

Auxiliar extra 2: Control 2

Profesores: Constanza Ahumada, Rodrigo Moreno.

Auxiliares: Felipe Alarcón, Matías Medina. Ayudantes: José Balboa, María José Liberona, Roberto Lüders.

Pregunta 1

Se quiere diseñar un circuito de partida automática para un motor de CC en conexión shunt, cuyos valores nominales son: 20 [HP], 240 [V] y 75 [A]. Se sabe que su resistencia de armadura tiene un valor $R_a = 0.12$ [Ω], y la resistencia de campo $R_c = 40$ [Ω]. Por temas de diseño, la corriente de armadura no puede superar el 250% de la corriente nominal. Durante la partida, se espera que el nivel de corriente se mantenga entre este último valor y el valor nominal. Para esto, el circuito irá disminuyendo en "un nivel" su resistencia, manteniendo la corriente en dicho rango. ¿Cuántos niveles de resistencia de partida se necesitan, y de qué magnitud deben ser?

Pregunta 2

Un generador síncrono trifásico se encuentra suministrando una potencia de 10 MVA con un factor de potencia de 0.8 inductivo a una tensión nominal de 13.2 kV y una frecuencia de 50 Hz. La máquina posee una reactancia síncrona de 13.4165 Ω y tiene 48 polos. Está conectada a una barra infinita con la misma tensión nominal.

- 1. Calcule la tensión interna de la máquina y dibuje el respectivo diagrama fasorial.
- 2. Calcule la velocidad y el torque que ejerce la máquina, considerando que no hay pérdidas de potencia activa.
- 3. Si la corriente de campo se incrementa en un 20 %, ¿qué sucedería con los valores de P, Q, E, y δ ? Comente.
- 4. Si el número de polos aumenta, ¿qué sucedería con el torque ejercido por la máquina? Comente.

Pregunta 3, si alcanzamos...

Una empresa le pide realizar pruebas sobre un transformador para obtener los parámetros del circuito equivalente y así poder trabajar de forma teórica con el dispositivo. La empresa sólo cuenta con multímetros sencillos, es decir, solo miden tensión, corriente y resistencia. Como usted sabe, con estos datos no basta para obtener los parámetros del circuito. Pero, por fortuna, dispone de los datos de placa del transformador los cuales se muestran a continuación:

Auxiliar extra 2: Control 2

• Tensión nominal: 230 [V]

• Frecuencia nominal: 50 [Hz]

• Razón de transformación: 1:10

• Potencia de entrada: 10 [kW]

• Potencia de salida: 8.8 [kW]

• Factor de potencia: 0.8

Luego de registrar los datos de placa, procede a realizar las pruebas de corto circuito y circuito abierto, obteniendo los siguientes resultados:

Prueba	Tensión [V]	Corriente [A]
CC (Corto Circuito)	440	5.5
CA (Circuito Abierto)	230	4.6

Además, ha logrado medir la resistencia en cada enrollado obteniendo un valor total de 0.1 $[\Omega]$ referido al primario.

Calcule los parámetros del circuito equivalente del transformador.