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Abstract. This study contributes to better understanding the
physical controls on spatial patterns of pan-European flow
signatures – taking advantage of large open datasets for
catchment classification and comparative hydrology. Similar-
ities in 16 flow signatures and 35 catchment descriptors were
explored for 35 215 catchments and 1366 river gauges across
Europe. Correlation analyses and stepwise regressions were
used to identify the best explanatory variables for each signa-
ture. Catchments were clustered and analyzed for similarities
in flow signature values, physiography and the combination
of the two. We found the following. (i) A 15 to 33 % (de-
pending on the classification used) improvement in regres-
sion model skills when combined with catchment classifica-
tion versus simply using all catchments at once. (ii) Twelve
out of 16 flow signatures were mainly controlled by climatic
characteristics, especially those related to average and high
flows. For the baseflow index, geology was more important
and topography was the main control for the flashiness of
flow. For most of the flow signatures, the second most impor-
tant descriptor is generally land cover (mean flow, high flows,
runoff coefficient, ET, variability of reversals). (iii) Using a
classification and regression tree (CART), we further show
that Europe can be divided into 10 classes with both sim-
ilar flow signatures and physiography. The most dominant
separation found was between energy-limited and moisture-
limited catchments. The CART analyses also separated dif-
ferent explanatory variables for the same class of catchments.
For example, the damped peak response for one class was ex-
plained by the presence of large water bodies for some catch-
ments, while large flatland areas explained it for other catch-
ments in the same class. In conclusion, we find that this type

of comparative hydrology is a helpful tool for understand-
ing hydrological variability, but is constrained by unknown
human impacts on the water cycle and by relatively crude
explanatory variables.

1 Introduction

Hydrological systems exhibit a tremendous variability in
their physical properties and in the hydrological variables
we observe, such as streamflow and soil moisture patterns
(Bloeschl et al., 2013). At the catchment scale, we assume
(or at least hope) that the aggregated response behavior, e.g.,
the hydrograph, is related to average or dominating charac-
teristics and that smaller-scale differences are less relevant.
Although the extent of the validity of this assumption can be
questioned (Beven, 2000; Oudin et al., 2010), it is the ba-
sis for statistical hydrology, where it allows us to regional-
ize certain flow characteristics related to floods or low flows.
We generally make the same assumption in the search for
a catchment classification framework where our aim is to
group catchments that somehow exhibit similar hydrologic
behavior (McDonnell and Woods, 2004). While the preferred
classification system will depend to a degree on the specific
objective of a study or the data availability, it is generally
agreed upon that even the search for such an organizing prin-
ciple is an important undertaking for hydrology (Wagener et
al., 2007).

Many studies have attempted to organize the catchments
we find across our landscape. Approaches include the use
of physical and climatic characteristics (e.g., Winter, 2001;
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Brown et al., 2013; Buttle, 2006; Leibowitz et al., 2016), the
use of hydrologic signatures (e.g., Ley et al., 2011; Olden
et al., 2012; Sawicz et al., 2011; Singh et al., 2016), or the
inclusion of water quality (Arheimer et al., 1996; Arheimer
and Lidén, 2000). The advantage of the first approach is that
physical characteristics such as topography and land cover
are now available for any location on earth (though with vary-
ing quality of the data available), while the second approach
groups catchments directly by the characteristic we mainly
care about, i.e., their hydrologic behavior (see the discussion
in Wagener et al., 2007). The disadvantages are that the first
framework does not ensure that physically/climatically sim-
ilar catchments will also behave similarly, while the second
is not directly applicable to ungauged catchments. Further-
more, the two approaches do not necessarily group catch-
ments in the same way since the datasets used for the classifi-
cation are different. Therefore, one needs to derive functions
that link flow characteristics and catchment attributes within
each group of catchments classified in either way. Ultimately,
we believe that a catchment classification framework has to
achieve the advantages both approaches offer to be useful;
i.e., it has to be applicable to any catchment and provide in-
sight into its expected hydrological behavior.

Here we assume that flow signatures are one relevant
way towards quantifying hydrological behavior and therefore
form a sensible basis for a classification framework. They
condense hydrologic information derived from streamflow
observations (alone or in combination with other variables)
(Sivapalan, 2005). The choice of the specific signatures used
for classification can be guided by (i) the attempt to describe
basic hydrological behavior (e.g., Ley et al., 2011; Sawicz et
al., 2011; Trancoso et al., 2016); (ii) the need to relate to soci-
etally relevant issues such as floods and droughts (Wagener et
al., 2008); (iii) the objective to characterize ecologically rele-
vant characteristics of the catchment response (e.g., Olden et
al., 2012); or (iv) in relation to subsequent hydrologic mod-
eling (Euser et al., 2013; Hrachowitz et al., 2014; Donnelly
et al., 2016). Studying differences and similarities in flow
signatures as well as in catchment characteristics can also
improve our understanding of hydrological processes under
potential future conditions (Sawicz et al., 2014; Berghuijs
et al., 2014; Pechlivanidis and Arheimer, 2015; Rice et al.,
2015). Linking catchment descriptors (physical and climatic)
and hydrological response signatures enables the inclusion of
ungauged basins and provides the potential for assessing en-
vironmental change impacts across large domains.

Despite the significant worldwide research performed dur-
ing many decades to both understand and predict hydrologic
variability using physiography, work has largely addressed
small or medium-sized and pristine catchments when delin-
eating regions of similar flow controls (e.g., Yaeger et al.,
2012; Ye et al., 2012; Patil and Stieglitz, 2012). Often differ-
ent studies have resulted in conflicting relationships between
some catchment responses and some of their physiographic
controls, as a result of catchment size and geographical loca-

tion. For instance, some studies have found that forest cover
reduces catchment streamflow (e.g., Hundecha and Bárdossy,
2004; Brown et al., 2005; Buytaert et al., 2007), while an in-
crease in streamflow has been found in some others (e.g.,
Bruijnzeel, 2004). It would, therefore, be worthwhile iden-
tifying the physiographic controls of catchment responses
and their relationships using a consistent approach across a
larger geographic domain, which is subdivided into catch-
ments of different spatial scales. A large sample of observed
data from different physiographical and hydrological condi-
tions enables comparative analysis of dominant drivers for
flow generation (Falkenmark and Chapman, 1989). No study
so far, to our knowledge, has applied comparative hydrology
at the continental scale, i.e., including large rivers with hu-
man alteration and ungauged basins.

Our study aims to explore and understand the physical
controls on spatial patterns of pan-European flow signa-
tures by taking advantage of large open datasets. We ex-
plore the relationships between catchment descriptors and
flow signatures by analyzing 35 215 catchments which cover
a wide range of pan-European physiographic and anthro-
pogenic characteristics. A database of catchment descriptors
for all catchments and of hydrologic signatures using 1366
flow gauges across Europe has been gathered. Based on this
database, we make use of a set of established classification
and regression approaches to learn more about physical con-
trols of flow generation.

Our study is guided by the following science questions.

– To what extent can physiography explain similarities in
flow signatures across Europe?

– What spatial pattern can be derived from combining
similarity in flow signatures and physiography across
the European continent?

– Which flow-generating processes can be attributed to re-
gions with similar flow signatures?

2 Data and methods

This paper summarizes a complex workflow including nu-
merous datasets, calculations, analyses and interpretations,
which are summarized in Fig. 1. The data and methods are
described in the following sub-sections.

2.1 Database of catchment descriptors and flow
signatures

A database of catchment descriptors (climate, physical and
human alteration) was compiled for 35 215 European catch-
ments with a median size (total upstream area of the outlet)
of 493 km2, ranging from 1 to 800 000 km2 (Fig. 2). The geo-
graphical domain (8.8 million km2) was delineated according
to plate tectonic borders and catchment borders all the way
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Figure 1. Flow chart of the different steps followed in the study.

Figure 2. Spatial extent of the study showing catchment division
and selected river gauges.

down to the European coast and to the Ural Mountains in the
east.

For each catchment, 48 catchment descriptors were as-
signed using upstream topography, climate, soil types, land
cover (including human alterations) as well as geology from
open data sources (Table 1). Descriptors were estimated as
spatial means of the upstream area and assigned to each
catchment outlet.

Flow signatures were compiled using daily hydrograph
time series of the Global Runoff data Center (GRDC) and
European Water Archive (EWA) databases from initially

2690 flow gauges across our study domain selected based on
agreement between catchment size in metadata and the delin-
eation in pan-European hydrological model E-HYPE (Don-
nelly et al., 2012). A subsample of this database was selected
for this study according to data availability. In order to en-
sure the reliability of the analyses of flow signatures, only
gauging stations with at least 5 whole calendar years of con-
tinuous daily data have been selected (2016 stations). Oth-
ers subsamples with longer time series (such as 10, 15, 20,
25, and 30 years) were extracted for result evaluation. No
missing data were allowed over the period and the longest
continuous time series was used at each gauge. This means
that time periods differ between gauging stations, but consis-
tent descriptors of precipitation and temperature were always
used to match the observed period. Finally, all hydrographs
of the resulting subset of flow gauges were visually checked
for a 10-year period. This quality assurance mainly elimi-
nated heavily regulated stations, obviously erroneous hydro-
graphs or wrong time steps (e.g., monthly), still keeping sta-
tions with moderately altered flow. After this selection, the
final set of streamflow stations used in the study included
1366 gauging stations.

For each river gauge, 16 flow signatures were computed
(Table 2). The choice of flow signatures has been guided by a
study by Olden and Poff (2003), which provides recommen-
dations for selection of nine indices describing flow regimes
with importance to hydro-ecology. In addition, five flow sig-
natures commonly used in hydrology have been added for
comparability (Qsp, CVQ, Q5, Q95, RBFlash) and two vari-
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ables describing catchment response were calculated (Runof-
fCo and ActET).

2.2 Cluster analysis for catchment classification

We classified the catchments based on their similarities in
(1) flow signatures for gauged sites only, (2) catchment de-
scriptors, and (3) catchment descriptors selected from regres-
sion tree analysis of the classes identified using method 1.

For the first two analyses, we used the same clustering
method. The catchments were grouped into classes of sim-
ilar characteristics (of physiography or flow signatures, re-
spectively) using a hierarchical minimum-variance cluster-
ing method. The method groups clustering objects (catch-
ments) so that the within class variability is minimized using
a combination of the k-means algorithm (Hartigan and Wong,
1979) and Ward’s minimum-variance method (Ward, 1963).
Clustering started with the k-means algorithm with a large
number of classes (50) and classes were merged hierarchi-
cally using Ward’s minimum-variance method. Two classes
are merged in such a way that the increase in the sum of the
within-class variance of the classification variables weighted
by the respective class size across all classes is minimal. Af-
ter each merging step, the k-means algorithm was applied
to the reduced number of classes. The optimum number of
classes was established by evaluating the changes in the sum
of the weighted variance of the variables across all classes
between successive merging steps. The point where the rate
of change becomes steeper was set as the optimum number
of classes.

We performed classification using 16 flow signatures and
35 of the catchment descriptors, which have some correla-
tion with flow signatures (correlation significance tested on
Pearson correlation using a t distribution with a threshold of
0.05). In order to reduce the effect of possible correlations
between the different catchment descriptors or flow signa-
tures, we applied principal component analysis (PCA). PCA
enables derivation of a set of independent variables, which
could be much fewer than the original variables, thereby re-
ducing the dimensionality of the problem. The number of
principal components selected for further classification was
fixed so that they account for at least 80 % of the total vari-
ance of the original variables.

The third classification was done for all catchments – both
gauged and ungauged, using a predictive regression tree, the
so-called CART (Breiman et al., 1984), calibrated to match
the classes identified with method 1. CART stands for clas-
sification and regression trees, and gathers algorithms based
on recursive partitioning, aiming either at classifying a sam-
ple or at predicting a dependent variable (here the class of the
flow station classification) based on a set of explanatory vari-
ables (here the set of catchment descriptors). At the different
consecutive levels (nodes of the tree), two groups of catch-
ments are divided based on a logical expression using one
of the explanatory variables (dominant catchment descrip-

tors). Our idea was to obtain a classification close to the one
based on the flow signatures but available for the whole set
of catchments. Using CART, a regression tree was first ad-
justed to predict the classes of the flow signature classifica-
tion using criteria based on catchment descriptors, and then
this tree was used in a predictive way to classify all catch-
ments in the domain. It was calibrated using an automatic re-
cursive partitioning based on methods described by Breiman
et al. (1984) and provided in R package “rpart” (see Atkin-
son and Therneau, 2000). CART has been used previously
for understanding controls on groupings of catchments in re-
lation to their hydrologic behavior (e.g., Sawicz et al., 2014)
or of hydrologic model parameters or model input and their
regional predictors (e.g., Singh et al., 2014; Deshmukh and
Singh, 2016).

2.3 Analysis of physiographic controls of flow
characteristics

To examine the link between physiography and flow regimes
across our geographical domain, matrices of correlation co-
efficients between all pairs of catchment descriptors and flow
signatures were computed using three different correlations:
Pearson correlation, Spearman correlation and distance cor-
relation (e.g., Székely and Rizzo, 2009). Significance of cor-
relations was tested based on a t distribution with a threshold
of 0.05. This analysis, whose results are presented in Sect. A
of the Supplement, revealed significant correlations between
some of the variables, generally consistent with our a priori
knowledge (e.g., Donnelly et al., 2016). However, a number
of catchment descriptors did not show any significant rela-
tionship with any of the flow signatures and were thus re-
moved from the set of variables for the rest of the analyses.
These variables are written in grey color in Table 1.

The correlation matrices were accompanied by a visual
analysis of scatterplots of all pairs of variables for quality
control to avoid disinformation. Statistical distributions of
flow signatures were plotted for different subsets of stream
gauges according to the minimum length of the period of
continuous daily data availability. Unrealistic values, such as
runoff ratios above 1, identified gauging stations that were
filtered out for the following analyses. Similarly, spatial dis-
tributions of all catchment descriptors and flow signatures
were plotted as maps. Most of the maps show rather coher-
ent patterns across Europe and could thus be compared to
other sources and local knowledge for additional visual qual-
ity control.

To evaluate the importance of catchment classification,
we compared the performance of multiple regression models
when developed for the whole domain versus those where re-
gressions were derived separately for each class of grouped
catchments. For a given flow signature, models were ex-
plored using a stepwise regression with forward selection,
starting from a simple model using only the best correlated
descriptor (according to Pearson’s linear correlation) and up
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Table 1. Catchment descriptors and the original source of information. Type of descriptor is indicated in brackets after variable name (T:
topography; LC: land cover; S: soil type; G: geology; C: climate). Variables marked with grey color were removed from the analysis because
no significant correlation was found between these and the flow signatures (see Sect. 2.3).

Variable Unit Data source Description

Area (T) Km2 SMHI: E-HYPE (Donnelly et al.,
2016) http://hypeweb.smhi.se/

Total upstream area of catchment outlet

meanElev (T) m USGS: Hydrosheds and Hydro 1K
(for latitude > 60◦; Lehner et al.,
2008)

Mean elevation

stdElev (T) m (same as above) Standard deviation of elevation
meanSlope (T) – (same as above) Mean slope
Drainage density
(T)

Km−2 (same as above) Total length of all streams
Area

10 land cover vari-
ables (LC)

– CORINE; GLC2000 (Bartholomé
and Belward, 2005; for areas not cov-
ered by CORINE, 2014);
GGLWD (lake area, distribution,
Lehner and Döll, 2004);
EIM (EU-scale irrigation, Wriedt
et al., 2009); GMIA (global-scale ir-
rigation, Siebert et al., 2005)

% of catchment area covered by
the following land cover types:
water/glacier/urban/forest/agriculture/pasture/wetland/open
with vegetation/open without vegetation/irrigated

7 soil variables (S) – ESD (Panagos, 2006); DSMW % of catchment area covered by the following soil
types: coarse soil/medium soil/fine soil/peat/no tex-
ture/shallow/moraine

21 geological
variables (G)

– USGS Geological maps of Eu-
rope and the Arabian Peninsula
(Pawlewicz et al., 1997; Pollastro et
al., 1999)

% of catchment area covered by the following ge-
ological classes: Cenozoic (Cz), Cenozoic–Mesozoic
(CzMz), Cenozoic–Mesozoic intrusive (CzMzi), Ceno-
zoic volcanic (Czv), Mesozoic (Mz), Mesozoic–
Paleozoic (MzPz), Mesozoic–Paleozoic metamorphic
(MzPzm), Mesozoic intrusive (Mzi), Mesozoic meta-
morphic (Mzm), Mesozoic volcanic (Mzv), Paleozoic
(Pz), Paleozoic intrusive (Pzi), Paleozoic metamorphic
(Pzm), Paleozoic–Precambrian (PzpCm), Paleozoic–
Precambrian metamorphic (PzpCmm), Paleozoic vol-
canic (Pzv), intrusive (i), metamorphic (m), Precam-
brian (pCm), Precambrian intrusive (pCmi), Precam-
brian volcanic (pCmv)

Karst (G) – World Map of Carbonate
Soil (2015) Outcrops V3.0 (Univer-
sity of Auckland)

% of catchment area marked as “carbonate outcrop” in
the World Map of Carbonate Soil Outcrops V3.0

Pmean (C) mm WFDEI (Weedon et al., 2014) Mean annual precipitation
SI.Precip (C) – Seasonality index of precipitation:

SI = 1
R
·

12∑
n=1

∣∣∣xn−
R
12

∣∣∣
xn: mean rainfall of month n, R: mean annual rainfall

Tmean (C) ◦C WFDEI (Weedon et al., 2014) Mean annual temperature
AI (C) – Precipitation, temperature and wind

from WFDEI (Weedon et al., 2014)
Aridity Index: PET/P, where PET is the potential evap-
otranspiration calculated with the Jensen–Haise algo-
rithm (Jensen and Haise, 1963).

to a model including all descriptors. At each step, the de-
scriptor giving the best improvement with respect to BIC
(Bayesian information criterion) is added, and the algorithm
stops when no further improvement can be obtained. The co-

efficient of determination of each model was then plotted and
the final number of variables was determined based on this
plot. For a given classification, as many models as the num-
ber of classes in the classification were calibrated for each
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Table 2. Description of the 16 flow signatures studied.

Component of flow regime variable Unit Description

Magnitude of Average flow skew – skewness=mean/median of daily flows
flow events conditions Qsp L s−1 km−2 mean specific flow

CVQ – coef. of variation=SD/mean of daily flows
Low flow BFI – Baseflow index: 7-day minimum flow divided by
conditions mean annual daily flow averaged across years

Q5 L s−1 km−2 5th percentile of daily specific flow
High flow HFD – High flow discharge: 10th percentile of daily flow
conditions divided by median daily flow

Q95 L−1 km−2 95th percentile of daily specific flow
Frequency events Low flow LowFr year−1 total number of low flow spells (threshold equal to
of flow conditions 5 % of mean daily flow) divided by the record length

High flow HighFrVar – coef. of var. in annual number of high flow
conditions occurrences (threshold 75th percentile)

Duration of Low flow LowDurVar – coef. of var. in annual mean duration of low flows
flow conditions (threshold 25th percentile)
events High flow Mean30dMax – mean annual 30-day maximum divided by

conditions median flow
Timing of flow events Const – Constancy of daily flow (see Colwell, 1974)
Rate of change in flow events RevVar – Coef. of var. in annual nb of reversals

(change in sign in the day-to-day change time series)
RBFlash – Richard–Baker flashiness: sum of absolute values of

day-to-day changes in mean daily flow divided
by the sum of all daily flows

Catchment response RunoffCo – Runoff ratio: mean annual flow (in mm yr−1)
divided by mean annual precipitation

ActET mm yr−1 Actual evapotranspiration: mean annual
precipitation less mean annual flow (in mm yr−1)

of the 16 flow signatures, and their joint performances were
evaluated. To be consistent, regression models were only an-
alyzed for classes with more than 30 gauging stations, and
therefore 17 gauging stations (from 2 classes of the catch-
ment descriptor classification and 1 class of the flow signa-
ture classification) were removed from this analysis because
they ended up in classes with fewer stations. In total, 480
regression models were developed in our analysis. For each
classification method and flow signature, we explored the in-
fluence of different types of catchment descriptors by exam-
ining their partial correlations in the regression.

To gain better understanding of processes behind the hy-
drologic variability, we further examined similarities in both
flow signatures and catchment descriptors for each of the
classes based on the CART classification. Each class was de-
scribed by geographical locations, most characteristic phys-
iography and flow regime. Based on this analysis, hydrolog-
ical interpretation was used to identify potential drivers of
hydrological processes, which are dominant in each cluster.
The analysis was assisted by several sources of information
for classes and sub-classes, such as boxplots of variability
in both flow signatures and catchment descriptors, matrices
showing the median characteristics in each class, visualiza-
tion of hydrographs in diagrams, and mapping spatial pat-

terns geographically (most of this material is found in the
Supplement).

3 Results and discussion

3.1 Catchment classifications

An automatic clustering based on flow signatures was per-
formed first as explained in Sect. 2.2. We found that 11
classes were optimal for the database used in this study. The
same number of classes was then chosen for the classification
based on catchment descriptors. As described in Sect. 2, the
third classification (through CART analysis) was based on
the classes from the classification of flow signatures. How-
ever, class No. 2, which contains only four gauges (all situ-
ated in Cyprus), was excluded from the CART analysis for
consistency. As a result, the classification derived from the
CART tree only contains 10 classes (numbered 1 and 3–11).

During the CART analysis and classification, we found
that 20 nodes in the tree was a good compromise to allow
all 10 classes to be predicted while minimizing the complex-
ity of the tree (to make the relationships between catchment
descriptors and signatures interpretable) and maximizing the

Hydrol. Earth Syst. Sci., 21, 2863–2879, 2017 www.hydrol-earth-syst-sci.net/21/2863/2017/



A. Kuentz et al.: Understanding hydrologic variability 2869

Figure 3. Spatial patterns of catchment classification across Europe based on (a) flow signatures at flow gauges, (b) catchment descriptors,
and (c) a CART predictive regression tree.

probability of correct classification of catchments (relative
error= 0.59; cross-validation error 0.69; minimum probabil-
ity of correctly classified stations at a node= 0.35). The av-
erage percentage of correctly classified gauged catchments
in each class was 60 % (ranging between 35 and 88 % across
the leaf node; see Table A in the Supplement). It should be
noted that one node (node 3a; see Fig. 6) contained more than
a third of the catchments (13 645 catchments) and only 35 %
of the gauges in that node were correctly classified. Efforts to
further classify catchments in this node through an increase
in the complexity of the tree did not result in a good compro-
mise. Indeed, to reach a level of 40 % of correctly classified
gauges at all nodes, the tree had to be detailed up to more
than 400 nodes, making any hydrological interpretation of
the splits impossible.

The first two classifications, based on clustering of either
the flow signatures or the catchment descriptors alone, re-
sulted in very different spatial patterns of similarity across
Europe (Fig. 3; note that there is no correspondence be-
tween the numbering of the catchment classes used in maps
a and b). Correspondence between the two classifications is
not expected as the two classifications were performed using
different sets of data. The third classification – where we pre-
dict the flow-based classification from the catchment descrip-
tors – exhibits spatial patterns that are rather similar to the
flow signature-based classification, which is expected since
the former is derived from the latter through a CART predic-
tive regression tree. Detailed discussion of results in terms of
the classification based on flow signatures will, therefore, be
focused on results obtained from the CART-based classifica-
tion.

In order to analyze the specific characteristics of the differ-
ent classes in terms of catchment descriptors and flow signa-
tures, boxplots representing the distribution of each variable
within the classes were plotted (see Sect. D.1 and D.2 of the
Supplement). For the classification based on flow signatures
(Fig. 3a), some clear distinctions appear between classes in
terms of mean specific flow and coefficient of variation of
daily flow. For example, class nos. 7 and 10 have the highest
mean specific flows, while class nos. 2 and 4 have the highest

coefficients of variation. Concerning the percentage of agri-
cultural area, some classes cover a wide range of values (nos.
3, 4, 5, and 11), while others contain mostly catchments with
low percentages of area covered by agriculture (nos. 1 and
7).

The spatial pattern in Fig. 3b (based on catchment descrip-
tors) shows geographically coherent patterns, with for exam-
ple class No. 6 bringing together mainly mountainous areas,
No. 4 gathering southern warm catchments, and No. 7 repre-
senting plain regions of the Netherlands, northern Germany,
Denmark and Poland. Analysis of the distribution of the dif-
ferent variables in the classes (see boxplots in Sect. D.2)
showed for example that class No. 5, which is mainly located
in western Norway and Iceland, gathers catchments with low
mean temperatures and high mean precipitations with a high
proportion of open areas without vegetation. In terms of flow
signatures, these catchments have high mean and high flows,
high runoff ratios and low actual evapotranspiration. Class
No. 11 contains 323 catchments (mainly small lake catch-
ments in northern Europe), but none of them corresponds to a
stream gauge included in the study. Thus, no observations are
available to characterize flow signatures for this class. Obser-
vations are limited as well for class No. 3 as only 13 of the
152 catchments that belong to this class (mainly large catch-
ments corresponding to the downstream parts of big rivers
flowing to the Black Sea and the Arctic Ocean) correspond
to a flow station. These two classes were thus excluded from
further analysis.

Only clustering using catchment descriptors or CART can
be applied for the whole domain, i.e., in ungauged catch-
ments. The CART-based catchment classification (Fig. 3c)
was chosen for more detailed analysis (in Sect. 3.3) of simi-
larities in flow-generation processes as the classes were more
homogenous. When looking at the classification based on
catchment descriptors, the average standard deviation of each
catchment descriptor within all classes was estimated to be
0.71, and the average standard deviation of the flow signa-
tures was 0.78. For the CART classification, these numbers
are 0.76 for catchment descriptors and 0.67 for flow signa-
tures. Hence, the former discriminates classes more in terms
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of physiography (0.71 versus 0.76 for the CART classifica-
tion) and the CART classification discriminates classes more
in terms of flow signatures (0.67 versus 0.78).

3.2 Using regression analysis to understand controls on
individual signatures

As explained in Sect. 2.3, multiple regression models for
signature prediction were developed both using the entire
domain and within each group of the three classifications,
and their results were compared. The regression constants
are given for each of the 480 calibrated linear models in
Sect. E of the Supplement. This analysis step provides us
with two insights. First, what are the dominant controls on
individual signatures? Second, how predictable are individ-
ual signatures given available catchment/climate descriptors?
Figure 4 shows that developing regressions for each of the
classes derived leads to better predictive performance than
developing an individual regression for each signature using
all catchments at once. This could be expected as using 10
models instead of only 1 increases the degree of freedom
as the number of calibrated parameters increases. This re-
sult is consistent with previous findings (e.g., Almeida et al.,
2016), which also found that single high performing regres-
sions across large domains are difficult to achieve. On av-
erage, classification using catchment descriptors and CART
improved the model performance by 14.7 % and flow sig-
natures by 33 %. The latter yields the best results since this
classification is based directly on the discriminating variables
(flow signatures). There are few differences in terms of the
performance of the models obtained using either the catch-
ment descriptors or CART for classification, the later giving
slightly better results for most of the variables (e.g., Q5, high
flow discharge, high flow frequency variability, variability of
reversals, flashiness, runoff ratio), but poorer results for base-
flow index and low flow frequency. The performance of the
regression models for the different flow signatures will be
further discussed in Sect. 3.4.

The partial correlation analysis of the regression models
shows that there are different controls for the different flow
signatures (Fig. 5). The highlighted controls are rather sim-
ilar across the different classification methods; i.e., the pat-
terns seen in all three plots are very similar (Fig. 5a–c). This
suggests that the identification of controls is robust, while
the performances of the different regressions vary. Climatic
descriptors play the most important role for most of the flow
signatures, especially those related to average and high flows.
For the baseflow index, geology is more important and, for
the flashiness of flow, topography is the main control. To-
pography also plays an important role in low flow magnitude
(Q5), being the main driver for this signature in some of the
classes and for the global model. For most of the flow signa-
tures, the second most important descriptor is generally land
cover (mean flow, high flows, runoff coefficient, ET, variabil-
ity of reversals).

Figure 4. Performance of regression models when calibrated for
each flow signature (Table 2) and applied over the whole domain
with a general model or one per class, using catchment classifica-
tion based on catchment descriptors (CD), flow signatures (FS) or
regression trees (CART). Performance is evaluated over the whole
set of flow gauges together even if different models are used in dif-
ferent classes.

The importance of the different controls varies across the
classes (length of the boxplots in Fig. 5) and the main drivers
for a given variable can also differ between classes (not
shown in the figure). For example, climate is a strong driver
for almost all signatures in class No. 4 (warm regions in
southern Europe), while other drivers play an important role
in other parts of Europe, for example in class nos. 7 (topog-
raphy, land cover and geology are important), 9 (topogra-
phy) and 10 (topography and land cover). This shows that
the drivers behind hydrological responses vary between Eu-
ropean regions.

The identified controls for the different flow signatures
are generally consistent with the findings of previous stud-
ies conducted in different parts of the world. For instance,
Longobardi and Villani (2008) and Bloomeld et al. (2009)
found a strong relationship between the baseflow index and
geology for the Mediterranean area and the Thames basin,
respectively. Similarly, Holko et al. (2011) found out that the
flashiness index is correlated with geology, catchment area
and elevation as well as percentages of agricultural and forest
land uses for catchments in Austria and Slovakia. For catch-
ments across the US, Yaeger et al. (2012) found out that the
upper tail of the flow duration curve is controlled more by
precipitation intensity, while the lower tail is more controlled
by catchment landscape properties such as soils and geology.
For the same US dataset, Sawciz et al. (2011) showed that
the runoff coefficient was dominated by aridity, and that the
baseflow index was controlled by soil and geological char-
acteristics. The influence of topography on the magnitude of
low flow was also found by Donnelly et al. (2016) through a
correlation analysis of a set of flow signatures and catchment
descriptors across Europe.
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Figure 5. Partial R2 of different types of descriptors (Table 1) used
in the regression models for flow signatures (partial R2 for the type
of descriptors is the sum of partial R2 of variables from that type
used in the regression model). The boxplots show the range of val-
ues among the models calibrated in the different classes using the
different catchment classification methods: (a) flow signatures at
flow gauges, (b) catchment descriptors, and (c) CART predictive re-
gression trees. The black point gives the value for the general model
calibrated over the whole domain.

3.3 Hydrological interpretation of classes using CART

The regression tree classification (CART) enabled us to un-
derstand the main controls driving the separation into classes
(rather than individual signatures), as it predicts the classes
of flow signature combinations from the available catchment
descriptors. In the resulting tree (Fig. 6), the main variable
separating the different classes is the Aridity Index (AI) with
a separating value close to 1. This purely empirical find-
ing is nice, because this value separates the energy-limited
catchments (AI < 1) from the moisture-limited catchments
(AI > 1). As expected for classification over such a large do-
main, we therefore find climate to the first-order control.
Mean temperature is the second separating variable, followed
by variables describing soil types (peat, moraine), land cover
(agriculture, open without vegetation, wetland, forest), to-
pography (area, mean elevation) and climate (precipitation
seasonality index, mean precipitation). This indicates the or-
der of importance of catchment descriptors that control flow
signatures moving from climate to other descriptors.

Some of the differences between the hydrographs within
catchment classes and across catchment classes can be seen

in Fig. 7, where we show examples of the observed time se-
ries. We found the following characteristics, which are sum-
marized in Table 3 and further supported by results figures in
Sect. C of the Supplement.

Class No. 1 has a rather smooth flow and seasonal flow pat-
tern with a very pronounced spring flood peak. These
catchments are located in a cold northern part of Europe
and some parts of the Alps and Caucasus, characterized
by spring snowmelt with some dampening in lakes and
wetlands.

Class No. 3 is a very large (about 1/3 of the catchments)
miscellaneous class without any distinct character. As
explained in Sect. 3.1, efforts to further classify catch-
ments in this class (and more specifically in node 3a)
did not succeed.

Class No. 4 is characterized by very spiky hydrographs with
high peaks and low baseflow. The flow regime exhibits
high winter flows and low summer flows. Catchments
are located in the Mediterranean region characterized
by arid climate, flow seasonality and human impacts.

Class No. 5 shows relatively low flows with some influence
of snowmelt (spring flood) for some catchments during
some years. This is the northern part of central–eastern
Europe characterized by low flashiness due to the large
number of water bodies, low topographic slopes, and
low elevation, which dampen the flow response.

Class No. 6 has very high peaks, especially during winter,
and high flow periods in general: overall, flashy flow
with a tendency to lower flow during summer and geo-
graphically scattered humid areas all over Europe.

Class No. 7 shows in general high and flashy flows: for most
catchments these are higher winter flows, though for
some catchments they are summer high flows instead,
due to snowmelt and glacier melt (this is the class
with the most glaciers; see Fig. G of the Supplement).
This class encompasses wet and cold mountainous ar-
eas along the coasts in northwestern Europe and some
humid parts of the Alps.

Class No. 8 is characterized by peaky flow throughout the
year, with higher peaks in winter. This class consists of
smaller headwater catchments in some warm and humid
parts of central, southwestern and northeastern Europe.

Class No. 9 has rather low flow, with a snowmelt-dominated
spring flood. Low amplitude but frequent short-term
variability. These catchments are mainly in flat lands
around the Baltic Sea and North Sea further charac-
terized by forests, lakes and wetlands. Some catch-
ments exhibit similar geological structures (Pz, pCmi;
see Fig. K in the Supplement).

www.hydrol-earth-syst-sci.net/21/2863/2017/ Hydrol. Earth Syst. Sci., 21, 2863–2879, 2017



2872 A. Kuentz et al.: Understanding hydrologic variability

Figure 6. CART tree adjusted on the FS classification and used as a predictive tree for the CART classification.

Class No. 10 shows high flows with very high and frequent
peaks, some tendency to peaks in spring, but also high
flow during winter. Frequent short-term variability is
common in these wet, high elevation and steep catch-
ments across mountain ranges of Europe.

Class No. 11 is characterized by sustained high baseflow
and some tendency to spring season peaks in some
catchments, but overall low seasonality of flow. These
catchments are close to mountains or in lower parts of
large river basins. We suspect some outliers in this class
when extrapolating the CART tree to the full European
domain, as parts of the catchments in this class were
not representative of the majority of river gauges in the
same class (see Fig. M in the Supplement, showing that
the gauged catchments in node 11b have different char-
acteristics than those in nodes 11a and 11c).

The hydrological interpretations of the detected spatial
patterns (Table 3) pointed to climate as the main control of
the hydrological response in most classes (which is consis-
tent with the Aridity Index as the main control in Fig. 6).
This is highlighted by the notable influence of rainfall-driven
river flow in class nos. 6, 7, and 8 (western and northern
Europe) throughout the year, and during winter in 4 (south-
ern and eastern Europe). The latter region is most obvi-
ously strongly affected by evapotranspiration, while snow-
dominated regimes with a spring melt season are characteris-
tic of class nos. 1, 7, and 9 and to some extent also nos. 5 and
10. These classes are found in the northern and mountainous
parts of Europe.

Regarding landscape influence, dampening effects of river
flow response are found in class nos. 1 and 5, due to the pres-
ence of many water bodies and vast flatland areas. Continu-
ously strong baseflow is found in class nos. 9 and 11 through
lateral flow, large catchment sizes or upstream mountainous
areas. On the other hand, class nos. 7, 8 and 6b show fast
response and low storage capacity, which could be attributed
to their thin soils, high slopes or small catchment sizes.

Impact from hydropower production was found in class
nos. 1, 9, and 10, which were all snow-dominated but showed

redistribution of water during the year due to regulation and
in some cases influence of short-term regulation. It should be
noted that this effect was visible although the gauges from
most regulated rivers were already excluded from the study
(Sect. 2.1). Human alteration was also assumed to domi-
nate the hydrological response in class No. 4, where the hy-
drographs did not look natural and irrigated areas are large
(southern and eastern Europe).

Interestingly, some classes were found to have similar flow
signatures but for different reasons. For instance, the damp-
ing of peak flows in class No. 5 could be caused by either
the presence of water bodies (5b) or floodplains with a wider
river channel (5a).

The insight gained from this classification analysis varies
across the different parts of the European continent as the
classes correspond to different percentages of area (Table 3),
and for some classes we learned more than for others. The
classification highlighted distinct patterns for most of the
classes, some of them showing several outstanding signatures
or physiography (e.g., nos. 1, 4, 7, and 10), while others had
signatures with more average magnitude (e.g., nos. 6 and 8).
On the other hand, about 1/3 of the catchments, covering
39 % of the studied area, could not be interpreted hydrologi-
cally, as they did not show similarities in flow signature val-
ues and showed only little similarity in catchment descriptors
(within the 30th percentile of agriculture, moraine and one
geological feature; see Table 3). For this part of Europe, we
need to search for other or more detailed data of catchment
descriptors for understanding the physical controls.

Previous studies have noted that large-scale databases are
connected with uncertainties and may sometimes even be
disinformative at high resolution (Donnelly et al., 2012;
Kauffeldt et al., 2013), which may be a reason for some
of the weak statistical relationships and difficulties in catch-
ment classification. European hydrology is also very much
affected by human alteration, which is probably not fully
covered by the descriptors. Hence, there is still a need for fur-
ther investigations to better understand hydrologic variability
across Europe.
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Figure 7. Three-year hydrographs (left) and average annual hydrographs based on > 5-year daily flows (right) at the stream gauges of the
CART classification classes. Grey→ black: all stream gauges belonging to the class; red: stream gauge where the flow signatures are closest
to the class median flow signatures. Note that the scales are different for classes 5 and 9 and that this classification does not contain any class
No. 2 as explained in Sect. 3.2.
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Table 3. Summary of findings when using the CART tree to classify catchments (CART classification shown in Fig. 3c) and extracting
the main features for each cluster. Appointed flow signatures (Table 1) and catchment descriptors (Table 2) have median values in the
30 % low/high percentile of the distribution over whole domain. Bold indicates median values in the 10 % low/high percentile. Supporting
figures with boxplots and matrices of flow signatures and catchment descriptors as well as detailed maps of spatial patterns are found in the
Supplement (in Sects. C.1, C.2 and C.3).

Class Sample size Flow signatures (FS) Catchment descriptors (CD) Spatial pattern Dominant hydrological processes

No.
of
catch-
ments

No. of
gauges

FS low FS high CD low CD high ( % of map area)

1 6878 112 RBFlash,
ActET

RunoffCo,
HighFrVar,
Mean30
dMaxRevVar

Urban, agricul-
ture, pasture,
Medium AI,
DrainDens,
Pmean, Tmean,

Water, forest, wetland,
OpwithVeg, peat, No-
Texture, Moraine, PSI,
pCm, PzpCmm

Northern and central
Scandinavia, western
Iceland, Russia. (22.8 %)

Snow-dominated flow regime with signif-
icant snowmelt during spring but rather
even flow during the rest of the year due to
dampening in lakes, wetlands and low ac-
tual evapotranspiration. Flow influenced
by some hydropower regulation.

2 – – – – – – –
3 14282 536 – – – Agriculture, Moraine,

PzpCmm
Large coverage in west-
ern, central and eastern
Europe. (38.8 %)

–

4 5112 91 Qsp, Q5, Runof-
fCo,
BFI

CVQ, const,
RBFlash,
HFD,
LowFr, skew,
Mean30dMax

Forest, pasture Agriculture, irrigated,
moraine, Tmean, PSI,
AI, PzpCmm

Southern and eastern
parts of Europe. (15.0 %)

High ET and high human alteration of
natural processes. Winter flow is domi-
nated by precipitation, while summer flow
is limited by evapotranspiration.

5 1765 72 Qsp, CVQ,
Q95, RBFlash,
RunoffCo, skew,
HFD,
Mean30dMax

BFI, HighFr-
Var, LowDur-
Var, RevVar

meanElev,
stdElev, meanS-
lope, Pmean

area, Water, Agriculture,
Coarse, Peat, Moraine,
AI, Cz, PzpCmm

Mainly Poland, Belarus,
and Lithuania; some in
southern Sweden and
Russia (5.6 %)

Water flow is dampened by large river
channels and water bodies and flat lands.
Some influence of snowmelt-driven flows.
One sub-class (5b) is more controlled by
water bodies and the other (5a) by sur-
rounding flood plains.

6 3325 261 HighFrVar,
RevVar

Qsp, Q95,
RBFlash,
RunoffCo

AI Pasture, Moraine,
Pmean, PzpCmm,

Rather scattered distri-
bution: the British Isles,
southern Scandinavia,
Russia, lower regions
of mountainous areas.
(6.3 %)

Precipitation driven frequent peak flows.
One sub-class with rapid response due
small area and high slope (6b).

7 678 33 ActET, HighFr-
Var, LowDur-
Var, RevVar

Qsp, Q5,
Q95,
RBFlash,
RunoffCo

Urban, Forest,
Agriculture,
Medium, Drain-
Dens, Tmean,
AI

stdElev, meanSlope,
Wetland, peat, Opwith-
Veg, Pmean, Opwith-
outVeg, NoTexture,
Shallow, moraine,
PzpCmm

Southeastern Iceland,
Scotland, western Nor-
way, some in the Alps.
(2.4 %)

Low storage (in soil and water bodies)
that generates quick response to rainfall.
Most catchments have rainfall dominated
flow but also some are snow and glaciers
melt dominated.

8 670 63 BFI,
HighFrVar

CVQ,
RBFlash,
ActET, skew,
LowFr,

area, Opwith-
Veg, NoTexture

Pasture, moraine,
Pmean, Tmean, Mz,
PzpCmm,

Close to class No. 6 re-
gions in the center of
France, Carpathians and
Russia. (1.6 %)

Fast response to precipitation since they
are small headwater catchments with low
storage capacity.

9 969 52 Q5, RBFlash,
ActET

HFD, LowFr,
LowDurVar,
Mean30dMax,
RevVar

meanElev,
stdElev, meanS-
lope, Pasture,
Pmean, Tmean

Water, forest, Wet-
land, peat, NoTexture,
moraine, PzpCmm,

Around the Baltic Sea
and along the North Sea
and English Channel
coast. (3.2 %)

Snow-dominated flow regime with sig-
nificant snowmelt during spring. Indica-
tions of short-term regulations. Continu-
ous contribution through lateral flow lead-
ing to a more sustained flow.

10 762 79 CVQ, skew,
HFD, High-
FrVar,
Mean30dMax,
RevVar

Qsp, Q5,
Q95, Runof-
fCo, BFI,
const

Agriculture,
Tmean, AI

meanElev, stdElev,
meanSlope, Pmean,
OpwithVeg, PzpCmm,
OpwithoutVeg, Shallow,
Moraine,

Mountainous regions of
western Norway, Pyre-
nees, Alps, Bosnia, Mon-
tenegro, a few in the
Carpathians and Scot-
land. (2.3 %)

Regulated flow for hydropower produc-
tion during winter but still with some ten-
dency of spring flow.

11 774 67 CVQ, RBFlash,
skew, HFD,
Mean30dMax

Q5, BFI – area, meanElev, stdElev,
meanSlope, Water, Ir-
rigated, OpwithoutVeg,
Coarse, Moraine, Drain-
Dens, Cz, pCm, Pzi,
PzpCmm

SE France, northeastern
Italy, western Denmark,
southeastern Norway,
some in Sweden, large
catchments of big rivers
like the Rhine and
Danube. (2.0 %)

Flow is governed by continuous supply
from upstream storages either from large
upstream areas or upstream mountains.
(Note: some catchments (e.g., in Den-
mark) are not representative of the gauges
in this class.)

3.4 Application of the results: predicting flow
signatures over Europe

Figure 8 shows the result of predicted flow signatures us-
ing the regression models calibrated within each class of the
CART classification. As shown in Fig. 4, the performances

of these models are diverse: some flow signatures are well
modeled (R2 above 0.8 for mean specific flow and the 95th
quantile, above 0.7 for the 5th quantile, runoff ratio, skew-
ness of daily flow, mean 30-day maximum), but some other
models perform very poorly (R2 below 0.2 for low flow fre-
quency and variability of low flow duration). It is well recog-
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nized that modeling low flows can be difficult (e.g., Nicolle
et al., 2014; Donnelly et al., 2016; Zhang et al., 2015) and
the correlation matrices (see Supplement) showed that these
two flow signatures were poorly correlated with catchment
descriptors. This highlights the difficulties in understanding
process and physical controls to predict low flows with the
datasets currently available to us.

The performances also vary from class to class (not shown
here). Models are generally poor (most R2 below 0.4, a few
between 0.4 and 0.6) in class No. 3, which is a very large and
miscellaneous class, but also for class nos. 6 and 8, which
bring together mostly humid catchments rather scattered over
the continent. On the other hand, the best performances are
observed in class nos. 7, 10 and 11, containing a majority of
mountainous or close to mountainous catchments. Good per-
formances were also observed for at least some of the flow
signatures in classes 1, 4 and 5 covering both northern Eu-
rope and arid Mediterranean regions.

Figure 8 shows that some negative values appear when ap-
plying the calibrated regression models to predict flow sig-
natures. This is explained by the larger range of values of the
predicting variables in the whole domain than in the subset
of 1366 catchments with flow stations. For example, the pre-
dicted values for the 5th quantile of daily flow are negative
in 2607 catchments (over the 35 215 modeled), most of them
belonging to classes 3 and 4. In class No. 4, the regression for
Q5 uses percentage of forest (positive coefficient) and mean
temperature (negative coefficient) as the first two predictors.
Some negative values appear when the model is applied to
catchments with a low percentage of forest and a high mean
temperature.

These mitigated results emphasize the empirical nature of
these regression models (without process controls) and that
they should not be applied outside of the observed ranges
of catchment descriptors. However, these regression models
help us in improving our understanding of European hydro-
logical processes and identifying the dominant controls of the
flow signatures in different parts of Europe (see Sect. 3.2).
This understanding can be useful when building models that
include physical reasoning.

One implication of the identified spatial pattern of flow
characteristics and their dominant physiographic controls is
that one can delineate regions of particular flow characteris-
tics, for which part of the hydrograph is important. This could
be related to the season or component of the hydrograph
where the flow is more sensitive to the controlling physio-
graphic attributes. In addition to establishing empirical re-
lationships between the flow signatures and catchment de-
scriptors, like we did in this work, this has a potential appli-
cation in improving dynamical rainfall–runoff models across
Europe. Design and results of process-based models should
be coherent with empirical findings and, when applied on a
large scale, they should thus be evaluated against empirical
observations of large-scale spatial patterns, like the ones we
provided in this paper.

Furthermore, our results could be applied to improve hy-
drological models, as patterns of flow signatures are used
for defining regions globally for regional model calibration
(Beck et al., 2016). We showed that regression predictions
are improved by 15 % when establishing regressions for sep-
arate classes of catchment with similar signatures and con-
trols (see Sect. 3.2). This knowledge could be valuable when
estimating parameter values for continental-scale hydrologi-
cal models. Currently, there is an emerging need for param-
eter estimation also in ungauged basins from several model-
ing communities (Archfield et al., 2015). For instance, tra-
ditional catchment models have recently been applied on a
pan-European scale, e.g., SWAT (Abbaspour et al., 2015) and
HYPE (Donnelly et al., 2016). Accordingly, global hydrolog-
ical models are starting to develop rigorous calibration pro-
cedures (e.g., Müller Schmied et al., 2014). The new empir-
ical knowledge we gained in this work could, for instance,
be incorporated into the process description of such models.
Processes that control the part of the hydrograph that is sen-
sitive to given physiographic attributes can be parameterized
and calibrated separately as functions of the physiographic
attributes for the different catchment classes (Hundecha et
al., 2016). This could ultimately improve the predictive abil-
ity of dynamic models in ungauged basins.

4 Conclusions

We set out to better understand hydrological patterns and
their controls across the European continent by exploring
similarities in flow signatures and physiography. Using open
datasets and statistical analysis, we found it possible to at-
tribute dominant flow-generating processes to specific geo-
graphical domains. From the analysis of catchment classifi-
cation using similarities in 16 flow signatures and 35 catch-
ment descriptors across Europe, we can conclude the follow-
ing.

Physiography is significantly correlated with flow signa-
tures at this large scale and catchment classification improves
predictions of hydrologic variability across Europe (15 to
33 % – depending on the classification used – improvement
in regression model skills). Different physiographical vari-
ables control different flow signatures, though climatic vari-
ables play the most important role for most of the flow signa-
tures (12 out of 16). Topography is more important for flashi-
ness and low flow magnitude, while geology is the main con-
trol for the baseflow index. All studied flow signatures were
significantly correlated with at least one catchment descrip-
tor.

Classes obtained by clustering of flow signatures can be
predicted from catchment descriptors. On average, 60 % of
the catchments were correctly classified in each class. In to-
tal, Europe could be divided into 10 hydrological classes with
both similar flow signatures and physiography. The most im-
portant physiographic characteristic for predicting classes is
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Figure 8. Predicted flow signatures using the regression models calibrated within classes of the CART classification (Fig. 3c). Note that the
color intervals are adapted to each signature and do not have a constant size for a given signature: for a better readability they are based on
the quartiles of the signature distribution. The coefficients of determination of these models are shown in Fig. 4.

the Aridity Index, which separates the energy-limited catch-
ments from the moisture-limited catchments. Further ex-
planatory variables include soil type, land cover, topography
and other aspects of the climate/weather. The CART analyses
also separated different explanatory variables for the same
class of catchments. For example, the damped peak response
for one class was explained by the presence of large water
bodies for some catchments, while large flatland areas ex-
plained it for other catchments in the same class.

Interpretation of dominant flow-generating processes and
catchment behavior (such as rainfall response, snowmelt,
evapotranspiration, dampening, storage capacity, and human
alterations) could explain the hydrologic variability across
Europe to a large extent (61 % of the studied domain area).
Distinct patterns with characterized flow signatures and pro-
cesses appeared for some European regions (e.g., north-
ern Europe, arid Mediterranean regions, mountainous areas),
providing useful information for predictions in ungauged
catchments in these areas. On the other hand, flow signa-
tures from 1/3 of the catchments (mainly situated in central
Europe) could not be classified or understood based on the
catchment descriptors available for this analysis. These limi-
tations of our large-scale study call for more detailed analysis
with additional data in these areas.

Links between flow characteristics and physiography
could potentially be used in spatial mapping of flow sig-
natures (for instance, mean specific flow, the 5th and 95th
quantiles, runoff ratio, skewness of daily flow, mean 30-day
maximum) for ungauged basins, which might be used in hy-
drological modeling in the future. The 10 classes of simi-
lar catchments may facilitate model parameter estimation in
pan-European hydrological models.

Open data sources enable new forms of comparative sci-
ence and show large potential for research to generate new
knowledge and hydrological insights encompassing variable
environmental conditions. However, for Europe there is a
lack of homogenous datasets for human impact on flows,
such as local water management, abstractions and regulation
schemes. There is thus still a need for opening up more pub-
lic sector data for re-use and, especially, for compiling large-
scale databases on the global or continental scales across ad-
ministrative borders.

Data availability. Additional information on the experi-
ment with protocols and links to data scripts are avail-
able at http://www.switch-on-vwsl.eu/. The data that sup-
port the findings of this study are available in Zenodo
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with the identifiers https://doi.org/10.5281/zenodo.581435
(Kuentz et al., 2017g) for the river flow gauge selec-
tion (shapefile); https://doi.org/10.5281/zenodo.581428
(Kuentz et al., 2017a) for the climatologic catch-
ment descriptors; https://doi.org/10.5281/zenodo.581429
(Kuentz et al., 2017b) for the geologic catchment
descriptors; https://doi.org/10.5281/zenodo.581430
(Kuentz et al., 2017c) for land use catchment de-
scriptors; https://doi.org/10.5281/zenodo.581431 (Kuentz
et al., 2017d) for soil types (catchment descrip-
tors); https://doi.org/10.5281/zenodo.581432 (Kuentz
et al., 2017e) for topographic catchment descrip-
tors; https://doi.org/10.5281/zenodo.581433 (Strom-
back, 2017) for catchment delineation (shapefile) and
https://doi.org/10.5281/zenodo.581434 (Kuentz et al., 2017f)
for the flow signatures.

The Supplement related to this article is available
online at https://doi.org/10.5194/hess-21-2863-2017-
supplement.
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