
Parta Aux. 10

P1) a) Notemos pur 1/ campo del plano infinito con el orifico de radio R a puede obtene, per superposión, mediante

$$\vec{\xi} = \vec{\xi}_{pare} - \vec{\xi}_{disse}$$
 disse de radio R.

Epon la calcularer mediante ley de Gauss, ya pu al tertarx de un plano infinito, se tiene sinetria tel pue E= E(B) sê. Para ello, enurranos una región de redio r orbitario del plano, mediante un elindro de altura h, tal como se muestra en la figura

uniferne, la carga anarroda per el clindro h obtiene ono

Lugo, el flujo de camp eléctrico a través del ulindro & obtien como

$$\iint_{Sup} \vec{E} \cdot \vec{J} \cdot \vec{S} = \iint_{Sup} \vec{E} \cdot \vec{J} \cdot \vec{S} + \iint_{Sup} \vec{E} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} + \iint_{Sup} \vec{E} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} + \iint_{Sup} \vec{E} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} + \iint_{Sup} \vec{E} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} + \iint_{Sup} \vec{E} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} \cdot \vec{J} + \iint_{Sup} \vec{J} \cdot \vec$$

(1): la tapa sperior n parametriza uno

$$\Rightarrow \iint_{\Sigma} \vec{E} \cdot d\vec{S} = \iint_{\Sigma} E(\vec{x}) \hat{k} \cdot p dp dp \hat{k} = E(\vec{x}) \iint_{\Sigma} p dp dp = E(\vec{x}) \pi r^{2}$$

(2): la tepa inferior & parametriza omo

$$\vec{r} = P \hat{\rho} - \frac{h}{2} \hat{E}$$
; $P \in [0, T]$, $\Phi \in [0, 2\pi]$

Lin embargo, antes de balwlar el flujo por estan tapa, on debe tenor en courte pur esta superficio se arienta en F, par la pur

Además, per sinetría, un 220 (bajo el phro), se tiere pur

$$\vec{E} \cdot d\vec{S} = E(\vec{z})\hat{k} \cdot pd\phi d\vec{z}\hat{p} = 0$$
 $\Rightarrow \iint \vec{E} \cdot d\vec{S} = 0 / \hat{k} \cdot \hat{p} = 0$

Sustituyendo (1), (2) y (3) in
$$\mathcal{H}\vec{E}\cdot\vec{dS}$$
, & obtiene pur
$$\mathcal{H}\vec{E}\cdot\vec{dS} = E(2)\pi r^2 + E(2)\pi r^2 = 2E(2)\pi r^2$$

$$\iint \vec{E} \cdot d\vec{S} = \frac{Q_{\text{total}}}{\xi_0} \qquad (a) \qquad 2Epp^2 = \frac{\nabla p^2}{\xi_0} \qquad \Rightarrow \qquad \vec{E}_{\text{plane}} = \begin{cases} \frac{\nabla}{2\xi_0} \hat{k}_1 & 270 \\ -\frac{\nabla}{2\xi_0} & \hat{k}_2 & 240 \end{cases}$$

Ediso) En este 1020 no existe sinutria, por la pur no se puede oupar luy de Gauss, Asi, valudamos el vampo per definición, la perametrización del dista es la siguiante

$$\vec{E} = \frac{1}{4\pi \xi_0} \int \frac{\vec{r} - \vec{r}'}{\|\vec{r} - \vec{r}'\|^3} d\xi = \frac{1}{4\pi \xi_0} \int \frac{2\vec{k} - p\hat{p}}{\|z\hat{k} - p\hat{p}\|^3} \int pdpd / \hat{p} = \omega_0 \hat{p} + \omega_0 \hat{p}$$

$$= (z^2 + p^2)^{\frac{3}{2}}$$

$$= \frac{1}{4\pi \xi^{0}} \left[\int_{3\pi}^{0} \int_{K}^{0} \frac{(3z+b_{3})^{3/2}}{5\pi k} \log \phi - \int_{3\pi}^{0} \int_{K}^{0} \frac{(3z+b_{3})^{3/2}}{(8\pi b^{2})^{3/2}} \log \phi - \int_{3\pi}^{0} \int_{K}^{0} \frac{(3z+b_{3})^{3/2}}{(8\pi b^{2})^{3/2}} \log \phi \right]$$

V: undo por separado el desarrollo de 9:ntigral

$$\vec{E} = \frac{\sigma}{\sqrt{12}} \left[\int_{0}^{2\pi} \int_{0}^{2\pi} \frac{e^{2\pi i}}{(2\pi^{2} + \rho^{2})^{3/2}} \rho d\rho d\rho - \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{e^{2\pi i}}{(2\pi^{2} + \rho^{2})^{3/2}} \rho d\rho d\rho - \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{e^{2\pi i}}{(2\pi^{2} + \rho^{2})^{3/2}} \rho d\rho d\rho - \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{e^{2\pi i}}{(2\pi^{2} + \rho^{2})^{3/2}} \rho d\rho d\rho \right]$$

$$\vec{E}_{disc} = \frac{\sigma}{2} \left(1 - \frac{2}{\sqrt{2\pi^{2} + \rho^{2}}} \right) \hat{k}$$

Una vez desarrollado Egano y Ediso, sustituzado para el lampo tatel

$$\Rightarrow \vec{E} = \vec{E}_{plano} - \vec{E}_{dijlo} = \frac{\nabla}{2\xi_{0}} \hat{k} - \frac{\nabla}{2\xi_{0}} \left(1 - \frac{2}{\sqrt{z^{2} + R^{2}}} \right) \hat{k} \iff \vec{E} = \frac{\nabla z}{2\xi_{0}\sqrt{z^{2} + R^{2}}} \hat{k}$$

Desarrollo alternativo: Podemos, en lujar de user Gauss y superpesición, simplemete selvular por definición, considerando la misma integral del disei pero un lugar de considerar PE[ARZ tornar PE[Ara), i.e. al plano infinito con al orifico. De este maxima

$$r = \rho \hat{\rho}$$
; $\rho \in [\kappa, \infty)$; $\phi \in [0, 2\pi]$

Nucramente, $\vec{r} = Z\hat{F}$, Z arbitario sobre el je (270). Así, il campo a Glula conce ciem

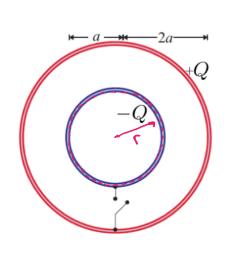
$$\vec{E} = \frac{1}{4\pi \epsilon_0} \int \frac{\vec{r} - \vec{r}'}{\|\vec{r} - \vec{r}''\|^3} d\xi = \frac{1}{4\pi \epsilon_0} \int \int \frac{2\pi c_0}{e^{2\pi c_0}} \frac{e^{2\pi c_0}}{|\vec{r} - \vec{r}|^3} d\xi = \frac{1}{(z^2 + p^2)^{3/2}} d\xi = \frac{1}{(z^2 + p^2)^{3/2}$$

$$\vec{E} = \frac{\sqrt{\pi \xi_0}}{\sqrt{\pi \xi_0}} \left[\int_{0}^{\infty} \int_{0}^{\infty} \frac{(z^2 + \rho^2)^{3/2}}{(z^2 + \rho^2)^{3/2}} \rho d\rho d\rho - \int_{0}^{\infty} \int_{0}^{\infty} \frac{(z^2 + \rho^2)^{3/2}}{(z^2 + \rho^2)^{3/2}} \rho d\rho d\rho - \int_{0}^{\infty} \int_{0}^{\infty} \frac{(z^2 + \rho^2)^{3/2}}{(z^2 + \rho^2)^{3/2}} \rho d\rho d\rho \right]$$

Siguiendo un descredo análogo al hech para la integral (*), a tendrá pur

$$\vec{E} = \frac{\sigma}{\sqrt{1/2}} \cdot \pi \cdot \vec{E} \cdot \frac{\sigma^{1/2}}{\sqrt{1/2}} \Big|_{\vec{z}^{2} + \vec{R}^{2}}^{\omega} = \frac{\sigma}{2 \epsilon_{0}} \cdot \vec{E} \cdot \left[\frac{1}{\sqrt{\omega'}} + \frac{1}{\sqrt{\vec{z}^{2} + \vec{R}^{2}}} \right]$$


$$\langle \Rightarrow \hat{\vec{E}} = \frac{\vec{\nabla} \cdot \vec{E}}{2 \cdot (\sqrt{2^2 + R^2})} \hat{\vec{K}}$$


b) Pora calular la fuerza entre ambes dejetos, como ya conocenos el bempo perecedo per el plaro, basta usar d\(\varepsilon = \varepsilon dg un elemeto de corga del alambre delgado (esto hos daria la fuerza per el plano le viere al alambre y por 3º ley de Venton, tiere la misma magnitud per la per el alambre viera al plano). Luego,

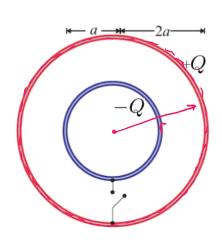
$$\Rightarrow d\vec{F} = d\vec{g} \vec{E} \Rightarrow \vec{F} = \int \vec{E} d\vec{g} = \int \frac{\vec{\nabla} \vec{z}}{2\xi_0 \sqrt{z^2 + \varrho^2}} \hat{K} \lambda d\vec{z} = \frac{\vec{Q} \vec{\lambda}}{2\xi_0} \hat{K} \int \frac{\vec{z}}{\sqrt{z^2 + \varrho^2}} d\vec{z} / U = \vec{z}^2 + \ell^2$$

$$= \frac{\sqrt[3]{\lambda}}{\sqrt[3]{\xi_0}} \frac{\sqrt[3]{\lambda}}{\sqrt[3]{\xi_0}} = \frac{\sqrt[3]$$

$$| \Leftrightarrow \vec{F} = \frac{2 \epsilon}{G \lambda} \left[\sqrt{(4 + t)^2 + \mu^2} - \sqrt{8^2 + \ell^2} \right] \hat{k}$$

acreat & la superfice Gaussiana de la figura, al estar dentro de un condictor, encontrares pur

Por otra porte, la superficie encierra la carga en la superficie interier, i.e. alr=a) Asi Qenc = Q(r=a) (1)


Sustituzindo en la ley de Gauss

$$\iint \vec{E} \cdot d\vec{S} = \frac{Q_{enc}}{\epsilon_o}$$

$$\iint \vec{E} \cdot d\vec{J} = \frac{Q_{enc}}{E_0} \implies Q_{enc} \implies Q_{enc}$$

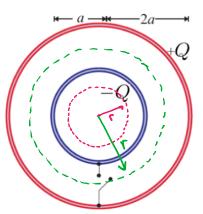
Por otra parte, la larga reta del lonductor es-a, i.e. la suma de las larga interiores y exteriores deben sumar-a, tal que

In signe un proudimiento analogo para el conducter exterior.

2acre 2ato 1 Dodo pu estamos dentro de un

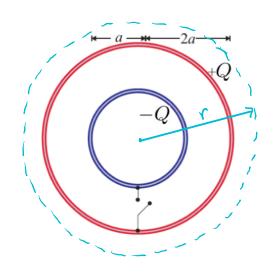
Conducter

En este caso, alora se univera toda la corga - a contenida u al conductor interior, además da la Lorga contenida en la cara interior del conductor externo (Q(r=2a)). Asi

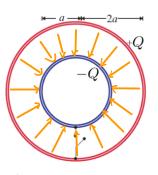

En este caso, la corga neta en el conductor externo es a de manra pur lanalogo al conductor interno):

$$Q(r=2a+6) = Q + Q(r=2a+6) = Q$$

$$Q(r=2a+6) = Q$$

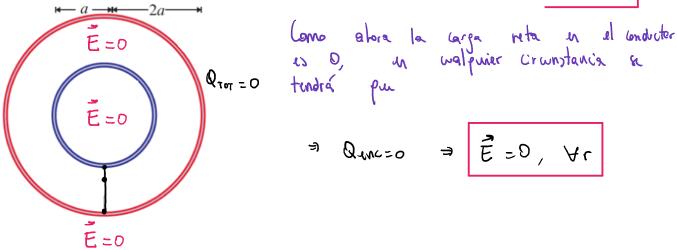

$$Q(r=2a+6) = Q$$

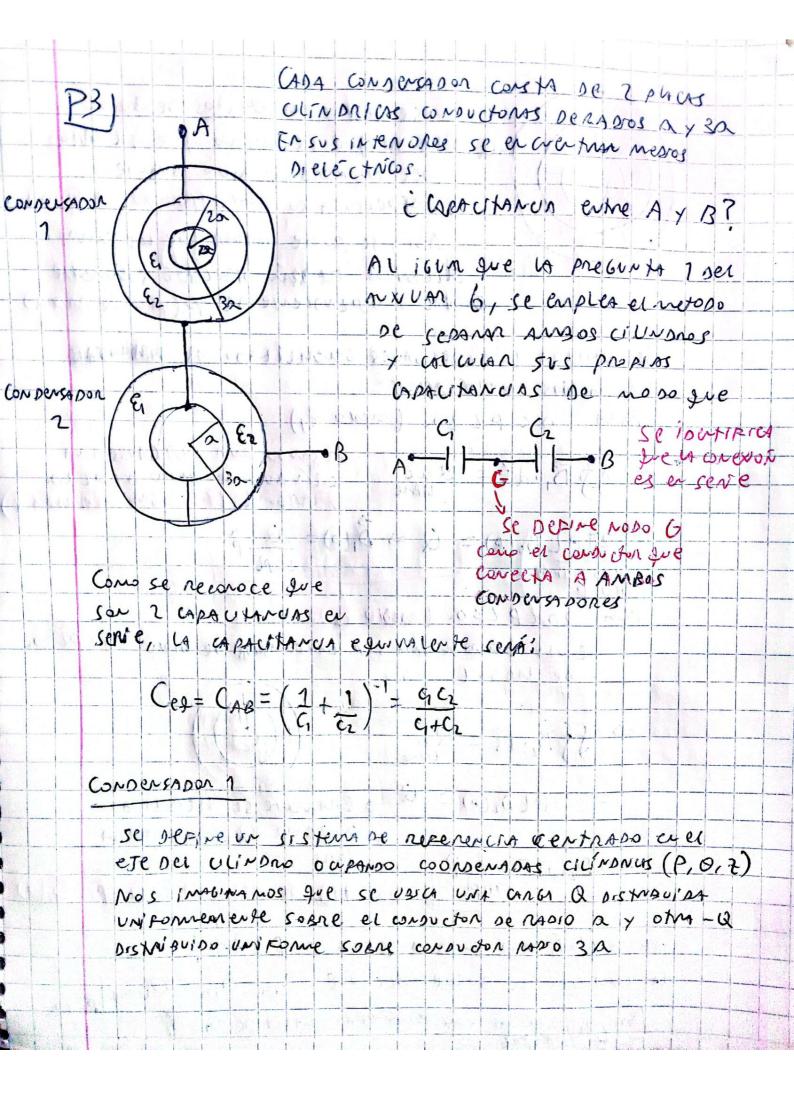
6) Tal como ke histo porra uncontrar les cargos en les sepertires, usamos les de de Gauss ustudiando rea, azreza, rzza:

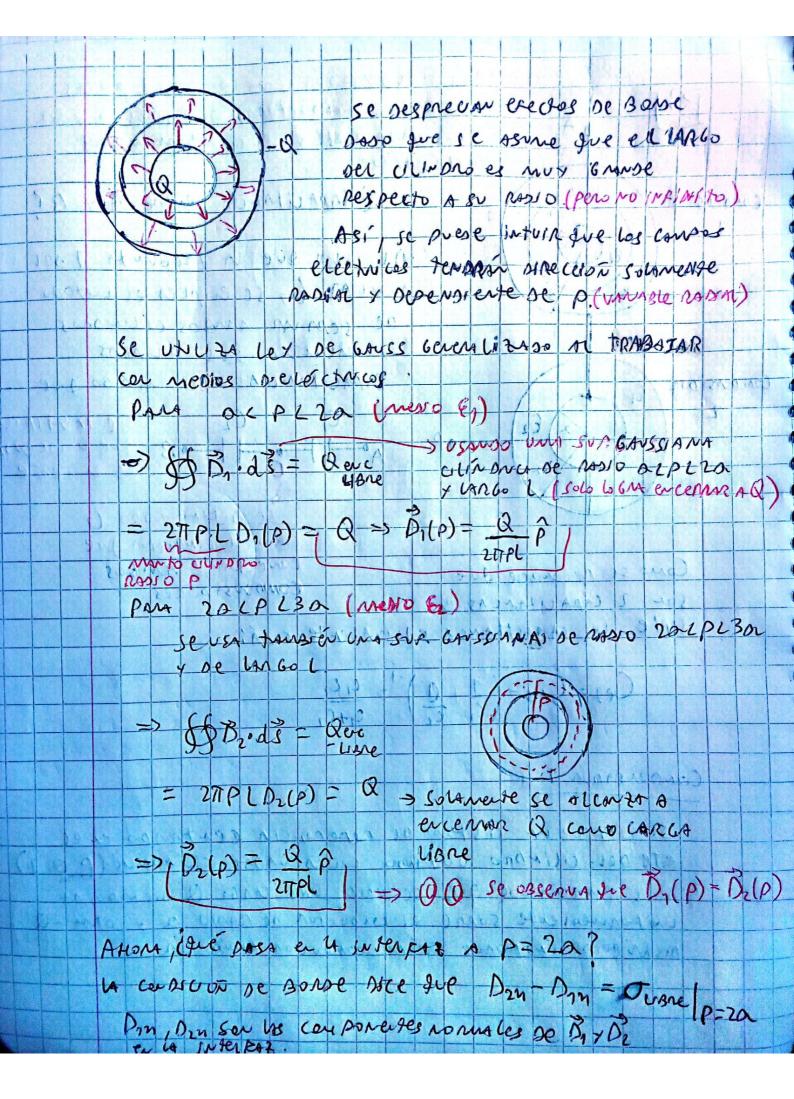

Sistituzendo en la ley de Gauss

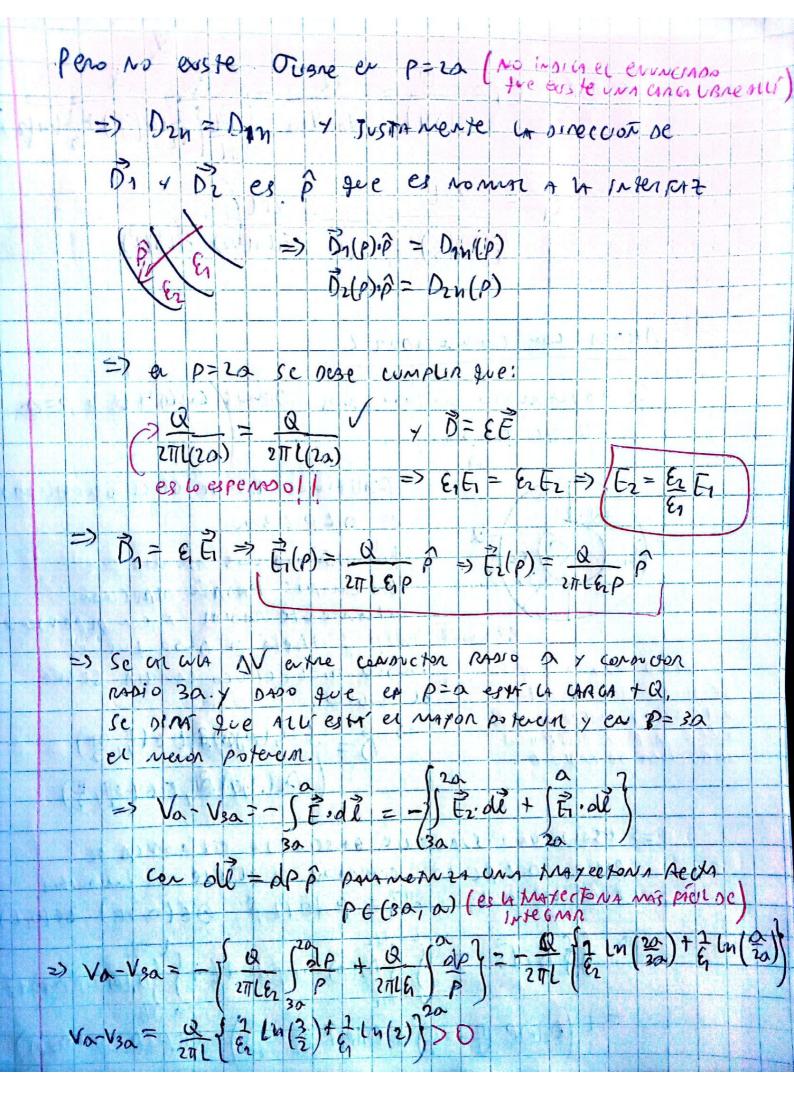
$$\iint \vec{E} \cdot d\vec{s} = \underbrace{Q_{mc}}_{E_0} \Rightarrow \underbrace{V_{\pi r^2} E(r)}_{E_0} = \frac{-Q}{E_0} \Rightarrow \underbrace{E(r)}_{E_0} = \frac{-Q}{V_{\pi t_0 r^2}} \hat{r}$$

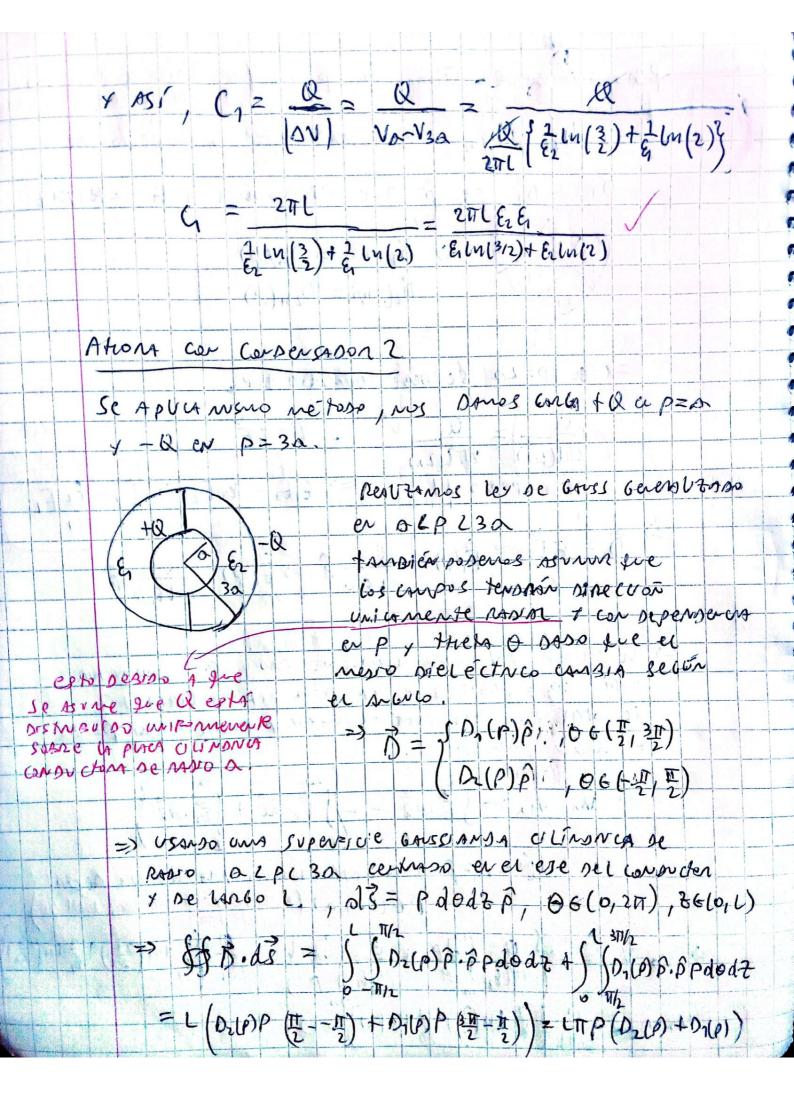
De esta morra

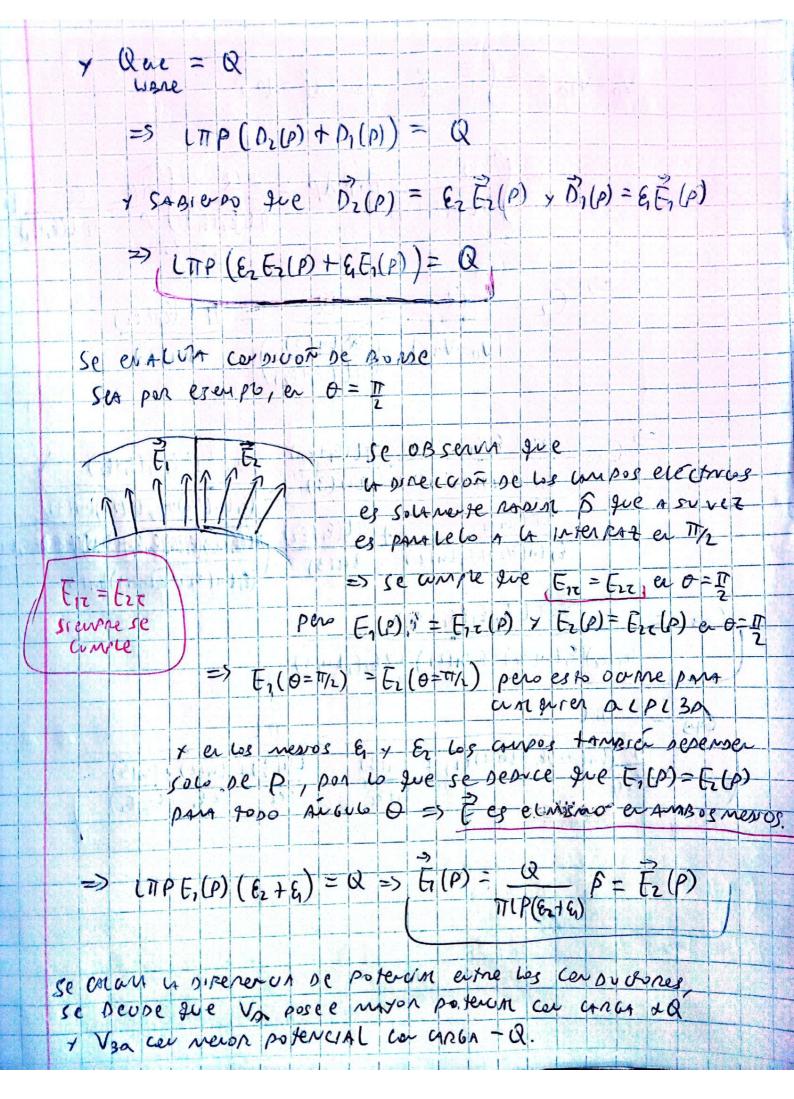

$$\vec{E} = \begin{cases} 0 & , r < \alpha \\ -Q & \hat{r} & , \alpha < r < 2\alpha \\ 0 & , r > 2\alpha \end{cases}$$




La Linea de campo!!


O) De ignal marera pur el auxiliar 1, al constera los conductores las corpos prexistes en estos se reordenan hasta alcanzor el equilibrio electrostático.


En este ceso, la larga del conductor interior fluirà hava el exterior, de marera pu la carga total del sistema se aumularà en la care exterior del conductor externo.



	$= -\int_{\mathbf{r}} \mathbf{r} \cdot d\mathbf{r} d\mathbf{r} = -\int_{\mathbf{r}} \mathbf{r} \cdot d\mathbf{r} d\mathbf{r} = -\int_{\mathbf{r}} \mathbf{r} \cdot d\mathbf{r} d$
	$-\int_{\pi}^{\infty} \frac{Q}{\sqrt{11}} \frac{\partial P}{\partial P} = -\frac{Q}{\sqrt{11}} \int_{\pi}^{\infty} \frac{dP}{P} = \frac{Q}{\sqrt{11}} \frac{\ln(3)}{2}$
±> ($ \begin{array}{cccc} 2 & = & & & = & & & & & \\ V_0 - V_{3a} & & & & & & & \\ \hline V_0 - V_{3a} & & & & & & \\ \hline V_1 & & & & & & \\ \hline V_1 & & & & & & \\ \hline V_1 & & & & & & \\ \hline V_2 & & & & & & \\ \hline V_3 & & & & & & \\ \hline V_1 & & & & & & \\ \hline V_1 & & & & & & \\ \hline V_2 & & & & & & \\ \hline V_3 & & & & & & \\ \hline V_1 & & & & & & \\ \hline V_2 & & & & & & \\ \hline V_3 & & & & & & \\ \hline V_1 & & & & & & \\ \hline V_2 & & & & & & \\ \hline V_3 & & & & & & \\ \hline V_3 & & & & & & \\ \hline V_4 & & & & & & \\ \hline V_2 & & & & & & \\ \hline V_3 & & & & & & \\ \hline V_3 & & & & & & \\ \hline V_4 & & & & & & \\ \hline V_1 & & & & & & \\ \hline V_2 & & & & & & \\ \hline V_3 & & & & & & \\ \hline V_3 & & & & & & \\ \hline V_4 & & & & & & \\ \hline V_5 & & & & & & \\ \hline V_5 & & & & & & \\ \hline V_7 & & & & & \\$
=>) C _{AB} =	271 L Eze TL (Exter) (2712 12 82 8 (6, + 82) (Extra 13/2) + Extra (2) in (3) = (Extra 13/2) + Extra (13/2) (m/3)
CABIZ	En (13/2) + En (12) (14(3)) + En (12) + En (12) + En (12) (14(3)) + En (12) (14(3)) (14(3)) + En (12) (14(3))
E93 - 17 L	(2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (4) (3) (4) (3) (4)
	$\frac{12)}{12}$ $\frac{1}{12}$ $\frac{1}{12$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1