MA3802-1 Teoría de la medida

Profesor: Jaime San Martín Auxiliares: Axel Álvarez

Juan Pablo Sepúlveda

Auxiliar 9: Dualidad en espacios L^p y otras vainas.

19 de octubre de 2023

- **P1.** Lebesgue-Radon-Nikodym: El objetivo de este problema es demostrar simultáneamente el Teorema de Descomposición de Lebesgue y el Teorema de Radon-Nikodym utilizando herramientas de dualidad. Para esto, sean μ y ν dos medidas finitas en un espacio medible (X, \mathcal{F}) . Consideremos $\lambda = \mu + \nu$.
 - (a) **Propuesto:** Pruebe que $L^2(\lambda)$ es un espacio de Hilbert con el producto interno $\langle f, g \rangle = \int f g \ d\lambda$.

Utilizando el Teorema de Representación de Riesz, es posible deducir que $L^2(\lambda) \cong (L^2(\lambda))^*$ donde el morfismo viene dado por $f \mapsto \phi_f$ tal que $\phi_f(g) = \int fg \ d\lambda$.

(b) Pruebe que existe una única $g \in L^2(\lambda)$ tal que

$$\int f(1-g) \ d\nu = \int fg \ d\mu, \ \forall f \in L^2(\lambda).$$

Indicación: Considere la función $f \mapsto \int f d\nu$.

(c) Justifique que $0 \le g \le 1$, λ -c.s..

Considere $A = \{g < 1\}$ y $S = \{g = 1\}$ y defina para $B \in \mathcal{F}$ las medidas

$$\nu_1(B) = \nu(A \cap B),$$

$$\nu_2(B) = \nu(S \cap B).$$

- (d) Pruebe que $\nu_1 \ll \mu$, $\nu_2 \perp \mu$ y que $\nu = \nu_1 + \nu_2$. Concluya el Teorema de Descomposición de Lebesgue para medidas finitas.
- (e) Pruebe que existe $h \in \mathcal{M}_+$ tal que

$$\nu_1(B) = \int_B h \ d\mu, \ \forall B \in \mathcal{F}.$$

Concluya el Teorema de Radon-Nikodym para medidas finitas.

- (f) **Propuesto:** Usando lo anterior, extienda el resultado a medidas σ -finitas.
- **P2.** Integración de Kernels: Sean (X, \mathcal{F}, μ) e (Y, \mathcal{G}, ν) dos espacio de medida σ-finitos, y sea $K: X \times Y \to \mathbb{R}$ una función $\mathcal{F} \otimes \mathcal{G}$ -medible tal que existe un C > 0 tal que

$$\int_X |K(x,y)| \ d\mu \le C, \ \nu - \text{c.s.},$$

$$\int_Y |K(x,y)| \ d\nu \le C, \ \mu - \text{c.s.}.$$

Para $1 \leq p \leq \infty$ se define $T: L^p(\nu) \to L^p(\mu)$ según

$$Tf(x) = \int_Y K(x, y) f(y) \ d\nu.$$

Para el caso 1 :

- (a) Pruebe que para $f \in L^p(\nu)$, Tf(x) converge absolutamente μ -c.s.. **Indicación:** Utilice Hölder y Fubini-Tonelli adecuadamente.
- (b) Con lo anterior, concluya que T está bien definida y que es lineal acotada.
- (c) **Propuesto:** Pruebe ambos resultados para p=1 y $p=\infty$.