Departamento de Ingeniería Matemática

MA2601-2 Ecuaciones Diferenciales Ordinarias

Profesor: Patricio Quiroz H.

Auxiliares: Sivert Escaff G., Anaís Muñoz P., Bruno Skarmeta

Auxiliar 9: Transformada de Laplace 1.0

25 de Agosto de 2023

- P1. Calcule la transformada o antitransformada de Laplace según corresponda de las siguientes funciones:
 - (a) $\sinh(t)$.
 - (b) $e^{\sigma t}\cos(wt)$.
 - (c) $t^k \operatorname{con} k \in \mathbb{N}$.
 - (d) $\frac{se^{-2s}}{s^2 + 4s + 13}$.
- **P2.** Sean w > 0, $n \ge 1$. Denotaremos $L_n = \mathcal{L}[\text{sen}^n(wt)]$. El objetivo es calcular L_n para cada $n \ge 1$.
 - (a) Calcular L_1 y L_2 . Indicación: Calcule $\mathcal{L}[e^{at}]$ para $a \in \mathbb{C}$ y utilice convenientemente la linealidad de $\mathcal{L}[.]$ en la fórmula $e^{iwt} = \cos(wt) + i \sin(wt)$.
 - (b) Pruebe que $L_n = L_{n-2} \mathcal{L}[\text{sen}^{n-2}(wt)\cos^2(wt)]$ para cada $n \ge 3$.
- P3. Resuelva la siguiente ecuación diferencial utilizando transformada de Laplace:
 - (a)

$$x''' + x'' - x' - x = 0$$
, $x(0) = 1$, $x'(0) = 2$, $x''(0) = -1$.

(b)

$$y'' - 4y' + 4y = e^{2t}, y(0) = y'(0) = 1$$

P4. Sean $n \in \mathbb{N} \setminus \{0\}$ y $\omega \neq 0$. Use la transformada de Laplace para probar la igualdad:

$$t^{n} * \cos(\omega t) = \frac{n}{\omega} t^{n-1} * \sin(\omega t)$$

P5. Resuelva la ecuación integral

$$y(t) = 3t + \int_0^t y(s) \sin(t - s) ds,$$

usando transformada de Laplace.

P6. Sean $a,b \in \mathbb{R}$ constantes fijas. Considere el sistema lineal.

$$(Sl) \begin{cases} x'(t) = 2y(t) + a\delta_1(t), x(0) = 0 \\ y'(t) = -2x(t) + b\delta_1'(t), y(0) = 1 \end{cases}$$

Suponga que a,b \neq 0.Usando transformada de laplace sobre (SL), encuentre la solucion de (SL).