Resumen Cálculo Diferencial e Integral

Nicolás Fuenzalida Sáez

1 [Semana 1] Subsucesiones y Continuidad

Definición 1 (Subsucesión). Sea (s_n) una sucesión. Sea $\phi : \mathbb{N} \to \mathbb{N}$ una función estrictamente creciente. Se llama subsucesión de s_n genera por ϕ , a la sucesión (u_n) , definida por:

$$u_n = s_{\phi(n)}$$

Teorema 1 Sea (s_n) una sucesión y sea $l \in \mathbb{R}$. Entonces

 $s_n \rightarrow l \iff Todas\ las\ subsucesiones\ de\ (s_n)\ convergen\ a\ l$

Teorema 2 (Bolzano-Weierstrass). Toda sucesión acotada tiene al menos una subsucesión convergente.

1.1 Funciones continuas

Definición 2 (Función continua en un punto). Sea $f: A \subseteq \mathbb{R} \to \mathbb{R}$ y $\bar{x} \in A$. Diremos que f es una función continua en \bar{x} si

$$\forall (x_n) \subseteq A, x_n \to \bar{x} \Longrightarrow f(x_n) \to f(\bar{x})$$

Teorema 3 (Álgebra de funciones continuas). Sean $f: A \subseteq \mathbb{R} \to \mathbb{R}$ $y g: B \subseteq \mathbb{R} \to \mathbb{R}$ dos funciones continuas en $\bar{x} \in A \cap B$. Las siguientes funciones resultan ser continuas en \bar{x} :

- 1. f + g.
- 2. f g.
- 3. λf , con $\lambda \in \mathbb{R}$.
- 4. $f \cdot g$.
- 5. f/q, cuando $q(\bar{x}) \neq 0$.

Teorema 4 (Composición de funciones continuas). Sean $f: A \subseteq \mathbb{R} \to \mathbb{R}$ y $g: B \subseteq \mathbb{R} \to \mathbb{R}$. Si f es continua en $\bar{x} \in A$ y g es continua en $f(\bar{x}) \in B$, entonces la función $g \circ f$ es continua en \bar{x} .

Teorema 5 (Caracterización ϵ - δ). Sean $f: A \subseteq \mathbb{R} \to \mathbb{R}$ y $\bar{x} \in A$. f es continua en \bar{x} ssi se cumple que

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in A\{|x - \bar{x}| \le \delta \Longrightarrow |f(x) - f(\bar{x})| \le \epsilon\}$$

Observación Con esta propiedad, podemos establecer la conexión entre continuidad y límite de funciones, si el dominio de la función permite estudiar el límite de f(x) cuando $x \to \bar x$ y $\bar x \in A$ se tiene que:

$$f$$
 es continua en \bar{x} ssi $\lim_{x \to \bar{x}} f(x) = f(\bar{x})$.

Definición 3 (Función continua). Sea $f: A \subseteq \mathbb{R} \to \mathbb{R}$. Si f es continua $\forall \bar{x} \in A$, diremos que f es continua.

Observación Sea $f:A\subset\mathbb{R}\to\mathbb{R}$ una función y supongamos que existe una constante $L\geq 0$ tal que $|f(x)-f(y)|\leq L|x-y|$ para todo $x,y\in A$ (una función con estas características se le dice Lipschitziana de parámetro L).

2 [Semana 2] Continuidad. Los grandes teoremas

2.1 El teorema de los valores intermedios

Teorema 6 Sea $f:[a,b] \to \mathbb{R}$ una función continua tal que $f(a)f(b) \le 0$. Entonces existe $\bar{x} \in [a,b]$ tal que $f(\bar{x}) = 0$.

Como corolario inmediato del teorema anterior, se obtiene la Propiedad de Darboux o Teorema de los Valores Intermedios:

Teorema 7 (TVI). Sea $f:[a,b] \to \mathbb{R}$ una función continua. Si $c,d \in f([a,b])$ entonces para todo número e comprendido entre c y d, existe $x \in [a,b]$ tal que f(x) = e.

2.2 Máximos y mínimos: el teorema de Weierstrass

Teorema 8 Sea $f:[a,b] \to \mathbb{R}$ una función continua. Entonces f es acotada y alcanza su mínimo y máximo en [a,b].

2.3 Continuidad de las funciones inversas

Teorema 9 Sea $f: I \subset \mathbb{R} \to \mathbb{R}$ continua y estrictamente monótona (creciente o decreciente) con I un intervalo. Entonces J = f(I) es un intervalo y la inversa $f^{-1}: J \to I$ es continua.

2.4 Continuidad uniforme

Ya vimos la noción de continuidad en términos de sucesiones, y usando la caracterización ϵ - δ . Vale la pena notar que en general δ depende de ϵ y del punto \bar{x} , es decir, $\delta = \delta(\epsilon, \bar{x})$. Veamos ahora que para ciertas funciones es posible encontrar $\delta > 0$ que satisface la propiedad ϵ - δ independientemente del punto \bar{x} en consideración:

Definición 4 La función $f:A\subset\mathbb{R}\to\mathbb{R}$ se dice uniformemente continua si para todo $\epsilon>0$ existe $\delta=\delta(\epsilon)>0$ tal que

$$(\forall x, y \in A)|x - y| \le \delta \Longrightarrow |f(x) - f(y)| \le \epsilon$$

Observación Una función uniformemente continua resulta ser continua en todo su dominio, es decir, siempre se tiene que

f es función uniformemente continua $\Longrightarrow f$ es función continua.

Veamos condiciones para obtener la recíproca:

Teorema 10 Sea $f: A \subset \mathbb{R} \to \mathbb{R}$ con A cerrado y acotado. Entonces

f es uniformemente continua ssi ella es continua en todo punto $\bar{x} \in A$.

3 [Semana 3] Derivadas

3.1 Funciones derivables

Definición 5 Diremos que $f:(a,b)\to\mathbb{R}$ es derivable en el punto $\bar{x}\in(a,b)$, si existe el límite

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{x - \bar{x}}$$

Dicho límite se denota $f'(\bar{x})$ o bien $\frac{df}{dx}(\bar{x})$ y se llama derivada de f en \bar{x} .

Observación De manera equivalente, f es derivable en \bar{x} si existe una pendiente $m = f'(\bar{x})$ tal que la función afín $a(x) = f(\bar{x}) + f'(x)(x - \bar{x})$ es una aproximación de f en el sentido que

$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + o(x - \bar{x})$$

con $\lim_{h\to 0} o(h)/h = 0$. Usando el cambio de variable $h = x - \bar{x}$, lo anterior puede escribirse equivalentemente

$$f'(\bar{x}) = \lim_{h \to 0} \frac{f(\bar{x} + h) - f(\bar{x})}{h}$$

o también

$$f(\bar{x}+h) = f(\bar{x}) + f'(\bar{x})h + o(h).$$

Notemos que si f es derivable en \bar{x} entonces es continua en dicho punto.

Observación Algunas derivadas conocidas:

$$f(x) = a + bx$$
 tiene derivada $f'(\bar{x}) = b, \ \forall \bar{x} \in \mathbb{R}$.

$$f(x) = x^2$$
 tiene derivada $f'(\bar{x}) = 2\bar{x}, \ \forall \bar{x} \in \mathbb{R}$.

$$f(x) = sen(x)$$
 tiene derivada $f'(\bar{x}) = cos(\bar{x}), \ \forall \bar{x} \in \mathbb{R}$.

$$f(x) = cos(x)$$
 tiene derivada $f'(\bar{x}) = -sen(\bar{x}), \ \forall \bar{x} \in \mathbb{R}$.

$$f(x) = exp(x)$$
 tiene derivada $f'(\bar{x}) = exp(\bar{x}), \ \forall \bar{x} \in \mathbb{R}$.

$$f(x) = ln(x)$$
 tiene derivada $f'(\bar{x}) = \frac{1}{\bar{x}}, \ \forall \bar{x} \in \mathbb{R}^+.$

3.2 Reglas de cálculo de derivadas

Proposición 1 Sean $f,g:(a,b)\to\mathbb{R}$ derivables en $\bar{x}\in(a,b)$. Entonces:

(a) f + g es derivable en \bar{x} con

$$(f+q)'(\bar{x}) = f'(\bar{x}) + q'(\bar{x})$$

(b) fg es derivable en \bar{x} con

$$(fg)'(\bar{x}) = f'(\bar{x})g(\bar{x}) + f(\bar{x})g'(\bar{x})$$

(c) $Si\ q(\bar{x}) \neq 0$ entonces f/q es derivable en \bar{x} con

$$\left(\frac{f}{q}\right)'(\bar{x}) = \frac{f'(\bar{x})g(\bar{x}) - f(\bar{x})g'(\bar{x})}{g(\bar{x})^2}$$

Observación Más derivadas conocidas:

$$f_n(x) = x^n$$
 tiene derivada $f'_n(\bar{x}) = n\bar{x}^{n-1}, \ \forall \bar{x} \in \mathbb{R}.$

$$f_n(x) = x^{-n}$$
 tiene derivada $f'_n(\bar{x}) = -n\bar{x}^{-n-1}, \ \forall \bar{x} \in \mathbb{R} \setminus \{0\}.$

$$p(x) = a_0 + a_1 x + \dots + a_k x^k$$
 tiene derivada

$$p'(\bar{x}) = a_1 + 2a_2\bar{x} + 3a_3\bar{x}^2 + \dots + na_n\bar{x}^{n-1}, \ \forall \bar{x} \in \mathbb{R}.$$

$$f(x) = tan(x)$$
 tiene derivada $f'(\bar{x}) = sec^2(\bar{x}), \ \forall \bar{x} \in \mathbb{R} \setminus \{\pi/2 + k\pi : k \in \mathbb{Z}\}.$

$$f(x) = cotan(x)$$
 tiene derivada $f'(\bar{x}) = -cosec2(\bar{x}), \ \forall \bar{x} \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}.$

$$f(x) = senh(x)$$
 tiene derivada $f'(\bar{x}) = cosh(\bar{x}), \ \forall \bar{x} \in \mathbb{R}$.

$$f(x) = cosh(x)$$
 tiene derivada $f'(\bar{x}) = senh(\bar{x}), \ \forall \bar{x} \in \mathbb{R}$.

$$f(x) = tanh(x)$$
 tiene derivada $f'(\bar{x}) = \frac{1}{cosh^2(\bar{x})}, \ \forall \bar{x} \in \mathbb{R}.$

$$f(x) = a^x$$
 tiene derivada $f'(\bar{x}) = \ln(a)a^{\bar{x}}, \ \forall \bar{x} \in \mathbb{R}, \forall a > 0.$

Teorema 11 (Regla de la cadena). Sea $f:(a,b)\to(c,d)$ derivable en $\bar{x}\in(a,b)$ y $g:(c,d)\to\mathbb{R}$ derivable en $\bar{y}=f(\bar{x})\in(c,d)$. Entonces $g\circ f$ es derivable en \bar{x} con

$$(q \circ f)'(\bar{x}) = q'(f(\bar{x})) \cdot f'(\bar{x})$$

Teorema 12 (Derivadas de funciones inversas). Sea $f:(a,b) \to (c,d)$ biyectiva y continua. Si f es derivable en $\bar{x} \in (a,b)$ con $f'(\bar{x}) \neq 0$, entonces la función inversa $f^{-1}:(c,d) \to (a,b)$ es derivable en $\bar{y} = f(\bar{x})$ con

$$(f^{-1})'(\bar{y}) = \frac{1}{f'(\bar{x})} = \frac{1}{f'(f^{-1}(\bar{y}))}.$$

Observación Más derivadas conocidas:

$$f(x) = arcsin(x)$$
 tiene derivada $f'(\bar{x}) = \frac{1}{\sqrt{1 - \bar{x}^2}}, \ \forall \bar{x} \in [-1, 1].$

$$f(x) = arctan(x)$$
 tiene derivada $f'(\bar{x}) = \frac{1}{1 + \bar{x}^2}, \ \forall \bar{x} \in \mathbb{R}.$

4 [Semana 4] Derivadas: Los teoremas

4.1 Máximos y mínimos: la regla de Fermat

Definición 6 Diremos que un punto \bar{x} es un mínimo local de la función f si existe $\epsilon > 0$ tal que

$$f(\bar{x}) \le f(x) \ \forall x \in (\bar{x} - \epsilon, \bar{x} + \epsilon).$$

Definición 7 Diremos que un punto \bar{x} es un máximo local de la función f si existe $\epsilon > 0$ tal que

$$f(x) \le f(\bar{x}) \ \forall x \in (\bar{x} - \epsilon, \bar{x} + \epsilon).$$

Teorema 13 Si $\bar{x} \in (a,b)$ es mínimo local o máximo local de una función derivable $f:(a,b) \to \mathbb{R}$, entonces $f'(\bar{x}) = 0$.

4.2 El teorema del valor medio

Teorema 14 (TVM). Sean $f, g : [a, b] \to \mathbb{R}$ funciones continuas en [a, b] y derivables en (a, b). Entonces existe $\xi \in (a, b)$ tal que

$$[f(b) - f(a)]g'(\xi) = [g(b) - g(a)]f'(\xi).$$

En particular, si q(x) = x se tiene

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

4.3 Algunas aplicaciones de la derivada

Una primera consecuencia directa del TVM es la llamada regla de l'Hôpital para el cálculo de límites de la forma 0/0 o ∞/∞ .

Teorema 15 (Regla de l'Hôpital). Sean $f, g: (a, b) \to \mathbb{R}$ derivables en (a, b), tales que

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = L$$

con L = 0 o $L = \infty$, $y g'(x) \neq 0$ para todo $x \in (a, b)$. Entonces

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}$$

siempre que este último límite exista.

Observación La regla de l'Hôpital también se aplica para límites con $x \to a^-, x \to a$, e incluso para límites con $x \to \infty$ de la misma forma.

4.4 Derivadas y monotonía

Teorema 16 Sea $f:[a,b] \to \mathbb{R}$ continua en [a,b] y derivable en (a,b). Si $f'(x) \ge 0$ (resp. ≤ 0) para todo $x \in (a,b)$, entonces f es creciente (resp. decreciente) en [a,b]. Si la desigualdad es estricta, la monotonía es igualmente estricta.

4.5 Derivadas y convexidad

Definición 8 Una función $f:[a,b] \to \mathbb{R}$ se dice convexa si las rectas secantes al gráfico de la función quedan por encima del gráfico, vale decir

$$f(z) \le f(x) + \left[\frac{f(y) - f(x)}{y - x} \right] (z - x) \quad \forall x < z < y$$

o también

$$\frac{f(z)-f(x)}{z-x} \leq \frac{f(y)-f(z)}{y-z}$$

Teorema 17 Sea $f: [a,b] \to \mathbb{R}$ continua en [a,b] y derivable en (a,b). Entonces f es convexa en [a,b] ssi f' es creciente en (a,b).

Observación Análogamente, $f:[a,b]\to\mathbb{R}$ se dice cóncava si las rectas secantes quedan por debajo del gráfico de la función. Esto equivale a la convexidad de -f y por lo tanto, en el caso diferenciable, a que f' sea decreciente.

4.6 Derivadas de orden superior

Observación Las derivadas de orden superior se definen inductivamente por

$$f^{[k]}(\bar{x}) := (f^{[k-1]})'(\bar{x}).$$

con la convención $f^{[0]}(x)=f(x)$. Notar que para que f tenga una derivada de orden k en \bar{x} , $f^{[k-1]}(x)$ debe existir al menos en un intervalo $(\bar{x}-\epsilon,\bar{x}+\epsilon)$ y ser derivable en \bar{x} . Si f admite una derivada de orden k en todo punto de un intervalo (a,b), entonces $f^{[k-1]}$ (e inductivamente todas las derivadas de orden inferior a k) son continuas en (a,b). Diremos que $f:(a,b)\to\mathbb{R}$ es de clase $C^k(a,b)$ si es k veces derivable en todo punto del intervalo (a,b), y la función $f^{[k]}:(a,b)\to\mathbb{R}$ es continua. Si esto es cierto para todo k, diremos que f es de clase C^∞ .

4.7 Desarrollos limitados

Definición 9 Diremos que $f:(a,b)\to\mathbb{R}$ posee un desarrollo limitado de orden k en torno al punto $\bar{x}\in(a,b)$ si existen constantes $a_0,...,a_k\in\mathbb{R}$ tales que

$$f(x) = a_0 + a_1(x - \bar{x}) + a_2(x - \bar{x})^2 + \dots + a_k(x - \bar{x})^k + o((x - \bar{x})^k)$$
 con $\lim_{u \to 0} o(u^k)/u^k = 0$.

Teorema 18 Sea $f:(a,b)\to\mathbb{R}$, k-veces derivable en $\bar{x}\in(a,b)$, y sea

$$T_f^k(h) := f(\bar{x}) + f'(\bar{x})h + \frac{f''(\bar{x})}{2}h^2 + \dots + \frac{f^{[k]}(\bar{x})}{k!}h^k$$

su desarrollo de Taylor de orden k en torno a \bar{x} . Entonces

$$f(x) = T_f^k(x - \bar{x}) + o((x - \bar{x})^k)$$

 $con \lim_{h\to 0} o(h^k)/h^k = 0.$

4.8 Caracterización de puntos críticos

Proposición 2 Sea $f:(a,b) \to \mathbb{R}$, k veces derivable en $\bar{x} \in (a,b)$, con $f'(\bar{x}) = ... = f^{\lfloor k-1 \rfloor}(\bar{x}) = 0$ y $f^{\lfloor k \rfloor} \neq 0$, $k \geq 2$. Entonces hay 3 casos posibles:

- a) Si k es par y $f^{[k]}(\bar{x}) > 0$, \bar{x} es un mínimo local.
- b) Si k es par y $f^{[k]}(\bar{x}) < 0$, \bar{x} es un máximo local.
- c) Si k es impar, \bar{x} es un punto de inflexión.

4.9 Fórmula de Taylor

La siguiente generalización del TVM permite calcular el error de aproximación que se comete al reemplazar una función por su desarrollo de Taylor.

Teorema 19 Sea $f:(a,b) \to \mathbb{R}$, (k+1)-veces derivable en todo punto del intervalo (a,b). Sea $T_f^k(\cdot)$ el polinomio de Taylor de orden k en $\bar{x} \in (a,b)$. Entonces, para todo $x > \bar{x}$ (resp. $x < \bar{x}$) existe $\xi \in (\bar{x},x)$ (resp. $\xi \in (x,\bar{x})$) tal que

$$f(x) = T_f^k(x - \bar{x}) + \frac{f^{[k+1](\xi)}}{(k+1)!}(x - \bar{x})^{k+1}.$$

4.10 El método de Newton

Consideremos la ecuación f(x)=0 donde $f:[a,b]\to\mathbb{R}$ es una función derivable tal que f(a)f(b)<0. En el capítulo de continuidad vimos que existe una solución $x^*\in(a,b)$, la cual podemos aproximar mediante el método de bisección. Dicho método, a pesar que nos asegura converger hacia x^* , es relativamente lento.

Usando la noción de derivada podemos construir un método iterativo más eficiente. Supongamos que disponemos de una aproximación de la solución $x_0 \sim x^*$. Si en la ecuación f(x) = 0 reemplazamos la función $f(\cdot)$ por su aproximación afín en torno a x_0 , obtenemos la ecuación lineal $f(x_0) + f'(x_0)(x - x_0) = 0$. Si $f'(x_0) \neq 0$, la solución de esta ecuación linealizada es $x_1 = x_0 - f(x_0)/f'(x_0)$, la cual podemos considerar como una nueva aproximación de x^* , que esperamos sea más precisa.

La iteración de este procedimiento a partir de la nueva aproximación conduce a un método iterativo de la forma

$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$

el cual estará definido mientras se tenga $f'(x_n) \neq 0$. Esta iteración se conoce como el Método de Newton (para ecuaciones).

Teorema 20 Sea $f:(a,b)\to\mathbb{R}$ una función de clase C^2 y supongamos que $x^*\in(a,b)$ es una solución de la ecuación $f(x^*)=0$ tal que $f'(x^*)\neq 0$. Entonces existen constantes $\epsilon>0$ y M>0 tales que para todo punto de partida $x_0\in I_\epsilon:=(x^*-\epsilon,x^*+\epsilon)$ el método de Newton está bien definido y converge hacia x^* con

$$|x_{n+1} - x^*| \le M|x_n - x^*|^2$$
.