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Fitting Generalized

Linear Models

Last time, we introduced the elements of the GLIM:

• The response y, with distribution

f(y; θ) = exp

j
yθ − b(θ)

a(φ)
+ c(y, φ)

ff
,

where θ is the canonical parameter. from which

we showed that E(y) = μ = b′(θ) and

Var(y) = a(φ)b′′(θ).

• The linear predictor

η = xT β,

where x is a vector of covariates and β is to be

estimated.

• The link function, which connects η to μ,

g(μ) = η.

In this notation, the subscript i has been suppressed.
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In many cases, a(φ) will have the form

a(φ) = φ/w,

where φ is the dispersion parameter and w is a known

weight.

Example: normal response. Under the normal

model y ∼ N(μ, σ2), the log-density is

log f = − 1

2σ2
(y − μ)2 − 1

2
log

`
2πσ2´

=
yμ − μ2/2

σ2
− y2

2σ2
− 1

2
log

`
2πσ2´

.

Therefore, the canonical parameter is θ = μ, and the

remaining elements are b(θ) = μ2/2 and φ = σ2,

a(φ) = φ.

In a heteroscedastic model y ∼ N(μ, σ2/w ), where w

is a known weight, we would have φ = σ2 and

a(φ) = φ/w.

Example: binomial response. If y ∼ n−1Bin(n, π),

then the log-probability mass function is

log f = log n! − log(ny)! − log(n(1 − y))!

+ ny log π + n(1 − y) log(1 − π)
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=
y log

“
π

1−π

”
+ log(1 − π)

1/n
+ c,

where c doesn’t involve π. Therefore, the canonical

parameter is

θ = log

„
π

1 − π

«
,

the b-function is

b(θ) = − log(1 − π) = log
“
1 + eθ

”
,

the dispersion parameter is φ = 1, and a(φ) = φ/n.

Canonical link. We showed that the canonical

parameter for y ∼ N(μ, σ2) is θ = μ, and the

canonical parameter for ny ∼ Bin(n, π) is θ = logit(π).

Notice that the most commonly used link function for

a normal model is η = μ, and the most commonly

used link function for the binomial model us

η = logit(π). This is no accident. When η = θ, we say

that the model has a canonical link. Canonical links

have some nice properties, which we will discuss.

It is often convenient to use a canonical link. But

convenience does not imply that the data actually

conform to it. It will be important to check the
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appropriateness of the link through diagnostics,

whether or not the link is canonical.

Fitting generalized linear models via Fisher

scoring. ML estimation for β may be carried out via

Fisher scoring,

β(t+1) = β(t) +
h
−E l′′(β(t))

i−1

l′(β(t)),

where l is the loglikelihood function for the entire

sample y1, . . . , yN .

Temporarily changing the notation, we will now let l,

l′ and l′′ denote the contribution of a single

observation yi = y to the loglikelihood and its

derivatives. We do this for simplicity, understanding

that the corresponding functions for the entire sample

are obtained by summing the contributions over the

sample units i = 1, . . . , N .

Ignoring constants, the loglikelihood is

l(θ; y) =
yθ − b(θ)

a(φ)
.

The contribution of y = yi to the jth element of the
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score vector is

∂l

∂βj
=

„
∂l

∂θ

«„
∂θ

∂μ

«„
∂μ

∂η

«„
∂η

∂βj

«
.

The first factor is

∂l

∂θ
=

y − b′(θ)
a(φ)

=
y − μ

a(φ)
.

Because μ = b′(θ), the second factor is

∂θ

∂μ
=

1

b′′(θ)
=

1

V (μ)
=

a(φ)

Var(y)
,

where V (μ) = b′′(θ) is the variance function that we

discussed last time.

The third factor, ∂μ/∂η, will depend on the link

function. The fourth factor is ∂η/βj = xij , where xij

is the jth element of the covariate vector xi = x for

the ith observation. Putting it all together, we have

∂l

∂βj
=

y − μ

Var(y)

„
∂μ

∂η

«
xij .

If we are using the canonical link η = θ, then

∂μ/∂η = ∂μ/∂θ = b′′(θ), so the score becomes

∂l

∂βj
=

y − μ

Var(y)
b′′(θ) xij =

y − μ

a(φ)
xij .

To find the expected second derivatives, we can use
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the property

−E

„
∂2l

∂βj∂βk

«
= E

»„
∂l

∂βj

«„
∂l

∂βk

«–

= E

„
y − μ

Var(y)

«2„
∂μ

∂η

«2

xijxik

=
1

Var(y)

„
∂μ

∂η

«2

xijxik.

With the canonical link, this becomes

E

„
∂2l

∂βj∂βk

«
= − b′′(θ)

a(φ)
xijxik.

But under the canonical link, the actual second
derivative is

∂2l

∂βj∂βk
=

∂

∂βk

„
∂l

∂θ

«„
∂θ

∂βj

«

=

„
∂l

∂θ

«„
∂2θ

∂βj∂βk

«
+

„
∂θ

∂βj

«„
∂2l

∂θ2

«„
∂θ

∂βk

«
.

= 0 +

„
∂2l

∂θ2

«
xijxik.

Also, we saw last time that

∂2l

∂θ2
= − b′′(θ)

a(φ)
,

so with the canonical link, the actual second
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derivatives equal the observed second derivatives, and

Fisher scoring is the same thing as Newton-Raphson.

Under the canonical link, the second derivatives are

constant with respect to the data y.

Putting it together. For an arbitrary link, we have

just shown that

∂l

∂βj
=

y − μ

Var(y)

„
∂μ

∂η

«
xij ,

−E

„
∂2l

∂βj∂βk

«
=

1

Var(y)

„
∂μ

∂η

«2

xijxik.

It follows that the score vector for the entire data set

y1, . . . , yN can be written as

∂l

∂β
= XTA(y − μ),

where X = (x1, . . . , xN )T ,

A = Diag

»
[Var(yi)]

−1

„
∂μi

∂ηi

«–
,

= Diag

»
Var(yi)

„
∂ηi

∂μi

«–−1

,

and y and μ now denote the entire vectors

y = (y1, . . . , yN )T ,
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μ = (μ1, . . . , μN )T .

The expected Hessian matrix becomes

−E

„
∂2l

∂β∂βT

«
= XTWX,

where

W = Diag

"
[Var(yi)]

−1

„
∂μi

∂ηi

«2
#

= Diag

"
Var(yi)

„
∂ηi

∂μi

«2
#−1

.

An iteration of Fisher scoring is then

β(t+1) = β(t) +
“
XTWX

”−1

XTA (y − μ) ,

where W , A and μ are calculated from β(t).

Iteratively reweighted least squares. Recall that

a heteroscedastic normal model is fit by weighted

least squares (WLS),

β̂ =
“
XTWX

”−1

XTWy,

where y is the response and W is the diagonal matrix

of weights, which is equivalent to OLS regression of
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W 1/2y on W 1/2X.

We can arrange the step of Fisher scoring to make it

resemble WLS. First, rewrite it as

β(t+1) =
“
XTWX

”−1 h
XTWXβ(t) + XTA (y − μ)

i
.

Then note that Xβ = (η1, . . . , ηN )T = η. Also, note

that A and W are related by

A = W

„
∂η

∂μ

«
,

where ∂η/∂μ = Diag(∂ηi/∂μi). Therefore, we can

write it as

β(t+1) =
“
XTWX

”−1

XTWz,

where

z = η +

„
∂η

∂μ

«
(y − μ)

= (z1, . . . , zN )T ,

where zi = ηi + (∂ηi/∂μi)(yi − μi). In the GLIM

literature, zi is often called the adjusted dependent

variate or the working variate. Fisher scoring can

therefore be regarded as iteratively reweighted least

squares (IRWLS) carried out on a transformed version
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of the response variable.

At each cycle, we

• use the current estimate for β to calculate a new

working variate z and a new set of weights W ,

and then

• regress z on X using weights W to get the

updated β.

Viewing Fisher scoring as IRWLS makes it easy to

program this algorithm as a macro in any statistical

package (even Minitab!) capable of WLS.

Viewing Fisher scoring as IRWLS has an additional

advantage: It provides an excellent basis for us to

derive model-checking diagnostics. The diagnostics

that are commonly used in regression—plotting

residuals versus fitted values, leverage and influence

measures, etc.—have obvious analogues in GLIM’s

when we view the fitting procedure as IRWLS.

Covariance matrix. The final value for (XTWX)−1

upon convergence is the estimated covariance matrix

for β̂. The diagonal elements of this matrix provide
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the squared SE’s for the estimated coefficients.

What about the dispersion parameter? Recall

that the variance of yi is usually of the form

V (μi)φ/wi, where V is the variance function, φ is the

dispersion parameter, and wi is a known weight. In

this case, φ cancels out of the IRWLS procedure and

β̂ itself is the same under any assumed value for φ.

So, we could actually remove φ from the W matrix.

But we have to be careful, because the assumed value

for φ must be put back in to get a correct estimated

covariance matrix for β̂.

Example: Normal regression. Suppose that

yi ∼ N(μi, σ
2/wi) where wi is a known weight, and

let ηi = g(μi) = xT
i β for some link function g. In this

case, φ = σ2 and the variance function is constant. If

we use a log link,

log μi = xT
i β,

then ∂ηi/∂μi = 1/μi, the weight matrix is

W = Diag

»
wiμ

2
i

σ2

–
,
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and the working variate is

zi = ηi +
yi − μi

μi

= xT
i β +

yi − exp(xT
i β)

exp(xT
i β)

.

We do not need to assume anything about σ2 to find

β̂, but we do need an estimate to get a covariance

matrix for β̂. The traditional estimate would be

σ̂2 =
1

N − p

NX
i=1

wi (yi − μ̂i)
2 ,

where μ̂i = exp(xT
i β̂). This is not exactly unbiased,

nor is it the ML estimate (the ML estimate uses N in

the denominator).

If we use the identity link μi = xT
i β, then

∂ηi/∂μi = 1, W = Diag(wiσ
−2), and zi = yi. Neither

zi nor W depends on the current estimate of β, and

the procedure reduces to a single iteration of WLS. In

this case,

σ̂2 =
1

N − p

NX
i=1

wi (yi − μ̂i)
2
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with μ̂i = xT
i β̂ is exactly unbiased.

Example: Binomial regression. In previous

lectures, we described the ML fitting procedure for

logistic regression and binomial models with arbitrary

link functions. Now let’s re-create the procedure using

our new notation for GLIM’s.

If nyi ∼ Bin(ni, μi), then

Var(yi) =
μi(1 − μi)

ni

=
φ

ni
μi(1 − μi)

for φ = 1 (no over- or underdispersion). The variance

function is

V (μi) = μi(1 − μi).

Under a logit link

log

„
μi

1 − μi

«
= xT

i β,

we have
∂ηi

∂μi
=

1

μi(1 − μi)
,

the weight matrix becomes

W = Diag [ niμi(1 − μi) ] ,
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and the working variate is

zi = ηi +
yi − μi

μi(1 − μi)

= xT
i β +

yi − expit(xT
i β)

expit(xT
i β)( 1 − expit(xT

i β) )
.

Notice that in this new notation, yi is the observed

proportion of successes in ni trials, rather than the

actual number of successes.

Generalized linear modeling software.

Generalized linear modeling is now a standard part of

modern statistical packages. In R, the relevant

function is glm(). In SAS, you can use PROC

GENMOD. As with ordinary linear regression

software, you need to declare the response variable y

and the predictors x. In addition, however, you also

need to declare the distributional family. The most

common distributional families are normal

(Gaussian), binomial, and Poisson. When you select

the distributional family, you are actually selecting

the variance function. After selecting the family, you

also need to select the link function.

If you do not explicitly choose a link function, the
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software will, by default, use the canonical link for the

given distributional family. If you do not specify a

family, the software will use the Gaussian or normal

family. Therefore, the software will, by default, fit a

normal linear regression.

In some cases, you will also need to specify weights.

The weights wi. These are known factors that are

inversely proportional to the variance of y. In a

binomial model, the ni’s will be the weights. If no

weights are given, the software will assume that all

weights are 1.

Here’s an example of how to use the glm() function in

R.

> ######################################################################

> # Example: Logistic regression in R using glm()

> #

> # Enter the Berkeley graduate admission data

>

> dept <- c("A","A","B","B","C","C","D","D","E","E","F","F")

> sex <- c("M","F","M","F","M","F","M","F","M","F","M","F")

> accept <- c(512, 89, 353, 17, 120, 202, 139, 131, 53, 94, 22, 24)

> reject <- c(313, 19, 207, 8, 205, 391, 278, 244, 138, 299, 351, 317)

>

> # Define the response as the proportion of successes

> n <- accept + reject

> y <- accept/n

>

>

> # change dept and sex to factors

> dept <- factor(dept)

> sex <- factor(sex)
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>

> # use the contrasts() function to see what effects will be created

> contrasts(dept)

B C D E F

A 0 0 0 0 0

B 1 0 0 0 0

C 0 1 0 0 0

D 0 0 1 0 0

E 0 0 0 1 0

F 0 0 0 0 1

> contrasts(sex)

M

F 0

M 1

>

>

> # fit the model with main effects only

> result <- glm( y ~ dept + sex, family=binomial(link="logit"),

+ weights=n)

> summary(result)

Call:

glm(formula = y ~ dept + sex, family = binomial(link = "logit"),

weights = n)

Deviance Residuals:

1 2 3 4 5 6 7 8

-1.2536 3.7319 -0.0575 0.2777 1.2357 -0.9116 0.1180 -0.1227

9 10 11 12

1.2076 -0.8424 -0.2148 0.2125

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.67913 0.09908 6.854 7.18e-12 ***

deptB -0.04362 0.10984 -0.397 0.691

deptC -1.26090 0.10661 -11.827 < 2e-16 ***

deptD -1.28782 0.10576 -12.177 < 2e-16 ***

deptE -1.73751 0.12609 -13.780 < 2e-16 ***

deptF -3.30527 0.16997 -19.447 < 2e-16 ***

sexM -0.09673 0.08081 -1.197 0.231

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 876.572 on 11 degrees of freedom

Residual deviance: 20.225 on 5 degrees of freedom

AIC: 103.17

Number of Fisher Scoring iterations: 4

>

>

> # now fit the final model from Lecture 13

> deptA <- 1*(dept=="A")

> deptB <- 1*(dept=="B")

> deptC <- 1*(dept=="C")

> deptD <- 1*(dept=="D")

> deptE <- 1*(dept=="E")

> deptF <- 1*(dept=="F")

> deptA.male <- 1*( (dept=="A")&(sex=="M") )

>

> # Note: the "-1" notation removes the intercept

> result <- glm( y ~ -1 + deptA + deptB + deptC + deptD +

+ deptE + deptF + deptA.male,

+ family=binomial(link="logit"), weights=n)

> summary(result)

Call:

glm(formula = y ~ -1 + deptA + deptB + deptC + deptD + deptE +

deptF + deptA.male, family = binomial(link = "logit"), weights = n)

Deviance Residuals:

1 2 3 4 5 6 7 8

0.0000 0.0000 -0.1041 0.4978 0.6950 -0.5177 -0.3270 0.3435

9 10 11 12

0.8120 -0.5754 -0.4341 0.4418

Coefficients:

Estimate Std. Error z value Pr(>|z|)

deptA 1.54420 0.25272 6.110 9.94e-10 ***

deptB 0.54286 0.08575 6.330 2.44e-10 ***

deptC -0.61569 0.06916 -8.902 < 2e-16 ***

deptD -0.65925 0.07496 -8.794 < 2e-16 ***

deptE -1.08950 0.09535 -11.427 < 2e-16 ***

deptF -2.67565 0.15243 -17.553 < 2e-16 ***

deptA.male -1.05208 0.26271 -4.005 6.21e-05 ***

---
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1105.6870 on 12 degrees of freedom

Residual deviance: 2.6085 on 5 degrees of freedom

AIC: 85.552

Number of Fisher Scoring iterations: 3

Now here’s the same thing using PROC GENMOD.

In the model statement, we use the “event/trial”

syntax. Note that, by default, SAS creates effect

codes for the CLASS variables.
options linesize=72;

data admissions;

input dept $ sex $ reject accept;

n = accept + reject;

cards;

DeptA Male 313 512

DeptA Female 19 89

DeptB Male 207 353

DeptB Female 8 17

DeptC Male 205 120

DeptC Female 391 202

DeptD Male 278 139

DeptD Female 244 131

DeptE Male 138 53

DeptE Female 299 94

DeptF Male 351 22

DeptF Female 317 24

;

proc genmod data=admissions;

class dept sex;

model accept/n = dept sex / dist=binomial link=logit;

run;

Relevant portions of the SAS output:
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The GENMOD Procedure

Model Information

Data Set WORK.ADMISSIONS

Distribution Binomial

Link Function Logit

Response Variable (Events) accept

Response Variable (Trials) n

Number of Observations Read 12

Number of Observations Used 12

Number of Events 1756

Number of Trials 4526

Class Level Information

Class Levels Values

dept 6 DeptA DeptB DeptC DeptD DeptE DeptF

sex 2 Female Male

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 5 20.2251 4.0450

Scaled Deviance 5 20.2251 4.0450

Pearson Chi-Square 5 18.8317 3.7663

Scaled Pearson X2 5 18.8317 3.7663

Log Likelihood -2594.4532

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square
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Intercept 1 -2.7229 0.1577 -3.0319 -2.4138 298.19

Analysis Of Parameter

Estimates

Parameter Pr > ChiSq

Intercept <.0001

Analysis Of Parameter Estimates

Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square

dept DeptA 1 3.3053 0.1700 2.9721 3.6384 378.17

dept DeptB 1 3.2616 0.1788 2.9113 3.6120 332.89

dept DeptC 1 2.0444 0.1679 1.7153 2.3734 148.31

dept DeptD 1 2.0174 0.1699 1.6845 2.3504 141.01

dept DeptE 1 1.5678 0.1804 1.2141 1.9214 75.49

dept DeptF 0 0.0000 0.0000 0.0000 0.0000 .

sex Female 1 0.0967 0.0808 -0.0617 0.2551 1.43

sex Male 0 0.0000 0.0000 0.0000 0.0000 .

Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Parameter

Estimates

Parameter Pr > ChiSq

dept DeptA <.0001

dept DeptB <.0001

dept DeptC <.0001

dept DeptD <.0001

dept DeptE <.0001

dept DeptF .

sex Female 0.2313

sex Male .

Scale

NOTE: The scale parameter was held fixed.
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Diagnostics. We have shown that the Fisher scoring

algorithm for a GLIM can be written as IRWLS,

β(t+1) =
“
XTWX

”−1

XTWz,

where

W = Diag

"
Var(yi)

„
∂ηi

∂μi

«2
#−1

is the matrix of weights and

z = η +

„
∂η

∂μ

«
(y − μ)

is the working variate. Now we will appeal to the

interpretation as IRWLS to suggest diagnostic

techniques to check the appropriateness of the model.

This material is derived from Chapter 12 of

McCullagh and Nelder (1989).

Residuals. The Pearson residual is defined as

r =
yi − μ̂q
V̂ar(y)

,

where μ̂ is the ML estimate for μ, and

V̂ar(y) = a(φ)V (μ̂)

is the estimated variance of y.
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If we write the deviance as D =
PN

i=1 di where di is

the contribution of the ith unit, then the deviance

residual is

r = sign(y − μ)
√

d.

For example, in a binomial model yi ∼ Bin(ni, πi),

the Pearson residual is

ri =
yi − niπ̂ip
niπ̂i(1 − π̂i)

,

and the deviance residual is ri = sign(yi − niπ̂i)
√

di,

where

di = 2

j
yi log

„
yi

niπ̂i

«
+ (ni − yi) log

„
ni − yi

ni − niπ̂i

« ff
.

(For computational purposes, interpret 0 log 0 as 0.)

Deviance and the Pearson residuals behave something

like the standardized residuals in linear regression.

McCullagh and Nelder suggest that distributional

properties of deviance residuals are a little closer to

those of their linear regression counterparts, and they

suggest using the deviance residuals in plots.

Plotting residuals versus fitted values. Plot the

residuals on the vertical axis versus the linear

predictor η on the horizontal axis. As in linear
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regression, we hope to see something like a

“horizontal band” with mean ≈ 0 and constant

variance as we move from left to right.

• Curvature in the plot may be due to a wrong link

function or the omission of a nonlinear (e.g.

quadratic) term for an important covariate.

• Non-constancy of range suggests that the

variance function may be incorrect.

For binary responses, this plot is not very informative;

all the points will lie on two curves, one for y = 0 and

the other for y = 1. However, the plot may still help

us to find outliers (residuals greater than about 2 or 3

in the positive or negative direction).

Plotting residuals versus individual covariates.

In the same way, we can also plot the residuals versus

a single covariate. (If the model has only one

predictor, this will be equivalent to the last plot.)

Again, we hope to see something like a horizontal

band. Curvature in this plot suggests that the

x-variable in question ought to enter into the model

in a nonlinear fashion—for example, we might add a

quadratic term x2 or try various transformations like
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√
x or log x.

Absolute residuals versus fitted values. Plotting

|r| versus the fitted values μ can reveal a problem

with the variance function. If there is no trend, the

variance function is probably okay. An increasing

trend (positive slope) suggests that the variance

function is increasing too slowly with the mean; for

example, V (μ) = μ might have to be replaced with

V (μ) = μ2. Within a particular parametric family

(e.g., binomial or Poisson) we can’t really change the

variance function. However, we can with a

quasilikelihood approach (we’ll talk about that later).

What are the implications of an incorrect variance

function? Recall that in OLS regression,

heteroscedasticity has the following implications: the

estimate β̂ is still unbiased, but it is no longer

efficient. For GLIM’s the situation is similar.

If the variance function is correct, then

• β̂ is asymptotically unbiased, normal and

efficient, and

• the estimated covariance matrix for β̂ from the

Fisher scoring algorithm is a consistent estimate
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In the variance function is not correct, then

• β̂ is still asymptotically unbiased and normal, but

• β̂ is not efficient, and

• the estimated covariance matrix for β̂ is not

consistent for Var(β̂).

The last problem (inconsistency of the variance

estimate) can be fixed by using the so-called

sandwich estimator. We will learn about this later,

when we talk more about quasilikelihood.




