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Abstract
This article presents a novel approach to address the mining width-constrained open pit mine production scheduling problem 
in the context of medium-term planning. A mathematical formulation is proposed to incorporate mining width constraints 
into the production scheduling process, aiming to maximize the NPV of the schedule while ensuring enough room for the 
operation of mining equipment. To tackle the computational challenges posed by large-scale instances of the problem, we 
propose a method based on variable fixing and horizontal precedence generation. In this study, we apply the developed model 
to real-world scenarios from Radomiro Tomic short-term mine planning problems such as optimizing the timing of major 
truck maintenance and the impact of external factors, like the delay in the production of the Chuquicamata underground 
project. Remarkable improvements are observed with the mining width-constrained model. Specifically, the mining width 
satisfiability is enhanced from 2 to 60% compared to the traditional open pit mine production scheduling model, underscor-
ing the significance of incorporating these constraints. The proposed method showed good results reaching optimality gaps 
within 5%.

Keywords Open pit · Mine planning · Mining width · Direct block scheduling · OPMPS

1 Introduction

The effective management of mining operations relies on 
optimizing the resource utilization and production sched-
ule. In this context, the application of scheduling models 
has emerged as a promising approach to enhance short- and 
medium-term mine planning strategies. Radomiro Tomic 
mine (RT), operated by Codelco Chile, stands as a signifi-
cant copper mining operation renowned for its rich min-
eral deposits and strategic importance in the global cop-
per industry. Located 40 km from the city of Calama in 
the Antofagasta region of Chile, the mine operates at an 
elevation of 3000 m above sea level. While its operations 
officially commenced in 1995, the discovery of RT dates to 
the 1950s. Through continuous technological advancements 
and feasibility studies, Codelco successfully established the 
mine as an economically viable operation, leveraging its 
vast reserves of oxidized and sulfide minerals. As one of 
the largest copper mine worldwide, RT plays a crucial role 
in meeting global copper demand and contributing to the 
economic growth of Chile.

Highlights
• New formulation that integrates mining width constraints into 

open-pit production scheduling.
• Adaptation of algorithms and heuristics to manage large-scale 

instances.
• Scenario analysis based on Radomiro Tomic real dataset offers 

practical insights for medium-term mine planning optimization.
• The new formulation boosts mining width satisfiability to 60% 

compared to the 2% obtained with traditional models, with 
minimal optimality gaps.
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The geology of RT is primarily associated with the 
Chuquicamata porphyry complex, a copper-rich geologi-
cal formation. The mine houses a porphyry copper deposit 
formed by molten magma intrusion, resulting in mineral-
ized zones with copper and other valuable elements. These 
zones include the leached, oxide, mixed, enrichment, and 
primary sulfide zones, each with distinct characteristics. RT 
employs open-pit mining to extract oxidized minerals from 
the leached and oxide zones, using crushing, leaching, and 
solvent extraction-electrowinning techniques. For sulfide 
minerals in the mixed, enrichment, and primary sulfide 
zones, more complex methods like crushing, grinding, and 
froth flotation are required. Open-pit mining allows for effi-
cient extraction due to its large-scale operation and special-
ized equipment and infrastructure.

Mine planning in RT is commonly done in four stages. 
Strategic planning includes the company’s vision, look-
ing for alternatives to create more value for the company. 
Once an alternative is chosen, it is developed into the busi-
ness plan, which considers the Life of Mine (LOM). The 
medium-term plan shows more detail in the first 5 years of 
production. The main scope is to ensure the conditions for 
fulfilling the business plan. Short-term plans are typically 
focused on the first year of the medium-term plan, done on a 
monthly scale. Periods shorter than that are known as opera-
tional plans (monthly, weekly, or daily plans).

Medium- and short-term mine planning holds immense 
significance in optimizing production and resource utiliza-
tion. It serves as a vital link between the long-term strategic 
plans and the day-to-day operational activities of a mine. By 
focusing on shorter time horizons, typically ranging from 
weeks to months, short-term mine planning allows mining 
companies to adapt to changing market conditions, optimize 
production rates, and maximize the efficient utilization of 
resources. This planning phase involves intricate considera-
tions such as determining the optimal sequence of mining 
activities [1, 2], coordinating equipment allocation (e.g., 
[3–6]), and managing the extraction of various ore types 
and grades [7–9]. By aligning these factors, it is ensured the 
continuous flow of ore to the processing plant, minimizes 
ore loss and dilution, and enhances overall productivity. It 
enables mining companies to achieve production targets, 
meet quality specifications, and maintain a steady supply 
of minerals to the market, contributing to their profitability 
and sustainable growth.

Medium- and short-term mine planning involves a myr-
iad of challenges and complexities that need to be carefully 
addressed [10]. One such challenge is managing multiple 
mining phases (or pushbacks) within the same operational 
period [11, 12]. In open-pit mining, for example, it is com-
mon to have concurrent operations in different areas of 
the mine, including pre-stripping, waste removal, and ore 
extraction. Coordinating these activities while optimizing 

equipment utilization and maintaining safety standards 
requires careful planning and scheduling. Additionally, 
short-term mine planning must consider processing alter-
natives to accommodate variations in ore characteristics. 
This entails evaluating different processing routes, such 
as crushing, grinding, and flotation, to achieve the desired 
product specifications efficiently [13, 14]. The coordination 
of mining and processing activities is crucial to avoid bot-
tlenecks and to ensure a smooth flow of material through the 
production chain. Managing these complexities demands a 
comprehensive understanding of the mining operation, the 
interdependencies between different activities, and the abil-
ity to make informed decisions in real-time.

The challenges associated with short-term mine plan-
ning necessitate the adoption of advanced planning models 
and techniques. Traditional manual planning approaches 
are often time-consuming, subject to human errors, and 
limited in their ability to consider multiple constraints and 
objectives simultaneously [12, 15]. To address these limita-
tions, the mining industry has witnessed the emergence of 
advanced planning models that leverage technologies such 
as optimization algorithms, mathematical programming, and 
simulation. These models enable mining companies to incor-
porate various factors, including geological uncertainties, 
equipment capacities, processing constraints, and market 
dynamics, into the planning process [16]. By utilizing real-
time data, these models can generate optimal short-term pro-
duction schedules, considering the dynamic nature of mining 
operations [17, 18].

Open-pit mine production scheduling models have 
emerged as a valuable tool in mine planning, offering a sys-
tematic approach to optimize the extraction sequence. These 
models consider the discretization of the mining area into 
blocks, considering factors such as geological characteris-
tics, mining constraints, and production targets. By incorpo-
rating various parameters and constraints, block scheduling 
models enable planners to define the best extraction period 
and process destination for each block.

Bienstock and Zuckerberg [19] introduce an algorithm 
aimed at resolving the linear programming relaxation related 
to the precedence-constrained production scheduling prob-
lem (PCPSP). The innovation lies in a reformulation strategy 
that clusters numerous variables into a singular representa-
tion. The problem is decomposed into a dual (P2) and a 
primal (P1) problem. The primal problem is the relaxation 
of the PCPSP (removing the side constraints). Thus, the sub-
problem P1 can be efficiently solved using maximal closure 
algorithms. The information from the P1 is used to cluster 
the variables that are considered in the P2 problem, which 
has the PCPSP structure and due to the significant variable 
reduction can be efficiently solved to optimality. The dual 
values associated to the side constraints of the solution of 
the P2 are then considered for the P1 (like a Lagrangian 
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methodology). In broad terms, the algorithm iterates until 
the clusters remain the same. Comprehensive studies on 
Bienstock-Zuckerberg algorithm applied to the Open Pit 
Mine Production Scheduling (OPMPS) can be found in 
Letelier et al. [20] and Muñoz et al. [21].

Chicoisne et al. [22] present the Critical Multiplier Algo-
rithm targeted at addressing linear programming relaxations 
of large instances of the PCPSP when only one side con-
straint is considered. Their method consists of building a 
LP solution based on a systematic penalization of the profits 
used to compute an ultimate pit (as in [23]). Thus, the nested 
pits obtained from the penalization method are used to build 
the solution of the LP relaxation for the single resource con-
strained PCPSP (also referred as C-PIT). They also intro-
duce a suite of heuristics based on topological sorting to 
build integer solutions to the C-PIT problem.

However, traditional OPMPS models often yield non-
mineable solutions due to the scarce distribution of blocks 
mined at the same periods. Therefore, mine practitioners, 
in most cases, must significantly modify the solution to the 
implementation in the mine planning process. Thus, the 
inclusion of minimum mining width conditions in OPMPS 
models may enhance the mineability of medium-term plans, 
reducing the portion of the solution that must be modified 
before its implementation.

Recent work on the inclusion of mining width constraints 
in similar open pit problems, like the ultimate pit limit, 
nested pits, and pushbacks design problems, has resulted in 
substantial improvements on the mineability and practical-
ity of the solutions. For example, Deutsch [24] introduces 
techniques based on Boolean satisfiability for production 
planning with mining width constraints, though not immedi-
ately applicable to large-scale problems. Deutsch et al. [25] 
present a dynamic programming algorithm for evenly spaced 
pushbacks, addressing the gap issue (uneven variation of 
volume between pits) in the resultant design. Nancel-Penard 
and Morales [26] expand an integer linear programming 
model for pit design with added mining width constraints, 
achieving smoother operational designs. Yarmuch et al. [27] 
focus on mining width and continuity in pushback genera-
tion using rectangular templates and flow constraints, while 
Yarmuch and Rubinstein [28] propose a soap-bubble cluster 
method for efficient pushback shapes. Morales et al. [29] 
develop an integer programming model for nested pits with 
penalty-based constraints, impacting resulting geometries 
and economic value. Transitioning to production scheduling, 
a recent work by Nancel-Penard and Jelvez [30] proposes 
an integer linear programming model with a decomposition 
heuristic for mining width requirements, ensuring safe pit 
walls and operational constraints, though limited by instance 
size. However, most of these approaches are neither devel-
oped for the OPMPS problem nor capable of dealing with 
large instance problems. Therefore, this study will focus on 

developing a new framework to include such constraints to 
the OPMPS and solve real world problem instances.

Specifically, the objective of this paper is to present a 
mathematical model that includes mining width constraints 
to the OPMPS problem (MW-OPMPS) and solve it in the 
context of medium-term mine-planning. We utilize the Bien-
stock-Zuckerberg LP (BZ) algorithm to solve subproblems 
associated with the MW-OPMPS. Additionally, the paper 
seeks to adapt the method introduced in Yarmuch et al. 
[27] to account for the mining width constraint. The MW-
OPMPS model offers a more suitable framework for this 
highly complex mining operation. The use of BZ algorithm 
is particularly relevant at RT, where materials can be pro-
cessed in different processing plants, making the application 
of alternative methods such as CMA less effective.

The subsequent sections of this paper provide a compre-
hensive analysis of the application of a MW-OPMPS model 
at RT, focusing on optimizing medium-term mine planning 
processes. In Sect. 2, we present a mathematical formula-
tion for the MW-OPMPS and describe our solution method. 
Section 3 presents a detailed case study aimed at answering 
multiple operational issues providing valuable insights into 
the practical use of the MW-OPMPS model at a prominent 
copper mining operation. Finally, in Sect. 4, we present the 
conclusions drawn from the study.

2  Mathematical Model and Solution Method

In this section, we introduce a mathematical model aimed to 
maximize the net present value (NPV) of an open pit mine’s 
production schedule while adhering to processing and geo-
metrical constraints. It considers processing and mining 
upper limits per period, geotechnical wall slope constraints 
modeled as a set of block precedence, and multiple des-
tinations for the mined blocks, such as heap leach, mills, 
and waste dumps. To ensure its realism and applicability in 
medium-term planning, the model accounts for the mining 
width constraint per period—for simplicity—modeled as a 
series of rectangular templates (see [27, 31]) and a maxi-
mum vertical advance (also known as sinking rate) modeled 
as a set of inter-temporal set of precedencies. The sinking 
rate constraints are important to prevent a deep isolated 
excavation at a given period mimicking more bench-by-
bench excavation.

2.1  Sets and Notation

b ∈ B : set of blocks.
t ∈ T  : periods (a month or a few months in this case).
d ∈ D : destinations.
w ∈ W : set of all rectangular templates.
ŵ ∈ Wb : set of rectangular templates that contains block b
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b̂ ∈ Bw : set of blocks that are contained within the template 
w

(u, v) ∈ S : set of pair of blocks that are in conflict regarding 
the sinking rate constraint, i.e., block v needs to be extracted at 
least a period earlier than block u

(a, b) ∈ A : set of pair of blocks that forms the geotechni-
cal constraints, i.e., block b needs to be extracted before than 
block a

2.2  Parameters

p∗
bdt

 : discounted profit of block b when extracted at period t 
and sent to destination d . Computed as p∗

bdt
=

pbd

(1+�)t
 , where pbd 

is the profit of block b when sent to destination d and � is the 
discount rate.

ab,d ∶ resource associated to block b at destination d
Cd,t : maximum resource capacity (tonnage) of destination 

d at period t

2.3  Variables

The first set of variables are associated with the extraction of 
the blocks.

The second set of variables are associated to the ramp seg-
ments considered to build the ramp.

2.4  Objective Function

The objective function aims to maximize the discounted 
cashflow or net present value.

2.5  Constraints

xb,d,t =

{

1 if block b is sent to destination d at period t

0, otherwise

uw,t =

{

1, if the mining width template w is selected at period t

0, otherwise

max
∑

b∈B

∑

d∈D

∑

t∈T

p∗
b,d,t

⋅ xb,d,t

(1)
∑

b∈B

ab,d ⋅ xb,d,t ≤ Cd,t t ∈ T, d ∈ D

(2)
∑

�∈{1,..,t}

∑

d∈D

xa,d,� ≤
∑

�∈{1,..,t}

∑

d∈D

xb,d,� (a, b) ∈ A

(3)
∑

d∈D

xb,d,t ≤
∑

ŵ∈Wb

uŵ,t b ∈ B, t ∈ Tb ∈ B, t ∈ T

Constraint (1) represents the resource constraint per 
destination per period, in our case, the resource associated 
with each block consists of its tonnage. This constraint can 
directly be extended to multiple resource constraints per des-
tination. Constraint (2) ensures that, to extract a block b at 
period t, all its vertical predecessors must also be extracted 
by period t. Constraint (3) flags a rectangular template w 
that contains b if block b is mined at period t. Constraint (4) 
forces all blocks within block template w to be extracted at 
period t. Constraint (5) ensures that a block is extracted and 
sent at most to one destination over the periods. Constraint 
(6) ensures that the rectangular templates are selected on at 
most one period. Finally, Constraint (7) ensures that all the 
blocks that could violate the sinking rate constraint from 
block i are extracted at least a period earlier than block j 
itself.

2.6  Solution Method

The resultant MW-OPMPS integer programming model, 
hereafter named as P, is intractable for large prob-
lem instances. Therefore, we propose to solve a slightly 
relaxed version of P denoted as P*, that captures most 
of the structure of P. The solution method is as follows. 
First, let Q denote as the subproblem formed by Con-
straints (1), (2), (5), and (7). Second, we define the prob-
lem P* as the sub-problem Q plus the following constraint: 
∑

�∈{1,..,t}

∑

d∈Dxl,d,� ≤
∑

�∈{1,..,t}

∑

d∈Dxm,d,� , (l,m) ∈ H (Con-
straint (8)), i.e., we replace Constraints (3), (4) and (6) by 
Constraint (8) (Fig. 1).

The set of horizontal precedencies H is obtained by adapt-
ing the procedure introduced in Yarmuch et al. (2021b), as 
follows. First, we solve the subproblem Q which its LP relax-
ation is solved with the BZ algorithm. The integer solution 
is, then, obtained using the TopoHeur procedure presented 
in Chicoisne et al. [22]. Second, the predefined rectangular 
template is floated over the solution of Q.

As a block can be included in multiple templates, the 
procedure consists of selecting the templates that present 
the smaller average extraction time for each block and then 
creating the set of horizontal precedencies H as shown in 

(4)uw,t ≤
∑

d∈D

xb,d,t w ∈ W, b̂ ∈ Bw, t ∈ T

(5)
∑

t∈T

∑

d∈D

xb,d,t ≤ 1b ∈ B

(6)
∑

t∈T

uw,t ≤ 1 w ∈ W

(7)
∑

�∈{1,..,t}

∑

d∈D

xi,d,� ≤
∑

�∈{1,..,t−1}

∑

d∈D

xj,d,� (i, j) ∈ S



Mining, Metallurgy & Exploration 

Fig. 1. In the example, a rectangular template of 2 by 3 
blocks is considered. Fig. 2 illustrates the average period 
corresponding to each template that contains the selected 
block in Fig. 1. Thus, the linear relaxation of P* preserves 
the mathematical structure of the OPMPS, and it can be 
solved using the same method described to solve the sub-
problem Q, but now considering the precedencies H for the 
TopoSort and TopoHeur rounding heuristic.

However, there are two main limitations of this proce-
dure. First, the method of choosing the minimum average 
template does not ensure that all the blocks within a template 

will select the same template for the creation of the set H . 
Therefore, we developed some rules for the addition of the 
precedencies to the set H , following a first come first serve 
strategy. For example, the precedence (l,m) is added only if 
the precedence (m, l) is not in H ; also, we give priority to 
ore blocks.

Second, we solve the problem P* using the -by for-
mulation to exploit the network structure of the problem 
(see Appendix). In that regard, the precedencies H will be 
imposed as the block m must be extracted by the time the 
block l is extracted. This is not what we are modeling in P, 
where the relationship is that the blocks within the same 
template must be extracted at the same period, not by the 
same period.

As this procedure precludes, the full compliance of the 
mining width in the solution of P*, we define a simple met-
ric named mining width satisfiability ( MWS ), to measure the 
mining width compliance. The metric basically counts the 
number of blocks ( Nw ) for which exists a template that (1) 
contains a block, and all the blocks within that template are 
extracted at the same period. That number is then divided 
by the total of blocks scheduled ( Ns ). Thus, the mining 
width satisfiability is obtained as the division of Nw and Ns 
( MWS = Nw∕Ns).

3  Case Study

In this case study, we conducted a set of four experiments 
to investigate the incorporation of mining width constraints 
in the OPMPS problem and its applications to real medium-
term scheduling problems. Experiment 1 considers the 
capacities from the baseline case but introduces operational 
mining widths of a 4 × 4 blocks template. The objective is 

Fig. 1  Illustration of the creation of horizontal precedence (blue 
arrows) based on a modification of the template variable fixing intro-
duced in Yarmuch et al. (2021b)

Fig. 2  Example of the average 
extraction period obtained for 
the rectangular templates that 
contains the colored block 
based on the solution of the sub-
problem Q. The template with 
the smaller average is selected 
for the construction of the 
horizontal precedencies for the 
problem P*, as in Fig. 1
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to compare a traditional OPMPS solution with the MW-
OPMPS solution. We expect that the traditional OPMPS 
plan will appear less mineable, i.e., scarce spatial distribu-
tion of blocks mined at the same periods. The key focus is 
not only on understanding the improvement in mining width 
satisfiability but also assessing the impact on the NPV and 
the change in sequence compared to the traditional OPMPS 
solution.

Experiments 2, 3, and 4 encompass different operational 
scenarios. Experiment 2 evaluates the impact on the mining 
sequence, production schedule, and NPV of adjusting the 
total mining capacity to match it to real performance. Exper-
iment 3 helps to estimate the impact and the best period for 
a major truck maintenance. Experiment 4 re-evaluates the 
impact of the major maintenance decision studied in Experi-
ment 3 but considering an extra requirement of sulfide ore 
due to a delay of Chuquicamata underground mine (Chuqui 
UG).

We ran 10 problem instances to conduct the four experi-
ments. Table 1 summarizes the instances parameters in 
relationship with the experiments conducted. Instances I1 
and I2 consider the same capacities and parameters of the 
long-term plan (LOM), differing only on the addition of a 
mining width template of 4 × 4 for I2. Experiment 2 com-
pares results of instance I3 against instance I2, to evaluate 
the impact of adjusting planned production to real produc-
tion data. Instance I3 considers a 20% penalization in the 
LOM capacities due to truck availability issues. Instances 
I4, I5, and I6 not only consider the same mining capacity 
as instance I3 but also include a reduction of 35% of the 
LOM capacity in periods 2, 4, and 6 (months 3–4, 7–8, and 
11–12), respectively. Subsequent periods after the mainte-
nance period consider a 10% penalization compared to the 
LOM capacity.

Experiment 3 compares the results of instances I4, I5, 
and I6 against instance I3. For UG delay, we consider the 
truck penalization of instance I3 plus an extra requirement 
of 60 k tons per day of sulfide ore for months 13 to 24 
(instance I7). Instances I8, I9, and I10 are based on instance 
I8 plus the maintenance scenarios of instances I4, I5, and 
I6, respectively. Finally, Experiment 4 consists of comparing 
instances I8, I9, and I10 against instance I7. The experiments 

described aim to evaluate the usefulness of the MW-OPMPS 
model and solution method to investigate the effects of vary-
ing operational conditions and provide insights into optimiz-
ing the scheduling process in complex mining environments.

The RT geological block model consists of 6.3 mil-
lion blocks of size 20 × 20 × 15 m each. However, we only 
consider the blocks within the pushbacks planned for the 
first 5 years of the LOM, resulting in 47 thousand blocks 
to impose the use blocks within the LOM designed push-
backs. All experiments are run on a Windows machine with 
an 8th generation Intel i7 processor and 64 Gb RAM; we 
use the MILP software library CPLEX 22.1 to solve the LP 
problems. All mine schedules are run for the first 4 years 
of the operation (discretized as 24 bimonthly periods). A 
maximum sinking rate of 4 benches per period is considered 
for all the instances studied to control the vertical advance. 
The value of the LP relaxation of the OPMPS is used as 
the upper bound to measure the gap of the integer solution. 
Similarly, we use the value of the LP relaxation of the prob-
lem P* as the upper bound for the MW-OPMPS instances.

3.1  Inclusion of the Mining Width Constraints

Experiment 1 shows the impact of including the mining 
width constraints on the OPMPS problem by solving the 
MW-OPMPS model introduced in Sect. 2. The findings 
revealed notable differences when comparing the mining 
width satisfiability of the solutions of the MW-OPMPS 
against the OPMPS. The same production, mining, and sink-
ing rate constraints are considered for both cases. However, 
the MW-OPMPS considers a mining width template of 4 by 
4 blocks. The same template is used to compute the mining 
width satisfiability.

As a result of Experiment 1, the solution of the OPMPS 
problem took a computation time of 18 min, while the solu-
tion of the MW-OPMPS problem took 37 min to solve. In 
terms of mining width satisfiability, the OPMPS achieved a 
very low satisfaction rate of 2.47%, while the satisfiability 
of the MW-OPMPS solution reached a significantly higher 
mining width compliance of 57% (see Fig. 3 and Fig. 4 for 
visual comparison).

Table 1  Parameters and description of problem instances studied for 
the experiments. Inst., instance; M.W., mining width templates (num-
ber of blocks in X direction and number of blocks in Y direction); 

Prod. Adj., production adjustments; Maint. Period., maintenance 
period; UG delay, the underground delay consideration

Inst I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

M.W 1 × 1 4 × 4 4 × 4 4 × 4 4 × 4 4 × 4 4 × 4 4 × 4 4 × 4 4 × 4
Prod. Adj - - Yes Yes Yes Yes Yes Yes Yes Yes
Maint. Period. 

[months]
- - - 3–4 7–8 11–12 - 3–4 7–8 11–12

UG delay - - - - - - Yes Yes Yes Yes



Mining, Metallurgy & Exploration 

Remarkably, the inclusion of mining width constraints 
had a minor impact on the NPV of the mine plan, com-
pared to the significant improvement in mineability. The 
OPMPS solution yielded an NPV of 1993 MUSD, while 
the MW-OPMPS solution resulted in a slightly lower NPV 
of 1862 MUSD. The optimality gap, representing the 
deviation from the upper bound considered as the Linear 
Relaxation integer models, was 0.1% for the OPMPS and 
2.57% for the MW-OPMPS solutions. These gaps indicate 
that both approaches were relatively close to the optimal 
solution. Table 2 summarizes the results of Experiment 1.

The results of Experiment 1 highlight the effectiveness of 
incorporating mining width constraints in ensuring a greater 
proportion of blocks satisfies the width requirements, lead-
ing to improved operational compliance, and making the 
outputs more useful for engineering designs.

Furthermore, when considering the operational aspects 
of the mine plan, additional insights emerge from the inclu-
sion of mining width constraints in the production sched-
uling problem. One significant observation is that the 
MW-OPMPS problem necessitates a significantly larger 
movement of waste compared to the OPMPS option. This 

Fig. 3  Isometric view of Experiment 1 solutions, a solution of instance I1 and b the solution of instance I2

Fig. 4  Plan view (level 2610) of 
Experiment 1 results, a solution 
of instance I1 and b solution of 
instance I2
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implies that the inclusion of mining width constraints 
increases the amount of waste material that needs to be han-
dled. Despite this, it is noteworthy that the MW-OPMPS 
effectively keeps the Run-of-Mine (ROM) and Mill to their 
full capacity, ensuring optimal throughput and maintaining 
production levels. Moreover, the analysis of NPV flow high-
lights that the NPV generated from the Mill plays a crucial 
role in supporting the overall NPV. Although the inclusion 
of mining width constraints slightly reduces the total NPV 
compared to the unconstrained problem, the majority of the 
NPV flow is sustained by the economic value generated from 
the Mill (see Fig. 5).

3.2  Scenario Analysis

3.2.1  Impact of Truck Availability

Experiment 2 aims to analyze the impact of truck avail-
ability on the mine schedule. In this scenario, the mine’s 

production capacity is adjusted to model non-planned under-
performance due to mechanical availability issues.

A comparison between the optimized base case and the 
adjusted production plan reveals notable differences. The 
NPV experiences a slight decrease from 1862 to 1802 
MUSD. The adjusted production plan, that considers 20% 
less mining capacity than the LOM, involves delaying 
production on the northwest side of the mine and reduc-
ing stripping during the initial periods. The change on the 
mining sequence, and therefore the reduction, of stripping 
is a consequence of prioritizing valuable materials for the 
Heap Leach and the Mill at expenses of low-grade oxidized 
material for ROM.

Moreover, the NPV flow analysis shows that the adjusted 
case relies more on the Mill for generating NPV, while 
slightly reducing the NPV flow from the ROM and Heap 
leach (Fig. 6). The optimality gap remains relatively similar 
at 2.57% for the base case and 2.38% for the adjusted case. 
Table 3 summarizes the results from Experiment 2.

Table 2  Summary results of Experiment 1. Inst., instance; M.W., mining width template; Maint. Period., maintenance period; M.W. Comp., min-
ing width compliance; U.B., upper bound; Obj. Val., the objective value; Gap, the optimality gap; and Time, the running time

Inst M.W Prod. Adj Maint. Period. 
[months]

UG delay M.W. Comp. [%] U.B. [MUS$] Obj. Val. 
[MUS$]

Gap [%] Time [s]

I1 1 × 1 - - - 2.47 1995 1993 0.10 1096
I2 4 × 4 - - - 56.87 1910 1862 2.58 2214

Fig. 5  Production plan (above) and NPV by period and destination (below) for the OPMPS solution (a) and the MW-OPMSP solution (b), 
Experiment 2
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3.2.2  Best Period for Major Truck Maintenance

Experiment 3 aims to determine the impact of different peri-
ods for major truck maintenance, with three different periods 
(M1, M2, and M3) evaluated. The production-adjusted case 
is considered the base case to compare the major truck main-
tenance options (Table 4). Each maintenance period involves 
a 35% reduction in production, followed by a 10% recovery 

penalty in subsequent periods. Periods M1, M2, and M3 are 
period 2, period 4, and period 6, respectively.

Mining width satisfiability for the M1, M2, and M3 cases 
range from 61.89 to 62.91%, with an optimality gap rang-
ing from 1.79 to 2.97%, making the solutions comparable 
between the cases. The NPV values for the three mainte-
nance scenarios range from 1816 to 1842 MUSD, with being 
M1 the best alternative.

Fig. 6  Production plan (above) and NPV by period and destination (below) for the base case (a) and the production adjusted case (b)

Table 3  Summary results of Experiment 2. Inst., instance; M.W., mining width template; Maint. Period., maintenance period; M.W. Comp., min-
ing width compliance; U.B., upper bound; Obj. Val., the objective value; Gap, the optimality gap; Time, the running time

Inst M.W Prod. Adj Maint. Period.
[months]

UG delay M.W. Comp. [%] U.B. [MUS$] Obj. Val. 
[MUS$]

Gap [%] Time [s]

I2 4 × 4 - - - 56.87 1910 1862 2.58 2214
I3 4 × 4 Yes - - 65.38 1845 1802 2.39 2235

Table 4  Summary results of Experiment 3. Inst., instance; M.W., mining width template; Maint. Period., maintenance period; M.W. Comp., min-
ing width compliance; U.B., upper bound; Obj. Val., the objective value; Gap, the optimality gap; Time, the running time

Inst M.W Prod. Adj Maint. Period. 
[months]

UG delay M.W. Comp. [%] U.B. [MUS$] Obj. Val. 
[MUS$]

Gap [%] Time [s]

I4 4 × 4 Yes 3–4 - 61.89 1875 1842 1.79 2161
I5 4 × 4 Yes 7–8 - 62.28 1870 1816 2.97 2516
I6 4 × 4 Yes 11–12 - 62.91 1865 1820 2.47 2448
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The mining sequence analysis reveals variations in pro-
duction timing in different regions of the mine, with delays 
observed in the southwest area for M1 and M3, while M2 
brings forward material from the northwest side (see Fig. 7). 
All production plans are reasonably smooth and practical for 
being a raw output from a direct block schedule.

3.2.3  Impact of UG Delay

The final scenario, Experiment 4, considers a year delay in 
production from a neighboring underground mine, requir-
ing a throughput increase of 60 ktpd from RT. The com-
parison between the production-adjusted case (Instance 
I3 of Table 3) and the production-adjusted + UG case 

(Instance I8) shows marginal changes in mining width 
satisfiability (64.44 to 65.38%) and NPV (1716 to 1802 
MUSD). The optimality gap obtained was small for both 
cases, 2.38% and 3.20% respectively.

No major differences in the mining sequences are 
observed. Additionally, three maintenance scenarios 
(M1UG, M2UG, and M3UG) are evaluated, exhibiting 
mining width satisfiability ranging from 60.88 to 64.42% 
and optimality gaps from 2.84 to 3.12% (see Table 5).

The NPV for these scenarios’ ranges from 1759 to 
1769 MUSD, being scenario M3UG the best alternative 
for these conditions. The mining sequence analysis reveals 
delays on the northwest side and accelerated production 
on the southwest side for the M1UG, M2UG, and M3UG 
cases (see Fig. 8).

Fig. 7  Illustration of the spatial distribution of the first 18 months of production. a Production adjusted base case, b maintenance scenario M1, c 
maintenance scenario M2, and d maintenance scenario M3

Table 5  Summary results of Experiment 4. Inst., instance; M.W., mining width template; Maint. Period., maintenance period; M.W. Comp., min-
ing width compliance; U.B., upper bound; Obj. Val., the objective value; Gap, the optimality gap; Time, the running time

Inst M.W Prod. Adj Maint. Period. 
[months]

UG delay M.W. Comp. [%] U.B. [MUS$] Obj. Val. 
[MUS$]

Gap [%] Time [s]

I8 4 × 4 Yes - Yes 64.44 1771 1716 3.21 2252
I9 4 × 4 Yes 3–4 Yes 60.88 1809 1759 2.84 2384
I10 4 × 4 Yes 7–8 Yes 64.24 1817 1762 3.12 2244
I11 4 × 4 Yes 11–12 Yes 64.42 1824 1769 3.11 2333
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4  Conclusions

This paper presents a novel approach to addressing the min-
ing width-constrained open-pit production scheduling mine 
planning problem. A mathematical formulation is introduced 
to effectively integrate mining width constraints into the 
production scheduling process. To address the complexity 
of large-scale instances, we propose a solution method that 
solves a partly relaxed version of the formulation using the 
BZ algorithm and adapting the mining width template varia-
ble fixing proposed in Yarmuch et al. (2021b). The proposed 
algorithm is tested on real-world Radomiro Tomic medium-
term mine planning scenarios, encompassing diverse con-
straints such as multiple ore material destinations, maximum 
sinking rate, and production constraints.

By solving multiple instances based on RT dataset, the 
study evaluates the performance of the developed algorithms 
in solving problems of varying complexities. The obtained 
solutions of the MW-OPMPS exhibit a notable improvement 
in mining width satisfiability, increasing from 2 to 60% as 
compared to the OPMPS. The introduced model’s efficacy 
is further demonstrated by an optimality gap consistently 
maintained within 4% for all instances.

Furthermore, the research offers practical insights into 
real-world decision-making processes. Even though solu-
tions still need to be reworked to make them practical, ena-
ble engineers to conduct trade-off studies, such as optimiz-
ing the timing of major truck maintenance. Moreover, the 

impact of external factors, like the delay in the production 
of the Chuquicamata underground project, is quantitatively 
assessed, enabling informed decisions in Radomiro Tomic’s 
planning.

Future research can further enhance the solution method 
and optimization models by incorporating additional opera-
tional and economic parameters to address the complexi-
ties of mining equipment operations and the inclusion of 
dynamic stockpiles. Note that the values presented have been 
scaled due to confidentiality considerations.

Appendix. Formulation of P∗

The following describes the formulation of the subproblem 
P
∗ ; we use the same notation and sets described in Sect. 2.
Variables.
The set of variables are associated with the extraction of 

the blocks.

Objective Function

zb,d,t =

{

1, if block b is sent to destination d by period t

0, otherwise

max
∑

b∈B

∑

d∈D

∑

t∈T

p∗
b,d,t

⋅ (zb,d,t − zb,d,t−1)

Fig. 8  Illustration of the spatial distribution of the first 18 months of production. a Production adjusted + UG case, b M1UG case, c M2UG case, 
and d M3UG case
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The objective function aims to maximize the discounted 
cashflow or net present value.

Constraints

Constraint (8) represents the resource constraint per des-
tination per period; in our case, the resource associated with 
each block consists of its tonnage. This constraint can directly 
be extended to multiple resource constraints per destination. 
Constraint (9) ensures that, to extract a block b by period 
t, all its vertical and horizontal predecessors must also be 
extracted by period t. Constraint (10) forces that if a block 
is mined by a period t, then it will continue as mined for all 
subsequent periods. Constraint (11) is analogue to Constraint 
(10) but regarding the destinations. Constraint (12) ensures 
that no blocks can be extracted at period 0. Constraint (13) 
ensures that all the blocks that could violate the sinking rate 
constraint from block i are extracted at least a period earlier 
than block j itself. Constraint (14) ensures that the blocks are 
selected on at most one period one destination.
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