

Diploma en Geomecánica Aplicada al Diseño Minero

9ª. Versión

2024-2025

Módulo 4: Geomecánica en Minería a Cielo Abierto

BHP

Analisis banco-berma

Rigo Rimmelin

BSc (Mining Eng), MSc (Geotech Eng), FAusIMM

02 Octubre 2024

Auspiciador

Safety is our nature

Table of contents

Ingeniería de Minas
FACULTAD DE CIENCIAS
FÍSICAS Y MATEMÁTICAS
UNIVERSIDAD DE CHILE

- Introduction
- Backbreak analysis
- Runout analysis

Stability analysis

Compliance with a stability acceptance criteria

- Factor of safety
- Probability of failure
- Size of failure

Scale of analysis

- Bench configuration
- Interramp slope
- Global slope

Techniques

- Limit equilibrium
- Numerical modelling

Outcome

• Final design -> slope geometry

Ingeniería de Minas FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

Bench, interramp and global analysis

Bench-berm analysis

Stability analysis

Ingeniería de Minas FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

Simple and complex modes of failure

Complex modes of failure

Design acceptance criteria

Reliability	Descriptor	Conseque	nce	Comments				
		Very low	Low	Moderate	High	Very high		
1	Very low reliability	1.35	1.4	1.5	X	X	Limited knowledge	
2	Low reliability	1.3	1.3	1.4	1.45	1.5	Reasonable knowledge: bottom of Large Open Pit (LOP) range	
3	Moderate reliability	1.25	1.25	1.3	1.35	1.4	LOP approach: central case	
4	High reliability	1.2	1.2	1.25	1.3	1.3	Top of LOP range	
5	Very high reliability	1.15	1.2	1.2	1.25	1.25	Detailed knowledge	

RTKC reliability-based design acceptance criteria table of Factory of Safety for overall slope (ME Robotham, 2021)

Geotechnical design process

The principal function of the benches is to provide a safe environment for personnel and equipment that must work near the slope face. Accordingly, they must satisfy needs for:

- Reliability, which requires stable bench faces and bench crests
- Safety, which requires bench widths sufficient to arrest and mitigate the danger of rockfalls and contain any spillage from the benches above.

(LOP guidelines, 2009)

Example of structural domains and joint sets

Domain		Dip		Dip Dir				
Name	Set		(°)		(°)			
	1a	74	±	3	274	±	- (
	2ac	71	±	3	251	±	- (
Central Este	3bc	75	±	2	200	±	- 9	
	4bc	82	±	3	18	±	(
	5ac	76	±	2	76	±	4	
	1a	72	±	3	5	±	(
	2ac	82	±	3	27	±		
Central Sur	3ac	77	±	2	203	±	4	
Central Sur	4br	77	±	2	70	±		
	5bc	82	±	2	94	±	- 3	
	6bc	81	±	2	278	±		
	1a	59	±	2	29	±	19	
	2ar	58	±	2	6	±	- 6	
Central Oeste	3b	59	±	2	195	±	-	
	4a	35	±	2	35	±		
	5br	60	±	3	231	±		
	1	85	±	4	17	±	1	
	2	85	±	4	201	±	- 15	
Nicola	3	37	±	3	17	±	- 0	
Norte	4	85	±	2	138	±	- 3	
	5	85	±	2	241	±		
	6	50	±	2	113	±		
	1	43	±	3	320	±	-	
	2	73	±	4	356	±	-	
Sur Este	3	83	±	3	152	±	9	
	4	52	±	1	171	±	- 17	
	5	69	±	3	303	±	- 8	
	1	76	±	4	290	±	- 0	
	2	83	±	2	166	±	- 3	
	3	69	±	2	249	±	3	
Sur Oeste	4bc	75	±	2	201	±		
	5a	29	±	4	300	±	9	
	6bc	54	±	4	32	±	- 3	
	7ac	33	±	3	96	±	9	

Backbreak anaylsis

Assumption

- Catch bench width (by design) is input and determined to provide enough retention to contain spillage from every potential failure from above benches.
- Bench height is also input based on ore selectivity.
- Bench width (m) = 0.2 x bench height +4.5 m (Ryan & Pryor, 2000)

Acceptance criteria

• Establish a bench reliability that usually is 80%

Bench geometry

• Bench face is an output to determine bench geometry and interramp angle constrained by bench retention.

Backbreak analysis

Backbreak analysis

Example of application

Adapted from Hormazabal et al, 2015

Structural condition impacting bench performance

Calibration of results

Compliance with acceptance criteria

Hormazabal et al, 2015

Runout analysis

Assumption

- Bench face is an input determined by equipment capacity to dig a certain angle.
- Bench height is also input based on ore selectivity.

Acceptance criteria

• Establish a catch bench runout retention usually 80%, to contain a failure of the above bench.

Bench geometry

• Bench width is an output to determine bench geometry and interramp angle constrained by bench retention.

Runout length estimation

- For each structural domain
- For each Bench failure mechanism
- Number of stable and unstable cases (probability of failure)
- Each failed volume determine a spillage length and backbreak

From DERK, 2014. Internal study for BHP Spence.

27 September 2024

Runout length estimation for each bench failure mechanism

FICHA B.4: INESTABILIDAD A NIVEL DE BANCO - DESLIZAMIENTO PLANO - RAJO SPENCE											
SET 1	DIP (°)	DIPDIR (°)									
SET 1	43±3	320±6									
TIPO	PRIN	CIPAL									
Dominio	Sur	ESTE									
PROBABILIDAD DE OCURRENCIA	24	.9									
DIPDIR TALUD (0)	32	20									
Sector	Fasi	= 09									
ALTURA DE BANCO (M)	3	0	VOLUMEN (M³/M)	249.4							
ÁNGULO DE CARA DE BANCO (°)	7	5	TONELAJE (TON/M)	623.5							
BERMA DE DISEÑO (M)	18	3.0	PROBABILIDAD DE FALLA (%)	100.0							
ÁNGULO INTERRAMPA (°)	4	9	FACTOR DE SEGURIDAD	0.28							
	Market (sp.)			per retract cample (in)							
LARGO DE DERRAME (M)	14.5	±3.1	PÉRDIDA DE BERMA (M) 15.4±2.9								

From DERK, 2014. Internal study for BHP Spence.

Results of bench geometry for a structural domain

	Dominio Estructural	Pared	Diseño de Bancos				SISTEMAS										
FASE			α	DIP DIR	H (m)	BERMA (m)	IRA (°)	ESTRUCTURALES DESFAVORABLES		PO (%)	P _b (m)		L₀ (80%) (m)		FS	PF (%)	
			(°)	(°)				SET 1	SET 2	()	Ì						
9	Sureste	Noreste	75	220	30	18,0	49	1	2	8,8	5,0	± 2,8	4,2	±	2,0	0,49	39,19
9	Sureste	Noreste	75	220	30	18,0	49	3	5	2,8	15,5	± 2,6	9,8	±	0,9	1,07	43,05
9	Sureste	Noreste	75	245	30	18,0	49	1	2	8,8	13,1	± 3,5	8,1	±	1,9	0,45	40,64
9	Sureste	Noreste	75	245	30	18,0	49	3	5	2,8	16,0	± 2,3	10,3	±	0,8	1,07	43,05
9	Sureste	Noreste	75	260	30	18,0	49	1	2	8,8	15,3	± 2,9	9,0	±	1,6	0,45	40,64
9	Sureste	Noreste	75	260	30	18,0	49	3	5	2,8	14,8	± 2,6	10,9	±	1,1	1,07	43,05
9	Sureste	Noreste	75	265	30	18,0	49	1	2	8,8	15,6	± 2,8	9,1	±	1,6	0,45	40,64
9	Sureste	Noreste	75	265	30	18,0	49	3	5	2,8	14,0	± 2,7	11,0	±	1,2	1,07	43,05
9	Sureste	Este	75	290	30	18,0	49	1	2	8,8	13,3	± 3,3	9,3	±	2,2	0,45	40,64
9	Sureste	Este	75	290	30	18,0	49	2	5	7,1	2,9	± 1,5	5,9	±	2,4	0,14	92,43
9	Sureste	Este	75	290	30	18,0	49	3	5	2,8	6,9	± 2,2	11,2	±	1,7	1,07	43,05
9	Sureste	Este	75	305	30	18,0	49	1	2	8,8	6,6	± 2,6	5,7	±	2,1	0,45	40,64
9	Sureste	Este	75	305	30	18,0	49	1	5	5,0	1,9	± 1,3	3,1	±	1,8	0,10	71,30
9	Sureste	Este	75	305	30	18,0	49	2	5	7,1	1,7	± 1,0	4,2	±	2,1	0,09	97,37
9	Sureste	Este	75	305	30	18,0	49	3	5	2,8	0,7	± 0,4	1,8	±	1,0	0,09	47,22
9	Sureste	Sureste	75	320	30	18,0	49	1	2	8,8	1,8	± 1,1	2,0	±	1,2	0,29	55,66
9	Sureste	Sureste	75	320	30	18,0	49	1	3	3,4	1,1	± 0,6	1,4	±	0,7	0,29	45,04
9	Sureste	Sureste	75	320	30	18,0	49	2	5	7,1	3,8	± 1,2	7,7	±	1,7	0,16	100,00
9	Sureste	Sureste	75	335	30	18,0	49	1	2	8,8	1,8	± 1,1	2,0	±	1,2	0,29	55,66
9	Sureste	Sureste	75	335	30	18,0	49	2	5	7,1	3,3	± 1,4	6,5	±	1,9	0,16	99,23
9	Central Sur	Noreste	75	190	30	15,4	52	3ac	4br	3,2	3,0	± 1,8	5,4	±	2,2	0,47	86,07

α : Inclinación de la cara del banco.

IRA : Ángulo Interrampa.

: Largo de Derrame.

DIP DIR: Dirección de manteo del talud.
PO: Probabilidad de Ocurrencia.
FS: Factor de Seguridad

h : Altura del banco.

P_b : Pérdida de Berma.

PF : Probabilidad de Falla.

From DERK, 2014. Internal study for BHP Spence.

Results of bench geometry for a structural domain

#