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4.1 Hypothesis testing: an overview

Before testing hypotheses in the multiple regression model, we are going to offer
a general overview on hypothesis testing.

Hypothesis testing allows us to carry out inferences about population parameters
using data from a sample. In order to test a hypothesis in statistics, we must perform the
following steps:

1) Formulate a null hypothesis and an alternative hypothesis on population
parameters.

2) Build a statistic to test the hypothesis made.
3) Define a decision rule to reject or not to reject the null hypothesis.

Next, we will examine each one of these steps.

4.1.1 Formulation of the null hypothesis and the alternative hypothesis

Before establishing how to formulate the null and alternative hypothesis, let us
make the distinction between simple hypotheses and composite hypotheses. The
hypotheses that are made through one or more equalities are called simple hypotheses.
The hypotheses are called composite when they are formulated using the operators
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"inequality", "greater than" and "smaller than".

It is very important to remark that hypothesis testing is always about population
parameters. Hypothesis testing implies making a decision, on the basis of sample data,
on whether to reject that certain restrictions are satisfied by the basic assumed model.
The restrictions we are going to test are known as the null hypothesis, denoted by Hy.
Thus, null hypothesis is a statement on population parameters.



Although it is possible to make composite null hypotheses, in the context of the
regression model the null hypothesis is always a simple hypothesis. That is to say, in
order to formulate a null hypothesis, which shall be called Hy, we will always use the
operator “equality”. Each equality implies a restriction on the parameters of the model.
Let us look at a few examples of null hypotheses concerning the regression model:

a) H,:p=0

b) H,: p+ =0
c) H,:p=p=0
d) H,: ptp=1

We will also define an alternative hypothesis, denoted by H,, which will be our
conclusion if the experimental test indicates that Hj is false.

Although the alternative hypotheses can be simple or composite, in the
regression model we will always take a composite hypothesis as an alternative
hypothesis. This hypothesis, which shall be called H,, is formulated using the operator
“inequality” in most cases. Thus, for example, given the Hy:

H,:p, =1 (4-1)
we can formulate the following H, :
H :B, #1 (4-2)

which is a “two side alternative” hypothesis.
The following hypotheses are called “one side alternative” hypotheses

H,: B, <1 (4-3)

H :p,>1 (4-4)

4.1.2 Test statistic

A test statistic is a function of a random sample, and is therefore a random
variable. When we compute the statistic for a given sample, we obtain an outcome of
the test statistic. In order to perform a statistical test we should know the distribution of
the test statistic under the null hypothesis. This distribution depends largely on the
assumptions made in the model. If the specification of the model includes the
assumption of normality, then the appropriate statistical distribution is the normal
distribution or any of the distributions associated with it, such as the Chi-square,
Student’s ¢, or Snedecor’s F.

Table 4.1 shows some distributions, which are appropriate in different situations,
under the assumption of normality of the disturbances.

TABLE 4.1. Some distributions used in hypothesis testing.

1 restriction 1 or more

restrictions

Known o N Chi-square
Unknown o Student’s ¢ Snedecor’s F




The statistic used for the test is built taking into account the H; and the sample
data. In practice, as o is always unknown, we will use the distributions ¢ and F.

4.1.3 Decision rule

We are going to look at two approaches for hypothesis testing: the classical
approach and an alternative one based on p-values. But before seeing how to apply the
decision rule, we shall examine the types of mistakes that can be made in testing
hypothesis.

Types of errors in hypothesis testing

In hypothesis testing, we can make two kinds of errors: Type I error and Type II
error.

Type I error

We can reject Hy when it is in fact true. This is called Type I error. Generally,

we define the significance level (@) of a test as the probability of making a Type I error.
Symbolically,

a =Pr(Reject H, | H,) (4-5)

In other words, the significance level is the probability of rejecting Hy given that
H, is true. Hypothesis testing rules are constructed making the probability of a Type I

error fairly small. Common values for ¢ are 0.10, 0.05 and 0.01, although sometimes
0.001 is also used.

After we have made the decision of whether or not to reject Hy, we have either
decided correctly or we have made an error. We shall never know with certainty
whether an error was made. However, we can compute the probability of making either
a Type I error or a Type Il error.

Type II error

We can fail to reject Hy when it is actually false. This is called Type II error.
B =Pr(Noreject H| H,) (4-6)

In words, £ s the probability of not rejecting Hy given that H; is true.

It is not possible to minimize both types of error simultaneously. In practice,
what we do is select a low significance level.
Classical approach: Implementation of the decision rule

The classical approach implies the following steps:

a) Choosing «. Classical hypothesis testing requires that we initially specify a
significance level for the test. When we specify a value for «, we are essentially
quantifying our tolerance for a Type I error. If a=0.05, then the researcher is willing to
falsely reject Hy 5% of the time.

b) Obtaining c, the critical value, using statistical tables. The value c¢ is
determined by a.



The critical value (¢) for a hypothesis test is a threshold to which the value of the
test statistic in a sample is compared to determine whether or not the null hypothesis is
rejected.

c) Comparing the outcome of the test statistic, s, with ¢, Hy is either rejected or
not for a given a.

The rejection region (RR), delimited by the critical value(s), is a set of values of
the test statistic for which the null hypothesis is rejected. (See figure 4.1). That is, the
sample space for the test statistic is partitioned into two regions; one region (the
rejection region) will lead us to reject the null hypothesis Hy, while the other will lead
us not to reject the null hypothesis. Therefore, if the observed value of the test statistic S
is in the critical region, we conclude by rejecting Hy; if it is not in the rejection region
then we conclude by not rejecting Hy or failing to reject H.

Symbolically,

If s>c  reject H,

: 4-7)
If s<c notreject H,

If the null hypothesis is rejected with the evidence of the sample, this is a strong
conclusion. However, the acceptance of the null hypothesis is a weak conclusion
because we do not know what the probability is of not rejecting the null hypothesis
when it should be rejected. That is to say, we do not know the probability of making a
type Il error. Therefore, instead of using the expression of accepting the null hypothesis,
it is more correct to say fail to reject the null hypothesis, or not reject, since what really
happens is that we do not have enough empirical evidence to reject the null hypothesis.

In the process of hypothesis testing, the most subjective part is the a priori
determination of the significance level. What criteria can be used to determine it? In
general, this is an arbitrary decision, though, as we have said, the 1%, 5% and 10%
levels for o are the most used in practice. Sometimes the testing is made conditional on
several significance levels.
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FIGURE 4.1. Hypothesis testing: classical approach.

An alternative approach: p-value

With the use of computers, hypothesis testing can be contemplated from a more
rational perspective. Computer programs typically offer, together with the test statistic,
a probability. This probability, which is called p-value (i.e., probability value), is also
known as the critical or exact level of significance or the exact probability of making a



Type I error. More technically, the p value is defined as the lowest significance level at
which a null hypothesis can be rejected.

Once the p-value has been determined, we know that the null hypothesis is
rejected for any a>p-value, while the null hypothesis is not rejected when a<p-value.
Therefore, the p-value is an indicator of the level of admissibility of the null hypothesis:
the higher the p-value, the more confidence we can have in the null hypothesis. The use
of the p-value turns hypothesis testing around. Thus, instead of fixing a priori the
significance level, the p-value is calculated to allow us to determine the significance
levels of those in which the null hypothesis is rejected.

In the following sections, we will see the use of p value in hypothesis testing put
into practice.

4.2 Testing hypotheses using the t test

4.2.1 Test of a single parameter

The t test
Under the CLM assumptions 1 through 9,
B~ N|Bovar(B)| =123k (4-8)
If we typify

'éj_ﬂj :'é/_ﬁjN
wlvar(,éA’j) sd(f;)

The claim for normality is usually made on the basis of the Central Limit
Theorem (CLT), but this is restrictive in some cases. That is to say, normality cannot
always be assumed. In any application, whether normality of u can be assumed is
really an empirical matter. It is often the case that using a transformation, i.e. taking
logs, yields a distribution that is closer to normality, which is easy to handle from a
mathematical point of view. Large samples will allow us to drop normality without
affecting the results too much.

N[01] =123,k (4-9)

Under the CLM assumptions 1 through 9, we obtain a Student’s ¢ distribution
B =B ~
se((3))
where k is the number of unknown parameters in the population model (k-1 slope

parameters and the intercept, f;). The expression (4-10) is important because it allows
us to test a hypothesis on f.

¢ (4-10)

n—k

If we compare (4-10) with (4-9), we see that the Student’s ¢ distribution derives
from the fact that the parameter o in sd (,[;’j) has been replaced by its estimator 6"
which is a random variable. Thus, the degrees of freedom of ¢ are n-1-k corresponding
to the degrees of freedom used in the estimation of &°.

When the degrees of freedom (df) in the ¢ distribution are large, the ¢
distribution approaches the standard normal distribution. In figure 4.2, the density
function for normal and ¢ distributions for different df are represented. As can be seen,



the ¢ density functions are flatter (platycurtic) and the tails are wider than normal
density function, but as df increases, ¢ density functions are closer to the normal
density. In fact, what happens is that the ¢ distribution takes into account that ¢’ is
estimated because it is unknown. Given this uncertainty, the ¢ distribution extends
more than the normal one. However, as the df grows the #-distribution is nearer to the
normal distribution because the uncertainty of not knowing o decreases.

Therefore, the following convergence in distribution should be kept in mind:

t, 5> N(O.D) (4-11)

n—>0

Thus, when the number of degrees of freedom of a Student’s t tends to infinity,
the ¢ distribution converges towards a distribution N(0.1). In the context of testing a
hypothesis, if the sample size grows, so will the degrees of freedom. This means that for
large sizes the normal distribution can be used to test hypothesis with one unique
restriction, even when you do not know the population variance. As a practical rule,
when the df are larger than 120, we can take the critical values from the normal
distribution.
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FIGURE 4.2. Density functions: normal and t for different degrees of freedom.
Consider the null hypothesis,
Hy:p,=0
Since f measures the partial effect of x; on y after controlling for all other
independent variables, H,, : ,Bj =0 means that, once x», x3, ....Xj -1, Xj+1,..., Xx have been
accounted for, x; has no effect on y. This is called a significance test. The statistic we use
to test H,: B, =0, against any alternative, is called the 7 statistic or the ¢ ratio of ,[;’f
and is expressed as
B
t, =——=
7ose(f))

In order to test H: 8, =0, it is natural to look at our unbiased estimator of £,

ﬁj . In a given sample ,63]. will never be exactly zero, but a small value will indicate that



the null hypothesis could be true, whereas a large value will indicate a false null
hypothesis. The question is: how far is Bj from zero?

We must recognize that there is a sampling error in our estimate ﬁj , and thus
the size of ,3]. must be weighted against its sampling error. This is precisely what we do
when we use ¢ j since this statistic measures how many standard errors ﬁj is away
from zero. In order to determine a rule for rejecting Hy, we need to decide on the

relevant alternative hypothesis. There are three possibilities: one-tail alternative
hypotheses (right and left tail), and two-tail alternative hypothesis.

One-tail alternative hypothesis: right
First, let us consider the null hypothesis
H,:p = 0
against the alternative hypothesis
H:B,>0

This is a positive significance test. In this case, the decision rule is the following:

Decision rule

If t >t7,  reject H,
(4-12)
If ty < t*,  notreject H,

Therefore, we reject H,,: ;=0 in favor of H,:f, >0 at a when t >t”, as

can be seen in figure 4.3. It is very clear that to reject Ho against H, : 5, >0, we must

get a positive ¢ PR A negative ¢ ; » O matter how large, provides no evidence in favor of

H,:f;>0. On the other hand, in order to obtain 7, in the 7 statistical table, we only

need the significance level « and the degrees of freedom.

It is important to remark that as « decreases, ¢, increases.

To a certain extent, the classical approach is somewhat arbitrary, since we need
to choose a in advance, and eventually H, is either rejected or not.

In figure 4.4, the alternative approach is represented. As can be seen by
observing the figure, the determination of the p-value is the inverse operation to find the
value of the statistical tables for a given significance level. Once the p-value has been
determined, we know that H is rejected for any level of significance of a>p-value,
while the null hypothesis is not rejected when a<p-value.
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FIGURE 4.3. Rejection region using t: right-tail  pygygg 4.4. p-value using t: right-tail alternative
alternative hypothesis. hypothesis.

ExampLE 4.1 Is the marginal propensity to consume smaller than the average propensity to consume?

As seen in example 1.1, testing the 3rd proposition of the Keynesian consumption function in a
linear model, is equivalent to testing whether the intercept is significatively greater than 0. That is to say,
in the model

cons = f, + f,inc+u

we must test whether
B >0

With a random sample of 42 observations, the following results have been obtained

cons; = 0.41 +0.843inc,
(0.350)  (0.062)

The numbers in parentheses, below the estimates, are standard errors (se) of the estimators.

The question we pose is the following: is the third proposition of the Keynesian theory
admissible? Next, we answer this question.

1) In this case, the null and alternative hypotheses are the following:
H,:8=0
H >0

2) The test statistic is:

B-B _B-0_041_

- — = =1.171
se(f) se(B) 0.35

=

3) Decision rule

It is useful to use several significance levels. Let us begin with a significance level of 0.10
because the value of ¢ is relatively small (smaller than 1.5). In this case, the degrees of freedom are 40 (42
observations minus 2 estimated parameters). If we look at the ¢ statistical table (row 40 and column 0.10,

or 0.20, in statistical tables with one tail, or two tails, respectively), we find #;;° =1.303
As t<1.303, we do not reject H, for a=0.10, and therefore we cannot reject for a=0.05 (
t3° =1.684) or a=0.01 (t;' =2.423), as can been in figure 4.5. In this figure, the rejection region

corresponds to =0.10. Therefore, we cannot reject H in favor H;. In other words, the sample data are
not consistent with Keynes’s proposition 3.

In the alternative approach, as can be seen in figure 4.6, the p-value corresponding to a ¢ 4

=1.171 for a ¢ with 40 df is equal to 0.124. For <0.124 - for example, 0.10, 0.05 and 0.01-, H, is not
rejected.
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FIGURE 4.6. Example 4.1: p-value using t with

FIGURE 4.5. Example 4.1: Rejection region using
right-tail alternative hiypothesis.

t with a right-tail alternative hypothesis.

One-tail alternative hypothesis: left
Consider now the null hypothesis
H,:p,=0

against the alternative hypothesis
H:p, <0

This is a negative significance test.

In this case, the decision rule is the following:

Decision rule

If t <-t’, reject H,
‘ _ (4-13)
If t; > —t,  notreject H,

Therefore, we reject H,:f3;,=0 in favor of H, :f <0 at a given a when

t, <—t’, as can be seen in figure 4.7. It is very clear that to reject H, against

ﬁ/ n >’
H,:p; <0, we must get a negative ¢ PR A positive ¢ 5 » O matter how large it is,

provides no evidence in favor of H,: 3, <0.

In figure 4.8 the alternative approach is represented. Once the p-value has been
determined, we know that H, is rejected for any level of significance of a>p-value,
while the null hypothesis is not rejected when a<p-value.
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FIGURE 4.7. Rejection region using t: left-tail FIGURE 4.8. p-value using t: left-tail alternative
alternative hypothesis. hypothesis.

ExamMPLE 4.2 Has income a negative influence on infant mortality?

The following model has been used to explain the deaths of children under 5 years per 1000 live
births (deathuns).

deathun5 = 5, + 3, gnipc + Biilitrate + u
where gnipc is the gross national income per capita and ilitrate is the adult (% 15 and older) illiteracy rate
in percentage.
With a sample of 130 countries (workfile Adr2010), the following estimation has been obtained:

deathun’, = 27.91—0.000826 gnipc, +2.043 ilitrate,
(5.93) 28) (0.183)

(0.000:

The numbers in parentheses, below the estimates, are standard errors (se) of the estimators.

One of the questions posed by researchers is whether income has a negative influence on infant
mortality. To answer this question, the following hypothesis testing is carried out:

The null and alternative hypotheses, and the test statistic, are the following:

H,: B3, =0 3 -
0 b o ﬂi _ —0.000826 _ , o
H :p,<0 se(B,)  0.00028

Since the ¢ value is relatively high, let us start testing with a level of 1%. For o=0.01,
=i =2.390. Given that 1<-2.390, as is shown in figure 4.9, we reject H, in favour of H,.
Therefore, the gross national income per capita has an influence that is significantly negative in mortality
of children under 5.That is to say, the higher the gross national income per capita the lower the percentage
of mortality of children under 5. As H; has been rejected for o=0.01, it will also be rejected for levels of

5% and 10%.

In the alternative approach, as can be seen in figure 4.10, the p-value corresponding to a ¢ 5=
1

2.966 for a t with 61 df'is equal to 0.0000. For all &>0.0000, such as 0.01, 0.05 and 0.10, H, is rejected.

p-value
L - oo 0.0000 L)
0.10
/ E
Lo LoL 0 2o = 0

FIGURE 4.9. Example 4.2: Rejection region using FIGURE 4.10. Example 4.2: p-value using t with a
t with a left-tail alternative hypothesis. left-tail alternative hypothesis.

Two-tail alternative hypothesis
Consider now the null hypothesis

Hy,:B,=0

10



against the alternative hypothesis
H:p,#0
This is the relevant alternative when the sign of S is not well determined by

theory or common sense. When the alternative is two-sided, we are interested in the
absolute value of the ¢ statistic. This is a significance test.

In this case, the decision rule is the following:

Decision rule

If ‘ t/}j|2 t*? reject  H,
(4-14)
If ‘ t/}j|<t,f’_/,f not reject H,
Therefore, we reject H,: 5, =0 in favor of H,: S, <0 at  when ‘ t; |12 e,

as can be seen in figure 4.11. In this case, in order to reject Hy against H,: 5, #0, we

must obtain a large enough ¢ 5, which is either positive or negative.

al2

«. Increases in absolute value.

It is important to remark that as « decreases, ¢

In the alternative approach, once the p-value has been determined, we know that
while Hj is rejected for any level of significance of a>p-value, the null hypothesis is not
rejected when a<p-value. In this case, the p-value is distributed between both tails in a
symmetrical way, as is shown in figure 4.12.

o Non rejection region NRR i
Rejection : Rejection
region region Non
Non Rejected for | a=p-value o
0 Ly B rejected rejected
for t z for
a<p-value L a<p-valte
o
/ 2 p-valuel2 p-valuell
\ i
v
a; a/
i 0 ]
_f - r 2
-k n—k
—1; 0 i,

B,
FIGURE 4.11. Rejection region using t: two-tail  pjGyRE 4.12. p-value using t: two-tail alternative
alternative hypothesis. hypothesis.

When a specific alternative hypothesis is not stated, it is usually considered to be

two-sided hypothesis testing. If H is rejected in favor of H; at a given «, we usually say
that “x; is statistically significant at the level o.

ExAMPLE 4.3 Has the rate of crime play a role in the price of houses in an area?
To explain housing prices in an American town, the following model is estimated:
price = B, + B,rooms + P lowstat + f,crime +u
where rooms is the number of rooms of the house, lowstat is the percentage of people of “lower status” in
the area and crime is crimes committed per capita in the area.

The output for the fitted model, using the file Aprice2 (first 55 observations), appears in table 4.2
and has been taken from E-views. The meaning of the first three columns is clear: “t-Statistic” is the
outcome to perform a significance test, that is to says, it is the ratio between the “Coefficient” and the “Std
error”’; and “Prob” is the p-value to perform a two-tailed test.
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In relation to this model, the researcher questions whether the rate of crime in an area plays a

role in the price of houses in that area.
To answer this question, the following procedure has been carried out.
In this case, the null and alternative hypothesis and the test statistic are the following:

H,:5,=0

B, 3854

t=—7>— =-4.016
H :B,#0 se(B,) 960
TABLE 4.2. Standard output in the regression explaining house price. n=55.
Variable Coefficient | Std. Error t-Statistic Prob.
C -15693.61 8021.989 -1.956324 0.0559
ROOMS 6788.401 1210.720 5.606910 0.0000
LOWSTAT -268.1636 80.70678 -3.322690 0.0017
CRIME -3853.564 959.5618 -4.015962 0.0002

Since the ¢ value is relatively high, let us by start testing with a level of 1%. For 0=0.01,
130" 2 150" =2.69 . (In the usual statistical tables for ¢ distribution, there is no information for each df

above 20). Given that |t| >2.69, we reject Hy in favour of H,. Therefore, crime has a significant influence

on housing prices for a significance level of 1% and, thus, of 5% and 10%.

In the alternative approach, we can perform the test with more precision. In table 4.2 we see that
the p-value for the coefficient of crime is 0.0002. That means that the probability of the 7 statistic being
greater than 4.016 is 0.0001 and the probability of ¢ being smaller than -4.016 is 0.0001. That is to say,
the p-value, as shown in Figure 4.13, is distributed in the two tails. As can be seen in this figure, H, is
rejected for all significance levels greater than 0.0002, such as 0.01, 0.05 and 0.10.

p-valuel2 p-value/2
0,0002/2 L 0,0002/2
0,01/2 0,012

i 0,052

0,052 i
£0,10/ P

0,101

910'-
=
910

FIGURE 4.13. Example 4.3: p-value using t with a two-tail alternative hypothesis.

So far we have seen significant tests of one-tail and two-tails, in which a
parameter takes the value 0 in Hy. Now we are going to look at a more general case
where the parameter in H, takes any value:

H, 0 B = IBJO
Thus, the appropriate ¢ statistic is
1 ose(B))
As before, ¢ j, measures how many estimated standard deviations ,[;’j s away
from the hypothesized value of ﬂf .

EXAMPLE 4.4 Is the elasticity expenditure in fruit/income equal to 1? Is fruit a luxury good?
To answer these questions, we are going to use the following model for the expenditure in fruit:

In( fruit) = B, + B, In(inc) + p,househsize + 3, punders + u

12



where inc is disposable income of household, househsize is the number of household members and
punder? is the proportion of children under five in the household.

As the variables fruit and inc appear expressed in natural logarithms, then /3 is the expenditure
in fruit/income elasticity. Using a sample of 40 households (workfile demand), the results of table 4.3
have been obtained.

TABLE 4.3. Standard output in a regression explaining expenditure in fruit. n=40.

Variable Coefficient | Std. Error t-Statistic Prob.
C -9.767654 3.701469 -2.638859 0.0122
LN(INC) 2.004539 0.512370 3.912286 0.0004
HOUSEHSIZE -1.205348 0.178646 -6.747147 0.0000
PUNDERS5 -0.017946 0.013022 -1.378128 0.1767

Is the expenditure in fruit/income elasticity equal to 1?
To answer this question, the following procedure has been carried out:

In this case, the null and alternative hypothesis and the test statistic are the following:

Hy:p, =1 BB -1 2005-1

H:p, #1 se(B,) se(B,) 0512

For o=0.10, we find that £, ~£;°? =1.69. As |t|>1.69, we reject H,. For a=0.05,

0.05/2 0.05/2
t36 ~ t35

that the expenditure on fruit/income elasticity is equal to 1 for @=0.10, but we cannot reject it for a=0.05,
nor for a=0.01.

1.961

=2.03. As |¢|<2.03, we do not reject Hy for &=0.05, nor for &=0.01. Therefore, we reject

Is fruit a luxury good?

According to economic theory, a commodity is a luxury good when its expenditure elasticity
with respect to income is higher than 1. Therefore, to answer to the second question, and taking into
account that the t statistic is the same, the following procedure has been carried out:

H,:p,=1 H :p,>1.
For a=0.10, we find that #,,° ~#;;° =1.31. As £~1.31, we reject H, in favour of H,. For ¢=0.05,
129 ~ 2% —1.69 . As £>1.69, we reject Hy in favour of H,. For a=0.01, fy.' ~£5°' =2.44 . As 1<2.44, we

do not reject Hy. Therefore, fruit is a luxury good for ¢=0.10 and @=0.05, but we cannot reject Hy in
favour of H; for ¢=0.01.

EXAMPLE 4.5 Is the Madrid stock exchange market efficient?

Before answering this question, we will examine some previous concepts. The rate of return of
an asset over a period of time is defined as the percentage change in the value invested in the asset during
that period of time. Let us now consider a specific asset: a share of an industrial company acquired in a
Spanish stock market at the end of one year and remains until the end of next year. Those two moments of
time will be denoted by #-1 and ¢ respectively. The rate of return of this action within that year can be
expressed by the following relationship:

AP+D + A4
RA[ — 3 + ! + 4
P

t—1

(4-15)

where Py is the share price at the end of period ¢, Dy: are the dividends received by the share during the
period ¢, and Ay: is the value of the rights that eventually corresponded to the share during the period ¢
Thus, the numerator of (4-15) summarizes the three types of capital gains that have been

received for the maintenance of a share in year #; that is to say, an increase or decrease in quotation,
dividends and rights on capital increase. Dividing by Pz 1, we obtain the rate of profit on share value at

the end of the previous period. Of these three components, the most important one is the increase in
quotation. Considering only that component, the yield rate of the action can be expressed by

AR
t:P

t—1

RAL

(4-16)
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or, alternatively if we use a relative rate of variation, by
RA2,=AInP, (4-17)

In the same way as Ray represents the rate of return of a particular share in either of the two

expressions, we can also calculate the rate of return of all shares listed in the stock exchange. The latter
rate of return, which will be denoted by RMy, is called the market rate of return.

So far we have considered the rate of return in a year, but we can also apply expressions such as
(4-16), or (4-17), to obtain daily rates of return. It is interesting to know whether the rates of return in the
past are useful for predicting rates of return in the future. This question is related to the concept of market
efficiency. A market is efficient if prices incorporate all available information, so there is no possibility of
making abnormal profits by using this information.

In order to test the efficiency of a market, we define the following model, using daily rates of
return defined by (4-16):

rmad92,= B, + B,rmad92, | +u, (4-18)

If a market is efficient, then the parameter /5 of the previous model must be 0. Let us now
compare whether the Madrid Stock Exchange is efficient as a whole.

The model (4-18) has been estimated with daily data from the Madrid Stock Exchange for 1992,
using file bolmadef. The results obtained are the following:
rmad92, = —0.0004+0.1267 rmad92, ,

(0.0007) (0.0629)

R*=0.0163 n=247

The results are paradoxical. On the one hand, the coefficient of determination is very low
(0.0163), which means that only 1.63% of the total variance of the rate of return is explained by the
previous day’s rate of return. On the other hand, the coefficient corresponding to the rate of significance

of the previous day is statistically significant at a level of 5% but not at a level of 1% given that the ¢

statistic is equal to 0.1267/0.0629=2.02, which is slightly larger in absolute value than tgfsl o~ tg(')m =2.00.

The reason for this apparent paradox is that the sample size is very high. Thus, although the impact of the
explanatory variable on the endogenous variable is relatively small (as indicated by the coefficient of
determination), this finding is significant (as evidenced by the statistical f) because the sample is
sufficiently large.

To answer the question as to whether the Madrid Stock Exchange is an efficient market, we can
say that it is not entirely efficient. However, this response should be qualified. In financial economics
there is a dependency relationship of the rate of return of one day with respect to the rate corresponding to
the previous day. This relationship is not very strong, although it is statistically significant in many world
stock markets due to market frictions. In any case, market players cannot exploit this phenomenon, and
thus the market is not inefficient, according to the above definition of the concept of efficiency.

EXAMPLE 4.6 Is the rate of return of the Madrid Stock Exchange affected by the rate of return of the
Tokyo Stock Exchange?

The study of the relationship between different stock markets (NYSE, Tokyo Stock Exchange
Madrid Stock Exchange, London Stock Exchange, etc.) has received much attention in recent years due to
the greater freedom in the movement of capital and the use of foreign markets to reduce the risk in
portfolio management. This is because the absence of perfect market integration allows diversification of
risk. In any case, there is a world trend toward a greater global integration of financial markets in general
and stock markets in particular.

If markets are efficient, and we have seen in example 4.5 that they are, the innovations (new
information) will be reflected in the different markets for a period of 24 hours.

It is important to distinguish between two types of innovations: a) global innovations, which is
news generated around the world and has an influence on stock prices in all markets, b) specific
innovations, which is the information generated during a 24 hour period and only affects the price of a
particular market. Thus, information on the evolution of oil prices can be considered as a global
innovation, while a new financial sector regulation in a country would be considered a specific
innovation.

According to the above discussion, stock prices quoted at a session of a particular stock market
are affected by the global innovations of a different market which had closed earlier. Thus, global
innovations included in the Tokyo market will influence the market prices of Madrid on the same day.
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The following model shows the transmission of effects between the Tokyo Stock Exchange and the
Madrid Stock Exchange in 1992:

rmad92, =L+ Brtok92,+u, (4-19)
where rmad92; is the rate of return of the Madrid Stock Exchange in period ¢ and rf0k92, is the rate of
return of the Tokyo Stock Exchange in period . The rates of return have been calculated according to
(4-16).

In the working file madtok you can find general indices of the Madrid Stock Exchange and the
Tokyo Stock Exchange during the days both exchanges were open simultaneously in 1992. That is, we
eliminated observations for those days when any one of the two stock exchanges was closed. In total, the
number of observations is 234, compared to the 247 and 246 days that the Madrid and Tokyo Stock
Exchanges were open.

The estimation of the model (4-19) is as follows:

rmad92, = ~0.0005+-0.1244 r10k92,

0.0007) (0.0375)
R>=0.0452 n=235

Note that the coefficient of determination is relatively low. However, for testing Hy: =0, the
statistic ¢ = (0.1244/0.0375) = 3.32, which implies that we reject the hypothesis that the rate of return of
the Tokyo Stock Exchange has no effect on the rate of return of the Madrid Stock Exchange, for a
significance level of 0.01.

Once again we find the same apparent paradox which appeared when we analyzed the efficiency
of the Madrid Stock Exchange in example 4.5 except for one difference. In the latter case, the rate of
return from the previous day appeared as significant due to problems arising in the elaboration of the
general index of the Madrid Stock Exchange.

Consequently, the fact that the null hypothesis is rejected implies that there is empirical evidence
supporting the theory that global innovations from the Tokyo Stock Exchange are transmitted to the
quotes of the Madrid Stock Exchange that day.

4.2.2 Confidence intervals

Under the CLM, we can easily construct a confidence interval (CI) for the
population parameter, f. CI are also called interval estimates because they provide a
range of likely values for £, and not just a point estimate.

The CI is built in such a way that the unknown parameter is contained within the
range of the CI with a previously specified probability.

By using the fact that

B, =5 ~1
P n—k
se(B;)
Pr —tff,fﬁuﬁt,’ff,f =l-a

se(f3;)
Operating to put the unknown /£ alone in the middle of the interval, we have
Pr| 3, —se(B) <122 < B, < B +se(B) <t} | =1-a
Therefore, the lower and upper bounds of a (1-a) CI respectively are given by
B = 'BJ - Se(léj) xt
B, =B, +se(B)xt;
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If random samples were obtained over and over again with f,, and Bj

computed each time, then the (unknown) population value would lie in the interval (5,

B;) for (1 — @)% of the samples. Unfortunately, for the single sample that we use to
construct C/, we do not know whether £ is actually contained in the interval.

Once a (I is constructed, it is easy to carry out two-tailed hypothesis tests. If the
null hypothesis is H,: B, =a,, then H, is rejected against H, : 3, # a; at (say) the 5%
significance level if, and only if, a; is not in the 95% CI.

To illustrate this matter, in figure 4.14 we constructed confidence intervals of

90%, 95% and 99%, for the marginal propensity to consumption -/»- corresponding to
example 4.1.

0,99
0,95
0,90
& L = >
- I L
o o o o o o —_
o 90N % o o o
Q — W N X —
G o © w 3 & —_

FIGURE 4.14. Confidence intervals for marginal propensity to consume in example 4.1.

4.2.3 Testing hypotheses about a single linear combination of the parameters

In many applications we are interested in testing a hypothesis involving more
than one of the population parameters. We can also use the ¢ statistic to test a single
linear combination of the parameters, where two or more parameters are involved.

There are two different procedures to perform the test with a single linear
combination of parameters. In the first, the standard error of the linear combination of
parameters corresponding to the null hypothesis is calculated using information on the
covariance matrix of the estimators. In the second, the model is reparameterized by
introducing a new parameter derived from the null hypothesis and the reparameterized
model is then estimated; testing for the new parameter indicates whether the null
hypothesis is rejected or not. The following example illustrates both procedures.

ExAMPLE 4.7 Are there constant returns to scale in the chemical industry?

To examine whether there are constant returns to scale in the chemical sector, we are going to
use the Cobb-Douglas production function, given by

In(output) = B, + 3, In(labor) + f3; In(capital) + u (4-20)

In the above model parameters £, and f; are elasticities (output/labor and output/capital).

Before making inferences, remember that refurns to scale refers to a technical property of the
production function examining changes in output subsequent to a change of the same proportion in all
inputs, which are labor and capital in this case. If output increases by that same proportional change then
there are constant returns to scale. Constant returns to scale imply that if the factors labor and capital
increase at a certain rate (say 10%), output will increase at the same rate (e.g., 10%). If output increases
by more than that proportion, there are increasing returns to scale. If output increases by less than that
proportional change, there are decreasing returns to scale. In the above model, the following occurs

- if f+ =1, there are constant returns to scale.
- if Byt fs>1, there are increasing returns to scale.

- if B+ ;<1 there are decreasing returns to scale.
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Data used for this example are a sample of 27 companies of the primary metal sector (workfile
prodmet), where output is gross value added, labor is a measure of labor input, and capital is the gross
value of plant and equipment. Further details on construction of the data are given in Aigner, ef al. (1977)
and in Hildebrand and Liu (1957); these data were used by Greene in 1991. The results obtained in the
estimation of model (4-20), using any econometric software available, appear in table 4.4.

TABLE 4.4. Standard output of the estimation of the production function:
model (4-20).

Variable Coefficient | Std. Error t-Statistic Prob.
constant 1.170644 0.326782 3.582339 0.0015
In(labor) 0.602999 0.125954 4.787457 0.0001
In(capital) 0.375710 0.085346 4.402204 0.0002

To answer the question posed in this example, we must test

Hy:pB,+p =1
against the following alternative hypothesis
H :B+p #1

According to H,, it is stated that f, + 8, —1=0. Therefore, the ¢ statistic must now be based on
whether the estimated sum ,Bz + ,33 —1 is sufficiently different from 0 to reject Hy in favor of H;.

Two procedures will be used to test this hypothesis. In the first, the covariance matrix of the
estimators is used. In the second, the model is reparameterized by introducing a new parameter.

Procedure: using covariance matrix of estimators
According to H,,, it is stated that S, + f, —1=0. Therefore, the ¢ statistic must now be based on
whether the estimated sum ,32 + ,5‘3 —1 is sufficiently different from 0 to reject H, in favor of H;. To
account for the sampling error in our estimators, we standardize this sum by dividing by its standard
error:
P _ ﬂz + ﬁ3 —1
ﬁz*/jz N o 2
Yose(B,+ )

Therefore, if ¢ i is large enough, we will conclude, in a two side alternative test, that there are
2 3

not constant returns to scale. On the other hand, if ¢ w
2 3

one side alternative test (right), H, in favour of H, : §, + f, > 1. Therefore, there are increasing returns to
scale.

is positive and large enough, we will reject, in a

On the other hand , we have

Se(:éz +:é3)= \/m

var(f, + f,) = var(B,) + var(f3,) + 2 x covar(f3,, 3,)

Hence, to compute se(f, + ;) you need information on the estimated covariance of estimators.

Many econometric software packages (such as e-views) have an option to display estimates of the
covariance matrix of the estimator vector ’. In this case, the covariance matrix obtained appears in table
4.5. Using this information, we have

se(f3, + f3,) = /0.015864 +0.007284 — 2 0.009616 = 0.0626

where

2 LtATL 2002129 )
Pl Se(ﬂz +ﬁ3) 0.0626
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TABLE 4.5. Covariance matrix in the production function.

constant In(labor) In(capital)
constant 0.106786 -0.019835 0.001189
In(labor)) -0.019835 0.015864 -0.009616
In(capital) 0.001189 -0.009616 0.007284

Given that /=0.3402, it is clear that we cannot reject the existence of constant returns to scale for
the usual significance levels. Given that the t statistic is negative, it makes no sense to test whether there
are increasing returns to scale

Procedure: reparameterizing the model by introducing a new parameter

It is easier to perform the test if we apply the second procedure. A different model is estimated in
this procedure, which directly provides the standard error of interest. Thus, let us define:

0=p,+p-1
thus, the null hypothesis that there are constant returns to scale is equivalent to saying that H,:6=0.
From the definition of &, we have [, = 6 — 3, +1. Substituting /3 in the original equation:
In(output) = B, + (6 — B, +1) In(labor) + B, In(capital) + u
Hence,
In(output / labor) = B, + 0 In(labor) + B, In(capital | labor) +u

Therefore, to test whether there are constant returns to scale is equivalent to carrying out a
significance test on the coefficient of In(labor) in the previous model. The strategy of rewriting the model
so that it contains the parameter of interest works in all cases and is usually easy to implement. If we
apply this transformation to this example, we obtain the results of Table 4.6.

As can be seen we obtain the same result:

A

1, = HA =-0.3402
se(d)
TABLE 4.6. Estimation output for the production function: reparameterized model.
Variable Coefficient | Std. Error t-Statistic Prob.
constant 1.170644 0.326782 3.582339 0.0015
In(labor) -0.021290 0.062577 -0.340227 0.7366
In(capital/labor) 0.375710 0.085346 4.402204 0.0002

EXAMPLE 4.8 Advertising or incentives?

The Bush Company is engaged in the sale and distribution of gifts imported from the Near East.
The most popular item in the catalog is the Guantanamo bracelet, which has some relaxing properties.
The sales agents receive a commission of 30% of total sales amount. In order to increase sales without
expanding the sales network, the company established special incentives for those agents who exceeded a
sales target during the last year.

Adbvertising spots were radio broadcasted in different areas to strengthen the promotion of sales.
In those spots special emphasis was placed on highlighting the well-being of wearing a Guantanamo
bracelet.

The manager of the Bush Company wonders whether a dollar spent on special incentives has a
higher incidence on sales than a dollar spent on advertising. To answer that question, the company's
econometrician suggests the following model to explain sales:

sales = B, + p,advert + Biincent +u

where incent are incentives to the salesmen and advert are expenditures in advertising. The variables
sales, incent and advert are expressed in thousands of dollars.

Using a sample of 18 sale areas (workfile advincen), we have obtained the output and the
covariance matrix of the coefficients that appear in table 4.7 and in table 4.8 respectively.
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TABLE 4.7. Standard output of the regression for example 4.8.

Variable Coefficient | Std. Error t-Statistic Prob.
constant 396.5945 3548.111 0.111776 0.9125
advert 18.63673 8.924339 2.088304 0.0542
incent 30.69686 3.604420 8.516448 0.0000

TABLE 4.8. Covariance matrix for example 4.8.
C ADVERT INCENT
constant 12589095 -26674 -7101
advert -26674 79.644 2.941
incent -7101 2.941 12.992

In this model, the coefficient £ indicates the increase in sales produced by a dollar increase in
spending on advertising, while £; indicates the increase caused by a dollar increase in the special
incentives, holding fixed in both cases the other regressor.

To answer the question posed in this example, the null and the alternative hypothesis are the
following:

Hy:p,—p,=0
H 1 :ﬂ3 - ﬁz >0
The t statistic is built using information about the covariance matrix of the estimators:
¢ 132 — ﬁz
BB " p _A
se(fy—p,)
se(,— B,) =/79.644+12.992 -2x 2.941 =9.3142
¢ _ 183 _ﬁz
BB o h _ A
s e(ﬂ3 - ﬂz )
For a=0.10, we find that #"° =1.341. As t<1.341, we do not reject H, for ¢=0.10, nor for

0=0.05 or a=0.01. Therefore, there is no empirical evidence that a dollar spent on special incentives has a
higher incidence on sales than a dollar spent on advertising.

_30.697-18.637
9.3142

=1.295

ExaMPLE 4.9 Testing the hypothesis of homogeneity in the demand for fish

In the case study in chapter 2, models for demand for dairy products have been estimated from
cross-sectional data, using disposable income as an explanatory variable. However, the price of the
product itself and, to a greater or lesser extent, the prices of other goods are determinants of the demand.
The demand analysis based on cross sectional data has precisely the limitation that it is not possible to
examine the effect of prices on demand because prices remain constant, since the data refer to the same
point in time. To analyze the effect of prices it is necessary to use time series data or, alternatively, panel
data. We will briefly examine some aspects of the theory of demand for a good and then move to the
estimation of a demand function with time series data. As a postscript to this case, we will test one of the
hypotheses which, under certain circumstances, a theoretical model must satisfy.

The demand for a commodity - say good j - can be expressed, according to an optimization
process carried out by the consumer, in terms of disposable income, the price of the good and the prices

of the other goods. Analytically:
qj:f;'(plapz"",pjs"'spmsdi) (4'21)

where

- di is the disposable income of the consumer.
- P»Pysoes Dy, are the prices of the goods which are taken into account by
consumers when they acquire the good j.

Logarithmic models are attractive in studies on demand,, because the coefficients are directly
elasticities. The log model is given by

In(g,) =, + B, In(p)) + By In(py) +---+ B, In(p; )+ + ., In(p,) + B,., In(R) +u (4-22)
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It is clear to see that all S coefficients, excluding the constant term, are elasticities of different
types and therefore are independent of the units of measurement for the variables. When there is no
money illusion, if all prices and income grow at the same rate, the demand for a good is not affected by
these changes. Thus, assuming that prices and income are multiplied by A, if the consumer has no money
illusion, the following should be satisfied

L OPLADy - AP AP AR) = f1(Pyy Paees o D, i) (4-23)

From a mathematical point of view, the above condition implies that the demand function must
be homogeneous of degree 0. This condition is called the restriction of homogeneity. Applying Euler's
theorem, the restriction of homogeneity in turn implies that the sum of the demand/income elasticity and
of all demand/price elasticities is zero, i.e.:

Dy ip =0 (4-24)
h=1

This restriction applied to the logarithmic model (4-22) implies that
ﬂ2+ﬂ3+”'+ﬂj+'”+ﬂm+l+ m+2:0 (4-25)

In practice, when estimating a demand function, the prices of many goods are not included, but
only those that are closely related, either because they are complementary or substitute goods. It is also
well known that the budgetary allocation of spending is carried out in several stages.

Next, the demand for fish in Spain will be studied by using a model similar to (4-22). Let us
consider that in a first assignment, the consumer distributes its income between total consumption and
savings. In a second stage, the consumption expenditure by function is performed taking into account the
total consumption and the relevant prices in each function. Specifically, we assume that the only relevant
price in the demand for fish is the price of the good (fish) and the price of the most important substitute
(meat).

Given the above considerations, the following model is formulated:
In( fish) = B, + B, n(fishpr) + B, In(meatpr) + f, In(cons) +u (4-26)

where fish is fish expenditure at constant prices, fishpr is the price of fish, meatpr is the price of meat and
cons is total consumption at constant prices.

The workfile fishdem contains information about this series for the period 1964-1991. Prices are
index numbers with 1986 as a base, and fish and cons are magnitudes at constant prices with 1986 as a
base also. The results of estimating model (4-26) are as follows:

In( fish) = 7(.273%3)8— (204]1363? In( fishpr) + (?051152? In(meatpr) + (303:327)2 In(cons)

As can be seen, the signs of the elasticities are correct: the elasticity of demand is negative with
respect to the price of the good, while the elasticities with respect to the price of the substitute good and
total consumption are positive

In model (4-26) the homogeneity restriction implies the following null hypothesis:
B+ B, +p5,=0 (4-27)

To carry out this test, we will use a similar procedure to the one used in example 4.6. Now, the
parameter &is defined as follows

0= ﬂz +ﬁ3 + ﬁ4 (4-28)
Setting S, = 0 S, — f3,, the following model has been estimated:
In(fish) = B, + OIn( fishpr) + B, In(meatpr | fishpr)+ B, In(cons/ fishpr)+u (4-29)

The results obtained were the following:
In( fish,) = 7(.;3%8— 0(0433)6 In( fishpr,) + (()051 152? In(meatpr,) + 90%327)2 In(cons,)

Using (4-28), testing the null hypothesis (4-27) is equivalent to testing that the coefficient of

0.01/2 _

In(fishpr) in (4-29) is equal to 0. Since the t statistic for this coefficient is equal to -3.44 and #);"* =2.8,
we reject the hypothesis of homogeneity regarding the demand for fish.
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4.2.4 Economic importance versus statistical significance

Up until now we have emphasized statistical significance. However, it is
important to remember that we should pay attention to the magnitude and the sign of the
estimated coefficient in addition to ¢ statistics.

Statistical significance of a variable x; is determined entirely by the size of ¢ 5o

whereas the economic significance of a variable is related to the size (and sign) of ﬁ_i .

Too much focus on statistical significance can lead to the false conclusion that a
variable is “important” for explaining y, even though its estimated effect is modest.

Therefore, even if a variable is statistically significant, you need to discuss the
magnitude of the estimated coefficient to get an idea of its practical or economic
importance.

4.3 Testing multiple linear restrictions using the F test.

So far, we have only considered hypotheses involving a single restriction. But
frequently, we wish to test multiple hypotheses about the underlying parameters

:Blaﬂzaﬂw”'aﬂk-

In multiple linear restrictions, we will distinguish three types: exclusion
restrictions, model significance and other linear restrictions.

4.3.1 Exclusion restrictions

Null and alternative hypotheses; unrestricted and restricted model

We begin with the leading case of testing whether a set of independent variables
has no partial effect on the dependent variable, y. These are called exclusion
restrictions. Thus, considering the model

Y =B+ Box, + Bxs + Bix, + Poxs +u (4-30)
the null hypothesis in a typical example of exclusion restrictions could be the following:
Hy:p,=p=0

This is an example of a set of multiple restrictions, because we are putting more
than one restriction on the parameters in the above equation. A test of multiple
restrictions is called a joint hypothesis test.

The alternative hypothesis can be expressed in the following way
Hi: Hy is not true

It is important to remark that we test the above Hj jointly, not individually. Now,
we are going to distinguish between unrestricted (UR) and restricted (R) models. The
unrestricted model is the reference model or initial model. In this example the
unrestricted model is the model given in (4-30). The restricted model is obtained by
imposing H, on the original model. In the above example, the restricted model is

y=P0+5x,+ Bx; +u

By definition, the restricted model always has fewer parameters than the
unrestricted one. Moreover, it is always true that
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RSSr=RSSur

where RSSy is the RSS of the restricted model, and RSSyr is the RSS of the unrestricted
model. Remember that, because OLS estimates are chosen to minimize the sum of
squared residuals, the RSS never decreases (and generally increases) when certain
restrictions (such as dropping variables) are introduced into the model.

The increase in the RSS when the restrictions are imposed can tell us something
about the likely truth of Hy. If we obtain a large increase, this is evidence against Hy,
and this hypothesis will be rejected. If the increase is small, this is not evidence against
Hy, and this hypothesis will not be rejected. The question is therefore whether the
observed increase in the RSS when the restrictions are imposed is large enough, relative
to the RSS in the unrestricted model, to warrant rejecting Hy.

The answer depends on ¢, but we cannot carry out the test at a chosen « until we
have a statistic whose distribution is known, and is tabulated, under Hy. Thus, we need a
way to combine the information in RSSk and RSSyr to obtain a test statistic with a
known distribution under H,.

Now, let us look at the general case, where the unrestricted model is
Y =0+ Bx, + fixy +- o+ Bx tu (4-31)

Let us suppose that there are ¢ exclusion restrictions to test. H states that g of
the variables have zero coefficients. Assuming that they are the last ¢ variables, H is
stated as

H,: ﬁk—qﬂ = :Bk-q+2 =-=0=0 (4-32)

The restricted model is obtained by imposing the g restrictions of Hy on the
unrestricted model.

Y=L+ 6%, + Bix, + + ﬁk_qu_q +u (4-33)
H, is stated as
Hi: Hy 1s not true (4-34)

Test statistic: F ratio
The F statistic, or F'ratio, is defined by
o (RSS, —RSS,x)/ q
RSS,, / (n—k)

(4-35)

where RSSk 1s the RSS of the restricted model, and RSSyr is the RSS of the unrestricted
model and ¢ is the number of restrictions; that is to say, the number of equalities in the
null hypothesis.

In order to use the F statistic for a hypothesis testing, we have to know its
sampling distribution under Hy in order to choose the value ¢ for a given «, and
determine the rejection rule. It can be shown that, under Hy, and assuming the CLM
assumptions hold, the F statistic is distributed as a Snedecor’s F random variable with
(g,n-k) df.- We write this result as

FlH,~F,, (4-36)
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A Snedecor’s F with g degrees of freedom in the numerator and n-k de degrees
of freedom in the denominator is equal to

2
x,’4q
F = ﬁ (4-37)
xnfk -

where xj and x’ , are Chi-square distributions that are independent of each other.
In (4-35) we see that the degrees of freedom corresponding to RSSyr (dfur)are n-
k. Remember that
> _ RSS,
UR n— k

On the other hand, the degrees of freedom corresponding to RSSk (dfz) are n-
k+q, because in the restricted model k-g parameters are estimated. The degrees of
freedom corresponding to RSSg-RSSur are

(4-38)

(n-k+q)-(n-ky=q = numerator degrees of freedom=dfg-dfur

Thus, in the numerator of F, the difference in RSS’s is divided by ¢, which is the
number of restrictions imposed when moving from the unrestricted to the restricted
model. In the denominator of F, RSSyr is divided by dfyr. In fact, the denominator of F
is simply the unbiased estimator of ¢” in the unrestricted model.

The F ratio must be greater than or equal to 0, since SSR, —SSR,, =20 .

UR —

It is often useful to have a form of the F statistic that can be computed from the
R? of the restricted and unrestricted models.

Using the fact that RSS, = TSS(1-R;) and RSS,, =TSS(1-R’,), we can write
(4-35) as the following
__(Rx=Rp/q
(1=R3)/ (n—Fk)

(4-39)

since the SST term is cancelled.
This is called the R-squared form of the F statistic.

Whereas the R-squared form of the F statistic is very useful for testing exclusion
restrictions, it cannot be applied for testing all kinds of linear restrictions. For example,
the F ratio (4-39) cannot be used when the model does not have intercept or when the
functional form of the endogenous variable in the unrestricted model is not the same as
in the restricted model.

Decision rule

The F, . distribution is tabulated and available in statistical tables, where we

look for the critical value (F”, ), which depends on « (the significance level), ¢ (the df

of the numerator), and n-k, (the df of the denominator). Taking into account the above,
the decision rule is quite simple.
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Decision rule

If F>F/ ,  reject H,
’ (4-40)
If F<F/ , mnotreject H,

Therefore, we reject Hy in favor of H; at « when F > Fq"‘nfk, as can be seen in

figure 4.15. It is important to remark that as « decreases, F,, , increases. If Hy is

rejected, then we say that x,_,x,  ,,~--,x, are jointly statistically significant, or just
Jjointly significant, at the selected significance level.
This test alone does not allow us to say which of the variables has a partial effect

on y; they may all affect y or only one may affect y. If Hy is not rejected, then we say
that x,_ .,,x, .., *,x, are jointly not statistically significant, or simply jointly not
significant, which often justifies dropping them from the model. The F statistic is often

useful for testing the exclusion of a group of variables when the variables in the group
are highly correlated.

Non L
Reiection Rejection ) '
cjec i Region Rejected ~ Non rejected
Region RR for for
NRR ;
a>p-value :  a<p-value
F;],n—k

a
Fq./zfl» F
FIGURE 4.15. Rejection region and non rejection

region using F distribution.

FIGURE 4.16. p-value using F distribution.

In the F testing context, the p-value is defined as
p-value=Pr(F > F'|H,)

where F is the actual value of the test statistic and F' denotes a Snedecor’s F random
variable with (g,n-k) df.

The p-value still has the same interpretation as for ¢ statistics. A small p-value is
evidence against Hy, while a large p-value is not evidence against Hy. Once the p-value
has been computed, the F test can be carried out at any significance level. In figure 4.16
this alternative approach is represented. As can be seen by observing the figure, the
determination of the p-value is the inverse operation to find the value in the statistical
tables for a given significance level. Once the p-value has been determined, we know
that Hy is rejected for any level of significance of a>p-value, whereas the null
hypothesis is not rejected when a<p-value.

ExaMPLE 4.10 Wage, experience, tenure and age
The following model has been built to analyze the determinant factors of wage:
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In(wage) = B, + p,educ + p,exper + f,tenure + f;age +u
where wage is monthly earnings, educ is years of education, exper is years of work experience, tenure is
years with current employer, and age is age in years.

The researcher is planning to exclude tenure from the model, since in many cases it is equal to
experience, and also age, because it is highly correlated with experience. Is the exclusion of both
variables acceptable?

The null and alternative hypotheses are the following:
H,:B,=p5,=0
H, : H, is not true
The restricted model corresponding to this H, is
In(wage) = B, + p,educ + f,exper +u
Using a sample consisting of 53 observations from workfile wage2, we have the following
estimations for the unrestricted and for the restricted models:
m = 6.476 +0.0658educ, 4-0.0267exper, —0.0094tenure, —0.0209age, RSS =5.954
In(wage,) = 6.157 +0.0457educ, +0.0121exper.  RSS = 6.250

The F ratio obtained is the following:

(RSS, —RSS;; )/ q  (6.250-5.954)/2
RSS,z [ (n—k) 5.954/48

Given that the F statistic is low, let us see what happens with a significance level of 0.10. In this

case the degrees of freedom for the denominator are 48 (53 observations minus 5 estimated parameters).
If we look in the F statistical table for 2 df in the numerator and 45 df in the denominator, we find

Fy ~ Fy§ =2.42. As F<2.42, we do not reject H,. If we do not reject H, for 0.10, we will not reject H,

for 0.05 or 0.01, as can been in figure 4.17. Therefore, we cannot reject Hy in favor of H;. In other words
tenure and age are not jointly significant.

=1.193

0,10
Non Rejection
Region onRR
NRR Region

Rejection

0.05 0.01

L 5 >
S o i
S < 3

0861

FIGURE 4.17. Example 4.10: Rejection region using F distribution ( values are from a F; 4).

4.3.2 Model significance

Testing model significance, or overall significance, is a particular case of testing
exclusion restrictions. Model significance means global significance of the model. One

could think that the H in this test is the following:

Hy:B=p=p="=5=0 (4-41)

However, this is not the adequate /1, to test for the global significance of the
model. If B, =, =---= B, =0, then the restricted model would be the following:

=B+ (4-42)
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If we take expectations in (4-42), then we have
E(y)=p (4-43)

Thus, H, in (4-41) states not only that the explanatory variables have no
influence on the endogenous variable, but also that the mean of the endogenous
variable—for example, the consumption mean- is equal to 0.

Therefore, if we want to know whether the model is globally significant, the H,
must be the following:

Hy:p,=py=-=p=0 (4-44)
The corresponding restricted model given in (4-42) does not explain anything
and, therefore, R, is equal to 0. Testing the H, given in (4-44) is very easy by using
the R-squared form of the F statistic:
Rk
(1-R*)/(n—k)

(4-45)

where R? is the R?

UR >

the R® of the model (4-42) — restricted model- is 0.

EXAMPLE 4.11 Salaries of CEOs

Consider the following equation to explain salaries of Chief Executive Officers (CEOs) as a
function of annual firm sales, return on equity (roe, in percent form), and return on the firm's stock (ros,
in percent form):

since only the unrestricted model needs to be estimated, because

In(salary) = pi+BIn(sales)+Froet fyros+ u.

The question posed is whether the performance of the company (sales, roe and ros) is crucial to
set the salaries of CEOs. To answer this question, we will carry out an overall significance test. The null
and alternative hypotheses are the following:

H, :ﬂz :ﬂs ::B4 =0
H,: Hy is not true

Table 4.9 shows an E-views complete output for least square (Is) using the filework ceosall. At
the bottom the “F-statistic” can be seen for overall test significance, as well as “Prob”, which is the p-
value corresponding to this statistic. In this case the p-value is equal to 0, that is to say, H, is rejected for
all significance levels (See figure 4.18). Therefore, we can reject that the performance of a company has
no influence on the salary of a CEO.

p-value
0,0000

0,10 0,05 0,01

3,205

T~

—

N »
— ey o
N N N

£69C

FIGURE 4.18. Example 4.11: p-value using F distribution (a values are for a F; 149).
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TABLE 4.9. Complete output from E-views in the example 4.11.

Dependent Variable:
LOG(SALARY)
Method: Least Squares
Date: 04/12/12 Time: 19:39
Sample: 1 209
Included observations: 209

Variable Coefficient Std. Error  t-Statistic Prob.
C 4311712 0.315433 13.66919 0.0000
LOG(SALES) 0.280315 0.03532  7.936426 0.0000
ROE 0.017417  0.004092  4.255977 0.0000
ROS 0.000242  0.000542  0.446022 0.6561
R-squared 0.282685 Mean dependent var 6.950386
Adjusted R-squared 0.272188 S.D. dependent var 0.566374
S.E. of regression 0.483185 Akaike info criterion 1.402118
Sum squared resid 47.86082 Schwarz criterion 1.466086
Log likelihood -142.5213 F-statistic 26.9293
Durbin-Watson stat 2.033496 Prob(F-statistic) 0.0000

4.3.3 Testing other linear restrictions

So far, we have tested hypotheses with exclusion restrictions using the F
statistic. But we can also test hypotheses with linear restrictions of any kind. Thus, in
the same test we can combine exclusion restrictions, restrictions that impose determined
values to the parameters and restrictions on linear combination of parameters.

Therefore, let us consider the following model

Y =B+ Box, + B + Bx, + Pixs +u

and the null hypothesis:
Bt =1
H,: B, =3
Bs=0

The restricted model corresponding to this null hypothesis is
(y—x,=-3x,) =+ B,(x; —x,) +u

In the example 4.12, the null hypothesis consists of two restrictions: a linear
combination of parameters and an exclusion restriction.

EXAMPLE 4.12 An additional restriction in the production function. (Continuation of example 4.7)

In the production function of Cobb-Douglas, we are going to test the following H, which has two
restrictions:

H, -

0

{ﬁ2+ﬂ3 =1
B =0
H, : H, is not true

In the first restriction we impose that there are constant returns to scale. In the second restriction
that /3, parameter linked to the total factor productivity is equal to O.
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Substituting the restriction of Hy in the original model (unrestricted model), we have
In(output) = (1- B,) In(labor) + B, In(capital) +u
Operating, we obtain the restricted model:
In(output / labor) = B, In(capital / labor) +u

In estimating the unrestricted and restricted models, we get RSSz=3.1101 and RSSyz=0.8516.
Therefore, the F ratio is

(RSS, —RSSz)/q (3.1101-0.8516)/2
RSS,, / (n—k) 0.8516/(27-3)

=13.551

There are two reasons for not using R in this case. First, the restricted model has no intercept.
Second, the regressand of the restricted model is different from the regressand of the unrestricted model.

Since the F value is relatively high, let us start by testing with a level of 1%. For =0.01,
172(?'2041 =5.61. Given that F>5.61, we reject H, in favour of H,. Therefore, we reject the joint hypotheses

that there are constant returns to scale and that the parameter £, is equal to 0. If Hj is rejected for a=0.01,
it will also be rejected for levels of 5% and 10%.

4.3.4 Relation between F and t statistics

So far, we have seen how to use the F statistic to test several restrictions in the
model, but it can be used to test a single restriction. In this case, we can choose between
using the F statistic or the ¢ statistic to carry out a two-tail test. The conclusions would,
nevertheless, be exactly the same.

But, what is the relationship between an F' with one degree of freedom in the
numerator (to test a single restriction) and a ¢? It can be shown that

tj—k = FI,nfk (4-46)

This fact is illustrated in figure 4.19. We observe that the tail of the F splits into
the two tails of the 7. Hence, the two approaches lead to exactly the same outcome,
provided that the alternative hypothesis is two-sided. However, the ¢ statistic is more

flexible for testing a single hypothesis, because it can be used to test /1, against one-tail
alternatives.

Non rejection region NRR Rejection
i region
RR

Non chcctiong Rejection Rejegtion
Region NRR : Region RR f‘:i.l]l:n

an®

0 F.
FIGURE 4.19. Relationship between a Fy . and a t .

Moreover, since the ¢ statistics are also easier to obtain than the F statistics, there
is no good reason for using an F statistic to test a hypothesis with a unique restriction.
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4.4 Testing without normality

The normality of the OLS estimators depends crucially on the normality
assumption of the disturbances. What happens if the disturbances do not have a normal
distribution? We have seen that the disturbances under the Gauss-Markov assumptions,
and consequently the OLS estimators are asymptotically normally distributed, i.e.
approximately normally distributed.

If the disturbances are not normal, the ¢ statistic will only have an approximate t
distribution rather than an exact one. As it can be seen in the ¢ student table, for a
sample size of 60 observations the critical points are practically equal to the standard
normal distribution.

Similarly, if the disturbances are not normal, the F statistic will only have an
approximate F distribution rather than an exact one, when the sample size is large
enough and the Gauss-Markov assumptions are fulfilled. Therefore, we can use the F
statistic to test linear restrictions in linear models as an approximate test.

There are other asymptotic tests (the likelihood ratio, Lagrange multiplier and
Wald tests) based on the likelihood functions that can be used in testing linear
restriction if the disturbances are non-normally distributed. These three can also be
applied when a) the restrictions are nonlinear; and b) the model is nonlinear in the
parameters. For non-linear restrictions, in linear and non-linear models, the most widely
used test is the Wald test.

For testing the assumptions of the model (for example, homoskedasticity and no
autocorrelation) the Lagrange multiplier (LM) test is usually applied. In the application
of the LM test, an auxiliary regression is often run. The name of auxiliary regression
means that the coefficients are not of direct interest: only the R’ is retained. In an
auxiliary regression the regressand is usually the residuals (or functions of the
residuals), obtained in the OLS estimation of the original model, while the regressors
are often the regressors (and/or functions of them) of the original model.

4.5 Prediction

In this section two types of prediction will be examined: point and interval
prediction.
4.5.1 Point prediction

Obtaining a point prediction does not pose any special problems, since it is a
simple extrapolation operation in the context of descriptive methods.

Let x3,x5,---,xp denote the particular values in each of the k regressors for

prediction; these may or may not correspond to an actual data point in our sample. If we
substitute these values in the multiple regression model, we have

VO =B+ foxy + Boxs + .+ fixi +u’ =6° +u° (4-47)
Therefore, the expected, or mean, value of y is given by
EG") =B+ Box) + Bxs +...+ Bixi =6° (4-48)

The point prediction is obtained straightaway by replacing the parameters of
(4-48) by the corresponding OLS estimators:
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0° = ﬁ’l +ﬁ’2x3 +ﬁ’3x£ +...+ﬁ’kx£ (4-49)

To obtain (4-49) we did not need any assumption. But, if we adopt the
assumptions 1 to 6, we will immediately find that that 6° is an unbiased predictor of 6°

E[éo]:E[ﬁl +,82xg +E3X§)+...+ﬁkx2i|=ﬂ] +ﬂ2x3 +ﬂ3x30+"'+ﬂkxl(c) =00 (4_50)

On the other hand, adopting the Gauss Markov assumptions (1 to 8), it can be
proved that this point predictor is the best linear unbiased estimator (BLUE).

We have a point prediction for €, but, what is the point prediction for y*? To
answer this question, we have to predict uy. As the error is not observable, the best
predictor for 1" is its expected value, which is 0. Therefore,

30 =0° (4-51)

4.5.2 Interval prediction

Point predictions made with an econometric model will in general not coincide
with the observed values due to the uncertainty surrounding economic phenomena.

The first source of uncertainty is that we cannot use the population regression
function because we do not know the parameters /'s. Instead we have to use the sample
regression function. The confidence interval for the expected value — i.e. for 6°- which
will examine next, includes only this type of uncertainty.

The second source of uncertainty is that in an econometric model, in addition to
the systematic part, there is a disturbance which is not observable. The prediction
interval for an individual value — i.e. for y°-, which will be discussed later on includes
both the uncertainty arising from the estimation as well as the disturbance term.

A third source of uncertainty may come from the fact of not knowing exactly
what values the explanatory variables will take for the prediction we want to make. This
third source of uncertainty, which is not addressed here, complicates calculations for the
construction of intervals.

Confidence interval for the expected value

If we are predicting the expected value of y, which is 8°, then the prediction
error &° will be &’ =6° —6". According to (4-50), the expected prediction error is zero.
Under the assumptions of the CLM,

& 9 -6

= Nt

Se(éo ) se(éo )

n—k

Therefore, we can write that

0 _ A0
Pr —t,f‘f,fgg f <til=1-a
se(8)

Operating, we can construct a (1-a)% confidence interval (CI) for 6° with the
following structure:
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Pr[éo —Se(éo)xt,f’f,f <0’ <6 +Se(é°)xt,f’f,f] =l-« (4-52)

To obtain a CI for 6°, we need to know the standard error (se(6y)) for 6°. In
any case, there is an easy way to calculate it. Thus, solving (4-48) for £, we find that
B =0"—pBxi — Bxs —...— Bixi . Plugging this into the equation (4-47), we obtain

y=0°+ (2 =)+ (o —x) +...+ B (o — X)) +u (4-53)

Applying OLS to (4-53), in addition to the point prediction, we obtain se(éo)
which is the standard error corresponding to the intercept in this regression. The
previous method allows us to put a CI around the OLS estimate of E(y), for any values
of the x’s.

Prediction interval for an individual value

We are now going to construct an interval for )°, usually called prediction
interval for an individual value, or for short, prediction interval. According to (4-47), y°
has two components:

YW =6"+u’ (4-54)

The interval for the expected value built before is a confidence interval around
@° wcich is a combination of the parameters. In contrast, the interval for y0 1s random,

because one of its components, uo, is random. Therefore, the interval for yo is a
probabilistic interval and not a confidence interval. The mechanics for obtaining it are

the same, but bear in mind that now we are going to consider that the set X3,X,-+-,x;
vis outside from of the sample used to estimate the regression.

The prediction error (&9) in using 7° to predict y° is
& =y"—9"=6"+u’-3° (4-55)

Taking into account (4-51) and (4-50), and that E(u’)=0, then the expected
prediction error is zero. In finding the variance of &), it must be taken into account that

0. . ~0 . .
u’ is uncorrelated with J” because x),x},---,x, is not in the sample.

Therefore, the variance of the prediction error (conditional on the x’s) is the
sum of the variances:

Var(é9) =Var(3°) +Var(u®) =Var(3°)+ o° (4-56)
There are two sources of variation in &5 :

1. The sampling error in 7°, which arises because we have estimated the
Bi’s.
2. The ignorance of the unobserved factors that affect y, which is reflected
in .
Under the CLM assumptions, &) is also normally distributed. Using the unbiased
estimator of o and taking into account that var(ﬁ°)=var(é°), we can define the

A0
standard error (se) of e, as
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N | —

se(é&)) = {[se(éo)}z + 6'2} (4-57)

A 2
Usually & is larger than [se(@o)] . Under the assumptions of the CLM,

A0
é
~t 4-58
Se(éZO) n—k ( )
Therefore, we can write that
éO

Pr| %7 < 2A0 <t?=1-a (4-59)

se(e)

Plugging in & = y° — 7" into (4-59) and rearranging it gives a (1-a)% prediction
interval for y°:

Pr[jzo —se(e))xtF <y <3’ +Se(é3)><tff,ﬂ =l-a (4-60)

ExaMPLE 4. 13 What is the expected score in the final exam with 7 marks in the first short exam?

The following model has been estimated to compare the marks in the final exam (finalmrk) and
in the first short exam (shortex1) of Econometrics:

finalmrk, = 4.155 4 0.491 shortex],

(0.715) (0.123)

0=1.649 R>=0.533 n=16

To estimate the expected final mark for a student with shortex1°=7 mark in the first short exam,
the following model, according to (4-53), was estimated:

finalmrk, = 7.593 +0.491(shortex1, —7)

(0.497) (0.123)
6=1.649 R*=0.533 n=16

The point prediction for shortexI’=7 is 6,=7.593 and the lower and upper bounds of a 95% CI
respectively are given by

0" = 6" —s5e(0°)x1%""* =7.593-0.497x2.14=6.5
0" = 6" +5e(0")x 1% =7.593+0.497x2.14 =8.7

Therefore, the student will have a 95% confidence of obtaining on average a final mark located
between 6.5 and 8.7.

The point prediction could be also obtained from the first estimated equation:
finalmrk = 4.155+0.491x 7 = 7.593

Now, we are going to estimate a 95% probability interval for the individual value. The se of &)
is equal

o=

se(&) = {[se(ﬁ‘))]2 +&2} =~0.497% +1.649° =1.722

where 1.649 is the “S. E. of regression” obtained from the E-views output directly.
The lower and upper bounds of a 95% probability interval respectively are given by

V' =90 —se(&)x 0, =7.593-1.722x2.14=3.7

' =7 +se(@)xt)F =7.593+1.722x2.14=11.3

You must take into account that this probability interval is quite large because the size of the
sample is very small.
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EXAMPLE 4.14 Predicting the salary of CEOs

Using data on the most important US companies taken from Forbes (workfile ceoforbes), the
following equation has been estimated to explain salaries (including bonuses) earned yearly (thousands of
dollars) in 1999 by the CEOs of these companies:

salary, = 1381+ 0.008377 assets, +32.508 tenure, +0.2352 profits,
(104) (0.0013) (8.671) (0.0538)

6 =1506 R*=0.2404 n=447

where assets are total assets of firm in millions of dollars, fenure is number of years as CEO in the
company, and profits are in millions of dollars.

In Table 4.10 descriptive measures of explanatory variables of the model on CEOs salaries
appear.

TABLE 4.10. Descriptive measures of variables of the model on CEOs salary.

assets tenure profits
Mean 27054 7.8 700
Median 7811 5.0 333
Maximum 668641 60.0 22071
Minimum 718 0.0 -2669
Observations 447 447 447

The predicted salaries and the corresponding se( 6y) for selected values (maximum, mean,
median and minimum), using a model as (4-53), appear in table 4.11.

TABLE 4.11. Predictions for selected values.

Prediction 6, Std. Error se( &)
Mean values 2026 71
Median value 1688 78
Maximum values 14124 1110
Minimum values 760 195

4.5.3 Predicting y in a In(y) model

Consider the model in logs:

In(y) = S, + B,x, + Byx; +---+ Bx, tu (4-61)
Obtaining OLS estimates, we predict In(y) as
In(y) = f + Sty +++ i, (4-62)
Applying exponentiation to (4-62), we obtain the prediction value
y=exp(In(y)) = exp(f, + fox, +-+ fx,) (4-63)

However, this prediction is biased and inconsistent because it will systematically
underestimate the expected value of y. Let us see why. If we apply exponentiation in
(4-61), we have

yv=exp(f + oxs+ ixs +...+ fixi ) xexp(u) (4-64)
Before taking expectation in (4-64), we must take into account that if u~N(0,0%),
2
o

then E(exp(u)) =exp( 5 j Therefore, under the CLM assumptions 1 through 9, we

have

E(y)=exp(f + foxs + fixs +...+ Bixi ) xexp(o” / 2) (4-65)
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Taking as a reference (4-65), the adequate predictor of y is
P =exp(Bi + Boxs 4+ Bexi ) xexp(62 /1 2) = xexp(6? /2) (4-66)
where 67 is the unbiased estimator of .

It is important to remark that although 7 is a biased predictor, it is consistent,
while y is biased and inconsistent

ExAMPLE 4.15 Predicting the salary of CEOs with a log model (continuation 4.14)
Using the same data as in example 4.14, the following model was estimated:

In(salary,) = 5(.3211 06)8 + 0(.0 1()?3%5 In(assets,) + 0(.(9)(}3%5 tenure, +0.00007 profits,

(0.0000195)

6 =0.5499 R’=0.2608 n=447

Salary and assets are taken in natural logs, while profits are in levels because some observations
are negative and thus not possible to take logs.

First, we are going to calculate the inconsistent prediction, according to (4-63) for a CEO
working in a corporation with assets=10000, tenure=10 years and profits=1000:

salary, = exp(in(salary,))
=exp(5.5168 4+ 0.1885In(10000) + 0.0125x10 4 0.00007 x1000) =1716

Using (4-66), we obtain a consistent prediction:

salary = exp(0.5499% / 2)x1716 = 1996

4.5.4 Forecast evaluation and dynamic prediction

In this section we will compare predictions made using an econometric model
with the actual values in order to evaluate the predictive ability of the model. We will
also examine the dynamic prediction in models in which lagged endogenous variables
are included as regressors.

Forecast evaluation statistics

Suppose that the sample forecast is i=n+1, nt+2,..., nth, and denote the actual
and forecasted value in period 7 as y; and J;, respectively. Now, we present some of the

more common statistics used for forecast evaluation.
Mean absolute error (MAE)

The MAE is defined as the average of the absolute values of the errors:

n+h

Z Vi _J’i|

MAE = “T (4-67)

Absolute values are taken so that positive errors are compensated by the
negative ones.

Mean absolute percentage error (MAPE),

n+h

Vi— J’i|
MAPE = —"‘"z;l Y
h

%100 (4-68)

Root of the mean squared error (RMSE)
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This statistic is defined as the square root of the mean of the squared error:

(4-69)

As the errors are squared, the compensation between positive and negative errors
are avoided. It is important to remark that the MSE places a greater penalty on large
forecast errors than the MAE.

Theil Inequality Coefficient (U)

This coefficient is defined as follows:

(4-70)

The smaller U is, the more accurate are the predictions. The scaling of U is such
that it will always lie between 0 and 1. If U=0, then y~=y,, for all forecasts; if U=1 the
predictive performance is as bad as it can be. Theil’s U statistic can be rescaled and

decomposed into three proportions: bias, variance and covariance. Of course the sum of
these three proportions is 1. The interpretation of these three proportions is as follows:

1) The bias reflects systematic errors. Whatever the value of U, we would hope
that the bias is close to 0. A large bias suggests a systematic over or under
prediction.

2) The variance also reflects systematic errors. The size of this proportion is an
indication of the inability of the forecasts to replicate the variability of the
variable to be forecasted.

3) The covariance measures unsystematic errors. Ideally, this should have the
highest proportion of Theil inequality.

In addition of the coefficient defined in (4-70), Theil proposed other coefficients
for forecast evaluation.

Dynamic prediction
Let the following model be given:
v, =B+ Bx,+ By, +u, (4-71)

Suppose that the sample forecast is i=n+1,...,i=n+h, and denote the actual and
forecasted value in period i as y; and J,, respectively. The forecast for the period n+1 is

j>n+l = ﬁl + ﬁanH + ﬂA:‘;y}I (4-72)

As we can see for the prediction, we use the observed value of y (y,) because it is
inside the sample used in the estimation. For the remainder of the forecast periods we
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use the recursively computed forecast of the lagged value of the dependent variable
(dynamic prediction), that is to say,

j>n+i = :é1 +Ié2xn+i + IBSJA}H—I-H' i= 2,3,‘ : '>h (4‘73)

Thus, from period n+2 to n+h the forecast carried out in a period is used to
forecast the endogenous variable in the following period.

Exercises
Exercise 4.1 To explain the housing price in an American town, the following model is
formulated:

price = B, + B,rooms + flowstat + [,crime+u

where rooms is the number of rooms in the house, /owstat is the percentage of people of
“lower status” in the area and crime is crimes committed per capita in the area. Prices of
houses are measured in dollars.

Using the data in hprice2, the following model has been estimated:

price = —15694+ 6788 rooms —268 lowstat —3854 crime

(8022) (1211) 81) (960)
R*=0.771  n=55
(The numbers in parentheses are standard errors of the estimators.)
a) Interpret the meaning of the coefficients ,32 , ,33 and ,34 .

b) Does the percentage of people of “lower status” have a negative
influence on the price of houses in that area?

¢) Does the number of rooms have a positive influence on the price of
houses?

Exercise 4.2 Consider the following model:
In( fruit) = B, + 5, In(inc) + B,hhsize + B, punder5 +u

where fruit is expenditure in fruit, inc is disposable income of a household, iAsize is the

number of household members and punder5 is the proportion of children under five in
the household.

Using the data in workfile demand, the following model has been estimated:

In( fruit) = —9.768+ 2.005 In(inc) —(%'.139())5 hhsize _(()0'.91 %)79 punder5

(3.701) (0.512)

R=0.728 n=40
(The numbers in parentheses are standard errors of the estimators.)

a) Interpret the meaning of the coefficients ,32 , ,33 and ﬁ’4 .

b) Does the number of household members have a statistically significant
effect on the expenditure in fruit?

¢) Is the proportion of children under five in the household a factor that has
a negative influence on the expenditure of fruit?

d) 1s fruit a luxury good?

Exercise 4.3 (Continuation of exercise 2.5). Given the model
yv=p+Bx+u 1i=12,...,n

the following results have been obtained with a sample size of 11 observations:
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(Remember that /3, = =L E
z X’ - )?Z X,
i=1 i=1

a) Build a statistic to test H,: 5, =0 against H :fS3, #0.

b) Test the hypothesis of question a) when EB =2F”.
c¢) Test the hypothesis of question a) when EB = F*.

)

Exercise 4.4 The following model has been formulated to explain the spending on food
(food):

Jfood = B, + B,inc + Birpfood +u
where inc is disposable income and rpfood is the relative price index of food compared
to other consumer products.

Taking a sample of observations for 20 successive years, the following results
are obtained:

food, =1.40+0.126inc, — 0(.000%6 rpfood,

(4.92) (0.01)
R=0.996; > 47 =0.196

(The numbers in parentheses are standard errors of the estimators.)

a) Test the null hypothesis that the coefficient of rpfood is less than 0.

b) Obtain a confidence interval of 95% for the marginal propensity to
consume food in relation to income.

¢) Test the joint significance of the model.

Exercise 4.5 The following demand function for rental housing is formulated:
In(srenhous;)=p1+paIn(prenhous;)+ filn(inc;)+te;

where srenhous is spending on rental housing, prenhous is the rental price, and inc is

disposable income.

Using a sample of 403 observations, we obtain the following results:
In(srenhous,) =10—0.7In (prenhousi ) +0.91n (incl. )

1.0 0 0
R*=0.39 cov(B)=| 0 0.09 0.085
0 0.085 0.09

a) Interpret the coefficients on In(prenhous) and In(inc).

b) Using a 0.01 significance level, test the null hypothesis that f,=45=0.

¢) Test the null hypothesis that 5,=0, against the alternative that $,<O0.

d) Test the null hypothesis that ;=1 against the alternative that f3# 1.

e) Test the null hypothesis that a simultaneous increase in housing prices
and income has no proportional effect on housing demand.
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Exercise 4.6 The following estimated models corresponding to average cost (ac)
functions have been obtained, using a sample of 30 firms:

ac; =172.46+35.72 qty,

(11.97)  (3.70)
R*=0.838  RSS=8090 )]
O i T i e T
R*=0.978 RSS=1097 )

where ac is the average cost and gty is the quantity produced.
(The numbers in parentheses are standard errors of estimators.)

a) Test whether the quadratic and cubic terms of the quantity produced are
significant in determining the average cost.

b) Test the overall significance in the model 2.

Exercise 4.7 Using a sample of 35 observations, the following models have been
estimated to explain expenditures on coffee:

m =21.324 0.111n(inc) — 1.33 In(cprice) +1.35 In(tprice)
(0.01) (0.23)

(1
R*>=0.905 RSS=254
ln(w/ﬁ7€) =19.9+ 0.14 In(inc) — 1.42 In(cprice)
(0.02) (0.21) Q)

RSS =529
where inc is disposable income, cprice is coffee price and price is tea price.
(The numbers in parentheses are standard errors of estimators.)

a) Test the overall significance of model (1)

b) The standard error of In(¢price) is missing in model (1), can you calculate
it?

c) Test whether the price of tea is statistically significant.

d) How would you test the assumption that the price elasticity of coffee is
equal but opposite to the price elasticity of tea? Detail the procedure.

Exercise 4.8 The following model has been formulated to analyse the determinants of
air quality (airqual) in 30 Standard Metropolitan Statistical Areas (SMSA) of
California:

airqual = B, + B, popln + f,medincm + [, poverty + fB; fueoil + S.valadd +u

where airqual is weight in pg/m’ of suspended particular matter, popln is population in
thousands, medincm is medium per capita income in dollars, poverty is the percentage
of families with income less than poverty levels, fueloil is thousands of barrels of fuel
oil consumed in industrial manufacturing, and valadd is value added by industrial
manufactures in 1972 in thousands of dollars.

Using the data in workfile airqualy, the above model has been estimated:

airqual, =97.35+0.0956 popin, —0.0170 medincm, —0.0254 poverty,

(10.19)  (0.0311) (0.0055) (0.0089)

—0.0031 fueoil, — 0(.001 lvaladd,

(0.0017) 0.0025)
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R*=0.415 n=30
(The numbers in parentheses are standard errors of the estimators.)

a) Interpret the coefficients on medincm, poverty and valadd
b) Are the slope coefficients individually significant at 10%?
¢) Test the joint significance of fueloil and valadd, knowing that

airqual, =97.67+0.0566 popln, —0 0102 medincm, —0.0174 poverty,

(10.41) (0.020) (0.0078)

R*=0.339 n=30
d) If you omit the variable poverty in the first model, the following results
are obtained:

airqual, =82.98 +0.0523 popln, ~0.0097 medinem,

1002y (0:03D) 0.0055)
—0.00063 fueoil. —0.00037 valadd,
(0.0017) (0.0028)

R*=0218 n=30

Are the slope coefficients individually significant at 10% in the new
model? Do you consider these results to be reasonable in comparison
with those obtained in part b).
Comparing the R* of the two estimated models, what is the role played by
poverty in determining air quality?

e) If you regress airqual using as regressors only the intercept and poverty,
you will obtain that R*=0.037. Do you consider this value to be
reasonable taking into account the results obtained in part d)?

Exercise 4.9 With a sample of 39 observations, the following production functions by
OLS was estimated:

output, = Glaborcapital®® exp(0.0055trend,) R =0.9945
O/L;]_?u\l‘t = Blabortl'4lcapiz‘alt0'47 R =0.9937
output, = 4 exp(0.0055trend,) R’ =0.9549

a) Test the joint significance of labor and capital.

b) Test the significance of the coefficient of the variable trend.

¢) Identify the statistical assumptions under which the test carried out in the
two previous sections are correct. A further question: Specify the
population model of the first of the three previous specifications.

Exercise 4.10 A researcher has developed the following model:
V=Bt By Xy + iy +u
Using a sample of 43 observations, the following results were obtained:
¥; =-0.06+1.44 x;, -0.48 x5,

0.1011 -0.0007 -0.0005

(X'X)! = 0.0231 —0.0162
0.0122
> yP =444 > 57 =424.92

a) Test that the intercept is less than 0.
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b) Test that =2.
¢) Test the null hypothesis that f,+3£3=0.

Exercise 4.11 Given the function of production
g =ak®l” exp(u)

and using data from the Spanish economy over the past 20 years, the following results
were obtained:

in(g,) = 0.15+0.73In(k ) +0.47In(/ )
4129 -95 -266

[XX]'=| -95 3 5 RSS =0.017
266 5 19

a) Test the individual significance of the coefficients on k and /.
b) Test whether the parameter a is significantly different from 1.
c) Test whether there are increasing returns to scale.
Exercise 4.12 Let the following multiple regression model be:
y=a,+ox +a,x, +u
With a sample of 33 observations, this model is estimated by OLS, obtaining the
following results:

$, =12.7+14.2x, +2.1x,

41 -095 -0.266
G [XX]" = 095 38 05
-0.266 0.5 1.9
a) Test the null hypothesis ao= a.
b) Test whether o, /a, =7.
c) Are the coefficients oy, a1, y o individually significant?

Exercise 4.13 Using a sample of 30 companies, the following cost functions have been
estimated:

a) cost, =172.46+35.72x, R>=0.838 R>=0.829 RSS=8090
(11.97)  (3.70)

b) cost, =310.07—85.39x, +26.73x* —1.40 x> R*=0.978 R>=0.974 RSS=1097
(29.44)  (33.81) (11.61) (1.22)

where cost is the average cost and x is the quantity produced.
(The numbers in parentheses are standard errors of estimators.)

a) Which of the two models would you choose? What would be the criteria?

b) Test whether the quadratic and cubic terms of the quantity produced are
significant in determining the average cost.

¢) Test the overall significance of the model b).

Exercise 4.14 A researcher formulates the following model:

y=B+pBx, + Bix;tu

Using a sample of 13 observations the following results are obtained:
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$. =1.00-1.82x,, +0.36x,,
R*=0.50 n=13
025 -0.01 0.04
var(B)=|-0.01 0.16 —0.15
0.04 -0.15 0.81

(1

a) Test the null hypothesis that 4, = 0 against the alternative hypothesis that

B, <0.
b) Test the null hypothesis that S, +f, =—1 against the alternative

hypothesis that S, + 3, # —1, with a significance level of 5%.

¢) Is the whole model significant?
d) Assuming that the variables in the estimated model are measured in
natural logarithms, what is the interpretation of the coefficient for x3?

Exercise 4.15 With a sample of 50 automotive companies the following production
functions were estimated taking the gross value added of the automobile production
(gva) as the endogenous variable and labor input (labor) and capital input (capital) as
explanatory variables.

D In(gva,) =3.87+ (()d%()) In(labor;) + %0%44)‘ In(capital,)

5

RSS= 254 R* =075 R’ =072
In(gva,) =19.9 +1.04In(capital,)
RSS = 529 R*=0.84,R*=0.81
3 In(gva /labor) =15.2 + 0.87 In(capital. / labor)

RSS = 380
(The numbers in parentheses are standard errors of estimators.)

2)

a) Test the joint significance of both factors in the production function.

b) Test whether labor has a significant positive influence on the gross value
added of automobile production.

¢) Test the hypothesis of constant returns to scale. Explain your answer.

Exercise 4.16 With a sample of 35 annual observations two demand functions of Rioja
wine have been estimated. The endogenous variable is spending on Rioja reserve wine
(wine) and the explanatory variables are disposable income (inc), the average price of a
bottle of Rioja reserve wine (pwinrioj) and the average price of a bottle of Ribera Duero
reserve wine (pwinduer). The results are as follows:

m =21.324 0.11In(renta;) — 1.33 In(pvinrioj; )+ 1.35 In(pvinduer;)
(0.01) (0.23) (0.233)

R?> =0.905 RSS =254

In(vino;) =19.9 + 0.14 In(renta;) — 1.42 In( pvinrioj; )
(0.02) (0.21)

RSS =529
(The numbers in parentheses are standard errors of the estimators.)
a) Test the joint significance of the first model.
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b) Test whether the price of wine from Ribera del Duero has a significant
influence, using two statistics that do not use the same information. Show
that both procedures are equivalent.

¢) How would you test the hypothesis that the price elasticity of Rioja wine
is the same but with an opposite sign to the price elasticity of Ribera del
Duero wine? Detail the procedure to follow.

Exercise 4.17 To analyze the demand for Ceylon tea (feceil) the following econometric
model is formulated:

In(teceil) = B, + B, In(inc) + B, In( pteceil) + S, In( pteind) + B In( pcobras) +u
where inc is the disposable income, pteceil the price of tea in Ceylon, pteind is the price
of tea in India and pcobras is the price of Brazilian coffee.

With a sample of 22 observations the following estimates were made:

In(teceil,) =2.83+ 0.25 In(inc,) — 1.48 In( pteceil, )
(0.17) (0.98)
+ 1.18 In( pteind; ) + 0.19 In( pcofbras;)
(0.69) (0.16)

RSS=0.4277
In(teceil, x pteceil) = 0.74 + 0.26 In(inc,) + 0.20 In( pcofbras; )
(0.16) (0.15)

RSS=0.6788
(The numbers in parentheses are standard errors of the estimators.)
a) Test the significance of disposable income.
b) Test the hypothesis that S, =—1 y £, =0, and explain the procedure

applied.
¢) If instead of having information on RSS, only R* was known for each
model, how would you proceed to test the hypothesis of section b)?

Exercise 4.18 The following fitted models are obtained to explain the deaths of
children under 5 years per 1000 live births (deathu5) using a sample of 64 countries.

1) deathuns, = 263.64 —0.0056inc, + 2.23 fertrate, R =0.7077

(0.0019)

2) deathun5, =168.31—0.0055inc, + 1:76 femilrat, +12.87 fertrate,, R® =0.7474

(0.0018)

where inc is income per capita, femiltrat is the female illiteracy rate, and fertrate is the
fertility rate
(The numbers in parentheses are standard errors of the estimators.)

a) Test the joint significance of income, illiteracy and fertility rates.
b) Test the significance of the fertility rate.
¢) Which of the two models would you choose? Explain your answer.

Exercise 4.19 Using a sample of 32 annual observations, the following estimations were
obtained to explain the car sales (car) of a particular brand:

car, = 104.8— 6.64 pcar; +2.98 adv,
(6.48)  (3.19) (0.16)

S af =1805.2; Y (car, —car)* =13581.4

42



where pcar is the price of cars and adv are spending on advertising.
(The numbers in parentheses are standard errors of the estimators.)

a) Are price and advertising expenditures significant together? Explain your
answer.

b) Can you accept that prices have a negative influence on sales? Explain
your answer.

¢) Describe in detail how you would test the hypothesis that the impact of
advertising expenditures on sales is greater than minus 0.4 times the
impact of the price.

Exercise 4.20 In a study of the production costs (cos?) of 62 coal mines, the following
results are obtained:

cost =2.20—0.104 dmec; +3 48 geodif; —I—O 104 absent;
(3.4)  (0.005)

S[op-p| =1096 Y i’ =18.48
where dmec is the degree of mechanization, geodif is a measurement of geological

difficulties and absent is the percentage of absenteeism.

a) Test the significance of each of the model coefficients.
b) Test the overall significance of the model.

Exercise 4.21 With fifteen observations, the following estimation was obtained:
»,=8.04-246x,+0.23x,

(1.00) (0.60)
R*=0.30
where the values between parentheses are standard deviations and the coefficient of
determination is the adjusted one.

a) Is the coefficient of the variable x; significant?
b) Is the coefficient of the variable x; significant?
¢) Discuss the joint significance of the model.

Exercise 4.22 Consider the following econometric specification:
Y=+ fox, + fixs + fix, +u
With a sample of 26 observations, the following estimations were obtained:

2

1) V= 2+%‘19'3;x1 9227)x2 (125))63[ +u, R =0.982
~ 2_

2) V= 1.5+(237)(in +x2i)—8?gx3l. +u, R =0.876

(The ¢ statistics are between brackets)
a) Show that the following expressions for the F-statistic are equivalent:

_ (RSS,-RSS,, )/ 7 . (R -R:)/q
RSS,,, / (n—k) (1-R%)/ (n—k)

b) Test the null hypothesis f,= f5.

Exercise 4.23 In the estimation of the Brown model in exercise 3.19, using the workfile
consumsp, we obtained the following results:

conspc, =—7.156+0.3965incpc, + 0 577lconspct .

(84.88)  (0.0857)
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R*>=0.997 RSS=1891320 n=56
Two additional estimations are now obtained:

m =-98.13+0.2757(incpc, — conspc, ;)

(84.43)  (0.0803)

R*=0.1792 RSS=2199474 n=56
m =—-7.156—0.0264 incpc + ()(E).');)ZOZ)I(conqu_1 —incpc,)

(84.88)  (0.0090)

R*=0.6570 RSS=1891320 n=56
(The numbers in parentheses are standard errors of the estimators.)

a) Test the significance of each of the coefficients for the first model.

b) Test that the coefficient on incpc in the first model is smaller than 0.5.
¢) Test the overall significance of the first model.

d) Is it admissible that £, + 3, =1?

e) Show that by operating in the third model you can reach the same
coefficients as in the first model.

Exercise 4.24 The following model was formulated to analyze the determinants of the
median base salary in $ for graduating classes of 2010 from the best American business
schools (salMBAgr):

salMBAgr = B, + p,tuition+ f,salMBApr +u

where tuition is tuition fees including all required fees for the entire program (but
excluding living expenses) and sa/MBApr is the median annual salary in $ for incoming
classes in 2010.

Using the data in MBAtuil0, the previous model has been estimated:
salMBAgr, = 42489+ 0.188 1 tuition, +0.5992 salMBApr

(5415) (0.0628) (0.1015)
R’=0.703 n=39
(The numbers in parentheses are standard errors of the estimators.)

a) Which of the regressors included in the above model are individually
significant at 1% and at 5%?

b) Test the overall significance of the model.

¢) What is the predicted value of sa/MBAgr for a graduate student who paid
100000$ tuition fees in a two-year MBA master and previously had a
salMBApr equal to 700008? How many years of work does the student
require to offset tuition expenses? To answer this question, suppose that
the discount rate equals the expected rate of salary increase and that the
student received no wage income during the two master courses.

d) If we added the regressor rank2010 (the rank of each business school in
2010), the following results were obtained:

salMBAgr; = 61320+ 0.1229 tuition, +0.4662 salMBApr,

(8520) (0.0626) (0.1055)

—232.06 rank2010,

(85.13)
R*=0.755  n=39
Which of the regressors included in this model are individually
significant at 5%?
What is the interpretation of the coefficient on rank2010?
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e) The variable rank2010 is based on three components: gradpoll is a rank
based on surveys of MBA grads and contributes 45 percent to final
ranking; corppoll is a rank based on surveys of MBA recruiters and
contributes 45 percent to final ranking; and intellec is a rank based on a
review of faculty research published over a five-year period in 20 top
academic journals and faculty books reviewed in The New York Times,
The Wall Street Journal, and Bloomberg Businessweek over the same
period; this last rank contributes 10 percent to the final ranking. In the
following estimated model rank2010 has been substituted for its three
components:

salMBAgr, = 19904+ 0.0305 tuition, +0. 375 1salMBApr,

(10700) (0.0696)

-303.82 gradpoll. —33 829 corppoll. —1 13 36mtellec

(94.54)
R2—0.797 n=39
What is the weight in percentage of each one of these three components
in determining the salMBAgr? Compare the results with the contribution
of each in defining rank2010.
f) Are gradpoll, corppoll and intellec jointly significant at 5%? Are they
individually significant at 5%?

Exercise 4.25 (Continuation of exercise 3.12). The population model corresponding to
this exercise is:

In(wage) = B, + B,educ + Bitenure+ B,age+u
Using workfile wage06sp, the previous model was estimated:

In(wage), =1.565+0.0448 educ, +0.0177 tenure, +0.0065 age,

0.073)  (0.0035) (0.0019) (0.0016)

R*=0.337 n=800
(The numbers in parentheses are standard errors of the estimators.)

a) Test the overall significance of the model.

b) Is tenure statistically significant at 10%? Is age positively significant at
10%?

¢) Is it admissible that the coefficient of educ is equal to that of fenure? Is it
admissible that the coefficient of educ is triple to that of tenure? To
answer these questions you have the following additional information:

W =1.565+0.0271leduc,+0.0177(educ + tenure), +0.0065 age,

0.073) (0.0042) (0.0019) (0.0016)
m =1.565-0.0082 educ; +0.0177(3 x educ + tenure), +0.0065 age,
0.073) (0. 0071) (0.0019) (0.0016)

Can you calculate the R” in the two equations in part ¢)? Please do it.

Exercise 4.26 (Continuation of exercise 3.13). Let us take the population model of this
exercise as the reference model. In the estimated model, using workfile housecan, the
standard errors of the coefficients appear between brackets:

price, = 2418+ 5827 bedrooms, + 19750 bathrms, + 5 41 llotszze

(3379) (1207)

R*=0.486  n=546
a) Test the overall significance of this model.
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b) Test the null hypothesis that an additional bathroom has the same
influence on housing prices than four additional bedrooms. Alternatively,
test that an additional bathroom has more influence on housing prices

than four additional bedrooms. (Additional information: Var(,Bz)

=1455813; var(/3,)=3186523; and var(f3,, 3,) =764846).

c¢) If we add the regressor stories (number of stories excluding the
basement) to the model, the following results have been obtained:

price, =—4010+ 2825 bedrooms, +17105 bathrms,

(3603) (1215) (1734)

+5.429 lotsize, + 7635 stories,
(0.369) (1008)

R*=0.536 n=546
What do you think about the sign and magnitude of the coefficient on
stories? Do you find it surprising? What is the interpretation of this
coefficient? Test whether the number of stories has a significant
influence on housing prices.
d) Repeat the tests in part ) with the model estimated in part ¢). (Additional

information: Var(,éz)=1475758; Var(,é’3)=3008262; and Var(ﬁ’z, ,33)2-
554381).

Exercise 4.27 (Continuation of exercise 3.14). Let us take the population model of this
exercise as the reference model. Using workfile ceoforbes, the estimated model was the
following:

In(salary), = 4.641+0.0054 roa, +0. 2893 In(sales,) +0.0000364 profits, +0.0122 tenure

(0377)  (0.0033) (0.0425) (0.0000220)

R=0.232 n=447
(The numbers in parentheses are standard errors of the estimators.)

a) Does roa have a significant effect on salary? Does roa have a significant
positive effect on salary? Carry out both tests at the 10% and 5%
significance level.

b) 1f roa increases by 20 points, by what percentage is salary predicted to
increase?

¢) Test the null hypothesis that the elasticity salary/sales is equal to 0.4.

d) If we add the regressor age, the following results are obtained:

In(salary), = 4.159+0.0055 roa, + 0.2903In(sales,) +0.0000539 profits

0.442)  (0.0033) (0.0000220)

+0.00924 tenure, +0.00880 age,

(0.0035) (0.0043)
R*=0.240 n=447
Are the estimated coefficients very different from the estimates in the
reference model? What about the coefficient on fenure? Explain it.
e) Does age have a significant effect on the salary of a CEO?
f) Is it admissible that the coefficient of age is equal to the coefficient of

tenure? (Additional information: var( ,Bs) =1.24E-05; var( ,36) =1.82E-05;
and var(f,, ,) =-6.09E-06).
Exercise 4.28 (Continuation of exercise 3.15). Let us take the population model of this

exercise as the reference model. Using workfile rdspain, the estimated model was the
following:
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rdintens, = —1.8168+0.1482In(sales,) + 0 01 IOexponsal

(0.428) (0.0278)

R’=0.048 n=1983
(The numbers in parentheses are standard errors of the estimators.)
a) Is the sales variable individually significant at 19%?
b) Test the null hypothesis that the coefficient on sales is equal to 0.2?

¢) Test the overall significance of the reference model.
d) 1f we add the regressor In(workers), the following results are obtained:

rdintens = 0.480—0.08585 In(sales) + 0. 01049 exponsal + 0 3422 In(workers)

(0.750) (0.0687)
R*=0.055 n—1983
Is sales individually significant at 1% in the new estimated model?

e) Test the null hypothesis that the coefficient on In(workers) is greater than
0.5?

Exercise 4.29 (Continuation of exercise 3.16). Let us take the population model of this
exercise as the reference model. Using workfile hedcarsp, the corresponding fitted
model is the following:

In(price), = 14.42+0.000581cid, +0.003823 hpweight, — 0. 07854 fueleff

(0.154)  (0.0000438) (0.0079) 0.0122)
R=0.830 n=214
(The numbers in parentheses are standard errors of the estimators.)

a) Which of the regressors included in the reference model are individually
significant at 1%?

b) Add the variable volume to the reference model. Does volume have a
statistically significant effect on In(price)? Does volume have a
statistically significant positive effect on In(price)?

¢) Is it admissible that the coefficient of volume estimated in part b) is equal
but is the opposite of the coefficient of fueloff?

d) Add the variables length, width and height to the model estimated in part
b). Taking into account that volume=lengthxwidthxheight, is there
perfect multicollinearity in the new model? Why? Why not? Estimate the
new model if it is possible.

e) Add the variable In(volume) to the reference model. Test the null
hypothesis that the price/volume elasticity is equal to 1?

f) What happens if you add the regressors In(length), In(width) and
In(height) to the model estimated in part e)?

Exercise 4.30 (Continuation of exercise 3.17). Let us take the population model of this
exercise as the reference model. Using workfile timuse(03, the corresponding fitted
model is the following:

houswork, =141.9+3.850educ, —0.00917 hhinc, +1.767 age, —0.2289 paidwork,

(2327)  (1.621) (0.00539) (0.311) (0.0229)
R’=0.1440  n=1000
(The numbers in parentheses are standard errors of the estimators.)

a) Which of the regressors included in the reference model are individually
significant at 5% and at 1%?
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b) Estimate a model in which you could test directly whether one additional
year of education has the same effect on time devoted to house work as
two additional years of age. What is your conclusion?

¢) Test the joint significance of educ and hhnc.

d) Run a regression in which you add the variable childup3 (number of
children up to three years) to the reference model. In the new model,
which of the regressors are individually significant at 5% and at 1%?

e) In the model formulated in d), what is the most influential variable?
Why?

Exercise 4.31 (Continuation of exercise 3.18). Let us take the population model of this
exercise as the reference model. Using workfile hdr2010, the corresponding fitted
model is the following:

stsfglo, = —0.375+0.0000207 gnipc, + 0. 0858hfexpec

(0.584) (0.00000617)

R=0.642 n=144
(The numbers in parentheses are standard errors of the estimators.)

a) Which of the regressors included in the reference model are individually
significant at 1%?

b) Run a regression by adding the variables popnosan (population in
percentage without access to improved sanitation services) and gnirank
(rank in gni) to the reference model. Which of the regressors included in
the new model are individually significant at 1%? Interpret the
coefficients on popnosan and gnirank.

¢) Are popnosan and gnirank jointly significant?

d) Test the overall significance of the model formulated in 5).

Exercise 4.32 Using a sample of 42 observations, the following model has been
estimated:

$, =—670.591+1.008x,

For observation 43, it is known that the value of x is 1571.9.

a) Calculate the point predictor for observation 43.

b) Knowing that the variance of the prediction error &° = y* —* is equal

to (24.9048)%, calculate a 90% probability interval for the individual
value.

Exercise 4.33 Besides the estimation presented in exercise 4.23, the following
estimation on the Brown consumption function is also available:

conspc, =12729+0. 3965(lncpc —13500) + 0 577l(conspc ., —12793.6)

(64.35) (0.0857

R2=0.997 RSS=1891320 n=56
(The numbers in parentheses are standard errors of the estimators.)

a) Obtain the point predictor for consumption per capita in 2011, knowing
that incpc2011=13500 and conspcz010=12793.6.

b) Obtain a 95%confidence interval for the expected value of consumption
per capita in 2011.

¢) Obtain a 95% prediction interval for the individual value of consumption
per capita in 2011.
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Exercise 4.34 (Continuation of exercise 4.30) Answer the following questions:

a) Using the first estimation in exercise 4.30, obtain a prediction for
houswork (minutes devoted to house-work per day), when you plug in
the equation educ=10 (years), hhinc=1200 (euros per month), age=50
(years) and paidwork=400 (minutes per day).

b) Run a regression, using workfile timuse(3, which allows you to calculate
a 95% CI with the characteristics used in part a).

¢) Obtain a 95% prediction interval for the individual value of houswork
with the characteristics used in parts a).

Exercise 4.35 (Continuation of exercise 4.29) Answer the following questions:

a) Plug in the first equation of the exercise 4.29 of cid=2000 (cubic inch
displacement), hpweight=10 (ratio horsepower/weight in kg expressed as
percentage), and fueleff=6 (minutes per day) Obtain the point predictor of
consumption per capita in 2011, knowing that incpcy1=12793.6 and
conspca10=13500.

b) Obtain a consistent estimate of price with the characteristics used in parts
a.

¢) Run a regression that allows you to calculate a 95% CI with the
characteristics used in part a).

d) Obtain a 95% prediction interval for the individual value of the
consumption per capita 2011.
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