginal posterior distribution for
the model error variance, except for the normalizing constant, is:

f ðr2
d jIÞ / jKjjXTK�1Xj

h i�1=2

� exp �0:5ðŷ � Xb̂ÞTK�1 ŷ � Xb̂
� �h i

fðr2
d Þ ð11Þ

where jKj signifies the determinant of matrix K.
Using Eq. (11) the marginal pdf, mean, and variance of r2

d can be
computed numerically. It also follows that the posterior moments
of the b coefficients can be computed numerically as well.

Reis et al. (2005) discusses the derivation of the choice of a prior
for the model error variance for regionalising the skew. For the
regionalisation of skew, we employed a value for the prior mean
of the model error variance equal to 6 following Reis et al. (2005).

A negative model error variance is unrealistic as noted by Reis
et al. (2005) which can happen in the case of GLS regression, in par-
ticular for the skew model when sampling error dominates over
the model error. This was observed in previous GLS based regional
frequency analysis applications with Australian data (e.g. Haddad
et al., 2010a, 2010b, 2011). In this situation Eq. (6) may introduce
further uncertainty into the regional model. A Bayesian estimator
of the model error variance (Eq. (11)) as discussed above may be
used to safeguard against this happening, as adopted in this study.
Further details can be found in Reis et al. (2005) and Micevski and
Kuczera (2009). In summary, the Bayesian estimator offers a better
way of dealing with the model error variance and quantifying asso-
ciated uncertainty about it.

To derive the prior distribution for the standard deviation, mean
flood and flood quantiles of the LP3 distribution we used an
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informative one-parameter exponential distribution where the re-
ciprocal of the residual error variance estimate taken from OLS
regression is used as the prior mean of the model error variance.
For the mean flood and flood quantiles, the model error variance
tends to dominate the regional analysis. In this case a zero or neg-
ative value for the model error variance is highly unlikely.

3.4. Selection of predictor variables

This section describes the approach adopted for selecting the
predictor variables that should be included in the prediction equa-
tions. The approach for selecting predictor variables used in this
paper provides improvements over current methods used to justify
model selection in the GLS regression. Provided below is a brief dis-
cussion on the BGLS regression statistics that guided our model
selection.

We use a procedure similar to forward stepwise regression uti-
lising all the sites for each state (separate regression for each state)
and initially adopting just a constant term in the regression equa-
tion. The model error variance and its standard error are noted. We
then add predictor variables starting with area followed by differ-
ent combinations of other variables. In all, 16 different combina-
tions of predictor variables were used for the mean, standard
deviation and skew models, while 25 combinations were trialled
for the flood quantile models.

The choice for the preferred regional BGLS model was the com-
bination that best satisfied all the following statistical measures:

(i) Minimum model error variance (MEV), and not on the total
error variance (model plus sampling error as with current
approaches), also the use of the expected MEV from BGLS
ensures non-negative and zero values,

(ii) The minimum average variance of prediction (AVP) for a
new and old station (AVPN) and (AVPO) (Gruber and Ste-
dinger, 2008). Here AVPN refers to AVP for a new site within
the region of interest which has not been used to develop
the regression model. The AVPO refers to the AVP for a site
which has been used to develop the regression model. As
we are interested in making predictions at ungauged sites
the AVP penalises the inclusion of extra independent vari-
ables because it accounts for the sampling variances of the
regression coefficients.

(iii) The significance of the regression coefficient values (b)
obtained was evaluated using the Bayesian plausibility value
(BPV) as developed by Reis et al. (2005) and Gruber and Ste-
dinger (2008). The BPV allows one to perform the equivalent
of a classical hypothesis P-value test within a Bayesian
framework. The advantage of the BPV is that it uses the pos-
terior distribution of each parameter, which also reflects the
prior. The BPV in this study was carried out at the 5% signif-
icance level.

(iv) The Akaike and Bayesian information criteria (AIC and BIC)
penalise more heavily a model with a greater number of pre-
dictors (i.e. the inclusion of a predictor variable must signif-
icantly improve the model if it is to be included). In practice,
after the computation of the posterior mean of the AIC and
BIC for all of the competing models, one selects the model
with the minimum AIC and BIC value.

(v) The highest Pseudo R2 value (R2
GLS). Reis et al. (2005) pro-

posed a pseudo co-efficient of determination (R2
GLS) appropri-

ate for use with the GLS regression. For the traditional R2,
both the Sum-of-Squared Errors (SSE) and the Total-Sum-
of-Squared deviations about the mean (SST) include sam-
pling and model error variances, and therefore this statistic
can grossly misrepresent the true power of the GLS model
to explain the actual variation in the yi.
(vi) A predictor variable having an estimated coefficient (other
than the constant) that was less than two posterior standard
deviations away from zero was rejected (this shows the rel-
ative importance of the predictor) (Hackelbusch et al., 2009).
In all the cases the simplest model was preferred.

3.5. Formation of regions, fixed and ROI

The fixed region BGLS regression analysis as above identifies the
catchment characteristics that best account for heterogeneity by
minimising the model error variance. However, it is assumed that
there remains a possible spatial structure in the model error resid-
uals. With this in mind the model error variance therefore within
possible sub regions of the fixed region should be less than the
fixed region model error variance. This is investigated further in
this paper (see Section 4)

It is in this framework that the ROI approach was applied to the
parameters (i.e. mean, standard deviation and skew) and flood
quantiles of the LP3 distribution to further reduce the heterogene-
ity unaccounted for by the fixed region BGLS model.

The ROI approach in this paper uses the distance between sites
as the distance metric (i.e. geographic proximity). We apply the
ROI within the state boundaries in the following way. In the first
iteration, the 15 nearest stations to the site of interest are selected
and a regional BGLS regression is performed and the predictive var-
iance (Eqs. (6) and (11)) is noted. The second iteration proceeds
with the next five closest stations being added to the ROI and
repeating the regression. This procedure terminates when all
eligible sites have been included in the ROI. The ROI for the site
of interest is then selected as the one which yields the lowest
predictive variance.

This approach is fundamentally different to that of Tasker et al.
(1996) in that it seeks to minimise

(i) the regression model’s predictive error variance rather than
selecting or assuming a fixed number of sites that minimise
a distance metric in catchment characteristic space;

(ii) the ROI criterion of Tasker et al. (1996) cannot guarantee
minimum predictive variance; and

(iii) moreover, the selection of sites that are minimally different
in catchment characteristic space may result in greater
uncertainty in the estimated regression coefficients.

It should be noted that the predictive error variance has two
terms associated with it:

(i) the model error variance; and
(ii) the predictive variance arising from uncertainty in the esti-

mated regression coefficients.

The first term is the posterior expected value of the model error
variance estimated using the approach of Reis et al. (2005), see Sec-
tion 3.3 and Eq. (11) – this is always non-zero and guards against
situations where the most likely value of the model error variance
is zero. The second term effectively guards against the ROI favour-
ing fewer sites to minimise the model error variance; indeed as the
number of sites is reduced the model error variance is likely to be
offset by an increase in uncertainty in the estimated regression
coefficients (i.e. b).

3.6. Regression diagnostics

The assessment of the regional regression model is made by
using a number of statistical diagnostics such as a pseudo–
coefficient of determination (as discussed already in Section 3.4)



148 K. Haddad, A. Rahman / Journal of Hydrology 430–431 (2012) 142–161
and the standard error of prediction. An analysis of variance for the
BGLS models is undertaken to examine which portion of the total
error (sampling or model) dominates the regional analysis for both
the fixed region and ROI methods. We also present the standard-
ised residuals and Z score analysis in a GLS framework which is
used to identify outlier sites; absence of outlier in regression diag-
nostics indicates the overall adequacy of the regional model. These
statistics are described below.

If the standardised residuals have a nearly normal distribution
(to be determined in the residual analysis, see below), the standard
error of prediction in percent (SEP) (Tasker et al., 1986) for the true
flood quantile or parameter estimator is described by:

SEP ð%Þ ¼ 100� ½expðAVPNÞ � 1�0:5 ð12Þ

Important to this study is the assessment of the adequacy of the
regional regression model in its application to ungauged catch-
ments. The measure of the raw residual (ri), which is the difference
between the sample (at-site estimate) and regional estimates of
the LP3 parameter or flood quantile can be assessed initially for
major deviations. However, interpreting the raw residual may be
misleading as the raw residual has three sources of uncertainty:
model error, sampling error and uncertainty due to regression
coefficients being unknown.

In this study we use a standardised residual rsi, which is the raw
residual divided by its standard deviation defined as the square
root of the sum of the predictive variance of the LP3 parameter
or flood quantile and its sampling variance given by the appropri-
ate diagonal element of the sampling covariance matrix. This yields
the definition

rsi ¼
ri

½ki � xiðXTK�1XÞ�1xT
i �

0:5 where ki is the diagonal of K

ð13Þ

To assess the adequacy of the estimated LP3 parameters and
flood quantiles from QRT and PRT, standardised residuals, referred
to as Z-scores were used. For site i and a given ARI, the Z-score is

ZARI;i ¼
LNQ ARI;i � LNQ̂ARI;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
ARI;i þ r̂2

ARI;i

q ð14Þ

Here the numerator is the difference between the at-site flood
quantile and regional flood quantile (estimated from the developed
prediction equation) and the denominator is the square root of the
sum of the variances of the at-site (r2

ARI;i) and regional (r̂2
ARI;i) flood

quantiles in natural logarithm space.
It is reasonable to assume that the errors in the two estima-

tors are independent because QARI,i is an unbiased estimator of
the true quantile estimators based upon the at-site data, whereas
the error in Q̂ARI;i is mostly due to the failure of the best regional
model to estimate accurately the true at-site flood quantile. The
use of log space makes the difference approximately normally
distributed and hence enables the use of standard statistical
tests.

3.7. Evaluation statistics

A one-at-a-time cross validation procedure was applied to as-
sess the performance of the RFFA methods. The site that is left
out in building the model is in effect being treated as an ungauged
site. Since all the sites in the database are being treated as unga-
uged for ROI this automatically satisfies the one-at-a-time valida-
tion approach. The following performance statistics were
calculated from the fixed and ROI analysis: absolute (abs) relative
median error (REr) in % over n sites and the relative root mean
square error (RMSEr) in % as described below.
REr ¼ Median abs
Q predi

� Qobsi

Q obsi

 !" #n

i¼1

ð15Þ

RMSEr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

Q predi
� Q obsi

Qobsi

 !2
vuut ð16Þ

where Qobsi
is the observed flood quantile at site i obtained from at-

site flood frequency analysis estimated using FLIKE (Kuczera, 1999),
Qpredi

is the predicted flood quantile at site i from the regional pre-
diction equation from QRT and PRT and n is the number of sites in
the region. The REr (%) and RMSEr (%) provide an indication of the
overall accuracy of the regional model. The model with minimum
REr is always preferred. For RMSEr the smallest value between the
two competing models with the same number of parameters is gen-
erally preferred.

It should be noted here that both the Qpred and Qobs values have
uncertainties associated with them, and in particular, the Qobs val-
ues are subject to errors due to the annual maximum flood record
length, rating curve extrapolation errors, selection of probability
distribution and associated parameter estimation procedures. The
above error statistics thus give some guidance about the relative
accuracy of the method and should not be taken as the true uncer-
tainty associated with the method.
4. Results

4.1. Selection of predictor variables

The stepwise procedure for selecting the best set of catchment
characteristics resulted in the following equations for the LP3
mean (l), standard deviation (r), skewness (c) and the flood quan-
tiles (QARI) for each state NSW, VIC and QLD. The regression equa-
tions are presented in general form below, while the final results of
the equations for NSW are provided in Table 1. The final results of
VIC and QLD can be seen in Appendix A.

l ¼ b0 þ b1ðareaÞ þ b2ð2I12Þ for NSW; VIC and QLD ð17Þ
r ¼ b0 � b1ðrainÞ � b2ðS1085Þ for NSW ð18Þ
c ¼ �b0 � b1ðareaÞ � b2ðforestÞ for NSW ð19Þ
r ¼ b0 � b1ðrainÞ þ b2ðevapÞ for VIC ð20Þ
c ¼ �b0 þ b1ðrainÞ � b2ðevapÞ for VIC ð21Þ
r ¼ b0 � b1ðareaÞ � b2ð2I1Þ for QLD ð22Þ
c ¼ �b0 � b1ð50I72Þ þ b2ðrainÞ for QLD ð23Þ
lnðQ ARIÞ ¼ b0 þ b1ðareaÞ þ b2ðItc;ARIÞ for NSW; VIC and QLD ð24Þ

Tables 2a and 2b summarizes the model error variance (MEV) as
expressed by its posterior mean value, for the regional models of
the three LP3 parameters and the flood quantiles Q2, Q10 and Q100

for each combination of catchment characteristics for NSW. Also
provided in Tables 2a and 2b is the summary of the statistical mea-
sures used i.e. average variance of prediction for an old site (AVPO)
and new site (AVPN), Akaike and Bayesian information criteria’s
(AIC) and (BIC), Bayesian plausibility value (BPV) and Pseudo R2

(R2
GLS) to assess the best combination of catchment characteristics

to predict the three parameters and flood quantiles of the LP3 dis-
tribution. Appendix A shows the table of the final results for VIC
and QLD.

Fig. 2 shows the MEV, standard error of the MEV and R2
GLS values

for the skew model. Combination 9 with a constant and two pre-
dictor variables area and forest showed the lowest MEV and the
highest R2

GLS as well as the lowest AIC and BIC. However the lowest
AVPO and AVPN were found for combination 1 (a constant value –
see Fig. 2).



Table 1
Summary of the final BGLS regression results for NSW.

GLS regression model
(NSW)

Regression
coefficient

Posterior moment

Mean Standard
deviation

Mean l r2
d

0.29 0.051
b0 (constant) 4.09 0.092
b1 (area) 0.67 0.053
b2 (2I12) 2.31 0.21

Standard deviation r r2
d

0.067 0.013
b0 (constant) 1.25 0.12
b1 (rain) �0.61 0.11
b2 (S1085) �0.13 0.040

Skewness c r2
d

0.0125 0.012
b0 (constant) �0.42 0.072
b1 (area) �0.092 0.048
b2 (forest) �0.094 0.053

Flood quantiles r2
d

0.31 0.055
QARI=2 b0 (constant) 4.06 0.13

b1 (area) 1.26 0.086
b2 (Itc,ARI=2) 2.42 0.24

QARI=5 r2
d

0.23 0.042
b0 (constant) 5.11 0.092
b1 (area) 1.19 0.072
b2 (Itc,ARI=5) 2.08 0.20

QARI=10 r2
d

0.23 0.045
b0 (constant) 5.56 0.10
b1 (area) 1.14 0.074
b2 (Itc,ARI=10) 1.93 0.21

QARI=20 r2
d

0.25 0.050
b0 (constant) 5.91 0.11
b1 (area) 1.09 0.078
b2 (Itc,ARI=20) 1.79 0.22

QARI=50 r2
d

0.35 0.060
b0 (constant) 6.55 0.13
b1 (area) 1.01 0.081
b2 (Itc,ARI=50) 1.73 0.24

QARI=100 r2
d

0.35 0.075
b0 (constant) 6.47 0.34
b1 (area) 0.97 0.12
b2 (Itc,ARI=100) 1.50 0.29
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The BPV were used to carry out a hypothesis test (at the 5% sig-
nificance level) on the predictors of combination 9. The BPVs were
found to be 6% and 7% for area and forest respectively, while this
showed the variables not to be significant, these values are not
considered overly high. Both the posterior coefficients b1 and b2

were less than two posterior standard deviations away from zero
supporting the results from the BPV test that these variables are
not significant.

In this case it may be possible to adopt a regional skew value for
NSW without using any prediction equation/predictor variable.
This finding is consistent with Gruber and Stedinger (2008) who
found that a constant model for a regional skewness was the best
model for a large region in the southeastern part of the United
States. This is also supported by the fact that there was only a
modest difference in the MEV values. Combinations 9 and 1 how-
ever were both adopted and tested in this study with the PRT
approach.

A similar outcome was observed for the standard deviation
model where the MEVs were very similar for combinations 12
and 1 (figure not shown). Combination 12 was adopted that had
slope and rain as predictor variables. Indeed AVPO, AVPN, BIC and
AIC were the lowest for this combination. Both the posterior coef-
ficients b1 and b2 were well identified in the regression equations
being more than two times the posterior standard deviation away
from zero. The BPVs were 2% indicating the relative significance of
these variables.

For the mean flood, combination 6 (constant, area and 2I12) had
the smallest MEV. The posterior coefficients of b1 and b2 in this
combination, were at least 5 and 11 times the posterior standard
deviation away from zero, which shows that b1 and b2 are well
identified in the prediction equation. All the statistical criteria
were found to be in favour of combination 6.

Fig. 3 shows an example plot of the statistics used in selecting
the best set of predictor variables for the fixed region flood quantile
model. According to the MEV, combinations 19, 18, 20, 23, 16, 6, 4,
25 and 10 were potential sets of predictor variables for the Q10

model. Combinations 18, 19, 20 and 23 contained 3–4 predictor
variables while combinations 16, 6, 4, 25 and 10 contained 2 pre-
dictor variables with similar MEVs and R2

GLS.
The AVPO and AVPN and the AIC and BIC values favoured com-

bination 10, and hence this was finally selected as the best set of
predictor variables for the Q10 model which includes area and de-
sign rainfall intensity Itc,10. Both posterior coefficients b1, and b2

were found to be 9 times the posterior standard deviation away
from zero suggesting these two variables are well defined in the
prediction equation. Combination 10 was selected for all the flood
quantile prediction equations (ARI = 2–100 years). The BPVs for the
regression coefficients associated with the variable area and design
rainfall intensity Itc,ARI for the QRT over all the ARIs were found to
be significant with values smaller than 0.01%.

4.2. Region of influence BGLS regression vs. fixed regions for parameter
and quantile regression techniques

4.2.1. Regression diagnostics – Pseudo Analysis of Variance
The Pseudo Analysis of Variance (ANOVA) tables for the Q20

model and the parameters of the LP3 distribution (mean and skew
shown only) are presented in Tables 3–5 for the fixed regions and
ROI for NSW, VIC and QLD. The Pseudo ANOVA table describes how
the total variation among the ŷi values (predicted values) can be
apportioned between that explained by the model error and sam-
pling error. This is an extension of the ANOVA in the OLS regression
which does not recognise and correct for the expected sampling
variance (Reis et al., 2005). An error variance ratio (EVR) is used
in Pseudo ANOVA, which is the ratio of sampling error variance
to model error variance. An EVR greater than 0.20 may indicate
that the sampling variance is not negligible when compared to
the model error variance, which suggests the need for a GLS regres-
sion analysis (Gruber et al., 2007).

For the LP3 parameters, the sampling error (i.e. EVR) increases
as the order of moment increases, this can be clearly seen for all
the states in Tables 3 and 4. For example, for NSW the EVR for
the mean flood model for ROI is 0.3 (i.e. the sampling error is
only 0.3 times of the model error) (Table 3), the corresponding
EVR value for the skew model (Table 4) is 18 (i.e. the sampling
error is 18 times of the model error). The ROI shows a reduced
model error variance for all the three states (i.e. a reduced heter-
ogeneity), in particular for the mean flood model, as compared to
the fixed regions. For example, for NSW (Table 3) the model error
variances for the fixed region and ROI are 27.7 and 16.5, respec-
tively. It was found that the model error dominated the regional
analysis for the mean flood and the standard deviation models
(results not shown) for both the fixed regions and ROI for all
the states. For the ROI, the mean flood model also shows a much
higher model error variance than those of the standard deviation
and skew models. These results based on the model error vari-
ance alone indicate that the mean flood has the greater level of
heterogeneity associated with its regionalisation as compared
to the standard deviation and skew. The ROI, however shows a
higher EVR than the fixed regions e.g. for the mean flood model



Table 2a
Summary of the catchment characteristics and statistical measures used in the forward stepwise regression for the parameters of the LP3 distribution for NSW.

Combination Catchment
characteristicsa

LP3 parameter

Mean Standard deviation Skewness

r2
d

AVPO AVPN AIC BIC BPV% R2
GLS

(%)
r2

d
AVPO AVPN AIC BIC BPV% R2

GLS

(%)
r2

d
AVPO AVPN AIC BIC BPV% R2

GLS

(%)

1 Const 0.92 0.94 0.92 1.22 1.22 0 0 0.099 0.10 0.10 0.13 0.13 0 0 0.0135 0.019 0.018 0.156 0.156 <0.1 0
2 Const, area 0.69 0.71 0.68 0.76 0.78 0, 0 39 0.098 0.10 0.10 0.13 0.13 0, 10 4 0.0132 0.021 0.021 0.080 0.082 <0.1, 3 50
3 Const, area, 2I1 0.36 0.38 0.35 0.34 0.35 0, 0, 0 74 0.097 0.10 0.10 0.13 0.13 0,13,

19
6 0.0131 0.025 0.024 0.079 0.083 <0.1, 3,

68
52

4 Const, area, 50I1 0.34 0.36 0.34 0.38 0.40 0, 0, 0 70 0.096 0.10 0.10 0.13 0.13 0,10,
20

6 0.0131 0.025 0.024 0.079 0.083 <0.1, 3,
72

52

5 Const, area, 50I12 0.30 0.31 0.29 0.32 0.34 0, 0, 0 75 0.094 0.10 0.09 0.12 0.13 0,13,
10

8 0.0132 0.025 0.024 0.080 0.084 <0.1, 3,
72

51

6 Const, area, 2I12 0.28 0.30 0.28 0.31 0.32 0, 0, 0 76 0.091 0.10 0.09 0.12 0.13 0,14, 6 10 0.0133 0.025 0.024 0.082 0.086 <0.1, 3,
86

50

7 Const, area, S1085 0.63 0.66 0.62 0.70 0.74 0, 0, 0.4 45 0.091 0.10 0.09 0.12 0.13 0,29, 8 8 0.0135 0.024 0.023 0.083 0.087 <0.1, 4,
92

49

8 Const, area, sden 0.60 0.63 0.59 0.54 0.57 0, 0, 0.6 58 0.099 0.10 0.10 0.13 0.14 0,14,
58

4 0.0134 0.024 0.023 0.083 0.088 <0.1, 4,
81

49

9 Const, area, forest 0.69 0.72 0.68 0.78 0.82 0, 0, 60 39 0.091 0.10 0.09 0.12 0.13 0,5, 7 9 0.0126 0.024 0.023 0.057 0.060 <0.1, 6, 7 65
10 Const, area, evap 0.34 0.35 0.33 0.39 0.41 0, 0, 0.1 69 0.098 0.10 0.10 0.13 0.13 0,14,

26
6 0.0133 0.026 0.025 0.076 0.080 <0.1, 2,

49
53

11 Const, area, rain 0.29 0.31 0.29 0.31 0.33 0, 0, 0.1 76 0.078 0.08 0.08 0.10 0.10 0,40, 1 26 0.0134 0.025 0.024 0.082 0.087 <0.1, 2,
87

49

12 Const, rain, S1085 0.92 0.96 0.90 1.24 1.31 0,37,
16

2 0.066 0.07 0.07 0.09 0.09 0,2, 1 35 0.0140 0.025 0.025 0.148 0.156 0,74, 87 10

13 Const, sden, S1085 0.91 0.94 0.89 1.15 1.21 0,0.8,
82

9 0.090 0.09 0.09 0.12 0.13 0,60, 5 8 0.0139 0.025 0.024 0.140 0.148 0,74, 51 14

14 Const, evap, sden 0.88 0.92 0.86 1.05 1.11 0,0.1,
36

18 0.098 0.10 0.10 0.13 0.14 0,27,
61

3 0.0137 0.026 0.025 0.135 0.143 0,50, 38 17

15 Const, forest 0.91 0.94 0.90 1.17 1.21 0, 3 6 0.093 0.10 0.09 0.13 0.13 0, 11 4 0.0127 0.021 0.020 0.078 0.080 0, 4 51
16 Const, S1085, forest 0.91 0.95 0.89 1.18 1.24 0, 17, 2 7 0.088 0.09 0.09 0.12 0.13 0, 7, 32 9 0.0127 0.024 0.023 0.065 0.069 0, 17, 2 60

a Const is a constant term. Refer to text in Section 2 for a full description of the catchment characteristics.
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Table 2b
Summary of the catchment characteristics and statistical measures used in the forward stepwise regression for the flood quantiles of the LP3 distribution (ARIs = 2, 10 and 100 years) for NSW.

Combination Catchment
Characteristicsa

LP3 flood quantiles

ARI = 2 ARI = 10 ARI = 100

r2
d

AVPO AVPN AIC BIC BPV% R2
GLS

(%)
r2

d
AVPO AVPN AIC BIC BPV% R2

GLS

(%)
r2

d
AVPO AVPN AIC BIC BPV% R2

GLS

(%)

1 Const 0.94 0.96 0.94 1.26 1.26 0 0 0.89 0.91 0.89 1.16 1.16 0 0 0.87 0.89 0.87 1.21 1.21 0 0
2 Const, area 0.73 0.75 0.72 0.78 0.81 0, 0, 0 39 0.54 0.56 0.53 0.52 0.53 0, 0, 0 56 0.52 0.54 0.52 0.64 0.66 0, 0, 0 48
3 Const, area, 2I1 0.35 0.37 0.34 0.38 0.40 0, 0, 0 71 0.23 0.25 0.24 0.26 0.28 0, 0, 0 78 0.35 0.38 0.36 0.42 0.45 0, 0, 0 67
4 Const, area, 2I12 0.31 0.33 0.31 0.33 0.35 0, 0, 0 75 0.23 0.24 0.23 0.26 0.27 0, 0, 0 78 0.35 0.37 0.35 0.36 0.38 0, 0, 0 72
5 Const, area, 50I1 0.34 0.36 0.34 0.36 0.38 0, 0, 0 73 0.25 0.27 0.25 0.28 0.29 0, 0, 0 77 0.35 0.38 0.36 0.42 0.44 0, 0, 0 67
6 Const, area, 50I12 0.31 0.33 0.31 0.33 0.35 0, 0, 0 75 0.22 0.24 0.23 0.25 0.27 0, 0, 0 79 0.35 0.38 0.36 0.41 0.43 0, 0, 0 68
7 Const, area, S1085 0.74 0.77 0.73 0.80 0.85 0, 0, 69 39 0.54 0.57 0.53 0.52 0.55 0, 0, 34 56 0.52 0.55 0.52 0.65 0.69 0, 0, 63 48
8 Const, area, sden 0.66 0.69 0.65 0.72 0.76 0, 0, 0.3 45 0.46 0.49 0.46 0.55 0.58 0, 0, 0.2 55 0.49 0.52 0.49 0.63 0.66 0, 0, 0.5 50
9 Const, area, sden, forest 0.65 0.68 0.63 0.72 0.78 0, 0, 1, 9 46 0.48 0.51 0.47 0.56 0.61 0, 0, 1, 90 54 0.49 0.52 0.48 0.63 0.69 0, 0, 1, 20 51
10 Const, area, Itc,ARI 0.29 0.33 0.31 0.33 0.35 0, 0, 0 75 0.23 0.24 0.23 0.26 0.27 0, 0, 0 79 0.35 0.38 0.36 0.44 0.46 0, 0, 0 65
11 Const, area, forest 0.69 0.72 0.67 0.76 0.80 0, 0, 2 42 0.54 0.57 0.54 0.51 0.54 0, 0, 40 57 0.53 0.56 0.52 0.65 0.69 0, 0, 59 48
12 Const, area, evap 0.61 0.64 0.60 0.65 0.69 0, 0, 0.2 50 0.38 0.40 0.38 0.38 0.40 0, 0, 0 69 0.45 0.48 0.45 0.59 0.63 0, 0, 0.4 53
13 Const, area, rain 0.34 0.36 0.34 0.36 0.38 0, 0, 0.2 73 0.35 0.37 0.35 0.43 0.45 0, 0, 0 64 0.40 0.43 0.41 0.50 0.53 0, 0, 0.1 61
14 Const, rain, S1085 0.90 0.94 0.88 1.06 1.12 0, 0, 4 19 0.86 0.90 0.85 1.07 1.12 0, 6, 1 11 0.85 0.89 0.83 1.17 1.23 0, 36, 0.7 8
15 Const, sden, S1085 0.93 0.97 0.91 1.21 1.28 0, 15, 2 8 0.88 0.91 0.86 1.10 1.16 0, 25,0.1 9 0.85 0.89 0.84 1.16 1.22 0, 27,0.1 8
16 Const, area, 50I12, S1085 0.37 0.39 0.36 0.23 0.25 0, 0, 0, 40 83 0.22 0.24 0.22 0.26 0.28 0, 0, 0, 35 79 0.35 0.38 0.35 0.42 0.46 0, 0, 0, 62 67
17 Const, area, 50I12, rain 0.29 0.31 0.29 0.32 0.35 0, 0, 0, 0.4 76 0.23 0.25 0.23 0.26 0.28 0, 0, 0, 22 79 0.35 0.38 0.35 0.42 0.46 0, 0, 0, 28 67
18 Const, area, 50I12, S1085,

forest
0.37 0.39 0.36 0.25 0.28 0, 0, 0, 48,

79
72 0.21 0.24 0.22 0.25 0.28 0, 0, 0, 55,

75
80 0.35 0.38 0.35 0.33 0.37 0, 0, 0, 55,

79
75

19 Const, area, 50I12, Itc,ARI,
forest

0.37 0.39 0.35 0.22 0.25 0, 0,15,
16,70

74 0.21 0.24 0.21 0.25 0.28 0, 0,22,
43,70

80 0.34 0.38 0.35 0.33 0.37 0, 0,10,
80,90

75

20 Const, area, 50I12, Itc,ARI,
S1085, forest

0.37 0.40 0.35 0.24 0.28 0, 0, 15, 18,
70,78

73 0.22 0.24 0.22 0.26 0.30 0, 0, 23, 44,
95,90

80 0.35 0.39 0.35 0.36 0.42 0, 0, 27, 90,
95,90

73

21 Const, area, Itc,ARI, rain 0.30 0.32 0.29 0.32 0.35 0, 0, 0, 2 76 0.23 0.25 0.23 0.26 0.29 0, 0, 0, 76 78 0.35 0.38 0.35 0.44 0.48 0, 0, 0, 81 66
22 Const, area, Itc,ARI, evap 0.32 0.34 0.31 0.34 0.37 0, 0, 0, 86 74 0.23 0.25 0.23 0.26 0.29 0, 0, 0, 80 79 0.35 0.39 0.36 0.45 0.49 0, 0, 0, 95 65
23 Const, area, Itc,ARI, forest 0.37 0.39 0.36 0.23 0.25 0, 0, 0, 98 73 0.22 0.24 0.22 0.25 0.27 0, 0, 0, 8 79 0.35 0.38 0.35 0.40 0.43 0, 0, 0, 98 69
24 Const, area, Itc,ARI, S1085 0.37 0.39 0.36 0.23 0.25 0, 0, 0, 92 73 0.23 0.25 0.23 0.26 0.29 0, 0, 0, 50 79 0.35 0.38 0.35 0.45 0.49 0, 0, 0, 95 65
25 Const, area, 2I1, Itc,ARI 0.32 0.34 0.31 0.35 0.38 0, 0, 46, 0 74 0.23 0.25 0.23 0.26 0.28 0, 0, 59, 1 79 0.35 0.38 0.35 0.43 0.47 0, 0, 49, 0 67

a Const is a constant term. Refer to text in Section 2 for a full description of the catchment characteristics.
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Fig. 2. Selection of explanatory variables for the BGLS regression model for the skew (note that R2
GLS uses the right-hand axis).
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for NSW the EVR is 0.30 for the ROI and 0.17 for the fixed region
(see Table 3), Table 3 also provides the EVR results for VIC and
QLD which show a similar outcome to NSW. For the standard
deviation model for NSW the EVR is 0.77 for the ROI and 0.35
for the fixed region, again similar results were found for VIC
and QLD.

The EVR values for the skew models of NSW, VIC and QLD are
shown in Table 4. It can be observed from Table 4 that the EVR
values range from 8 to 19 and 9.5 to 19 for the fixed regions
and ROI respectively (Table 4), which are much higher than the
recommended limit of 0.20. Two important points are noted
below:

(i) This clearly indicates that the GLS regression is the preferred
modeling choice over the OLS one for the skew model. An
OLS model for the skew would have clearly given misleading
results as it does not distinguish between the model and
sampling errors as found in similar previous studies (e.g.
Haddad et al., 2010a, 2010b).

(ii) Importantly what is clear is that if a method of moment’s
estimator was used to estimate the model error variance
r2

d for the skew model, the model error variance would have
been grossly underestimated as the sampling error has heav-
ily dominated the regional analysis (for example see Haddad
et al., 2010a, 2010b). A more reasonable estimate of the
model error variance has been achieved with the Bayesian
procedure as it represents the values of r2

d by computing
expectations over the entire posterior distribution. Similar
results have been found by Reis et al. (2005) and Gruber
and Stedinger (2008). As far as the ROI is concerned there
is little change in the EVR as compared to the fixed region
for all the states as the skew model tends to include more
stations in the regional analysis.

The pseudo ANOVA tables were also prepared for all the flood
quantile models. The results for the Q20 for all the three states
are shown in Table 5. Here the ROI shows a higher EVR than the
fixed region and that the sampling error generally increases with
increasing ARIs. The reduction in the model error variance as seen
in Table 5 for all the states is due to the fact that ROI has found an
optimum number of sites based on the minimum model error var-
iance which naturally uses fewer sites than that of the fixed region
approach. This indeed suggests that sub regions may exist in larger
regions.

The flood quantile Q2 was found to experience the lowest EVR
for NSW and QLD for both the fixed region and ROI as compared
to the Q20 and Q100 models results. This reflects the much greater
spatial variability of the mean which is dominated by local factors



Table 3
Pseudo ANOVA table for the mean flood model (PRT, fixed region and ROI, NSW, VIC and QLD) (here n = number of sites in the region, k = number of predictors in the regression
equation, EVR = error variance ratio, r2

d0 = model error variance when no explanatory variable is used in the regression model, r2
d = model error variance when explanatory

variable is used in the regression model and tr½
P
ðŷÞ� = sum of the diagonals of the sampling covariance matrix).

Source Degrees of freedom Sum of squares

Fixed region ROI Fixed region ROI

NSW
Model k = 3 k = 3 nðr2

d0 � r2
d Þ 61.5 61.2

Model error d n � k � 1 = 92 n � k � 1 = 32 nðr2
d

27.7 16.5
Sampling error n = 96 n = 36 tr½

P
ðŷÞ� 5 4.5

Total 2n � 1 = 191 2n � 1 = 71 Sum of the above 94 83
EVR 0.17 0.3

VIC
Model k = 3 k = 3 46 45
Model error d n � k � 1 = 127 n � k � 1 = 39 37.5 28
Sampling error g n = 131 n = 43 6.1 6
Total 2n � 1 = 261 2n � 1 = 85 Sum of the above 90 79

EVR 0.16 0.2

QLD
Model k = 3 k = 3 105 102
Model error d n � k � 1 = 168 n � k � 1 = 34 39 22
Sampling error g n = 172 n = 38 10.2 9
Total 2n � 1 = 343 2n � 1 = 75 Sum of the above 155 133

EVR 0.26 0.40

Table 4
Pseudo ANOVA table for the skew model (PRT, fixed region and ROI, NSW, VIC and QLD) (variables are explained in Table 3 caption).

Source Degrees of freedom Sum of squares

Fixed region ROI Fixed region ROI

NSW
Model k = 3 k = 3 nðr2

d0 � r2
d Þ 0.1 0.1

Model error d n � k � 1 = 92 n � k � 1 = 91 nðr2
d

1.22 1.21
Sampling error g n = 96 n = 95 tr½

P
ðŷÞ� 24 23

Total 2n � 1 = 191 2n � 1 = 189 Sum of the above 25 23
EVR 19 18

VIC
Model k = 3 k = 3 6.5 7.3
Model error d n � k � 1 = 127 n � k � 1 = 113 4.5 3.7
Sampling error g n = 131 n = 117 38 35
Total 2n � 1 = 261 2n � 1 = 233 Sum of the above 49 48

EVR 8.4 9.5

QLD
Model k = 3 k = 3 0.11 0.65
Model error d n � k � 1 = 168 n � k � 1 = 146 2.6 2.1
Sampling error g n = 172 n = 150 45 40
Total 2n � 1 = 343 2n � 1 = 299 Sum of the above 48 43

EVR 17 19
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(as compared to the higher moments). This is reflected in the Q2

flood as it is mostly dominated by the mean flood.
The Q20 shows an EVR of 0.43, 0.3 and 0.97 respectively for

NSW, VIC and QLD (see Table 5) for ROI which suggests that the
BGLS combined with ROI should be the preferred procedure when
modelling the larger ARI quantiles, even though in this particular
case the ROI has been impacted by the relatively large model error
variances that have dominated the regional flood quantile model-
ling results.

4.2.2. Regression diagnostics – model adequacy and outlier analysis
To assess the underlying model assumptions (i.e. the normality

of residuals), the plots of the standardised residuals (Eq. (13)) vs.
fitted quantiles were examined for all the flood quantiles (esti-
mated from QRT and PRT) and the parameters of the LP3 distribu-
tion for all the states. The predicted values were obtained from the
one-at-a-time cross validation procedure. Fig. 4 shows the plot for
the Q20 model for NSW.

If the underlying model assumption is satisfied to a large extent
the standardised residual values should not exceed the ±2 limits; in
practice, 95% of the standardised residuals should fall between ±2.
The result in Fig. 4 reveals that the developed flood quantiles from
the prediction equations satisfy the normality of residual assump-
tion quite satisfactorily for both the fixed and ROI methods. Also no
specific pattern (heteroscedasicity) can be identified with the
standardised values being almost equally distributed below and
above zero. What is noteworthy is that ROI is clearly providing less
genuine outliers for both the quantiles estimated by QRT and PRT
than the fixed region approach demonstrating its superiority to a
fixed region regression. Overall similar results were observed for
the states of VIC and QLD.

The QQ-plots of the standardised residuals (Eq. (13)) vs. nor-
mal score (Eq. (14)) for the fixed region (based on one-at-a-time
cross validation) and ROI were examined. The results for the Q20

model for NSW are shown in Fig. 5, which reveals that all the
points closely follow a straight line; this is especially the case
for the ROI approach for both the QRT and PRT methods. This
indicates that the assumption of normality and the homogeneity
of variance of the standardised residuals are better approximated
with the ROI approach. Overall, no genuine outliers can be



Table 5
Pseudo ANOVA table for Q20 model (QRT, fixed region and ROI, NSW, VIC and QLD) (variables are explained in Table 3 caption).

Source Degrees of freedom Sum of squares

Fixed region ROI Fixed region ROI

NSW
Model k = 3 k = 3 nðr2

d0 � r2
d Þ 61.1 61.1

Model error d n � k � 1 = 92 n � k � 1 = 48 nðr2
d

23.5 17.3
Sampling error g n = 96 n = 52 tr½

P
ðŷÞ� 7.6 7.0

Total 2n � 1 = 191 2n � 1 = 103 Sum of the above 92 86
EVR 0.32 0.43

VIC
Model k = 3 k = 3 45.2 45.2
Model error d n � k � 1 = 127 n � k � 1 = 48 55.2 24.4
Sampling error g n = 131 n = 52 7.4 7.2
Total 2n � 1 = 261 2n � 1 = 103 Sum of the above 108 77

EVR 0.13 0.30

QLD
Model k = 3 k = 3 59 46
Model error d n � k � 1 = 168 n � k � 1 = 77 25 12
Sampling error g n = 172 n = 81 13 12
Total 2n � 1 = 343 2n � 1 = 161 Sum of the above 97 70

EVR 0.53 0.97
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Fig. 4. Plots of the standardised residuals vs. predicted values for ARI of 20 years (QRT and PRT, fixed region and ROI, NSW).
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detected for the flood quantiles estimated by the QRT and PRT on
a regional scale.

If the standardised residuals are indeed normally and indepen-
dently distributed N(0,1) with mean 0 and variance 1 then the
slope of the best fit line in the QQ-plot, which can be interpreted
as the standard deviation of the normal score (Z score) of the quan-
tile, should approach 1 and the intercept, which is the mean of the
normal score of the quantile should approach 0 as the number of
sites increases. Fig. 5 indeed shows that the fitted lines for the
developed models pass approximately through the origin (0, 0)
and have a slope approximately equal to one. It can be seen that
the results of the ROI approach satisfy the model assumptions rel-
atively better than the fixed region approach. The superiority of the
ROI approach again here is demonstrated. Similar results were
observed for VIC and QLD. The assumption of the normality of
the residuals for all the states (NSW, VIC and QLD) could not be re-
jected at the 10% level of significance using the Anderson–Darling
and Kolmogorov–Smirnov tests for normality.

Below we present the residual analysis results of the ROI meth-
od for the Parameter Regression Technique (PRT) using a weighted
regional average SD and skew which is weighted by the error
covariance matrix (i.e. no predictor variables in the regression
equation) for the state of NSW only. The main aspect of this
analysis is to determine if there is any reasonable loss in accuracy
and efficiency especially in the estimation of the mid to higher ARIs
(i.e. 20–100 years) when using a weighted regional average stan-
dard deviation and skew (obtained as above) as compared to ones
with explanatory variables. It should be stressed here that this
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weighted regional average SD and skew do vary from site to site as
each site has a unique ROI.

We present the standardised residuals vs. the fitted quantile
plot of Q20 in Fig. 6a that superimposes the estimate made by the
QRT-ROI, PRT-ROI and the PRT-ROI that uses a weighted regional
average standard deviation and skew estimate. Indeed one can ob-
serve that the PRT-ROI estimate of Q20 with the weighted regional
average standard deviation and skew performs equally well as the
competing models. Nearly all the standardised residuals fall within
the ±2 limits, suggesting that the use of explanatory variables does
not really add any more meaningful information to the analysis.
The QQ-plot (Fig. 6b) of the competing models shows that the
use of a weighted regional average standard deviation and skew
does not result in any major gross errors. The residual analysis also
reveals that the major assumptions of the regression have been lar-
gely satisfied (i.e. normality of the residuals). The results based on
the evaluation statistics are given in the evaluation statistics sec-
tion of the results (Section 4.3).
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Fig. 6a. Plots of the standardised residuals vs. predicted values for ARI of 20 years (QRT an
4.2.3. Diagnostic statistics
The summary of the various regression diagnostics (as de-

scribed in Section 3.6 and Eq. (12) is provided in Table 6 for
NSW, VIC and QLD. This shows that for the mean flood model
(for all the states), the model error variance (MEV) and average
standard error of prediction (SEP) are much higher than those of
the standard deviation and skew models. This indicates that the
mean flood model exhibits a higher degree of heterogeneity than
the standard deviation and skew models. This result supports the
Pseudo ANOVA results. Indeed the issue here is that sampling error
becomes larger as the order of the moment increases, therefore in
case of the skew the spatial variation is a second order effect that it
not really detectable, this is apparent in both the fixed region and
ROI analysis cases.

For the mean flood model (all the three states), the ROI shows a
MEV which is smaller than the fixed region analysis for NSW, VIC
and QLD respectively. The lower MEV inturn also provides the
lower AVP values as can be seen in Table 6. Also, the R2

GLS value
for the mean flood model (all the three states) with the ROI is
8%, 1% and 1% higher than the fixed region analysis for NSW, VIC
and QLD respectively. These results indicate that the ROI should
be preferred over the fixed region for developing the mean flood
model.

For the standard deviation model, ROI shows 2% smaller and 9%
higher SEP and R2

GLS values, respectively for NSW. The best result is
found for QLD, here ROI shows a 14% smaller and 12% higher SEP
and R2

GLS values, respectively. This indicates that the ROI is prefera-
ble than the fixed region for the standard deviation model. The SEP
and R2

GLS values for the skew model are the same for the fixed re-
gion and ROI for NSW and QLD respectively (see Table 6). This
can be explained by the fact that the number of sites for the skew
6 7 8 9

0) from BGLS

OI, Regional weighted average Stdev and Skew)

d PRT, ROI and PRT-ROI with weighted average standard deviation and skew, NSW).



Table 6
Regression diagnostics for the fixed region and ROI for NSW, VIC and QLD.

Model Fixed region ROI

MEV AVP SEP
(%)

R2
GLS

(%)

MEV AVP SEP
(%)

R2
GLS

(%)

NSW
Mean 0.29 0.31 60 76 0.19 0.23 51 84
St. dev 0.058 0.062 25 37 0.046 0.054 23 46
Skew 0.013 0.024 16 65 0.013 0.023 16 65
Q2 0.31 0.33 63 77 0.20 0.24 52 84
Q5 0.23 0.24 52 79 0.16 0.20 47 85
Q10 0.23 0.24 52 79 0.16 0.20 46 85
Q20 0.25 0.27 55 76 0.18 0.22 49 83
Q50 0.35 0.37 66 70 0.25 0.28 56 74
Q100 0.35 0.38 68 65 0.29 0.34 63 70

VIC
Mean 0.29 0.31 60 62 0.21 0.23 46 63
St. dev 0.044 0.049 22 65 0.041 0.050 21 65
Skew 0.034 0.040 20 70 0.028 0.037 19 73
Q2 0.27 0.28 57 63 0.20 0.23 51 65
Q5 0.29 0.31 60 61 0.20 0.23 50 64
Q10 0.35 0.37 67 57 0.23 0.26 54 61
Q20 0.35 0.37 67 57 0.19 0.22 48 66
Q50 0.47 0.49 80 49 0.27 0.32 61 61
Q100 0.59 0.60 91 45 0.29 0.35 64 54

QLD
Mean 0.23 0.24 52 77 0.14 0.15 40 78
St. dev 0.13 0.14 38 34 0.056 0.061 24 46
Skew 0.015 0.024 16 44 0.014 0.026 16 44
Q2 0.26 0.27 56 75 0.15 0.18 43 79
Q5 0.17 0.18 44 79 0.08 0.11 34 83
Q10 0.18 0.19 45 74 0.07 0.11 33 79
Q20 0.15 0.16 41 77 0.07 0.13 36 80
Q50 0.17 0.19 45 72 0.10 0.14 39 77
Q100 0.20 0.22 49 72 0.12 0.16 40 73
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model in the ROI approach was very close to the fixed region
approach.

Interestingly one can see from Table 6 that the SEP values for all
the flood quanitle models for NSW, VIC and QLD respectively are
5–11%, 6–27% and 5–13% smaller for the ROI cases than the fixed
region analysis. Also, the R2

GLS values for ROI cases for NSW, VIC
and QLD respectively are 4–7%, 2–12% and 1–5% higher than the
fixed region analysis. These results show the relative advantage
of the ROI method coupled with BGLS regression over a fixed re-
gion BGLS regression analysis where further improvements have
been achieved overall.

Table 7 shows the number of sites in a region, the associated
model error variances and their % differences for the ROI against
Table 7
Model error variances r̂2

d associated with the fixed region and ROI for NSW, VIC and QLD

State Parameter/ARI Mean St. dev Skew

NSW ROIðnÞ= 36 47 95
r̂2

d
0.19 0.046 0.013

Fixed region (n)/ 96 96 96
r̂2

d
0.29 0.058 0.013

(%) Diff in r̂2
d

34% 21% 0%

VIC ROI (n)/ 43 83 117
r̂2

d
0.21 0.041 0.028

Fixed region (n)/ 131 131 131
r̂2

d
0.29 0.044 0.034

(%) Diff in r̂2
d

28% 7% 18%

QLD ROI (n)/ 42 65 150
r̂2

d
0.15 0.056 0.014

Fixed region (n)/ 172 172 172
r̂2

d
0.23 0.14 0.015

(%) Diff in r̂2
d

35% 60% 7%
the fixed region models for NSW, VIC and QLD. This shows that
the ROI mean flood model for all states has fewer sites on average
(36 out of 96 i.e. 37% of the available sites for NSW, 32% for VIC and
24% for QLD) than the standard deviation and skew models. The
ROI skew model for each state has the highest number of sites
which includes nearly all the sites in the respective states. The
model error variances for all the flood quantile ROI models are
smaller than the fixed region models with differences in order of
50–60%. This shows that the fixed region models experience a
greater heterogeneity than the ROI. If the fixed region models are
made too big, the model error will be inflated by heterogeneity
unaccounted for by the catchment characteristics. Two important
notes can be made here is that spatial proximity (physical dis-
tance) may become a surrogate for unknown processes in RFFA
and that catchment and climatic variables available at the regional
scale may not always be good indicators of regional flood
behaviour.

Fig. 7 plots the spatial variation of the minimum model error
variances (grouped in classes according to numerical values as
specified in the legend) for the mean flood model (Fig. 7a) and
how the model error variance varies with the number of sites with-
in the ROI, for a typical site (Fig. 7b) for the state of NSW. The plot
reveals the relative advantage of the ROI approach. It can be seen
that there are distinct spatial variations illustrating the
heterogeneity of the mean flood that would be often ignored in a
fixed region approach. Similar results were observed in both VIC
and QLD.

The spatial variation in the model error for the skew model cap-
tures the entire study area mostly (figure not shown) for NSW, VIC
and QLD. Similar results were found by Hackelbusch et al. (2009).
The significance of this finding is that if any spatial variations exist
in the hydrologic statistic of interest, they are most likely to be
captured by the ROI.
4.3. Evaluation statistics

An objective assessment of the model estimation methods can
be obtained by using the numerical evaluation statistics given is
Eqs. (15) and (16), in which RMSEr is the relative root mean
squared error and REr is the absolute median relative error. The
RMSEr is associated with the predictive error variance, where as
REr is related mostly with prediction bias. Using the model pre-
dicted flood quantiles (estimated by QRT and PRT, fixed and ROI)
using the one-at-a-time cross validation, the evaluation statistics
were calculated and are given in Table 8.
(n = number of sites needed for the LP3 parameters and flood quantiles).

Q2 Q5 Q10 Q20 Q50 Q100

31 42 48 52 53 55
0.20 0.16 0.16 0.18 0.25 0.29
96 96 96 96 96 96
0.21 0.23 0.23 0.25 0.35 0.35
5% 30% 30% 28% 29% 17%

41 45 52 52 57 57
0.20 0.20 0.23 0.19 0.27 0.29
131 131 131 131 131 131
0.27 0.29 0.35 0.35 0.47 0.59
26% 31% 34% 46% 43% 51%

60 65 74 80 88 90
0.14 0.08 0.07 0.07 0.10 0.12
172 172 172 172 172 172
0.26 0.17 0.18 0.15 0.17 0.20
46% 53% 61% 53% 41% 40%
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Numerical values of these statistics show the relative advantage
of the ROI method (for both the QRT and PRT) for all the three
states (i.e. NSW, VIC and QLD). The flood quantile estimates
obtained from the fixed models (QRT and PRT) are more biased
(i.e. higher REr) and are of a lesser accuracy (i.e. higher RMSEr), this
is observed for all the three states examined.

Among QRT and PRT fixed quantile estimation methods (over all
the ARIs) it can be observed from Table 8 that there is not much
difference in accuracy (RMSEr) for NSW, VIC and QLD. Indeed, in
Table 8
Evaluation statistics (RMSEr and REr) from one-at-a-time cross validation for NSW
(results NSW for PRT using the weighted regional average standard deviation and
skew models, i.e. no predictor variables given in brackets), VIC and QLD NSW.

Model RMSEr (%) REr (%)

PRT QRT PRT QRT

Fixed
region

ROI Fixed
region

ROI Fixed
region

ROI Fixed
region

ROI

NSW
Q2 73 62 (63) 68 59 46 38 (37) 44 40
Q5 65 54 (59) 70 59 37 30 (32) 38 36
Q10 67 56 (60) 74 55 37 29 (33) 37 36
Q20 72 57 (63) 83 53 36 34 (34) 35 31
Q50 81 70 (77) 100 67 38 34 (35) 36 32
Q100 90 75 (85) 100 72 40 36 (39) 38 35

VIC
Q2 56 55 77 68 38 37 37 37
Q5 69 68 87 68 38 36 35 35
Q10 82 80 107 69 37 37 36 35
Q20 96 92 112 74 41 40 38 33
Q50 115 110 113 95 41 40 41 40
Q100 130 127 140 120 46 45 44 44

QLD
Q2 82 69 61 56 39 35 39 39
Q5 68 60 48 44 33 34 34 32
Q10 69 60 52 47 34 30 32 31
Q20 72 65 50 44 35 33 31 29
Q50 78 68 53 49 37 36 32 31
Q100 85 79 58 53 41 40 36 31
relation to bias (REr) both QRT and PRT fixed models were found
to be very similar for the three states.

For QRT and PRT-ROI quantile estimation methods (over all the
ARIs) a similar result was found where there was no notable differ-
ence in accuracy (RMSEr) between the competing models. For the
bias (REr) both QRT and PRT ROI models achieved very similar val-
ues as seen in Table 8. While Table 8 does show overall slightly
better accuracy and bias for QRT over PRT, a point needs to be
bought out to clarify this result.

There is some underlying bias involved with the validation of
the QRT (fixed and ROI) in that the predicted quantiles are being
compared to the quantiles used in the regression analysis. Thus
the result mostly seems to be slightly in favour of the QRT (see
Table 8). How to compensate for this bias in the validation process
needs further effort, which has not been done in this paper. On the
other hand the validation procedure for the PRT is more stringent
in that the parameters of the distribution are used in the regression
and quantiles are then independently estimated and compared to
the at-site flood quantiles. The results from the evaluation statis-
tics therefore indicate that the PRT is indeed a viable approach
for RFFA as an alternative to the commonly applied QRT method
in an ungauged catchment situation.

We now present the results based on the evaluation statistics
(i.e. Eqs. (15) and (16)) to compare the flood quantiles from PRT-
ROI using a weighted regional average standard deviation and
skew to the PRT-ROI using a standard deviation and skew as a
function of predictor variables for NSW state only. The evaluation
statistics (see Table 8 – values in bracket) from the validation re-
veal that there is no real loss of accuracy (as compared to at-site
flood quantiles) if a weighted regional average standard deviation
and skew model is adopted to estimate the flood quantiles up to
the 20 year ARI.

The results at the higher ARIs (50 and 100 years) show that
using a weighted regional average standard deviation and skew
may slightly affect the outcome of the analysis (i.e. lesser accuracy
and greater bias). The larger ARI estimation may require further
information which may be provided by having explanatory vari-
ables (such as catchment area, design rainfall intensity, forest



Fig. 8. Boxplots of Qpred/Qobs for NSW for QRT and PRT, fixed regions and ROI.
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and mean annual rainfall) for the standard deviation model as
found in this study. This issue deserves further investigation before
estimating larger ARI flood quantiles based on a weighted average
standard deviation and skew estimates that do not use any predic-
tor variables.

The evaluation statistics presented above related to a particular
aspect of the model validation over all six ARIs for all the states. We
now look at the overall performances of the different models (QRT
and PRT, fixed and ROI) based on a ratio statistic and case score
analysis. The ratio is defined as Qpred/Qobs and gives an indication
of the degree of bias (i.e. systematic over- or under estimation),
where a value of 1 indicates good average agreement between
the Qpred and Qobs. Here Qpred values were obtained from one-at-
a-time cross validation (fixed and ROI).

The distributions of the Qpred/Qobs ratio values for the state of
NSW are shown in Fig. 8 for 5, 20 and 100 years ARIs. Here, for
5 years ARI, PRT-ROI shows the best results as the median ratio is
the closest to the line corresponding to Qpred/Qobs = 1 (1-line) and
the overall spread of the ratio values is the smallest. For 20 years
ARI, QRT-ROI median ratio is closer to the 1-line as compared to
the PRT-ROI, however, the overall spread of the ratio values for both
the QRT-ROI and PRT-ROI is very similar. For 100 years ARI, QRT-ROI
shows noticeable overestimation and PRT-ROI shows some under-
estimation as the median ratio value is located just below the 1-line.

Considering all the three states, a case score analysis of the
Qpred/Qobs ratio values is presented below. A Qpred/Qobs ratio value
in the range of 0.5 to 2 may be regarded as a ‘desirable estimate’,
a value smaller than 0.5 may be regarded as ‘gross underestima-
tion’, and a value greater than 2 may be regarded as ‘gross overes-
timation’. It should be mentioned here that these are only arbitrary
limits and would provide a reasonable guide about the relative
accuracy of the methods as far as the practical application of the
methods is concerned as both the Qpred and Qobs values have uncer-
tainties associated with them (in fact these are random variables).

The models are assessed based on which one receives the most
desirable estimation on average over all the cases (i.e. 6 ARIs and
399 catchments (2394 cases for each PRT and QRT), combining
NSW, VIC and QLD).

Based on the criteria set out above from the 2394 cases, the QRT
and PRT fixed methods produce 1881 and 1829 cases respectively
with a ‘desirable estimation’, which is equivalent to 78% and 76% of
the cases respectively. The QRT and PRT fixed methods show that
11% and 13% of cases respectively have a ‘gross underestimation’.
The ‘gross overestimation’ for QRT and PRT fixed methods achieves
11% of the cases each.
The QRT and PRT ROI methods provide 83% and 80% of cases with
a ‘desirable estimation’. The ‘gross underestimation’ is associated
with 9% of cases for both QRT and PRT, respectively. The ‘gross over-
estimation’ sites for QRT and PRT ROI are 8% and 11% of the cases,
respectively. It can be seen that in both the fixed and ROI methods
there are cases where the results do not have a very high degree of
accuracy. Such results are typical of RFFA methods and are some-
what as expected due to simplistic nature of RFFA models, which in-
volve many simplified assumptions. For example, addition of a
greater number of predictor variables and/or use of a complex mod-
el form may increase accuracy marginally, but they are not generally
significant as far as practical application of the method is concerned
(e,g. see Rahman et al., 1999). Also, the error in at-site flood fre-
quency analysis estimates (which is the base case for comparison)
needs to be kept in perspective. While we see improvements in
the ROI approach for QRT and PRT, the fact is that there remain a
few cases where estimations are not of high accuracy. On average,
however, only modest differences can be found for the QRT and
PRT-ROI estimates for the majority of the cases (Table 8).

In looking at the cases where most of the ‘gross overestimation’
and ‘gross underestimation’ happened, it was found that the PRT in
some cases under estimated the at-site flood quantles for the larger
ARIs (50 and 100 years). Interestingly it was also found that the
QRT overestimated in many cases the lower ARI (2 and 5 years)
at-site flood quantile. These results were found for a range of
catchments sizes over all the states.

What can be concluded overall from this evaluation is that the
PRT does not provide significantly less accurate estimates than the
commonly applied QRT method. In fact the PRT is a useful way to
check the results from QRT to make sure estimates make sense,
especially in the case where the QRT results may not increase
smoothly with ARI.

5. Conclusions

The main objective of this study was to compare the Bayesian
Generalised Least Squares (BGLS) regression approaches using a
fixed and region-of-influence (ROI) framework that seeks to mini-
mise the Bayesian model error variance (predictive uncertainty).
For this purpose, data from 399 small to medium sized catchments
in eastern Australia were used. Prediction equations were devel-
oped for the flood quantiles of average recurrence intervals (ARI)
of 2–100 years using Quantile Regression Technique (QRT) and
for the first three moments of the log-Pearson type 3 (LP3) distri-
bution (Parameter Regression Technique (PRT). Using a method
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similar to forward stepwise regression and adopting a number of
statistical selection criteria we were able to identify the optimal
regression models to use in the ROI approach.

It was found that area and design rainfall intensity were signif-
icant for the estimation of the flood quantiles in the region using
QRT, while area, design rainfall intensity, mean annual evaporation,
mean annual rain, slope and forest were relatively significant in the
estimation of the second and third parameters of the LP3 distribu-
tion. One-at-a-time cross validation indicated that the ROI based on
the minimisation of the predictive uncertainty leads to more effi-
cient and accurate flood quantiles estimates by both the QRT and
PRT. The regression diagnostics revealed that the catchment vari-
ables alone may not pick up all the heterogeneity in the regional
model. Both BGLS QRT-ROI and PRT-ROI showed improvements in
regional heterogeneity with an increase in the average Pseudo R2

GLS and a decrease in the model error variance, average variance
of prediction and the average standard error of prediction.

Both the standardised residual and QQ-plots of the ROI analysis
satisfied the underlying model assumptions better than the fixed
region regression. It was shown that both BGLS QRT-ROI and
PRT-ROI produce smaller average RMSEr and REr when compared
to the fixed region regression approach. Based on the evaluation
statistics overall it was found that there are only modest differ-
ences between the BGLS QRT-ROI and PRT-ROI which suggests that
Table A-1
Summary of the final BGLS regression results for VIC.

GLS regression model (VIC) Regression coefficient Posterior moment

Mean St. dev

Mean l r2
d

0.29 0.042
b0 (constant) 3.22 0.10
b1 (area) 0.61 0.040
b2 (2I12) 1.50 0.28

Standard deviation r r2
d

0.043 0.012
b0 (constant) 1.16 0.10
b1 (rain) �0.83 0.10
b2 (evap) 1.49 0.65

Skewness c r2
d

0.034 0.027
b0 (constant) �0.65 0.051
b1 (rain) 0.74 0.15
b2 (evap) �3.25 1.26

Flood quantiles r2
d

0.27 0.039
QARI=2 b0 (constant) 3.38 0.099

b1 (area) 0.90 0.089
b2 (Itc,ARI=2) 1.35 0.32

QARI=5 r2
d

0.29 0.043
b0 (constant) 4.17 0.10
b1 (area) 0.92 0.098
b2 (Itc,ARI=5) 1.32 0.35

QARI=10 r2
d

0.35 0.039
b0 (constant) 4.55 0.11
b1 (area) 0.94 0.055
b2 (Itc,ARI=10) 1.42 0.35

QARI=20 r2
d

0.35 0.036
b0 (constant) 4.82 0.12
b1 (area) 0.97 0.066
b2 (Itc,ARI=20) 1.50 0.36

QARI=50 r2
d

0.47 0.050
b0 (constant) 5.17 0.14
b1 (area) 0.99 0.073
b2 (Itc,ARI=50) 1.62 0.42

QARI=100 r2
d

0.59 0.067
b0 (constant) 5.24 0.17
b1 (area) 0.98 0.075
b2 (Itc,ARI=100) 1.63 0.46
the PRT is a viable alternative to QRT in RFFA for the ungauged
catchment case.

The RFFA methods developed in this paper is based on the data-
base available in eastern Australia. It is expected that availability of
a more comprehensive database (in terms of both quality and
quantity) will further improve the predictive performance of both
the fixed and ROI based RFFA methods presented in this study,
which however needs to be investigated in future when such a
database is available.
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Statistics

AVPO AVPN AIC BIC BPV% R2
GLS (%)

0
0.31 0.29 0.31 0.32 0 63

0

0
0.048 0.046 0.074 0.077 1 65

2

0
0.042 0.040 0.113 0.118 1 70

1

0
0.28 0.27 0.29 0.30 0 63

0

0
0.31 0.30 0.32 0.33 0 61

0

0
0.37 0.35 0.38 0.39 0 57

0

0
0.37 0.35 0.40 0.41 0 57

0

0
0.49 0.47 0.53 0.56 0 49

4

0
0.60 0.60 0.60 0.64 0 45

5



Table A-2
Summary of the final BGLS regression results for QLD.

GLS regression model (QLD) Regression coefficient Posterior moment Statistics

Mean St. dev AVPO AVPN AIC BIC BPV% R2
GLS (%)

Mean l r2
d

0.23 0.032
b0 (constant) 4.71 0.074 0
b1 (area) 0.74 0.043 0.24 0.23 0.27 0.28 0 77
b2 (2I12) 1.97 0.15 0

Standard deviation r r2
d

0.13 0.015
b0 (constant) 1.37 0.10 0
b1 (area) �0.025 0.032 0.13 0.13 0.20 0.20 42 35
b2 (2I12) �1.41 0.13 2

Skewness c r2
d

0.015 0.014
b0 (constant) �0.63 0.066 0
b1 (50I72) �0.32 0.19 0.026 0.025 0.18 0.18 8 46
b2 (rain) 0.36 0.18 4

Flood quantiles r2
d

0.26 0.036
QARI=2 b0 (constant) 4.80 0.079 0

b1 (area) 1.35 0.078 0.27 0.26 0.28 0.29 0 75
b2 (Itc,ARI=2) 2.57 0.19 0

QARI=5 r2
d

0.17 0.026
b0 (constant) 5.77 0.080 0
b1 (area) 1.16 0.075 0.18 0.17 0.17 0.18 0 79
b2 (Itc,ARI=5) 1.95 0.17 0

QARI=10 r2
d

0.18 0.028
b0 (constant) 6.25 0.079 0
b1 (area) 1.00 0.058 0.19 0.18 0.19 0.20 0 74
b2 (Itc,ARI=10) 1.67 0.13 0

QARI=20 r2
d

0.14 0.025
b0 (constant) 6.59 0.10 0
b1 (area) 0.99 0.065 0.16 0.15 0.18 0.19 0 77
b2 (Itc,ARI=20) 1.42 0.17 0

QARI=50 r2
d

0.17 0.029
b0 (constant) 6.97 0.094 0
b1 (area) 0.91 0.073 0.19 0.18 0.21 0.22 0 72
b2 (Itc,ARI=50) 1.19 0.19 0

QARI=100 r2
d

0.20 0.033
b0 (constant) 7.23 0.099 0
b1 (area) 0.86 0.078 0.22 0.21 0.25 0.26 0 72
b2 (Itc,ARI=100) 1.01 0.20 0
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Appendix A

See Tables A-1 and A-2.
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