MA2002-3 Calculo Avanzado y Aplicaciones

Profesor: Carlos Conca

Auxiliares: Fabián Ceballos, Cristóbal Godoy

Auxiliar 1: Operadores diferenciales y Curvas

Pregunta 1. [Identidades vectoriales]

Sea $\overrightarrow{F}: \Omega \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ campo vectorial $y \ f, g: \Omega \subseteq \mathbb{R}^3 \to \mathbb{R}$ campos escalares, suficientemente diferenciables. Demuestre las siguientes identidades:

- a) $\nabla(fg) = f\nabla g + g\nabla f$
- b) $\nabla \cdot (f\overrightarrow{F}) = f\nabla \cdot \overrightarrow{F} + \overrightarrow{F} \cdot \nabla f$
- c) [Propuesto] $\nabla \times (f\overrightarrow{F}) = f\nabla \times \overrightarrow{F} + \nabla f \times \overrightarrow{F}$
- d) $\nabla \times (\nabla f) = 0$
- e) [Propuesto] $\nabla \cdot (\nabla \times \overrightarrow{F}) = 0$
- f) [Propuesto] $\nabla^2(fg) = g\nabla^2 f + 2\nabla f \cdot \nabla g + f\nabla^2 g$ Donde $\nabla^2(f) = \nabla \cdot (\nabla f)$ (spoiler se llama laplaciano)

Pregunta 2. /A calcular derivadas!

Calcule la divergencia y rotor del campo vectorial \overrightarrow{v} que se define como:

$$\overrightarrow{v} = (e^x sen(y), e^x cos(y), z)$$

Pregunta 3. [Cómo calcular un potencial]

Se dice que un campo vectorial $\overrightarrow{F}: \Omega \subseteq \mathbb{R}^d \to \mathbb{R}^d$ es **conservativo** si existe un campo escalar $f: \Omega \subseteq \mathbb{R}^d \to \mathbb{R}$ tal que $\overrightarrow{F} = \nabla f$ en Ω . Ahora considere el campo vectorial $\overrightarrow{F}: \mathbb{R}^2 \to \mathbb{R}^2$ dado por:

$$\overrightarrow{F}(x,y) = \left(\cos(x) + \log(y), \frac{x}{y} + e^y\right)$$

 $pruebe\ que\ es\ conservativo\ y\ calcule\ su\ potencial.$

Pregunta 4. [Parametrizando curvas]

Encuentre una parametrizacion para las siguientes curvas:

- a) La parábola dada por $y=x^2$, con $x\in [0,a]$, a>0 descrita en sentido antihorario.
- b) El segmento que une los puntos (α, β, γ) y (a, b, c).
- c) Una elipse centrada en el origen con semiejes a y b en el plano z=2
- d) [Propuesto] El triángulo cuyos vértices son (0,0),(0,1) y (3,3). [Hint: definala por partes]

Pregunta 5. [Soy veloz]

Considere un auto rojo de carreras que se prepara para ganar la Copa Pistón, para esto recorre una pista parametrizada de la siquiente forma:

$$\overrightarrow{r}(t) = (t^2 cos(t), t^2 sen(t), \frac{t^3}{\sqrt{3}})$$

- a) Determine la velocidad y rapidez del auto. Además, calcule el vector tangente asociado a la curva.
- b) ¿A qué distancia del plano OXY se encuentra el auto cuando se ha desplazado $d=\frac{14}{3}$ en su camino?

Definición 1 (Campos). Sea $\Omega \subseteq \mathbb{R}^3$ abierto no vacío, se definen:

- Campo Escalar: A las funciones a valores reales sobre Ω , ie, $f:\Omega\to\mathbb{R}$.
- Campo Vectorial: A las funciones sobre Ω a valores en \mathbb{R}^3 , ie, $F: \Omega \to \mathbb{R}^3$.

Notación 1. Se utiliza la notación:

$$\nabla = \hat{\imath} \frac{\partial}{\partial x} + \hat{\jmath} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$$

Definición 2 (Gradiente). Sea f un campo escalar de clase C^1 . Se define el gradiente de f como:

$$\nabla f := \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \frac{\partial f}{\partial x}\hat{\imath} + \frac{\partial f}{\partial y}\hat{\jmath} + \frac{\partial f}{\partial z}\hat{k}$$

Definición 3 (Divergencia). Sea $\overrightarrow{F} = (F_1, F_2, F_3) = F_1 \hat{\imath} + F_2 \hat{\jmath} + F_3 \hat{k}$ un campo vectorial de clase C^1 . Se define el operador divergencia de \overrightarrow{F} como:

$$\operatorname{div} \overrightarrow{F} := \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = \nabla \cdot \overrightarrow{F}.$$

Definición 4 (Rotor). Sea $\overrightarrow{F} = F_1 \hat{\imath} + F_2 \hat{\jmath} + F_3 \hat{k}$ un campo vectorial de clase C^1 , se define el operador rotor de \overrightarrow{F} como:

$$\operatorname{rot} \overrightarrow{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \hat{\imath} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) \hat{\jmath} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \hat{k}$$

Una forma más concisa de escribir el rotor de un campo \overrightarrow{F} es como sique:

$$rot \overrightarrow{F} = \nabla \times \overrightarrow{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

Definición 5 (Curva). Un conjunto Γ se llama curva si existe $\overrightarrow{r}:[a,b]\to\mathbb{R}^3$ llamada parametrización de la curva, se tiene que $\Gamma = \overrightarrow{r}([a,b])$, esta además puede ser:

• Suave: $\overrightarrow{r} \in \mathcal{C}^1$

• Simple: \overrightarrow{r} es invectiva.

• Regular: $\left|\left|\frac{d\overrightarrow{r}}{dt}(t)\right|\right| > 0$

• $Cerrada: \overrightarrow{r}(a) = \overrightarrow{r}(b)$

Definición 6 (Longitud de curva). Se define la longitud de una curva \overrightarrow{r} en funcion del tiempo como:

$$s(t) = \int_{a}^{t} || \frac{d\overrightarrow{r'}(\tau)}{d\tau} || d\tau$$

Definición 7. Para una curva regular y simple Γ , de parametrizacion $\overrightarrow{r}(t)$ se definen su velocidad $\overrightarrow{v}(t)$, rapidez v(t), vector tangente \overrightarrow{T} y vector normal \overrightarrow{N} , como sigue:

$$a) \overrightarrow{v}(t) = \frac{d\overrightarrow{r}(t)}{dt}$$

b)
$$v(t) = ||\overrightarrow{v}||$$
 $c) \overrightarrow{T}(t) = \frac{\overrightarrow{v}}{v}$

$$c) \ \overrightarrow{T}(t) = \frac{\overrightarrow{v}}{v}$$

$$d) \overrightarrow{N}(t) = \frac{\frac{d\overrightarrow{T}(t)}{dt}}{||\overrightarrow{dT}(t)||}$$