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4.1 Hypothesis testing: an overview 

Before testing hypotheses in the multiple regression model, we are going to offer 
a general overview on hypothesis testing. 

Hypothesis testing allows us to carry out inferences about population parameters 
using data from a sample. In order to test a hypothesis in statistics, we must perform the 
following steps:  

1) Formulate a null hypothesis and an alternative hypothesis on population 
parameters.  

2) Build a statistic to test the hypothesis made.  

3) Define a decision rule to reject or not to reject the null hypothesis.  

Next, we will examine each one of these steps. 

4.1.1 Formulation of the null hypothesis and the alternative hypothesis 

Before establishing how to formulate the null and alternative hypothesis, let us 
make the distinction between simple hypotheses and composite hypotheses. The 
hypotheses that are made through one or more equalities are called simple hypotheses. 
The hypotheses are called composite when they are formulated using the operators 
"inequality", "greater than" and "smaller than".  

It is very important to remark that hypothesis testing is always about population 
parameters. Hypothesis testing implies making a decision, on the basis of sample data, 
on whether to reject that certain restrictions are satisfied by the basic assumed model. 
The restrictions we are going to test are known as the null hypothesis, denoted by H0. 
Thus, null hypothesis is a statement on population parameters.  
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Although it is possible to make composite null hypotheses, in the context of the 
regression model the null hypothesis is always a simple hypothesis. That is to say, in 
order to formulate a null hypothesis, which shall be called H0, we will always use the 
operator “equality”. Each equality implies a restriction on the parameters of the model. 
Let us look at a few examples of null hypotheses concerning the regression model: 

 a)    H0 : 1=0  

 b)    H0 : 1+ 2 =0  

 c)    H0 : 1=2 =0  

 d)    H0 : 2+3 =1 

We will also define an alternative hypothesis, denoted by H1, which will be our 
conclusion if the experimental test indicates that H0 is false. 

Although the alternative hypotheses can be simple or composite, in the 
regression model we will always take a composite hypothesis as an alternative 
hypothesis. This hypothesis, which shall be called H1, is formulated using the operator 
“inequality” in most cases. Thus, for example, given the H0: 

 0 : 1jH    (4-1) 

we can formulate the following H1 : 

 1 : 1jH    (4-2) 

which is a “two side alternative” hypothesis.  

The following hypotheses are called “one side alternative” hypotheses 

 1 : 1jH    (4-3) 

 1 : 1jH    (4-4) 

4.1.2 Test statistic 

A test statistic is a function of a random sample, and is therefore a random 
variable. When we compute the statistic for a given sample, we obtain an outcome of 
the test statistic. In order to perform a statistical test we should know the distribution of 
the test statistic under the null hypothesis. This distribution depends largely on the 
assumptions made in the model. If the specification of the model includes the 
assumption of normality, then the appropriate statistical distribution is the normal 
distribution or any of the distributions associated with it, such as the Chi-square, 
Student’s t, or Snedecor’s F. 

Table 4.1 shows some distributions, which are appropriate in different situations, 
under the assumption of normality of the disturbances. 

TABLE 4.1. Some distributions used in hypothesis testing. 

1 restriction 1 or more 
restrictions 

Known 2  N Chi-square 

Unknown 2   Student’s t Snedecor’s F 
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The statistic used for the test is built taking into account the H0 and the sample 
data. In practice, as 2  is always unknown, we will use the distributions t and F. 

4.1.3 Decision rule 

We are going to look at two approaches for hypothesis testing: the classical 
approach and an alternative one based on p-values. But before seeing how to apply the 
decision rule, we shall examine the types of mistakes that can be made in testing 
hypothesis. 

Types of errors in hypothesis testing 

In hypothesis testing, we can make two kinds of errors: Type I error and Type II 
error. 

Type I error 

We can reject H0 when it is in fact true. This is called Type I error. Generally, 
we define the significance level () of a test as the probability of making a Type I error. 
Symbolically, 

 0 0Pr(  | )Reject H H   (4-5) 

In other words, the significance level is the probability of rejecting H0 given that 
H0 is true. Hypothesis testing rules are constructed making the probability of a Type I 
error fairly small. Common values for  are 0.10, 0.05 and 0.01, although sometimes 
0.001 is also used. 

After we have made the decision of whether or not to reject H0, we have either 
decided correctly or we have made an error. We shall never know with certainty 
whether an error was made. However, we can compute the probability of making either 
a Type I error or a Type II error. 

Type II error 

We can fail to reject H0 when it is actually false. This is called Type II error. 

 0 1Pr( | )No reject H H   (4-6) 

In words,  is the probability of not rejecting H0 given that H1 is true. 

It is not possible to minimize both types of error simultaneously. In practice, 
what we do is select a low significance level.  

Classical approach: Implementation of the decision rule 

The classical approach implies the following steps:  

a) Choosing . Classical hypothesis testing requires that we initially specify a 
significance level for the test. When we specify a value for , we are essentially 
quantifying our tolerance for a Type I error. If =0.05, then the researcher is willing to 
falsely reject H0 5% of the time. 

b) Obtaining c, the critical value, using statistical tables. The value c is 
determined by .  
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The critical value (c) for a hypothesis test is a threshold to which the value of the 
test statistic in a sample is compared to determine whether or not the null hypothesis is 
rejected.  

c) Comparing the outcome of the test statistic, s, with c, H0 is either rejected or 
not for a given . 

The rejection region (RR), delimited by the critical value(s), is a set of values of 
the test statistic for which the null hypothesis is rejected. (See figure 4.1). That is, the 
sample space for the test statistic is partitioned into two regions; one region (the 
rejection region) will lead us to reject the null hypothesis H0, while the other will lead 
us not to reject the null hypothesis. Therefore, if the observed value of the test statistic S 
is in the critical region, we conclude by rejecting H0; if it is not in the rejection region 
then we conclude by not rejecting H0 or failing to reject H0. 

Symbolically, 

 0

0

If                reject        

If                not reject  

s c H

s c H




 (4-7) 

If the null hypothesis is rejected with the evidence of the sample, this is a strong 
conclusion. However, the acceptance of the null hypothesis is a weak conclusion 
because we do not know what the probability is of not rejecting the null hypothesis 
when it should be rejected. That is to say, we do not know the probability of making a 
type II error. Therefore, instead of using the expression of accepting the null hypothesis, 
it is more correct to say fail to reject the null hypothesis, or not reject, since what really 
happens is that we do not have enough empirical evidence to reject the null hypothesis.  

In the process of hypothesis testing, the most subjective part is the a priori 
determination of the significance level. What criteria can be used to determine it? In 
general, this is an arbitrary decision, though, as we have said, the 1%, 5% and 10% 
levels for  are the most used in practice. Sometimes the testing is made conditional on 
several significance levels. 

 
FIGURE 4.1. Hypothesis testing: classical approach. 

An alternative approach: p-value 

With the use of computers, hypothesis testing can be contemplated from a more 
rational perspective. Computer programs typically offer, together with the test statistic, 
a probability. This probability, which is called p-value (i.e., probability value), is also 
known as the critical or exact level of significance or the exact probability of making a 
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Type I error. More technically, the p value is defined as the lowest significance level at 
which a null hypothesis can be rejected.  

Once the p-value has been determined, we know that the null hypothesis is 
rejected for any p-value, while the null hypothesis is not rejected when <p-value. 
Therefore, the p-value is an indicator of the level of admissibility of the null hypothesis: 
the higher the p-value, the more confidence we can have in the null hypothesis. The use 
of the p-value turns hypothesis testing around. Thus, instead of fixing a priori the 
significance level, the p-value is calculated to allow us to determine the significance 
levels of those in which the null hypothesis is rejected. 

In the following sections, we will see the use of p value in hypothesis testing put 
into practice. 

4.2 Testing hypotheses using the t test 

4.2.1 Test of a single parameter 

The t test 

Under the CLM assumptions 1 through 9,  

 ˆ ˆ~ , var( )           1, 2,3, ,j j jN j k        (4-8) 

If we typify 

  
ˆ ˆ

~ 0,1           1, 2,3, ,
ˆˆ ( )var( )

j j j j

jj

N j k
sd

   



 
    (4-9) 

The claim for normality is usually made on the basis of the Central Limit 
Theorem (CLT), but this is restrictive in some cases. That is to say, normality cannot 
always be assumed. In any application, whether normality of u can be assumed is 
really an empirical matter. It is often the case that using a transformation, i.e. taking 
logs, yields a distribution that is closer to normality, which is easy to handle from a 
mathematical point of view. Large samples will allow us to drop normality without 
affecting the results too much.  

Under the CLM assumptions 1 through 9, we obtain a Student’s t distribution 

 
ˆ

ˆ( )
j j

n k

j

t
se


b b

b -

-
 (4-10)  

where k is the number of unknown parameters in the population model (k-1 slope 
parameters and the intercept, 1). The expression (4-10) is important because it allows 
us to test a hypothesis on j. 

If we compare (4-10) with (4-9), we see that the Student’s t distribution derives 

from the fact that the parameter   in ˆ( )jsd   has been replaced by its estimator ̂ , 
which is a random variable. Thus, the degrees of freedom of t are n-1-k corresponding 
to the degrees of freedom used in the estimation of 2̂ . 

When the degrees of freedom (df) in the t distribution are large, the t 
distribution approaches the standard normal distribution. In figure 4.2, the density 
function for normal and t distributions for different df are represented. As can be seen, 
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the null hypothesis could be true, whereas a large value will indicate a false null 

hypothesis. The question is: how far is ˆ
j  from zero? 

We must recognize that there is a sampling error in our estimate ˆ
j , and thus 

the size of ˆ
j  must be weighted against its sampling error. This is precisely what we do 

when we use ˆ
j

t


, since this statistic measures how many standard errors ˆ
j  is away 

from zero. In order to determine a rule for rejecting H0, we need to decide on the 
relevant alternative hypothesis. There are three possibilities: one-tail alternative 
hypotheses (right and left tail), and two-tail alternative hypothesis. 

One-tail alternative hypothesis: right 

First, let us consider the null hypothesis 

0 : 0jH    

against the alternative hypothesis 

1 : 0jH    

This is a positive significance test. In this case, the decision rule is the following: 

Decision rule 

 
ˆ 0

ˆ 0

If                reject        

If                not reject  

j

j

n k

n k

t t H

t t H














 (4-12) 

Therefore, we reject 0 : 0jH    in favor of 1 : 0jH    at  when ˆ
j

n kt t
   as 

can be seen in figure 4.3. It is very clear that to reject H0 against 1 : 0jH   , we must 

get a positive ˆ
j

t


. A negative ˆ
j

t


, no matter how large, provides no evidence in favor of

1 : 0jH   . On the other hand, in order to obtain n kt in the t statistical table, we only 

need the significance level  and the degrees of freedom. 

It is important to remark that as  decreases, n kt  increases. 

To a certain extent, the classical approach is somewhat arbitrary, since we need 
to choose  in advance, and eventually H0 is either rejected or not. 

In figure 4.4, the alternative approach is represented. As can be seen by 
observing the figure, the determination of the p-value is the inverse operation to find the 
value of the statistical tables for a given significance level. Once the p-value has been 
determined, we know that H0 is rejected for any level of significance of >p-value, 
while the null hypothesis is not rejected when <p-value.  
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where inc is disposable income of household, househsize is the number of household members and 
punder5 is the proportion of children under five in the household. 

As the variables fruit and inc appear expressed in natural logarithms, then 2 is the expenditure 
in fruit/income elasticity. Using a sample of 40 households (workfile demand), the results of table 4.3 
have been obtained. 

TABLE 4.3. Standard output in a regression explaining expenditure in fruit. n=40. 
Variable Coefficient Std. Error t-Statistic Prob. 

C -9.767654 3.701469 -2.638859 0.0122 
LN(INC) 2.004539 0.512370 3.912286 0.0004 
HOUSEHSIZE -1.205348 0.178646 -6.747147 0.0000 
PUNDER5 -0.017946 0.013022 -1.378128 0.1767 

 

Is the expenditure in fruit/income elasticity equal to 1? 

To answer this question, the following procedure has been carried out:  

In this case, the null and alternative hypothesis and the test statistic are the following: 

0 2

1 2

: 1

: 1

H

H







  
0

2 2 2

2 2

ˆ ˆ 1 2.005 1
1.961

ˆ ˆ 0.512( ) ( )
t

se se

  
 
  

     

For =0.10, we find that 0.10/ 2 0.10/ 2
36 35 1.69t t  . As t| |>1.69, we reject H0. For =0.05, 

0.05/2 0.05/2
36 35 2.03t t  . As t| |<2.03, we do not reject H0 for =0.05, nor for =0.01. Therefore, we reject 

that the expenditure on fruit/income elasticity is equal to 1 for =0.10, but we cannot reject it for =0.05, 
nor for =0.01.  

Is fruit a luxury good? 

According to economic theory, a commodity is a luxury good when its expenditure elasticity 
with respect to income is higher than 1. Therefore, to answer to the second question, and taking into 
account that the t statistic is the same, the following procedure has been carried out:  

0 2: 1H                1 2: 1H   . 

For =0.10, we find that 0.10 0.10
36 35 1.31t t  . As t>1.31, we reject H0 in favour of H1. For =0.05, 

0.05 0.05
36 35 1.69t t  . As t>1.69, we reject H0 in favour of H1. For =0.01, 0.01 0.01

36 35 2.44t t  . As t<2.44, we 

do not reject H0. Therefore, fruit is a luxury good for =0.10 and =0.05, but we cannot reject H0 in 
favour of H1 for =0.01.  

EXAMPLE 4.5 Is the Madrid stock exchange market efficient? 

Before answering this question, we will examine some previous concepts. The rate of return of 
an asset over a period of time is defined as the percentage change in the value invested in the asset during 
that period of time. Let us now consider a specific asset: a share of an industrial company acquired in a 
Spanish stock market at the end of one year and remains until the end of next year. Those two moments of 
time will be denoted by t-1 and t respectively. The rate of return of this action within that year can be 
expressed by the following relationship: 

 
1

t t t
t

t

P D A
RA

P-

D + +
  (4-15) 

where Pt: is the share price at the end of period t, Dt: are the dividends received by the share during the 
period t, and At: is the value of the rights that eventually corresponded to the share during the period t 

Thus, the numerator of (4-15) summarizes the three types of capital gains that have been 
received for the maintenance of a share in year t; that is to say, an increase or decrease in quotation, 
dividends and rights on capital increase. Dividing by Pt-1, we obtain the rate of profit on share value at 
the end of the previous period. Of these three components, the most important one is the increase in 
quotation. Considering only that component, the yield rate of the action can be expressed by 

 
1

1 t
t

t

P
RA

P-

D
  (4-16) 
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or, alternatively if we use a relative rate of variation, by 

 2 lnt tRA PD  (4-17) 

In the same way as Rat represents the rate of return of a particular share in either of the two 
expressions, we can also calculate the rate of return of all shares listed in the stock exchange. The latter 
rate of return, which will be denoted by RMt, is called the market rate of return. 

So far we have considered the rate of return in a year, but we can also apply expressions such as 
(4-16), or (4-17), to obtain daily rates of return. It is interesting to know whether the rates of return in the 
past are useful for predicting rates of return in the future. This question is related to the concept of market 
efficiency. A market is efficient if prices incorporate all available information, so there is no possibility of 
making abnormal profits by using this information. 

In order to test the efficiency of a market, we define the following model, using daily rates of 
return defined by (4-16): 

 1 2 192  92t t trmad rmad u      (4-18) 

If a market is efficient, then the parameter 2 of the previous model must be 0. Let us now 
compare whether the Madrid Stock Exchange is efficient as a whole. 

The model (4-18) has been estimated with daily data from the Madrid Stock Exchange for 1992, 
using file bolmadef. The results obtained are the following: 

 
1

(0.0007) (0.0629)
92 0.0004 0.1267 92t trmad rmad  -+  

R2=0.0163     n=247 

The results are paradoxical. On the one hand, the coefficient of determination is very low 
(0.0163), which means that only 1.63% of the total variance of the rate of return is explained by the 
previous day’s rate of return. On the other hand, the coefficient corresponding to the rate of significance 
of the previous day is statistically significant at a level of 5% but not at a level of 1% given that the t 

statistic is equal to 0.1267/0.0629=2.02, which is slightly larger in absolute value than 0.01 0.01
245 60t t =2.00. 

The reason for this apparent paradox is that the sample size is very high. Thus, although the impact of the 
explanatory variable on the endogenous variable is relatively small (as indicated by the coefficient of 
determination), this finding is significant (as evidenced by the statistical t) because the sample is 
sufficiently large. 

To answer the question as to whether the Madrid Stock Exchange is an efficient market, we can 
say that it is not entirely efficient. However, this response should be qualified. In financial economics 
there is a dependency relationship of the rate of return of one day with respect to the rate corresponding to 
the previous day. This relationship is not very strong, although it is statistically significant in many world 
stock markets due to market frictions. In any case, market players cannot exploit this phenomenon, and 
thus the market is not inefficient, according to the above definition of the concept of efficiency. 

EXAMPLE 4.6 Is the rate of return of the Madrid Stock Exchange affected by the rate of return of the 
Tokyo Stock Exchange? 

The study of the relationship between different stock markets (NYSE, Tokyo Stock Exchange 
Madrid Stock Exchange, London Stock Exchange, etc.) has received much attention in recent years due to 
the greater freedom in the movement of capital and the use of foreign markets to reduce the risk in 
portfolio management. This is because the absence of perfect market integration allows diversification of 
risk. In any case, there is a world trend toward a greater global integration of financial markets in general 
and stock markets in particular.  

If markets are efficient, and we have seen in example 4.5 that they are, the innovations (new 
information) will be reflected in the different markets for a period of 24 hours. 

It is important to distinguish between two types of innovations: a) global innovations, which is 
news generated around the world and has an influence on stock prices in all markets, b) specific 
innovations, which is the information generated during a 24 hour period and only affects the price of a 
particular market. Thus, information on the evolution of oil prices can be considered as a global 
innovation, while a new financial sector regulation in a country would be considered a specific 
innovation. 

According to the above discussion, stock prices quoted at a session of a particular stock market 
are affected by the global innovations of a different market which had closed earlier. Thus, global 
innovations included in the Tokyo market will influence the market prices of Madrid on the same day. 
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The following model shows the transmission of effects between the Tokyo Stock Exchange and the 
Madrid Stock Exchange in 1992: 

 rmad92t =1+2rtok92t +ut (4-19) 

where rmad92t is the rate of return of the Madrid Stock Exchange in period t and rtok92t  is the rate of 
return of the Tokyo Stock Exchange in period t. The rates of return have been calculated according to 
(4-16). 

In the working file madtok you can find general indices of the Madrid Stock Exchange and the 
Tokyo Stock Exchange during the days both exchanges were open simultaneously in 1992. That is, we 
eliminated observations for those days when any one of the two stock exchanges was closed. In total, the 
number of observations is 234, compared to the 247 and 246 days that the Madrid and Tokyo Stock 
Exchanges were open. 

The estimation of the model (4-19) is as follows: 


(0.0007) (0.0375)

92 0.0005 0.1244 92t trmad rtok  +
 

R2=0.0452     n=235 

Note that the coefficient of determination is relatively low. However, for testing H0:2=0, the 
statistic t = (0.1244/0.0375) = 3.32, which implies that we reject the hypothesis that the rate of return of 
the Tokyo Stock Exchange has no effect on the rate of return of the Madrid Stock Exchange, for a 
significance level of 0.01. 

Once again we find the same apparent paradox which appeared when we analyzed the efficiency 
of the Madrid Stock Exchange in example 4.5 except for one difference. In the latter case, the rate of 
return from the previous day appeared as significant due to problems arising in the elaboration of the 
general index of the Madrid Stock Exchange. 

Consequently, the fact that the null hypothesis is rejected implies that there is empirical evidence 
supporting the theory that global innovations from the Tokyo Stock Exchange are transmitted to the 
quotes of the Madrid Stock Exchange that day.  

4.2.2 Confidence intervals 

Under the CLM, we can easily construct a confidence interval (CI) for the 
population parameter, j. CI are also called interval estimates because they provide a 
range of likely values for j, and not just a point estimate. 

The CI is built in such a way that the unknown parameter is contained within the 
range of the CI with a previously specified probability.  

By using the fact that 
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Operating to put the unknown j alone in the middle of the interval, we have  

/2 /2ˆ ˆ ˆ ˆPr ( ) ( ) 1j j n k j j j n kse t se t       
           

Therefore, the lower and upper bounds of a (1-) CI respectively are given by  

/2ˆ ˆ( )j j j n kse t       

/2ˆ ˆ( )j j j n kse t       
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If random samples were obtained over and over again with j , and j  

computed each time, then the (unknown) population value would lie in the interval ( j ,

j ) for (1  )% of the samples. Unfortunately, for the single sample that we use to 

construct CI, we do not know whether j is actually contained in the interval. 

Once a CI is constructed, it is easy to carry out two-tailed hypothesis tests. If the 
null hypothesis is 0 : j jH a  , then 0H  is rejected against 1 : j jH a   at (say) the 5% 

significance level if, and only if, aj is not in the 95% CI.  

To illustrate this matter, in figure 4.14 we constructed confidence intervals of 
90%, 95% and 99%, for the marginal propensity to consumption -2- corresponding to 
example 4.1. 

 
FIGURE 4.14. Confidence intervals for marginal propensity to consume in example 4.1. 

4.2.3 Testing hypotheses about a single linear combination of the parameters 

In many applications we are interested in testing a hypothesis involving more 
than one of the population parameters. We can also use the t statistic to test a single 
linear combination of the parameters, where two or more parameters are involved.  

There are two different procedures to perform the test with a single linear 
combination of parameters. In the first, the standard error of the linear combination of 
parameters corresponding to the null hypothesis is calculated using information on the 
covariance matrix of the estimators. In the second, the model is reparameterized by 
introducing a new parameter derived from the null hypothesis and the reparameterized 
model is then estimated; testing for the new parameter indicates whether the null 
hypothesis is rejected or not. The following example illustrates both procedures. 

EXAMPLE 4.7 Are there constant returns to scale in the chemical industry?  

To examine whether there are constant returns to scale in the chemical sector, we are going to 
use the Cobb-Douglas production function, given by  

 1 2 3ln( ) ln( ) ln( )output labor capital u       (4-20) 

In the above model parameters 2 and 3 are elasticities (output/labor and output/capital). 

Before making inferences, remember that returns to scale refers to a technical property of the 
production function examining changes in output subsequent to a change of the same proportion in all 
inputs, which are labor and capital in this case. If output increases by that same proportional change then 
there are constant returns to scale. Constant returns to scale imply that if the factors labor and capital 
increase at a certain rate (say 10%), output will increase at the same rate (e.g., 10%). If output increases 
by more than that proportion, there are increasing returns to scale. If output increases by less than that 
proportional change, there are decreasing returns to scale. In the above model, the following occurs  

- if 2+3=1, there are constant returns to scale. 

- if 2+3>1, there are increasing returns to scale. 

- if 2+3<1, there are decreasing returns to scale. 

0,90
0,95
0,99

0.739

0.947

0.718

0.675

0.968

1.011

0.843
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Data used for this example are a sample of  27 companies of the primary metal sector (workfile 
prodmet), where output is gross value added, labor is a measure of labor input, and capital is the gross 
value of plant and equipment. Further details on construction of the data are given in Aigner, et al. (1977) 
and in Hildebrand and Liu (1957); these data were used by Greene in 1991. The results obtained in the 
estimation of model (4-20), using any econometric software available, appear in table 4.4. 

TABLE 4.4. Standard output of the estimation of the production function: 
model (4-20). 
Variable Coefficient Std. Error t-Statistic Prob. 

constant 1.170644 0.326782 3.582339 0.0015 
ln(labor) 0.602999 0.125954 4.787457 0.0001 
ln(capital) 0.375710 0.085346 4.402204 0.0002 

 

To answer the question posed in this example, we must test  

 0 2 3: 1H      

against the following alternative hypothesis 

 1 2 3: 1H      

According to H0, it is stated that 2 3 1 0    . Therefore, the t statistic must now be based on 

whether the estimated sum 2 3
ˆ ˆ 1    is sufficiently different from 0 to reject H0 in favor of H1.  

Two procedures will be used to test this hypothesis. In the first, the covariance matrix of the 
estimators is used. In the second, the model is reparameterized by introducing a new parameter. 

Procedure: using covariance matrix of estimators 

According to 0H , it is stated that 2 3 1 0    . Therefore, the t statistic must now be based on 

whether the estimated sum 2 3
ˆ ˆ 1    is sufficiently different from 0 to reject H0 in favor of H1. To 

account for the sampling error in our estimators, we standardize this sum by dividing by its standard 
error: 

 
2 3

2 3
ˆ ˆ

2 3

ˆ ˆ 1
ˆ ˆ( )

t
se 

 
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 



  

Therefore, if 
2 3

ˆ ˆt
  is large enough, we will conclude, in a two side alternative test, that there are 

not constant returns to scale. On the other hand, if 
2 3

ˆ ˆt
   is positive and large enough, we will reject, in a 

one side alternative test (right), H0 in favour of 1 2 3: 1H    . Therefore, there are increasing returns to 

scale. 

On the other hand , we have  


2 3 2 3

ˆ ˆ ˆ ˆ( ) var( )se        

where 

 
   

2 3 2 3 2 3
ˆ ˆ ˆ ˆ ˆ ˆvar( ) var( ) var( ) 2 covar( , )            

Hence, to compute 2 3
ˆ ˆ( )se    you need information on the estimated covariance of estimators. 

Many econometric software packages (such as e-views) have an option to display estimates of the 
covariance matrix of the estimator vector ’. In this case, the covariance matrix obtained appears in table 
4.5. Using this information, we have  

2 3
ˆ ˆ( ) 0.015864 0.007284 2 0.009616 0.0626se         

2 3

2 3
ˆ ˆ

2 3

ˆ ˆ 1 0.02129
0.3402

ˆ ˆ 0.0626( )
t

se 

 
 

  
   


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TABLE 4.5. Covariance matrix in the production function. 
 constant ln(labor) ln(capital) 

constant  0.106786 -0.019835  0.001189 
ln(labor)) -0.019835  0.015864 -0.009616 
ln(capital)  0.001189 -0.009616  0.007284 

Given that t=0.3402, it is clear that we cannot reject the existence of constant returns to scale for 
the usual significance levels. Given that the t statistic is negative, it makes no sense to test whether there 
are increasing returns to scale  

Procedure: reparameterizing the model by introducing a new parameter  

It is easier to perform the test if we apply the second procedure. A different model is estimated in 
this procedure, which directly provides the standard error of interest. Thus, let us define:  

2 3 1      

thus, the null hypothesis that there are constant returns to scale is equivalent to saying that 0 : 0H   . 

From the definition of  we have 2 3 1     . Substituting 2 in the original equation: 

1 3 3ln( ) ( 1) ln( ) ln( )output labor capital u          

Hence, 

1 3ln( / ) ln( ) ln( / )output labor labor capital labor u       

Therefore, to test whether there are constant returns to scale is equivalent to carrying out a 
significance test on the coefficient of ln(labor) in the previous model. The strategy of rewriting the model 
so that it contains the parameter of interest works in all cases and is usually easy to implement. If we 
apply this transformation to this example, we obtain the results of Table 4.6. 

As can be seen we obtain the same result: 

ˆ

ˆ
0.3402

ˆ( )
t

se




    

TABLE 4.6. Estimation output for the production function: reparameterized model. 
Variable Coefficient Std. Error t-Statistic Prob. 

constant 1.170644 0.326782 3.582339 0.0015 
ln(labor) -0.021290 0.062577 -0.340227 0.7366 
ln(capital/labor) 0.375710 0.085346 4.402204 0.0002 

 

EXAMPLE 4.8 Advertising or incentives? 

The Bush Company is engaged in the sale and distribution of gifts imported from the Near East. 
The most popular item in the catalog is the Guantanamo bracelet, which has some relaxing properties. 
The sales agents receive a commission of 30% of total sales amount. In order to increase sales without 
expanding the sales network, the company established special incentives for those agents who exceeded a 
sales target during the last year. 

Advertising spots were radio broadcasted in different areas to strengthen the promotion of sales. 
In those spots special emphasis was placed on highlighting the well-being of wearing a Guantanamo 
bracelet.  

The manager of the Bush Company wonders whether a dollar spent on special incentives has a 
higher incidence on sales than a dollar spent on advertising. To answer that question, the company's 
econometrician suggests the following model to explain sales:  

1 2 3sales advert incent u       

where incent are incentives to the salesmen and advert are expenditures in advertising. The variables 
sales, incent and advert are expressed in thousands of dollars. 

Using a sample of 18 sale areas (workfile advincen), we have obtained the output and the 
covariance matrix of the coefficients that appear in table 4.7 and in table 4.8 respectively. 
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TABLE 4.7. Standard output of the regression for example 4.8. 
Variable Coefficient Std. Error t-Statistic Prob. 

constant 396.5945 3548.111 0.111776 0.9125 
advert 18.63673 8.924339 2.088304 0.0542 
incent 30.69686 3.604420 8.516448 0.0000 

TABLE 4.8. Covariance matrix for example 4.8. 
 C ADVERT INCENT 

constant 12589095 -26674 -7101 
advert -26674 79.644 2.941 
incent -7101 2.941 12.992 

In this model, the coefficient 2 indicates the increase in sales produced by a dollar increase in 
spending on advertising, while3 indicates the increase caused by a dollar increase in the special 
incentives, holding fixed in both cases the other regressor. 

To answer the question posed in this example, the null and the alternative hypothesis are the 
following: 

0 3 2

1 3 2

: 0

: 0

H

H

 
 

 

   

The t statistic is built using information about the covariance matrix of the estimators: 

 
3 2

3 2
ˆ ˆ

3 2

ˆ ˆ

ˆ ˆ( )
t

se 

 
 





  

3 2
ˆ ˆ( ) 79.644 12.992 2 2.941 9.3142se         

3 2

3 2
ˆ ˆ

3 2

ˆ ˆ 30.697 18.637
1.295

ˆ ˆ 9.3142( )
t

se 

 
 

 
  


 

For =0.10, we find that 0.10
15 1.341t  . As t<1.341, we do not reject H0 for =0.10, nor for 

=0.05 or =0.01. Therefore, there is no empirical evidence that a dollar spent on special incentives has a 
higher incidence on sales than a dollar spent on advertising. 

EXAMPLE 4.9 Testing the hypothesis of homogeneity in the demand for fish 
In the case study in chapter 2, models for demand for dairy products have been estimated from 

cross-sectional data, using disposable income as an explanatory variable. However, the price of the 
product itself and, to a greater or lesser extent, the prices of other goods are determinants of the demand. 
The demand analysis based on cross sectional data has precisely the limitation that it is not possible to 
examine the effect of prices on demand because prices remain constant, since the data refer to the same 
point in time. To analyze the effect of prices it is necessary to use time series data or, alternatively, panel 
data. We will briefly examine some aspects of the theory of demand for a good and then move to the 
estimation of a demand function with time series data. As a postscript to this case, we will test one of the 
hypotheses which, under certain circumstances, a theoretical model must satisfy. 

The demand for a commodity - say good j - can be expressed, according to an optimization 
process carried out by the consumer, in terms of disposable income, the price of the good and the prices 
of the other goods. Analytically: 

 1 2( , , , , , , )j j j mq f p p p p di    (4-21) 

where 

 - di is the disposable income of the consumer. 

- 1 2, , , ,j mp p p p   are the prices of the goods which are taken into account by 

consumers when they acquire the good j. 

Logarithmic models are attractive in studies on demand,, because the coefficients are directly 
elasticities. The log model  is given by 

 1 2 1 3 2 1 2ln( ln( ) ln( ) ln( ) ln( ) ln( )j j j m m mq p p p p R u                  (4-22) 
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It is clear to see that all  coefficients, excluding the constant term, are elasticities of different 
types and therefore are independent of the units of measurement for the variables. When there is no 
money illusion, if all prices and income grow at the same rate, the demand for a good is not affected by 
these changes. Thus, assuming that prices and income are multiplied by  if the consumer has no money 
illusion, the following should be satisfied  

 1 2 1 2( , , , , , , ) ( , , , , , )j j m j j mf p p p p R f p p p p dil l l l l     (4-23) 

From a mathematical point of view, the above condition implies that the demand function must 
be homogeneous of degree 0. This condition is called the restriction of homogeneity. Applying Euler's 
theorem, the restriction of homogeneity in turn implies that the sum of the demand/income elasticity and 
of all demand/price elasticities is zero, i.e.: 

 
1

0
j h j

m

q p q R
h

  


   (4-24) 

This restriction applied to the logarithmic model (4-22) implies that 

 2 3 1 2 0j m m              (4-25) 

In practice, when estimating a demand function, the prices of many goods are not included, but 
only those that are closely related, either because they are complementary or substitute goods. It  is also 
well known that the budgetary allocation of spending is carried out in several stages. 

Next, the demand for fish in Spain will be studied by using a model similar to (4-22). Let us 
consider that in a first assignment, the consumer distributes its income between total consumption and 
savings. In a second stage, the consumption expenditure by function is performed taking into account the 
total consumption and the relevant prices in each function. Specifically, we assume that the only relevant 
price in the demand for fish is the price of the good (fish) and the price of the most important substitute 
(meat). 

Given the above considerations, the following model is formulated: 

 1 2 3 4ln( ln( ) ln( ) ln( )fish fishpr meatpr cons u          (4-26) 

where fish is fish expenditure at constant prices, fishpr is the price of fish, meatpr is the price of meat and 
cons is total consumption at constant prices. 

The workfile fishdem contains information about this series for the period 1964-1991. Prices are 
index numbers with 1986 as a base, and fish and cons are magnitudes at constant prices with 1986 as a 
base also. The results of estimating model (4-26) are as follows: 

 
(2.30) (0.133) (0.112) (0.137)

ln( 7.788 0.460ln( ) 0.554ln( ) 0.322ln( )fish fishpr meatpr cons  - + +  

As can be seen, the signs of the elasticities are correct: the elasticity of demand is negative with 
respect to the price of the good, while the elasticities with respect to the price of the substitute good and 
total consumption are positive 

In model (4-26) the homogeneity restriction implies the following null hypothesis: 

 2 3 4       (4-27) 

To carry out this test, we will use a similar procedure to the one used in example 4.6. Now, the 
parameter  is defined as follows 

 2 3 4       (4-28) 

Setting 2 3 4      , the following model has been estimated: 

 1 3 4ln( ln( ) ln( ) ln( )fish fishpr meatpr fishpr cons fishpr u            (4-29) 

The results obtained were the following: 


(2.30) (0.1334) (0.112) (0.137)

ln( 7.788 0.4596ln( ) 0.554ln( ) 0.322ln( )i i i ifish fishpr meatpr cons  - + +  

Using (4-28), testing the null hypothesis (4-27) is equivalent to testing that the coefficient of 
ln(fishpr) in (4-29) is equal to 0. Since the t statistic for this coefficient is equal to -3.44 and 0.01/ 2

24t =2.8, 

we reject the hypothesis of homogeneity regarding the demand for fish. 
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4.2.4 Economic importance versus statistical significance 

Up until now we have emphasized statistical significance. However, it is 
important to remember that we should pay attention to the magnitude and the sign of the 
estimated coefficient in addition to t statistics. 

Statistical significance of a variable xj is determined entirely by the size of ˆ
j

t


, 

whereas the economic significance of a variable is related to the size (and sign) of ˆ
j . 

Too much focus on statistical significance can lead to the false conclusion that a 
variable is “important” for explaining y, even though its estimated effect is modest. 

Therefore, even if a variable is statistically significant, you need to discuss the 
magnitude of the estimated coefficient to get an idea of its practical or economic 
importance.  

4.3 Testing multiple linear restrictions using the F test. 

So far, we have only considered hypotheses involving a single restriction. But 
frequently, we wish to test multiple hypotheses about the underlying parameters 

1 2 3, , , , k    . 

In multiple linear restrictions, we will distinguish three types: exclusion 
restrictions, model significance and other linear restrictions. 

4.3.1 Exclusion restrictions 

Null and alternative hypotheses; unrestricted and restricted model 

We begin with the leading case of testing whether a set of independent variables 
has no partial effect on the dependent variable, y. These are called exclusion 
restrictions. Thus, considering the model 

 1 2 2 3 3 4 4 5 5y x x x x u           (4-30) 

the null hypothesis in a typical example of exclusion restrictions could be the following: 

0 4 5: 0H     

This is an example of a set of multiple restrictions, because we are putting more 
than one restriction on the parameters in the above equation. A test of multiple 
restrictions is called a joint hypothesis test. 

The alternative hypothesis can be expressed in the following way 

H1: H0 is not true 

It is important to remark that we test the above H0 jointly, not individually. Now, 
we are going to distinguish between unrestricted (UR) and restricted (R) models. The 
unrestricted model is the reference model or initial model. In this example the 
unrestricted model is the model given in (4-30). The restricted model is obtained by 
imposing H0 on the original model. In the above example, the restricted model is 

1 2 2 3 3y x x u       

By definition, the restricted model always has fewer parameters than the 
unrestricted one. Moreover, it is always true that 
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RSSRRSSUR 

where RSSR is the RSS of the restricted model, and RSSUR is the RSS of the unrestricted 
model. Remember that, because OLS estimates are chosen to minimize the sum of 
squared residuals, the RSS never decreases (and generally increases) when certain 
restrictions (such as dropping variables) are introduced into the model. 

The increase in the RSS when the restrictions are imposed can tell us something 
about the likely truth of H0. If we obtain a large increase, this is evidence against H0, 
and this hypothesis will be rejected. If the increase is small, this is not evidence against 
H0, and this hypothesis will not be rejected. The question is therefore whether the 
observed increase in the RSS when the restrictions are imposed is large enough, relative 
to the RSS in the unrestricted model, to warrant rejecting H0.  

The answer depends on but we cannot carry out the test at a chosen  until we 
have a statistic whose distribution is known, and is tabulated, under H0. Thus, we need a 
way to combine the information in RSSR and RSSUR to obtain a test statistic with a 
known distribution under H0. 

Now, let us look at the general case, where the unrestricted model is 

 1 2 2 3 3 +k ky x x x u         (4-31) 

Let us suppose that there are q exclusion restrictions to test. H0 states that q of 
the variables have zero coefficients. Assuming that they are the last q variables, H0 is 
stated as 

 0 1 2: 0k q k q kH           (4-32) 

The restricted model is obtained by imposing the q restrictions of H0 on the 
unrestricted model. 

 1 2 2 3 3 +k q k qy x x x u           (4-33) 

H1 is stated as 

 H1: H0 is not true (4-34) 

Test statistic: F ratio 

The F statistic, or F ratio, is defined by 

 
( ) /

/ ( )
R UR

UR

RSS RSS q
F

RSS n k





 (4-35) 

where RSSR is the RSS of the restricted model, and RSSUR is the RSS of the unrestricted 
model and q is the number of restrictions; that is to say, the number of equalities in the 
null hypothesis. 

In order to use the F statistic for a hypothesis testing, we have to know its 
sampling distribution under H0 in order to choose the value c for a given , and 
determine the rejection rule. It can be shown that, under H0, and assuming the CLM 
assumptions hold, the F statistic is distributed as a Snedecor’s F random variable with 
(q,n-k) df. We write this result as 

 0 ,q n kF H F -|   (4-36) 
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A Snedecor’s F with q degrees of freedom in the numerator and n-k de degrees 
of freedom in the denominator is equal to 

 

2

, 2

q
q n k

n k

q
F

n k

x
x








 
 (4-37) 

where 2
qx  and 2

n kx   are Chi-square distributions that are independent of each other. 

In (4-35) we see that the degrees of freedom corresponding to RSSUR (dfUR)are n-
k. Remember that 

 2ˆ UR
UR

RSS

n k
 


 (4-38) 

On the other hand, the degrees of freedom corresponding to RSSR (dfR) are n-
k+q, because in the restricted model k-q parameters are estimated. The degrees of 
freedom corresponding to RSSR-RSSUR are 

(n-k+q)-(n-k)=q = numerator degrees of freedom=dfR-dfUR 

Thus, in the numerator of F, the difference in RSS´s is divided by q, which is the 
number of restrictions imposed when moving from the unrestricted to the restricted 
model. In the denominator of F, RSSUR is divided by dfUR. In fact, the denominator of F 
is simply the unbiased estimator of 2 in the unrestricted model. 

The F ratio must be greater than or equal to 0, since . 

It is often useful to have a form of the F statistic that can be computed from the 
R2 of the restricted and unrestricted models. 

Using the fact that 2(1 )R RRSS TSS R   and 2(1 )UR URRSS TSS R  , we can write 

(4-35) as the following 

 
2 2

2

( ) /

(1 ) / ( )
UR R

UR

R R q
F

R n k




 
 (4-39) 

since the SST term is cancelled. 

This is called the R-squared form of the F statistic. 

Whereas the R-squared form of the F statistic is very useful for testing exclusion 
restrictions, it cannot be applied for testing all kinds of linear restrictions. For example, 
the F ratio (4-39) cannot be used when the model does not have intercept or when the 
functional form of the endogenous variable in the unrestricted model is not the same as 
in the restricted model. 

Decision rule 

The Fq,n-k distribution is tabulated and available in statistical tables, where we 
look for the critical value ( ,q n kF

 ), which depends on  (the significance level), q (the df 

of the numerator), and n-k, (the df of the denominator). Taking into account the above, 
the decision rule is quite simple. 

0R URSSR SSR 
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Decision rule 

 
, 0

, 0

If                 reject        

If                 not reject  

q n k

q n k

F F H

F F H












 (4-40) 

Therefore, we reject H0 in favor of H1 at  when , q n kF F
 , as can be seen in 

figure 4.15. It is important to remark that as  decreases, ,q n kF
  increases. If H0 is 

rejected, then we say that 1 2, , ,k q k q kx x x      are jointly statistically significant, or just 

jointly significant, at the selected significance level. 

This test alone does not allow us to say which of the variables has a partial effect 
on y; they may all affect y or only one may affect y. If H0 is not rejected, then we say 
that 1 2, , ,k q k q kx x x      are jointly not statistically significant, or simply jointly not 

significant, which often justifies dropping them from the model. The F statistic is often 
useful for testing the exclusion of a group of variables when the variables in the group 
are highly correlated. 

 
FIGURE 4.15. Rejection region and non rejection 

region using F distribution. 

 
FIGURE 4.16. p-value using F distribution. 

In the F testing context, the p-value is defined as 

0- Pr(  ' | )p value F F H   

where F is the actual value of the test statistic and 'F  denotes a Snedecor’s F random 
variable with (q,n-k) df. 

The p-value still has the same interpretation as for t statistics. A small p-value is 
evidence against H0, while a large p-value is not evidence against H0. Once the p-value 
has been computed, the F test can be carried out at any significance level. In figure 4.16 
this alternative approach is represented. As can be seen by observing the figure, the 
determination of the p-value is the inverse operation to find the value in the statistical 
tables for a given significance level. Once the p-value has been determined, we know 
that H0 is rejected for any level of significance of >p-value, whereas the null 
hypothesis is not rejected when <p-value.  

EXAMPLE 4.10 Wage, experience, tenure and age 

The following model has been built to analyze the determinant factors of wage: 

Non 
Rejection
Region  
NRR

Rejection
Region 

RR

,q n kF 

,q n kF



p-value

F

,q n kF 

Non rejected 
for

<p-value

Rejected 
for

p-value
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1 2 3 4 5ln( )wage educ exper tenure age u           

where wage is monthly earnings, educ is years of education, exper is years of work experience, tenure is 
years with current employer, and age is age in years. 

The researcher is planning to exclude tenure from the model, since in many cases it is equal to 
experience, and also age, because it is highly correlated with experience. Is the exclusion of both 
variables acceptable? 

The null and alternative hypotheses are the following: 

0 4 5

1 0

: 0

:  is not true

H

H H

  
 

The restricted model corresponding to this H0 is  

1 2 3ln( )wage educ exper u       

Using a sample consisting of 53 observations from workfile wage2, we have the following 
estimations for the unrestricted and for the restricted models: 

ln( ) 6.476 0.0658 0.0267 0.0094 0.0209    5.954i i i i iwage educ exper tenure age RSS= + + - - =
ln( ) 6.157 0.0457 0.0121       6.250i i iwage educ exper RSS= + + =  

The F ratio obtained is the following: 

  / (6.250 5.954) / 2
1.193

/ ( ) 5.954 / 48
R UR

UR

RSS RSS q
F

RSS n k

 
  


 

Given that the F statistic is low, let us see what happens with a significance level of 0.10. In this 
case the degrees of freedom for the denominator are 48 (53 observations minus 5 estimated parameters). 
If we look in the F statistical table for 2 df in the numerator and 45 df in the denominator, we find 

0.10 0.10
2,48 2,45F F =2.42. As F<2.42, we do not reject H0. If we do not reject H0 for 0.10, we will not reject H0 

for 0.05 or 0.01, as can been in figure 4.17. Therefore, we cannot reject H0 in favor of H1. In other words 
tenure and age are not jointly significant. 

 
FIGURE 4.17. Example 4.10: Rejection region using F distribution ( values are from a F2.40). 

4.3.2 Model significance 

Testing model significance, or overall significance, is a particular case of testing 
exclusion restrictions. Model significance means global significance of the model. One 
could think that the 0H  in this test is the following: 

 0 1 2 3: 0kH          (4-41) 

However, this is not the adequate 0H  to test for the global significance of the 

model. If 2 3 0k      , then the restricted model would be the following: 

 1+y u  (4-42) 

Non Rejection
Region  

NRR

Rejection

Region RR

2,48F

0 5,18

1,980

3,23

2,44

0,10

0,05 0,010.05

1.980

0.01

2.42

3.23

5.18
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If we take expectations in (4-42), then we have  

 1( )E y   (4-43) 

Thus, 0H  in (4-41) states not only that the explanatory variables have no 

influence on the endogenous variable, but also that the mean of the endogenous 
variable–for example, the consumption mean- is equal to 0.  

Therefore, if we want to know whether the model is globally significant, the 0H  

must be the following: 

 0 2 3: 0kH        (4-44) 

The corresponding restricted model given in (4-42) does not explain anything 
and, therefore, 2

RR  is equal to 0. Testing the  given in (4-44) is very easy by using 

the R-squared form of the F statistic: 

 
2

2

/

(1 ) / ( )

R k
F

R n k


   (4-45) 

where 2R  is the 2
URR , since only the unrestricted model needs to be estimated, because 

the 2R  of the model (4-42) – restricted model- is 0. 

EXAMPLE 4.11 Salaries of CEOs  

Consider the following equation to explain salaries of Chief Executive Officers (CEOs) as a 
function of annual firm sales, return on equity (roe, in percent form), and return on the firm's stock (ros, 
in percent form):  

ln(salary) =1+2ln(sales)+3roe+4ros+ u. 

The question posed is whether the performance of the company (sales, roe and ros) is crucial to 
set the salaries of CEOs. To answer this question, we will carry out an overall significance test. The null 
and alternative hypotheses are the following: 

0 2 3 4: 0H       

H1: H0 is not true 

Table 4.9 shows an E-views complete output for least square (ls) using the filework ceosal1. At 
the bottom the “F-statistic” can be seen for overall test significance, as well as “Prob”, which is the p-
value corresponding to this statistic. In this case the p-value is equal to 0, that is to say, H0 is rejected for 
all significance levels (See figure 4.18). Therefore, we can reject that the performance of a company has 
no influence on the salary of a CEO. 

 
FIGURE 4.18. Example 4.11: p-value using F distribution ( values are for a F3,140). 
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TABLE 4.9. Complete output from E-views in the example 4.11. 
Dependent Variable: 
LOG(SALARY)       
Method: Least Squares   
Date: 04/12/12   Time: 19:39   
Sample: 1 209   
Included observations: 209   
    

Variable Coefficient Std. Error t-Statistic Prob.   
    
C 4.311712 0.315433 13.66919 0.0000 
LOG(SALES) 0.280315 0.03532 7.936426 0.0000 
ROE 0.017417 0.004092 4.255977 0.0000 
ROS 0.000242 0.000542 0.446022 0.6561 
    
R-squared 0.282685 Mean dependent var 6.950386 
Adjusted R-squared 0.272188 S.D. dependent var 0.566374 
S.E. of regression 0.483185 Akaike info criterion 1.402118 
Sum squared resid 47.86082 Schwarz criterion 1.466086 
Log likelihood -142.5213 F-statistic 26.9293 
Durbin-Watson stat 2.033496 Prob(F-statistic) 0.0000 

 

4.3.3 Testing other linear restrictions 

So far, we have tested hypotheses with exclusion restrictions using the F 
statistic. But we can also test hypotheses with linear restrictions of any kind. Thus, in 
the same test we can combine exclusion restrictions, restrictions that impose determined 
values to the parameters and restrictions on linear combination of parameters.  

Therefore, let us consider the following model  

1 2 2 3 3 4 4 5 5y x x x x u           

and the null hypothesis: 

2 3

40

5

1

      3:

      0

H

 



 
 
 

 

The restricted model corresponding to this null hypothesis is 

2 4 1 3 3 2( 3 ) ( )y x x x x u        

In the example 4.12, the null hypothesis consists of two restrictions: a linear 
combination of parameters and an exclusion restriction. 

EXAMPLE 4.12 An additional restriction in the production function. (Continuation of example 4.7) 

In the production function of Cobb-Douglas, we are going to test the following H0 which has two 
restrictions: 

2 3
0

1

1 0

1
:

     0

:  is not true

H

H H

 

 

   

In the first restriction we impose that there are constant returns to scale. In the second restriction 
that 1, parameter linked to the total factor productivity is equal to 0. 
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4.4 Testing without normality 

The normality of the OLS estimators depends crucially on the normality 
assumption of the disturbances. What happens if the disturbances do not have a normal 
distribution? We have seen that the disturbances under the Gauss-Markov assumptions, 
and consequently the OLS estimators are asymptotically normally distributed, i.e. 
approximately normally distributed. 

If the disturbances are not normal, the t statistic will only have an approximate t 
distribution rather than an exact one. As it can be seen in the t student table, for a 
sample size of 60 observations the critical points are practically equal to the standard 
normal distribution.  

Similarly, if the disturbances are not normal, the F statistic will only have an 
approximate F distribution rather than an exact one, when the sample size is large 
enough and the Gauss-Markov assumptions are fulfilled. Therefore, we can use the F 
statistic to test linear restrictions in linear models as an approximate test.  

There are other asymptotic tests (the likelihood ratio, Lagrange multiplier and 
Wald tests) based on the likelihood functions that can be used in testing linear 
restriction if the disturbances are non-normally distributed. These three can also be 
applied when a) the restrictions are nonlinear; and b) the model is nonlinear in the 
parameters. For non-linear restrictions, in linear and non-linear models, the most widely 
used test is the Wald test.  

For testing the assumptions of the model (for example, homoskedasticity and no 
autocorrelation) the Lagrange multiplier (LM) test is usually applied. In the application 
of the LM test, an auxiliary regression is often run. The name of auxiliary regression 
means that the coefficients are not of direct interest: only the R2 is retained. In an 
auxiliary regression the regressand is usually the residuals (or functions of the 
residuals), obtained in the OLS estimation of the original model, while the regressors 
are often the regressors (and/or functions of them) of the original model. 

4.5 Prediction 

In this section two types of prediction will be examined: point and interval 
prediction. 

4.5.1 Point prediction  

Obtaining a point prediction does not pose any special problems, since it is a 
simple extrapolation operation in the context of descriptive methods. 

Let 0 0 0
2 3, , , kx x x  denote the particular values in each of the k regressors for 

prediction; these may or may not correspond to an actual data point in our sample. If we 
substitute these values in the multiple regression model, we have  

 0 0 0 0 0 0 0
1 2 2 3 3 ... k ky x x x u u             (4-47) 

Therefore, the expected, or mean, value of y is given by  

 0 0 0 0 0
1 2 2 3 3( ) ... k kE y x x x           (4-48) 

The point prediction is obtained straightaway by replacing the parameters of 
(4-48) by the corresponding OLS estimators: 
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 0 0 0 0
1 2 2 3 3

ˆ ˆ ˆ ˆ ˆ
k kx x x          (4-49) 

To obtain (4-49) we did not need any assumption. But, if we adopt the 

assumptions 1 to 6, we will immediately find that that 0̂  is an unbiased predictor of 0
:  

 0 0 0 0 0 0 0 0
1 2 2 3 3 1 2 2 3 3

ˆ ˆ ˆ ˆ ˆ ...k k k kE E x x x x x x                           (4-50) 

On the other hand, adopting the Gauss Markov assumptions (1 to 8), it can be 
proved that this point predictor is the best linear unbiased estimator (BLUE). 

We have a point prediction for 0, but, what is the point prediction for y0? To 
answer this question, we have to predict u0. As the error is not observable, the best 
predictor for u0

 is its expected value, which is 0. Therefore,  

 0 0ˆŷ   (4-51) 

4.5.2 Interval prediction 

Point predictions made with an econometric model will in general not coincide 
with the observed values due to the uncertainty surrounding economic phenomena.  

The first source of uncertainty is that we cannot use the population regression 
function because we do not know the parameters ’s. Instead we have to use the sample 
regression function. The confidence interval for the expected value – i.e. for 0 - which 
will examine next, includes only this type of uncertainty. 

The second source of uncertainty is that in an econometric model, in addition to 
the systematic part, there is a disturbance which is not observable. The prediction 
interval for an individual value – i.e. for y0-, which will be discussed later on includes 
both the uncertainty arising from the estimation as well as the disturbance term. 

A third source of uncertainty may come from the fact of not knowing exactly 
what values the explanatory variables will take for the prediction we want to make. This 
third source of uncertainty, which is not addressed here, complicates calculations for the 
construction of intervals. 

Confidence interval for the expected value 

If we are predicting the expected value of y, which is 0 , then the prediction 

error 0
1̂e  will be 0 0 0

1
ˆê    . According to (4-50), the expected prediction error is zero. 

Under the assumptions of the CLM,  

0 0 0
1

0 0

ˆˆ
ˆ ˆ( ) ( )

n k

e
t

se se

 
  


   

Therefore, we can write that  

0 0
/2 /2

0

ˆ
Pr 1

ˆ( )
n k n kt t

se
   


 

 
     
 

 

Operating, we can construct a (1-% confidence interval (CI) for 0  with the 
following structure:  
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 0 0 /2 0 0 0 /2ˆ ˆ ˆ ˆPr ( ) ( ) 1n k n kse t se t       
           (4-52) 

To obtain a CI for 0 , we need to know the standard error ( 0̂( )se  ) for 0̂ . In 

any case, there is an easy way to calculate it. Thus, solving (4-48) for 1 we find that 
0 0 0 0

1 2 2 3 3 ... k kx x x         . Plugging this into the equation (4-47), we obtain 

 0 0 0 0
2 2 2 3 3 3( ) ( ) ( )k k ky x x x x x x u             (4-53) 

Applying OLS to (4-53), in addition to the point prediction, we obtain 0ˆ( )se 
which is the standard error corresponding to the intercept in this regression. The 
previous method allows us to put a CI around the OLS estimate of E(y), for any values 
of the x´s.  

Prediction interval for an individual value  

We are now going to construct an interval for y0, usually called prediction 
interval for an individual value, or for short, prediction interval. According to (4-47), y0 
has two components:  

 0 0 0y u   (4-54) 

The interval for the expected value built before is a confidence interval around 
0  wcich is a combination of the parameters. In contrast, the interval for y0

 is random, 
because one of its components, u0, is random. Therefore, the interval for y0 is a 
probabilistic interval and not a confidence interval. The mechanics for obtaining it are 
the same, but bear in mind that now we are going to consider that the set  0 0 0

2 3, , , kx x x
vis outside from of the sample used to estimate the regression. 

The prediction error ( 0
2ê ) in using 0ŷ  to predict y0 is 

 0 0 0 0 0 0
2ˆ ˆ ˆe y y u y      (4-55) 

Taking into account (4-51) and (4-50), and that E(u0)=0, then the expected 
prediction error is zero. In finding the variance of 0

2ê , it must be taken into account that 

u0 is uncorrelated with 0ŷ  because 0 0 0
2 3, , , kx x x  is not in the sample. 

Therefore, the variance of the prediction error (conditional on the x´s) is the 
sum of the variances: 

 0 0 0 0 2
2ˆ ˆ ˆ( ) ( ) ( ) ( )Var e Var y Var u Var y      (4-56) 

There are two sources of variation in 0
2ê : 

1. The sampling error in 0ŷ , which arises because we have estimated the 

j’s. 

2. The ignorance of the unobserved factors that affect y, which is reflected 
in 2. 

Under the CLM assumptions, 0
2ê  is also normally distributed. Using the unbiased 

estimator of 2 and taking into account that 0 0ˆˆ( ) ( )var y var  , we can define the 

standard error (se) of 0
2ê  as 
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  
1

2 20 0 2
2

ˆˆ ˆ( ) ( )se e se       (4-57) 

Usually 2̂  is larger than 
2

0ˆ( )se  
  . Under the assumptions of the CLM,  

 
0
2

0
2

ˆ

ˆ( ) n k

e
t

se e   (4-58) 

Therefore, we can write that  

 
0
2/2 /2

0
2

ˆ
Pr 1

ˆ( )
n k n k

e
t t

se e
   

 
     
 

 (4-59) 

Plugging in 0 0 0
2ˆ ˆe y y   into (4-59) and rearranging it gives a (1-% prediction 

interval for y0:  

 0 0 /2 0 0 0 /2
2 2ˆ ˆ ˆ ˆPr ( ) ( ) 1n k n ky se e t y y se e t              (4-60) 

EXAMPLE 4. 13 What is the expected score in the final exam with 7 marks in the first short exam? 

The following model has been estimated to compare the marks in the final exam (finalmrk) and 
in the first short exam (shortex1) of Econometrics: 


(0.715) (0.123)
4.155 0.491 1i ifinalmrk    shortex  = +  

̂ =1.649    R2=0.533     n=16 

To estimate the expected final mark for a student with shortex10=7 mark in the first short exam, 
the following model, according to (4-53), was estimated: 

 ( )
(0.497) (0.123)
7.593 0.491 1 7i ifinalmrk    shortex  = + -  

̂ =1.649   R2=0.533     n=16 

The point prediction for shortex10=7 is 0̂ =7.593 and the lower and upper bounds of a 95% CI 
respectively are given by  

0 0 0 0.05/2
14

ˆ ˆ( ) 7.593 0.497 2.14 6.5se t          

0 0 0 0.05/2
14

ˆ ˆ( ) 7.593 0.497 2.14 8.7se t          

Therefore, the student will have a 95% confidence of obtaining on average a final mark located 
between 6.5 and 8.7.  

The point prediction could be also obtained from the first estimated equation: 

 4.155 0.491 7 7.593finalmrk   = + ´ =  

Now, we are going to estimate a 95% probability interval for the individual value. The se of 0
2ê  

is equal  

 
1

2 20 0 2 2 2
2ˆ ˆ ˆ( ) ( ) 0.497 1.649 1.722se e se y         

where 1.649 is the “S. E. of regression” obtained from the E-views output directly. 

The lower and upper bounds of a 95% probability interval respectively are given by  
0 0 0 0.025

2 14ˆ ˆ( ) 7.593 1.722 2.14 3.7y y se e t        

0 0 0 0.025
2 14ˆ ˆ( ) 7.593 1.722 2.14 11.3y y se e t        

You must take into account that this probability interval is quite large because the size of the 
sample is very small. 
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EXAMPLE 4.14 Predicting the salary of CEOs 

Using data on the most important US companies taken from Forbes (workfile ceoforbes), the 
following equation has been estimated to explain salaries (including bonuses) earned yearly (thousands of 
dollars) in 1999 by the CEOs of these companies:  


(104) (0.0013) (8.671) (0.0538)

1381 0.008377 32.508 0.2352i i iisalary    assets  tenure profits= + + +  

̂ =1506    R2=0.2404     n=447 

where assets are total assets of firm in millions of dollars, tenure is number of years as CEO in the 
company, and profits are in millions of dollars.  

In Table 4.10 descriptive measures of explanatory variables of the model on CEOs salaries 
appear. 

TABLE 4.10. Descriptive measures of variables of the model on CEOs salary. 
 assets tenure profits 

 Mean  27054  7.8  700 
 Median  7811  5.0  333 
 Maximum  668641  60.0  22071 
 Minimum  718  0.0 -2669 
 Observations  447  447  447 

 

The predicted salaries and the corresponding se( 0̂ ) for selected values (maximum, mean, 
median and minimum), using a model as (4-53), appear  in table 4.11.  

TABLE 4.11. Predictions for selected values. 

 Prediction 0̂  Std. Error se( 0̂ ) 
Mean values 2026 71 
Median value 1688 78 
Maximum values 14124 1110 
Minimum values 760 195 

4.5.3 Predicting y in a ln(y) model 

Consider the model in logs: 

 1 2 2 3 3ln( ) +k ky x x x u         (4-61) 

Obtaining OLS estimates, we predict ln(y) as 

 
1 2 2

ˆ ˆ ˆln( ) k ky x x       (4-62) 

Applying exponentiation to (4-62), we obtain the prediction value  

 
1 2 2

ˆ ˆ ˆexp(ln( )) exp( )k ky y x x         (4-63) 

However, this prediction is biased and inconsistent because it will systematically 
underestimate the expected value of y. Let us see why. If we apply exponentiation in 
(4-61), we have  

 1 2 2 3 3exp( ) exp( )k ky x x x u          (4-64) 

Before taking expectation in (4-64), we must take into account that if u~N(0,2), 

then 
2

(exp( )) exp
2

E u
 

  
 

. Therefore, under the CLM assumptions 1 through 9, we 

have 

 2
1 2 2 3 3( ) exp( ) exp( / 2)k kE y x x x           (4-65) 
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Taking as a reference (4-65), the adequate predictor of y is 

 2 2
1 2 2

ˆ ˆ ˆˆ ˆ ˆexp( ) exp( / 2) exp( / 2)k ky = x x yb b b s s+ + + ´ = ´  (4-66) 

where 2̂  is the unbiased estimator of 2.  

It is important to remark that although ŷ  is a biased predictor, it is consistent, 
while y  is biased and inconsistent 

EXAMPLE 4.15 Predicting the salary of CEOs with a log model (continuation 4.14) 

Using the same data as in example 4.14, the following model was estimated: 


(0.210) (0.0232) (0.0032) (0.0000195)

ln( ) 5.5168 0.1885ln( ) 0.0125 0.00007i i i isalary    assets  tenure profits= + + +  

̂ =0.5499    R2=0.2608     n=447 

Salary and assets are taken in natural logs, while profits are in levels because some observations 
are negative and thus not possible to take logs. 

First, we are going to calculate the inconsistent prediction, according to (4-63) for a CEO 
working in a corporation with assets=10000, tenure=10 years and profits=1000: 

 exp(ln( ))

exp(5.5168 0.1885ln(10000) 0.0125 10 0.00007 1000) 1716
iisalary salary

   

=

= + + ´ + ´ =
 

Using (4-66), we obtain a consistent prediction: 

 2exp(0.5499 / 2) 1716 1996salary = ´ =  

4.5.4 Forecast evaluation and dynamic prediction  

In this section we will compare predictions made using an econometric model 
with the actual values in order to evaluate the predictive ability of the model. We will 
also examine the dynamic prediction in models in which lagged endogenous variables 
are included as regressors. 

Forecast evaluation statistics  

Suppose that the sample forecast is i=n+1, n+2,…, n+h, and denote the actual 
and forecasted value in period i as yi and ˆiy , respectively. Now, we present some of the 

more common statistics used for forecast evaluation. 

Mean absolute error (MAE) 

The MAE is defined as the average of the absolute values of the errors:  

 1

ˆ
n h

i i
i n

y y

MAE
h



+

+

-å
 (4-67) 

Absolute values are taken so that positive errors are compensated by the 
negative ones. 

Mean absolute percentage error (MAPE),  

 1

ˆ

100

n h
i i

ii n

y y

y
MAPE

h


+

+

-

´
å

 (4-68) 

Root of the mean squared error (RMSE) 
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This statistic is defined as the square root of the mean of the squared error: 

 

( )2

1

ˆ
n h

i i
i n

y y

RMSE
h

+

+

-å
  (4-69) 

As the errors are squared, the compensation between positive and negative errors 
are avoided. It is important to remark that the MSE places a greater penalty on large 
forecast errors than the MAE. 

Theil Inequality Coefficient (U)  

This coefficient is defined as follows: 

 

( )2

1

2 2

1 1

ˆ

ˆ

n h

i i
i n

n h n h

i i
i n i n

y y

hU

y y

h h

+

+

+ +

+ +

-

+

å

å å



 

  (4-70) 

The smaller U is, the more accurate are the predictions. The scaling of U is such 
that it will always lie between 0 and 1. If U=0, then yi= ˆiy , for all forecasts; if U=1 the 

predictive performance is as bad as it can be. Theil’s U statistic can be rescaled and 
decomposed into three proportions: bias, variance and covariance. Of course the sum of 
these three proportions is 1. The interpretation of these three proportions is as follows: 

1) The bias reflects systematic errors. Whatever the value of U, we would hope 
that the bias is close to 0. A large bias suggests a systematic over or under 
prediction. 

2) The variance also reflects systematic errors. The size of this proportion is an 
indication of the inability of the forecasts to replicate the variability of the 
variable to be forecasted.  

3) The covariance measures unsystematic errors. Ideally, this should have the 
highest proportion of Theil inequality. 

In addition of the coefficient defined in (4-70), Theil proposed other coefficients 
for forecast evaluation. 

Dynamic prediction 

Let the following model be given: 

 1 2 3 1t t t ty x y u        (4-71) 

Suppose that the sample forecast is i=n+1,…,i=n+h, and denote the actual and 
forecasted value in period i as yi and ˆiy , respectively. The forecast for the period n+1 is 

 1 1 2 1 3
ˆ ˆ ˆˆn n ny x y       (4-72) 

As we can see for the prediction, we use the observed value of y (yn) because it is 
inside the sample used in the estimation. For the remainder of the forecast periods we 
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use the recursively computed forecast of the lagged value of the dependent variable 
(dynamic prediction), that is to say,  

 1 2 3 1
ˆ ˆ ˆˆ ˆ          2,3, ,n i n i n iy x y i h           (4-73) 

Thus, from period n+2 to n+h the forecast carried out in a period is used to 
forecast the endogenous variable in the following period. 

Exercises 

Exercise 4.1 To explain the housing price in an American town, the following model is 
formulated: 

1 2 3 4price rooms lowstat crime u         

where rooms is the number of rooms in the house, lowstat is the percentage of people of 
“lower status” in the area and crime is crimes committed per capita in the area. Prices of 
houses are measured in dollars. 

Using the data in hprice2, the following model has been estimated: 


(8022) (1211) (81) (960)
15694 6788 268 3854price rooms lowstat crime=- + - -  

R2=0.771     n=55 

(The numbers in parentheses are standard errors of the estimators.) 

a) Interpret the meaning of the coefficients 2̂ , 3̂  and 4̂ . 

b) Does the percentage of people of “lower status” have a negative 
influence on the price of houses in that area? 

c) Does the number of rooms have a positive influence on the price of 
houses? 

Exercise 4.2 Consider the following model: 

1 2 3 4ln( ) ln( ) 5fruit inc hhsize punder u         

where fruit is expenditure in fruit, inc is disposable income of a household, hhsize is the 
number of household members and punder5 is the proportion of children under five in 
the household. 

Using the data in workfile demand, the following model has been estimated: 


(3.701) (0.512) (0.179) (0.013)

ln( ) 9.768 2.005ln( ) 1.205 0.0179 5fruit inc hhsize punder=- + - -  

R2=0.728     n=40 

(The numbers in parentheses are standard errors of the estimators.) 

a) Interpret the meaning of the coefficients 2̂ , 3̂  and 4̂ . 

b) Does the number of household members have a statistically significant 
effect on the expenditure in fruit? 

c) Is the proportion of children under five in the household a factor that has 
a negative influence on the expenditure of fruit? 

d) Is fruit a luxury good? 

Exercise 4.3 (Continuation of exercise 2.5). Given the model 

1 2      i 1,2, ,i i iy x u n       

the following results have been obtained with a sample size of 11 observations: 
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a) Build a statistic to test 0 2: 0 H    against 1 2  : 0H   . 

b) Test the hypothesis of question a) when 22EB F . 
c) Test the hypothesis of question a) when 2EB F . 

Exercise 4.4 The following model has been formulated to explain the spending on food 
(food):  

1 2 3food inc rpfood u       

where inc is disposable income and rpfood is the relative price index of food compared 
to other consumer products.  

Taking a sample of observations for 20 successive years, the following results 
are obtained: 


(4.92) (0.01) (0.07)
1.40 0.126 0.036i i ifood inc rpfood= + -  

R2=0.996; 2ˆ 0.196tu   

(The numbers in parentheses are standard errors of the estimators.) 

a) Test the null hypothesis that the coefficient of rpfood is less than 0.  
b) Obtain a confidence interval of 95% for the marginal propensity to 

consume food in relation to income.  
c) Test the joint significance of the model.  

Exercise 4.5 The following demand function for rental housing is formulated: 

ln(srenhousi)=β1+β2ln(prenhousi)+ β3ln(inci)+εi 

where srenhous is spending on rental housing, prenhous is the rental price, and inc is 
disposable income. 

Using a sample of 403 observations, we obtain the following results: 

   ln( ) 10 – 0.7ln 0.9lni i isrenhous prenhous inc   

R2=0.39  

1.0 0 0
ˆcov( ) 0 0.09 0.085

0 0.085 0.09

 
   
  

β  

a) Interpret the coefficients on ln(prenhous) and ln(inc).  
b) Using a 0.01 significance level, test the null hypothesis that β2=β3=0.  
c) Test the null hypothesis that β2=0, against the alternative that β2<0.  
d) Test the null hypothesis that β3=1 against the alternative that β3 1.  
e) Test the null hypothesis that a simultaneous increase in housing prices 

and income has no proportional effect on housing demand.  
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Exercise 4.6 The following estimated models corresponding to average cost (ac) 
functions have been obtained, using a sample of 30 firms: 

 


(11.97) (3.70)

2

  172.46 35.72                      

0.838         8090

i iac qty

R RSS

 

   (1) 

 

 2 3

(29.44) (33.81) (11.61) (1.22)

2

310.07 85.39 26.73 1.40   

                 0.978   1097

i i i iac qty qty qty

R RSS

   

   (2) 

where ac is the average cost and qty is the quantity produced. 

(The numbers in parentheses are standard errors of estimators.) 

a) Test whether the quadratic and cubic terms of the quantity produced are 
significant in determining the average cost.  

b) Test the overall significance in the model 2. 

Exercise 4.7 Using a sample of 35 observations, the following models have been 
estimated to explain expenditures on coffee: 

 


(0.01) (0.23)

ln( ) 21.32 0.11ln( ) 1.33 ln( ) 1.35ln( )coffee     inc    cprice  tprice  = + - +
 (1) 

2 0 905       254R . RSS= =  

 


(0.02) (0.21)

ln( ) 19.9 0.14 ln( ) 1.42 ln( )     coffee    inc  cprice= + -
 (2) 

529RSS =  

where inc is disposable income, cprice is coffee price and tprice is tea price. 

(The numbers in parentheses are standard errors of estimators.) 

a) Test the overall significance of model (1) 
b) The standard error of ln(tprice) is missing in model (1), can you calculate 

it? 
c) Test whether the price of tea is statistically significant. 
d) How would you test the assumption that the price elasticity of coffee is 

equal but opposite to the price elasticity of tea? Detail the procedure. 

Exercise 4.8 The following model has been formulated to analyse the determinants of 
air quality (airqual) in 30 Standard Metropolitan Statistical Areas (SMSA) of 
California: 

1 2 3 4 5 6airqual popln medincm poverty fueoil valadd u             

where airqual is weight in μg/m3 of suspended particular matter, popln is population in 
thousands, medincm is medium per capita income in dollars, poverty is the percentage 
of families with income less than poverty levels, fueloil is thousands of barrels of fuel 
oil consumed in industrial manufacturing, and valadd is value added by industrial 
manufactures in 1972 in thousands of dollars.  

Using the data in workfile airqualy, the above model has been estimated: 


(10.19) (0.0311) (0.0055) (0.0089)

(0.0017) (0.0025)

97.35 0.0956 0.0170 0.0254

0.0031 0.0011

i i ii

i i

airqual popln medincm poverty

fueoil valadd

   

 
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R2=0.415     n=30 

(The numbers in parentheses are standard errors of the estimators.) 

a) Interpret the coefficients on medincm, poverty and valadd 
b) Are the slope coefficients individually significant at 10%?  
c) Test the joint significance of fueloil and valadd, knowing that 


(10.41) (0.020) (0.0039) (0.0078)

2

97.67 0.0566 0.0102 0.0174

                                  0.339    30    

i i i iairqual popln medincm poverty

R n

   

 
 

d) If you omit the variable poverty in the first model, the following results 
are obtained: 


(0.031) (0.0055)(10.02)

(0.0017) (0.0028)

2

82.98 0.0523 0.0097

0.00063 0.00037

0.218    30     

i i i i

i i

airqual popln medincm

fueoil valadd

R n

  

 

 

 

Are the slope coefficients individually significant at 10% in the new 
model? Do you consider these results to be reasonable in comparison 
with those obtained in part b). 
Comparing the R2 of the two estimated models, what is the role played by 
poverty in determining air quality?  

e) If you regress airqual using as regressors only the intercept and poverty, 
you will obtain that R2=0.037. Do you consider this value to be 
reasonable taking into account the results obtained in part d)? 

Exercise 4.9 With a sample of 39 observations, the following production functions by 
OLS was estimated: 

  1.30 0.32ˆ exp(0.0055 )t t t toutput labor capital trenda=  R
2 = 0.9945  

  1.41 0.47ˆ
t t toutput labor capitalb=    R

2 = 0.9937  

  ˆ exp(0.0055 )i toutput trendg=    R
2 = 0.9549  

a) Test the joint significance of labor and capital. 
b) Test the significance of the coefficient of the variable trend. 
c) Identify the statistical assumptions under which the test carried out in the 

two previous sections are correct. A further question: Specify the 
population model of the first of the three previous specifications. 

Exercise 4.10 A researcher has developed the following model: 

1 2 2 3 3 u y  x x       

Using a sample of 43 observations, the following results were obtained: 

1 2ˆ - 0.06 1.44 0.48i i i y   x  x   

1

0.1011 0.0007 0.0005

( ) 0.0231 0.0162

0.0122


  

    
  

X X

 
2 444iy    

2ˆ 424.92iy   

a) Test that the intercept is less than 0. 
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b) Test that 2=2. 
c) Test the null hypothesis that β2+3β3=0. 

Exercise 4.11 Given the function of production 

exp( )q ak l u   

and using data from the Spanish economy over the past 20 years, the following results 
were obtained: 

ln( ) 0.15 0.73ln( ) 0.47 ln( )i i iq k l= + +  

  1

4129 95 266

95 3 5

266 5 19



  
    
  

X X         0.017RSS   

a) Test the individual significance of the coefficients on k and l. 
b) Test whether the parameter α is significantly different from 1. 
c) Test whether there are increasing returns to scale. 

Exercise 4.12 Let the following multiple regression model be: 

0 1 1 2 2y x x u       
With a sample of 33 observations, this model is estimated by OLS, obtaining the 

following results: 

1 2ˆ 12.7 14.2 2.1i i iy x x    

  12

4.1 0.95 0.266

ˆ 0.95 3.8 0.5

0.266 0.5 1.9

 

  
    
  

X X  

a) Test the null hypothesis 0=1.  
b) Test whether 1 2 7    
c) Are the coefficients 0, 1, y 2 individually significant? 

Exercise 4.13 Using a sample of 30 companies, the following cost functions have been 
estimated: 

 2 2

(11.97) (3.70)
) 172.46 35.72                                 0.838     0.829     8090i ia cost x R R RSS= + = = =

 2 3 2 2

(29.44) (33.81) (11.61) (1.22)
) 310.07 85.39 26.73 1.40    0.978   0.974   1097i i i ib cost x x x R R RSS= - + - = = =

where cost is the average cost and x is the quantity produced. 

(The numbers in parentheses are standard errors of estimators.) 

a) Which of the two models would you choose? What would be the criteria? 
b) Test whether the quadratic and cubic terms of the quantity produced are 

significant in determining the average cost. 
c) Test the overall significance of the model b). 

Exercise 4.14 A researcher formulates the following model:  

1 2 2 3 3y x x +u          

Using a sample of 13 observations the following results are obtained: 
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 2 3

2

ˆ 1.00 1.82 0.36

0.50 13

i i iy x x

    R      n          

  

 
  (1) 

0.25 0.01 0.04
ˆvar( ) 0.01 0.16 0.15

0.04 0.15 0.81

 
    
  

β  

a) Test the null hypothesis that 2 0  against the alternative hypothesis that

2 0  . 

b) Test the null hypothesis that 2 3 1     against the alternative 

hypothesis that 2 3 1    , with a significance level of 5%. 

c) Is the whole model significant? 
d) Assuming that the variables in the estimated model are measured in 

natural logarithms, what is the interpretation of the coefficient for x3? 

Exercise 4.15 With a sample of 50 automotive companies the following production 
functions were estimated taking the gross value added of the automobile production 
(gva) as the endogenous variable and labor input (labor) and capital input (capital) as 
explanatory variables. 

1) 


(0.11) (0.24)

2 2

ln( ) 3.87 0.80ln( ) 1 24 ln( )

 254      0 75    0 72

i i i gva     labor   .  capital  

RSS R   .  R    .

= + +

= = =
, 

2) 


2 2

ln( ) 19 9 1 04ln( )

 529   0 84 0 81

i igva  .   . capital

RSS R . , R .

= +

= = =
                   

3) 
ln( ) 15.2 0.87 ln( )

 380
i i igva labor    capital labor  

RSS  

 = +

=
  

(The numbers in parentheses are standard errors of estimators.) 

a) Test the joint significance of both factors in the production function. 
b) Test whether labor has a significant positive influence on the gross value 

added of automobile production. 
c) Test the hypothesis of constant returns to scale. Explain your answer. 

Exercise 4.16 With a sample of 35 annual observations two demand functions of Rioja 
wine have been estimated. The endogenous variable is spending on Rioja reserve wine 
(wine) and the explanatory variables are disposable income (inc), the average price of a 
bottle of Rioja reserve wine (pwinrioj) and the average price of a bottle of Ribera Duero 
reserve wine (pwinduer). The results are as follows: 


(0.01) (0.23) (0.233)

2

ln( ) 21.32 0.11ln( ) 1.33 ln( ) 1.35 ln( )  

0 905   254

i i i ivino     renta    pvinrioj  pvinduer  

 R   . RSS

= + - +

= =
 


(0.02) (0.21)

ln( ) 19.9 0.14 ln( ) 1.42 ln( )

529

i i i vino    renta    pvinrioj

RSS

= + -

=  

(The numbers in parentheses are standard errors of the estimators.) 

a) Test the joint significance of the first model. 
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b) Test whether the price of wine from Ribera del Duero has a significant 
influence, using two statistics that do not use the same information. Show 
that both procedures are equivalent. 

c) How would you test the hypothesis that the price elasticity of Rioja wine 
is the same but with an opposite sign to the price elasticity of Ribera del 
Duero wine? Detail the procedure to follow. 

Exercise 4.17 To analyze the demand for Ceylon tea (teceil) the following econometric 
model is formulated: 

1 2 3 4 5ln( ) ln( ) ln( ) ln( ) ln( )teceil      inc    pteceil  pteind pcobras u           
where inc is the disposable income, pteceil the price of tea in Ceylon, pteind is the price 
of tea in India and pcobras is the price of Brazilian coffee. 

With a sample of 22 observations the following estimates were made: 


(0.17) (0.98)

(0.69) (0.16)

ln( ) 2.83 0.25 ln( ) 1.48 ln( )

1.18 ln( ) 0.19 ln( )

i i i 

i i

teceil      inc    pteceil

 pteind pcofbras

= + -

+ +  

RSS=0.4277 


(0.16) (0.15)
ln( ) 0.74 0.26 ln( ) 0.20 ln( )i i i teceil  pteceil    inc    pcofbras´ = + +

 

RSS=0.6788 

(The numbers in parentheses are standard errors of the estimators.) 

a) Test the significance of disposable income. 
b) Test the hypothesis that 3 1    y 4 0  , and explain the procedure 

applied. 
c) If instead of having information on RSS, only R2 was known for each 

model, how would you proceed to test the hypothesis of section b)?  

Exercise 4.18 The following fitted models are obtained to explain the deaths of 
children under 5 years per 1000 live births (deathu5) using a sample of 64 countries.  

1) 2

(0.0019) (0.21)
5 263.64 0.0056 2.23 ;                            0.7077i i i deathun     inc    fertrate R= - + =   

2)  2

(0.0018) (0.25)
5 168.31 0.0055 1.76 12.87 0.7474i i i ideathun      inc    femilrat fertrate , R   = - + + =   

where inc is income per capita, femiltrat is the female illiteracy rate, and fertrate is the 
fertility rate 

(The numbers in parentheses are standard errors of the estimators.) 

a) Test the joint significance of income, illiteracy and fertility rates. 
b) Test the significance of the fertility rate. 
c) Which of the two models would you choose? Explain your answer.  

Exercise 4.19 Using a sample of 32 annual observations, the following estimations were 
obtained to explain the car sales (car) of a particular brand: 


6.48) (3.19)

2 2

104.8 6.64 2.98

ˆ 1805.2; ) 13581.4

i i i
( (0.16)

i i

         car pcar adv            

u        (car car

= - +

= - =å å
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where pcar is the price of cars and adv are spending on advertising. 

(The numbers in parentheses are standard errors of the estimators.) 

a) Are price and advertising expenditures significant together? Explain your 
answer. 

b) Can you accept that prices have a negative influence on sales? Explain 
your answer. 

c) Describe in detail how you would test the hypothesis that the impact of 
advertising expenditures on sales is greater than minus 0.4 times the 
impact of the price. 

Exercise 4.20 In a study of the production costs (cost) of 62 coal mines, the following 
results are obtained: 


(3.4) (0.005) (2.2) (0.15)
2.20 0.104 3.48 0.104i i i icost dmec geodif absent       = - + +

 
2

2ˆ  109.6     18.48i icp cp u       

where dmec is the degree of mechanization, geodif is a measurement of geological 
difficulties and absent is the percentage of absenteeism. 

a) Test the significance of each of the model coefficients. 
b) Test the overall significance of the model. 

Exercise 4.21 With fifteen observations, the following estimation was obtained:  

2 3
(1.00) (0.60)

2

ˆ 8.04 2.46 0.23

        0.30

i i iy x x

R

  


 

where the values between parentheses are standard deviations and the coefficient of 
determination is the adjusted one. 

a) Is the coefficient of the variable x2 significant? 
b) Is the coefficient of the variable x3 significant? 
c) Discuss the joint significance of the model. 

Exercise 4.22 Consider the following econometric specification: 

1 2 2 3 3 4 4y x x x u         

With a sample of 26 observations, the following estimations were obtained: 

 1)  1 2 3(1.5)(1.9) (2.2)
ˆ 2 3.5 0.7 2i i i i iy x x x u       R

2
=0.982 

 2)  1 2 3
(2.7) (2.4)

ˆ 1.5 3 ( ) 0.6i i i i iy x x x u       R
2
= 0.876 

(The t statistics are between brackets) 

a) Show that the following expressions for the F-statistic are equivalent: 

  /

/ ( )
R UR

UR

RSS RSS r
F

RSS n k




  

 2 2

2

/

(1 ) / ( )
UR R

UR

R R q
F

R n k




 
 

b) Test the null hypothesis β2= β3. 

Exercise 4.23 In the estimation of the Brown model in exercise 3.19, using the workfile 
consumsp, we obtained the following results: 


1

(84.88) (0.0857) (0.0903)
7.156 0.3965 0.5771t t tconspc incpc conspc      
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R2=0.997     RSS=1891320      n=56 

Two additional estimations are now obtained: 


1 1

(84.43) (0.0803)
98.13 0.2757( )t t t tconspc conspc incpc conspc       

R2=0.1792     RSS=2199474     n=56 


1 1

(84.88) (0.0090) (0.0903)
7.156 0.0264 0.5771( )t t t tconspc incpc incpc conspc incpc        

R2=0.6570     RSS=1891320     n=56 

(The numbers in parentheses are standard errors of the estimators.) 

a) Test the significance of each of the coefficients for the first model. 
b) Test that the coefficient on incpc in the first model is smaller than 0.5. 
c) Test the overall significance of the first model. 
d) Is it admissible that 2 3 1   ? 

e) Show that by operating in the third model you can reach the same 
coefficients as in the first model. 

Exercise 4.24 The following model was formulated to analyze the determinants of the 
median base salary in $ for graduating classes of 2010 from the best American business 
schools (salMBAgr): 

1 2 3salMBAgr tuition salMBApr u       

where tuition is tuition fees including all required fees for the entire program (but 
excluding living expenses) and salMBApr is the median annual salary in $ for incoming 
classes in 2010.  

Using the data in MBAtui10, the previous model has been estimated: 


(5415) (0.0628) (0.1015)

42489 0.1881 0.5992i i isalMBAgr tuition salMBApr    

R2=0.703     n=39 

(The numbers in parentheses are standard errors of the estimators.) 

a) Which of the regressors included in the above model are individually 
significant at 1% and at 5%?  

b) Test the overall significance of the model. 
c) What is the predicted value of salMBAgr for a graduate student who paid 

100000$ tuition fees in a two-year MBA master and previously had a 
salMBApr equal to 70000$? How many years of work does the student 
require to offset tuition expenses? To answer this question, suppose that 
the discount rate equals the expected rate of salary increase and that the 
student received no wage income during the two master courses. 

d) If we added the regressor rank2010 (the rank of each business school in 
2010), the following results were obtained: 


(8520) (0.0626) (0.1055)

(85.13)

61320 0.1229 0.4662

                          232.06 2010

i i i

i

salMBAgr tuition salMBApr

rank

  


 

R2=0.755     n=39 
Which of the regressors included in this model are individually 
significant at 5%? 
What is the interpretation of the coefficient on rank2010? 
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e) The variable rank2010 is based on three components: gradpoll is a rank 
based on surveys of MBA grads and contributes 45 percent to final 
ranking; corppoll is a rank based on surveys of MBA recruiters and 
contributes 45 percent to final ranking; and intellec is a rank based on a 
review of faculty research published over a five-year period in 20 top 
academic journals and faculty books reviewed in The New York Times, 
The Wall Street Journal, and Bloomberg Businessweek over the same 
period; this last rank contributes 10 percent to the final ranking. In the 
following estimated model rank2010 has been substituted for its three 
components: 


(10700) (0.0696) (0.107)

(94.54) (61.26) (64.09)

79904 0.0305 0.3751

303.82 33.829 113.36

i i i

i i i

salMBAgr tuition salMBApr

gradpoll corppoll intellec

  

  
 

R2=0.797     n=39 
What is the weight in percentage of each one of these three components 
in determining the salMBAgr? Compare the results with the contribution 
of each in defining rank2010. 

f) Are gradpoll, corppoll and intellec jointly significant at 5%? Are they 
individually significant at 5%?  

Exercise 4.25 (Continuation of exercise 3.12). The population model corresponding to 
this exercise is: 

1 2 3 4ln( )wage educ tenure age u         
Using workfile wage06sp, the previous model was estimated: 


(0.073) (0.0035) (0.0019) (0.0016)

ln( ) 1.565 0.0448 0.0177 0.0065i i i iwage educ tenure age     

R2=0.337     n=800 

(The numbers in parentheses are standard errors of the estimators.) 

a) Test the overall significance of the model. 
b) Is tenure statistically significant at 10%? Is age positively significant at 

10%? 
c) Is it admissible that the coefficient of educ is equal to that of tenure? Is it 

admissible that the coefficient of educ is triple to that of tenure? To 
answer these questions you have the following additional information: 


(0.073) (0.0019) (0.0016)(0.0042)

ln( ) 1.565 0.0271 0.0177( ) 0.0065i i i iwage educ educ tenure age    
 


(0.073) (0.0071) (0.0019) (0.0016)

ln( ) 1.565 0.0082 0.0177(3 ) 0.0065i i i iwage educ educ tenure age     

Can you calculate the R2 in the two equations in part c)? Please do it. 

Exercise 4.26 (Continuation of exercise 3.13). Let us take the population model of this 
exercise as the reference model. In the estimated model, using workfile housecan, the 
standard errors of the coefficients appear between brackets: 


(3379) (1207) (1785) (0.388)
2418 5827 19750 5.411i i i iprice bedrooms bathrms lotsize      

R2=0.486     n=546 

a) Test the overall significance of this model. 
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b) Test the null hypothesis that an additional bathroom has the same 
influence on housing prices than four additional bedrooms. Alternatively, 
test that an additional bathroom has more influence on housing prices 

than four additional bedrooms. (Additional information: 2
ˆvar( )

=1455813; 3
ˆvar( ) =3186523; and 2 3

ˆ ˆvar( , )  =-764846). 

c) If we add the regressor stories (number of stories excluding the 
basement) to the model, the following results have been obtained: 


(3603) (1215) (1734)

(0.369) (1008)

4010 2825 17105

5.429 7635

i i i

i i

price bedrooms bathrms

lotsize stories

   

 
 

R2=0.536     n=546 
What do you think about the sign and magnitude of the coefficient on 
stories? Do you find it surprising? What is the interpretation of this 
coefficient? Test whether the number of stories has a significant 
influence on housing prices. 

d) Repeat the tests in part b) with the model estimated in part c). (Additional 

information: 2
ˆvar( ) =1475758; 3

ˆvar( ) =3008262; and 2 3
ˆ ˆvar( , )  =-

554381). 

Exercise 4.27 (Continuation of exercise 3.14). Let us take the population model of this 
exercise as the reference model. Using workfile ceoforbes, the estimated model was the 
following: 


(0.377) (0.0033) (0.0425) (0.0000220) (0.0032)
ln( ) 4.641 0.0054 0.2893ln( ) 0.0000564 0.0122i i i i isalary roa sales profits tenure      

R2=0.232     n=447 

(The numbers in parentheses are standard errors of the estimators.) 

a) Does roa have a significant effect on salary? Does roa have a significant 
positive effect on salary? Carry out both tests at the 10% and 5% 
significance level. 

b) If roa increases by 20 points, by what percentage is salary predicted to 
increase?  

c) Test the null hypothesis that the elasticity salary/sales is equal to 0.4. 
d) If we add the regressor age, the following results are obtained: 


(0.442) (0.0033) (0.0423) (0.0000220)

(0.0035) (0.0043)

ln( ) 4.159 0.0055 0.2903ln( ) 0.0000539

0.00924 0.00880

i i i

i i

salary roa sales profits

tenure age

   

 
 

R2=0.240     n=447 
Are the estimated coefficients very different from the estimates in the 
reference model? What about the coefficient on tenure? Explain it. 

e) Does age have a significant effect on the salary of a CEO? 
f) Is it admissible that the coefficient of age is equal to the coefficient of 

tenure? (Additional information: 5
ˆvar( ) =1.24E-05; 6

ˆvar( ) =1.82E-05; 

and 5 6
ˆ ˆvar( , )  =-6.09E-06). 

Exercise 4.28 (Continuation of exercise 3.15). Let us take the population model of this 
exercise as the reference model. Using workfile rdspain, the estimated model was the 
following: 
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
(0.428) (0.0278) (0.0021)
1.8168 0.1482ln( ) 0.0110i i irdintens sales exponsal     

R2=0.048     n=1983 

 (The numbers in parentheses are standard errors of the estimators.) 

a) Is the sales variable individually significant at 1%?  
b) Test the null hypothesis that the coefficient on sales is equal to 0.2?  
c) Test the overall significance of the reference model. 
d) If we add the regressor ln(workers), the following results are obtained: 


(0.750) (0.0687) (0.0021) (0.09198)
0.480 0.08585ln( ) 0.01049 0.3422ln( )rdintens sales exponsal workers     

R2=0.055     n=1983 
Is sales individually significant at 1% in the new estimated model? 

e) Test the null hypothesis that the coefficient on ln(workers) is greater than 
0.5? 

Exercise 4.29 (Continuation of exercise 3.16). Let us take the population model of this 
exercise as the reference model. Using workfile hedcarsp, the corresponding fitted 
model is the following: 


(0.154) (0.0000438) (0.0079) (0.0122)

ln( ) 14.42 0.000581 0.003823 0.07854i i i iprice cid hpweight fueleff     

R2=0.830     n=214 

(The numbers in parentheses are standard errors of the estimators.) 

a) Which of the regressors included in the reference model are individually 
significant at 1%?  

b) Add the variable volume to the reference model. Does volume have a 
statistically significant effect on ln(price)? Does volume have a 
statistically significant positive effect on ln(price)? 

c) Is it admissible that the coefficient of volume estimated in part b) is equal 
but is the opposite of the coefficient of fueloff? 

d) Add the variables length, width and height to the model estimated in part 
b). Taking into account that volume=length×width×height, is there 
perfect multicollinearity in the new model? Why? Why not? Estimate the 
new model if it is possible. 

e) Add the variable ln(volume) to the reference model. Test the null 
hypothesis that the price/volume elasticity is equal to 1? 

f) What happens if you add the regressors ln(length), ln(width) and 
ln(height) to the model estimated in part e)? 

Exercise 4.30 (Continuation of exercise 3.17). Let us take the population model of this 
exercise as the reference model. Using workfile timuse03, the corresponding fitted 
model is the following: 


(23.27) (1.621) (0.00539) (0.311) (0.0229)

141.9 3.850 0.00917 1.767 0.2289i i i i ihouswork educ hhinc age paidwork      

R2=0.1440     n=1000 

(The numbers in parentheses are standard errors of the estimators.) 

a) Which of the regressors included in the reference model are individually 
significant at 5% and at 1%?  
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b) Estimate a model in which you could test directly whether one additional 
year of education has the same effect on time devoted to house work as 
two additional years of age. What is your conclusion? 

c) Test the joint significance of educ and hhnc. 
d) Run a regression in which you add the variable childup3 (number of 

children up to three years) to the reference model. In the new model, 
which of the regressors are individually significant at 5% and at 1%?  

e) In the model formulated in d), what is the most influential variable? 
Why?  

Exercise 4.31 (Continuation of exercise 3.18). Let us take the population model of this 
exercise as the reference model. Using workfile hdr2010, the corresponding fitted 
model is the following: 


(0.584) (0.00000617) (0.009)
0.375 0.0000207 0.0858i i istsfglo gnipc lifexpec     

R2=0.642     n=144 

(The numbers in parentheses are standard errors of the estimators.) 

a) Which of the regressors included in the reference model are individually 
significant at 1%?  

b) Run a regression by adding the variables popnosan (population in 
percentage without access to improved sanitation services) and gnirank 
(rank in gni) to the reference model. Which of the regressors included in 
the new model are individually significant at 1%? Interpret the 
coefficients on popnosan and gnirank. 

c) Are popnosan and gnirank jointly significant? 
d) Test the overall significance of the model formulated in b). 

Exercise 4.32 Using a sample of 42 observations, the following model has been 
estimated: 

ˆ 670.591 1.008t ty x    

For observation 43, it is known that the value of x is 1571.9. 

a) Calculate the point predictor for observation 43. 
b) Knowing that the variance of the prediction error 43 43 43

2ˆ ˆe y y   is equal 
to (24.9048)2, calculate a 90% probability interval for the individual 
value.  

Exercise 4.33 Besides the estimation presented in exercise 4.23, the following 
estimation on the Brown consumption function is also available:  


1

(64.35) (0.0857) (0.0903)
12729 0.3965( 13500) 0.5771( 12793.6)t t tconspc incpc conspc       

R2=0.997     RSS=1891320     n=56 

(The numbers in parentheses are standard errors of the estimators.) 

a) Obtain the point predictor for consumption per capita in 2011, knowing 
that incpc2011=13500 and conspc2010=12793.6.  

b) Obtain a 95%confidence interval for the expected value of consumption 
per capita in 2011.  

c) Obtain a 95% prediction interval for the individual value of consumption 
per capita in 2011. 
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Exercise 4.34 (Continuation of exercise 4.30) Answer the following questions: 

a) Using the first estimation in exercise 4.30, obtain a prediction for 
houswork (minutes devoted to house-work per day), when you plug in 
the equation educ=10 (years), hhinc=1200 (euros per month), age=50 
(years) and paidwork=400 (minutes per day).  

b) Run a regression, using workfile timuse03, which allows you to calculate 
a 95% CI with the characteristics used in part a).  

c) Obtain a 95% prediction interval for the individual value of houswork 
with the characteristics used in parts a). 

Exercise 4.35 (Continuation of exercise 4.29) Answer the following questions:  

a) Plug in the first equation of the exercise 4.29 of cid=2000 (cubic inch 
displacement), hpweight=10 (ratio horsepower/weight in kg expressed as 
percentage), and fueleff=6 (minutes per day) Obtain the point predictor of 
consumption per capita in 2011, knowing that incpc2011=12793.6 and 
conspc2010=13500.  

b) Obtain a consistent estimate of price with the characteristics used in parts 
a). 

c) Run a regression that allows you to calculate a 95% CI with the 
characteristics used in part a).  

d) Obtain a 95% prediction interval for the individual value of the 
consumption per capita 2011. 

 


