FI3102-1 Física Moderna

Profesor: Álvaro Núñez Auxiliar: Daniel Lobos Ayudante: Felipe Cárdenas

Tarea 8

Fecha de entrega: 13 de noviembre de 2023

ENTREGA PRESENCIAL Y EN HOJAS SEPARADAS

P1. a) Encuentre los elementos de matriz $\langle n|\hat{x}|n'\rangle$ y $\langle n|\hat{p}|n'\rangle$ en la base (ortonormal) de estados estacionarios para el oscilador armónico

$$\langle x|n\rangle = \psi_n = \frac{1}{\sqrt{n!}} (a_+)^n \psi_0$$

Además, construya las matrices (infinitas) X y P.

- b) Muestre que $\frac{1}{2m}\mathbf{P}^2 + \frac{m\omega^2}{2}\mathbf{X}^2 = \mathbf{H}$ es diagonal en esta base.
- P2. El hamiltoniano de un cierto sistema de dos niveles es

$$\hat{H} = \epsilon \left(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1| \right),\tag{1}$$

donde $\{|1\rangle, |2\rangle\}$ es una base ortonormal y ϵ es una cantidad con dimensiones de energía.

- a) Encuentre los valores y vectores propios (como combinaciones lineales de $|1\rangle$ y $|2\rangle$).
- b) Escriba de forma matricial el hamiltoniano \hat{H} .
- **P3.** Mediciones secuenciales. Un operador \hat{A} , representando al observable A, tiene dos autoestados normalizados: $|\psi_1\rangle$ y $|\psi_2\rangle$, con autovalores a_1 y a_2 , respectivamente. El operador \hat{B} , representando al observable B, tiene dos autoestados normalizados: $|\phi_1\rangle$ y $|\phi_2\rangle$, con autovalores b_1 y b_2 , respectivamente. Los autoestados están relacionados por

$$|\psi_1\rangle = \frac{1}{5} (3 |\phi_1\rangle + 4 |\phi_2\rangle) \qquad |\psi_2\rangle = \frac{1}{5} (4 |\phi_1\rangle - 3 |\phi_2\rangle)$$
 (2)

- a) Se mide el observable A y se obtiene el valor a_1 . ¿Cuál es el estado de el sistema inmediatamente después de esta medición?
- b) Si ahora se mide B, ¿cuáles son los posibles resultados y sus probabilidades asociadas?
- c) Justo después de la medición de B se mide A nuevamente. ¿Cuál es la probabilidad de obtener a_1 ? (Note que la respuesta hubiese diferido si se supiera el resultado de la medición de B).
- **P4.** El operador traslación $\hat{\Omega}(a)$ es definido tal que

$$\hat{\Omega}(a)\phi(x) = \phi(x+a) \tag{3}$$

- a) Muestre que $\hat{\Omega}(a)$ puede expresarse en términos del operador $\hat{p} = -i\hbar \frac{d}{dx}$.
- b) Muestre que $\hat{\Omega}(a)$ es unitario.