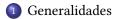
Unidad 3 — Manejo y disposición de relaves

Christian Ihle


Departamento de Ingeniería de Minas UNIVERSIDAD DE CHILE

MI5170 - Agua y Relaves

28 de marzo de 2023

æ

프 🖌 🛪 프 🕨

Generalidades

Comunidades relevantes

Congresos:

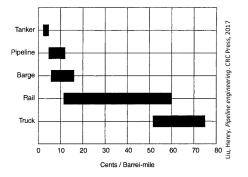
- Relaves
 - Tailings (Santiago)
 - Tailings & Mine Waste
 - IMPC
- Flujo y espesamiento de lodos
 - Hydrotransport
 - Paste
 - Fluimin
 - Optimus Pipe
 - SOCHID/IAHR
- Gestión y manejo de agua
 - Water in mining
 - LatAm Mine Waste Summit

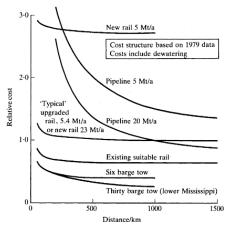
Journals:

- Minerals Engineering
- Journal of Cleaner Production
- Int. J. of Water Reclamation
- Minerals
- Física de fluidos y mezclas (JFM, PoF, JNNFM, PT, JoR, RA, etc.)

Formas de manejo de relaves

- Sistemas de transporte de material seco (relaves filtrados)
- Sistema de transporte hidráulico (relaves convencionales/alta densidad/pasta)

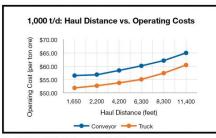



Sistemas de transporte de material seco/húmedo

¿Cuándo usar sistemas de transporte hidráulico? (o sistemas de transporte a granel)

- Distancias son muy largas
- 2 Desaguar no es opción (inversión, tecnología de planta, etc.)
- No hay infraestructura auxiliar para el manejo de material seco

∃ ► < ∃ ►</p>



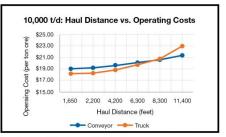


Figure 2: 1,000 t/d, Haul Distance, Method and Opex

Figure 3: 2,500 t/d, Haul Distance, Method and Opex

イロト イポト イヨト イヨト

Figure 5: 10,000 t/d, Haul Distance, Method and Opex

э

SELECTION FACTOR	RAIL	PIPELINE	
Distance	Suited to 100+ km Cut and fill quantities important Suited to 100+ km Potentially higher cost BEP		
Constructability - Rugged Terrain	Heavy equipment for sleeper plant (in country), track, and bridge construction High earthworks Figh earthworks		
River Crossings	High cost for bridges and culverts	Stream crossings simpler and cheaper (buried under stream bed)	
Water Requirements	Minor Water supply required for sluppeparation		
Future Expansion	Additional rolling stock Sidings	 No expansion unless initially undersized or designed as batch transfer Large diameter for future use means significant extra quantities of water 	

æ

◆□→ ◆圖→ ◆国→ ◆国→

Security and Interference	Exposed to risk from human and environmental influences	Better protected and thus more secure because buried	
Safety - Local Population	Exposure to moving equipment Bauxite is enclosed in buried pipelin		
Environmental – Habitats	Can restrict fauna movement	 Low impact - Lower requirement for clearing because footprint is small Habitat not cut off or isolated 	
Environmental - Noise and Dust	Moderate to high impact Low impact - No noise or dust except during construction		
Community - Impact of Route	 High impact Larger deviations result in longer route 	Low impact – Can deviate easily Fewer resettlement issues	

₹.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶

Tuberías vs canaletas

Característica	Canaletas	Tuberías
Fuerza motriz	gravedad	gravedad + bombas
Longitud de trazado	arbitraria	arbitraria
Pendiente de trazado	negativa	arbitraria (según impulsión
		disponible)
Control de flujo	limitado	flexible
Límite de operación	velocidad y altura	velocidad y presión
Mantenibilidad	fácil acceso a interior	sistema confinado
Capacidad	velocidad y altura	velocidad y presión

æ

・ロト ・四ト ・ヨト ・ヨト

Disipación de energía

Canaletas

Tuberías

< ∃→

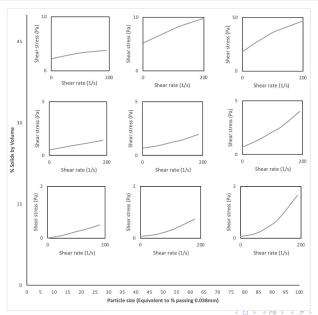
< ⊒ >

 $\frac{\eta}{\mu}$

Gradiente hidráulico (HG)

Definición

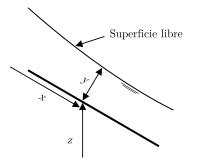
Pendiente de la línea de energía del sistema


- Pérdidas singulares despreciables (a menos que se trate de instalaciones de disipación)
- Altura de velocidad despreciable

$$HG = \frac{B_1 - B_2}{L} \approx \frac{fL}{D} \frac{v^2}{2g}$$
(1)

En este caso se tiene que f = F(Re, He).

Viscosidad plástica 60 (a) Escondida, Chile (copper) (b) Samarco, Brazil (iron) (c) Galeno, Peru (copper) 50 (d) Las Bambas, Peru (copper) A (e) Undisclosed mine, Brazil (iron) 40 (f) Antamina, Peru (copper) Maron and Pierce, $\phi_m = 0.465$ Maron and Pierce, $\phi_m = 0.45$ 30 Maron and Pierce, $\phi_m = 0.48$ 20 10 0.25 0.35 0.20.3 0.4ሰ


Tendencia general (reología)

DIMIN-UCH

Unidad 3 - Clase 1

Canaletas

- Altura de escurrimiento puede variar
- No necesariamente está alineada con la pendiente de fondo de la canaleta

- i: Pendiente de fondo de la canaleta (i > 0 implica que la cota del fondo decrece)
- $j \equiv$ HG: Pendiente de fricción (j > 0), dada por las pérdidas de energía en la canaleta.

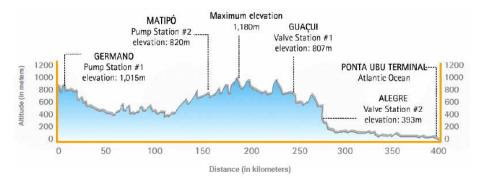
$$\frac{\mathrm{d}H}{\mathrm{d}x} = -j,\tag{2}$$

con

$$H = z + y + \frac{Q^2}{2gA^2} \tag{3}$$

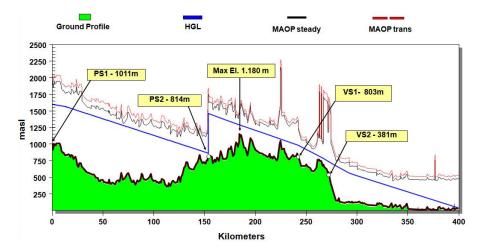
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{i-j}{1-Fr^2},\tag{4}$$

con $Fr=\frac{Q}{A\sqrt{gy}}$ (número de Froude).


$$Fr \begin{cases} < 1 & \text{flujo subcrítico} \\ > 1 & \text{flujo subcrítico} \end{cases}$$

DIMIN-UCH

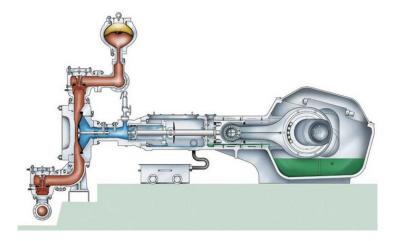
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣


(5)

Tramos ascendentes no admiten flujo en canaleta

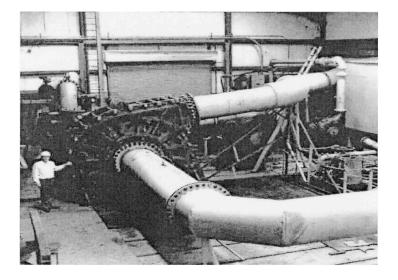
DIMIN-UCH

Consumo de energía Sistemas presurizados

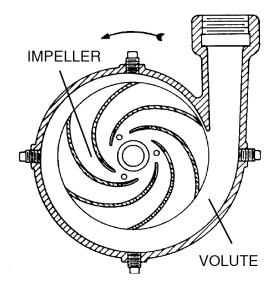


э

Bombas de desplazamiento positivo Mineroductos

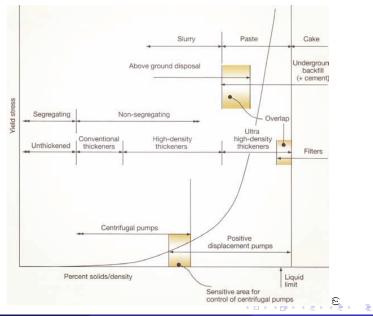


э


æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

ж


・ロト ・回 ト ・ ヨト ・ ヨト

æ

ヘロト ヘ団 ト ヘヨト ヘヨト

Relación lodo-condición de transporte

DIMIN-UCH

Algunos mineroductos/relaveductos

Faena	diám. (in)	servicio	largo (km)	cap. (kTPD)
MEL	6/7 y 9	conc. Cu	185	$4 ext{ y } 5,5$
CMDIC	$7 \rightarrow 8$	conc. Cu	180	$3 \rightarrow 4$
CMP	10	conc. Fe	120	~ 10
CNN	10	conc. Fe	82	~ 4
SAMARCO 1 (Brasil)	20/22	conc. Fe	398	$55,\!5$
MAA (Argentina)	7	conc. Cu	320	3
MLP	7	conc. Cu	120	$\sim 3,1$
MLP	28/36	relave Cu	50	~ 158
Antamina (Perú)	8-10	conc. Cu-Mo-Zn	302	3,1
Anglo Los Bronces	20/24	mineral Cu	56	60/75

æ

イロト イ理ト イヨト イヨト

Unidad 3 — Manejo y disposición de relaves

Christian Ihle

Departamento de Ingeniería de Minas UNIVERSIDAD DE CHILE

MI5170 - Agua y Relaves

28 de marzo de 2023

< ∃→