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Abstract 

Social robotics and human-robot partnership are becoming very 

relevant topics defining many challenges for state-of-the-art 

speech technology. This paper presents the first evaluation of 

speech emotion recognition (SER) technology with non-acted 

speech data recorded in a real indoor human-robot interaction 

(HRI) scenario.  The challenge is typified by distant speech 

processing, reverberation, and additive external and robot 

engine noise. We train and evaluate a machine learning-based 

based on simulated acoustic modelling that includes room 

impulse responses (RIRs), external noise, and beamforming 

response. We observe increased performance in the prediction 

of arousal, valence, and dominance with the proposed training 

procedure combined with delay-and-sum and minimum 

variance distortionless response (MVDR), with gain as high as 

180%, compared with the result obtained with the model trained 

with the original data in controlled environments. Moreover, 

the degradation achieved when compared with the original 

matched training/testing condition is just 39%.  

 

Index Terms: speech emotion recognition, human-computer 

interaction. 

1. Introduction 

Social interaction is a very complex challenge for robotics, in 

part because it requires effectively recognizing or detecting 

gaze directions, facial expressions, linguistic content, and 

prosody of speech, and then acting accordingly. Depending on 

the cultural context, the difference between human emotional 

states can be as subtle as "a simple wink, or an upward 

inflection in a single phoneme." [1]. To achieve this purpose, 

robotic systems will need to combine multiple input modalities. 

However, some of these inputs, such as physiological signals, 

require wearable sensors that may be invasive from the user's 

point of view. In addition, image processing is not always 

possible depending on the operating conditions. In contrast, 

speech conveys an enormous amount of linguistic and 

paralinguistic information (e.g., prosody). Beyond voice 

commands to robots, speech is a window into the psychological, 

physical and emotional state of humans.  

Social user profiling is essential for Human-Robot 

Interaction (HRI), because the robots are expected to be able to 

recognize the intentions and goals behind the user's actions, in 

order to adapt their behavior to them [2]. In addition, social 

profiling also refers to the ability to recognize social 

phenomena, such as commitment, conflict, empathy, interest 

and emotions, which cannot be observed directly, but must be 

inferred by examining indirect indicators. Some of these 

indirect indicators can be body posture [3], facial expressions 

[4], gaze direction [5], and voice volume. Within social user 

profiling, the concept of emotion recognition arises, which 

seeks to dynamically detect the emotional state of the user 

during the interaction, because, while a person's emotional 

profile does not change during a single interaction with the 

robot, the user may exhibit multiple emotions during the 

interaction. This continuous detection approach allows the 

user's profile to be frequently updated. 

The process of identifying human emotions using the voice, 

mainly non-verbal elements of the voice is defined as speech 

emotion recognition (SER). The vast majority of the research in 

this discipline is focused on Human-Computer Interaction 

(HCI) [6], assuming the user is directly next to the microphone. 

However, in this case, the influence of the acoustic channel is 

neglected. Only a few studies have tested distant SER in noisy 

environments. The most used techniques to address this 

challenge are the selection of features that are more robust to 

distance distortions and the creation of encoder-decoder 

models, which are known to be robust in tasks involving various 

types of distortions. Salekin et al. [7] selected 48 low-level 

descriptors (LLD), which were extracted per frame and passed 

through a long short-term memory (LSTM) network for final 

classification. The test environment of this study is a meeting 

room with seven fixed microphones distributed throughout the 

room. They performed spectral and temporal filtering. 

However, no beamforming technique was used. Ahmed et al. 

[8] employed a metric to determine the distortion of the features 

according to the distance to the microphone. In addition, they 

trained their classifier with convoluted audio with artificially 

generated room impulse responses (RIRs) and use the weighted 

prediction error (WPE) algorithm to remove reverberation from 

the test audios and Coherent-to-Diffuse Power Ratio Estimation 

(CDR) to perform noise cancelling. However, the 

implementation of the system with a robot was not explored. A 

feature acquisition technique using a robotic platform with a 

Kinect mounted was evaluated in Chen et al. [9]. Nevertheless, 

the test database is acted upon by volunteers from their own 

research lab and has only 500 utterances. Furthermore, the 

study does not address the effects of external noise, which is 

important to consider since robots, which can generate noisy 

during operation, are crucial in both industrial tasks [10], [11] 

and butler or personal assistant tasks [9], [12]. Although there 

is a consensus on the importance of HRI, there are few studies 

that analyze the effect of this kind of environment on the 

acoustic channel in systems that use voice as input. 

One of the most popular architectures in SER is the ladder 

network, especially those using semi-supervised training [13–

16]. This type of network consists of an encoder-decoder 

scheme with lateral connections between these two modules. 

The encoder is trained to perform the classification or linear 

regression task (as the case may be) with an input to which 

noise, usually Gaussian, is added at each of the layers. While 

the decoder is trained to perform a reconstruction of the original 

input (before adding the noise) of each layer. Leem et al. [17] 

tested a ladder network implementation in a noisy environment 

using the microphone of a smartphone, a speaker that 

reproduces speech, and another speaker at an opposite end that 



reproduces noise. The setting was fixed, as the microphones and 

speakers did not move during the data collection.  

This paper addresses the challenging problem of SER using 

distant speech in the context of HRI. We envision a human-

robot collaborative scenario. This scenario also considers the 

noise in the audio produced by environmental conditions and 

the robot. The proposed approach evaluates beamforming 

techniques combined with source localization to deal with 

distant speech. We address the generalization of the SER model 

to a new domain by using the semi-supervised strategy based 

on the ladder network. The approach is implemented and 

evaluated with the MSP-Podcast corpus, which is the "largest 

naturalistic emotional dataset in the community" [18]. This 

database, unlike most databases [19-21], contains fragments of 

non-acted audio, in normal speech environments, so it better 

matches real world recordings. It is impossible to fully describe 

the complexity of human emotions using a few categorical 

labels [22][23], which is why emotion recognition in a 

continuous three-dimensional space of emotional attributes 

(arousal, dominance, and valence) is selected as the task for this 

research. 

Beamforming is one of the spatial filtering techniques used 

successfully to enhance signals coming from a certain direction 

relative to a set of microphones, reducing noise and interference 

coming from other directions. However, the ability of 

traditional beamforming approaches to decrease reverberation 

and diffuse noise is limited [24]. Some studies [25][26] 

compare the application of different beamforming techniques 

for an ASR system on a robotic platform, achieving 

improvements with respect to the base cases. This paper 

evaluates two widely employed beamforming techniques with 

SER in a complex, non-stationary HRI scenario. These 

techniques are the well-known delay-and-sum (D&S) scheme 

[27], and the minimum variance distortionless response 

(MVDR) method [28]. Surprisingly, the performance of SER 

models in complex HRI scenarios has hardly been tested so far. 

However, there are studies on the effect of a complex scenario 

in HRI for speech-to-text task [25]. Based on these studies, we 

propose a setup for re-recording the test partition of the MSP-

Podcast database. The proposed testbed illustrates the generic 

problem of HRI in mobile robotics regarding SER including 

distant speech processing, external noise sources, and noise 

coming from the engine of the robot. In addition, we simulate 

target source localization for beamforming, which in turn is 

feasible with the sensors mounted on the robot (e.g., cameras), 

to steer the main mic array lobe. This method is a first step 

towards more complete integration of SER to complex HRI 

scenarios. This paper addresses the acoustic channel modelling 

problem by using the RIR to simulate a real environment in the 

training database.  

The main contribution of this study is the proposed setting to 

simulate scenarios for HRI during social, collaborative 

interactions and the evaluation of state-of-the-art techniques for 

noise robustness and semi-supervised SER solutions to address 

this challenging problem. An important contribution is also the 

database re-collected using the proposed setting, which will be 

shared with the community. 

2. Proposed framework  

In HRI situations, robots can use sensors such as cameras to 

determine the position of the target speaker and, therefore, have 

a more precise estimate of the angle of incidence or direction of 

arrival (DOA) corresponding to the speech source [26]. By 

doing so, it is possible to avoid the error introduced by 

reverberation in indoor scenarios.  

2.1. Proposed system 

This paper proposes the framework in Fig. 1 to address the 

problem of SER in mobile HRI to cope with the challenges 

imposed by the source-microphone distance, noise sources, and 

time-varying acoustic channel (TVAC) [25]. The following 

assumptions are included in this framework: first, the angular 

position of the target source can be estimated accurately 

independently of the error introduced by indoor reverberation; 

second, beamforming technology can use the target speaker’s 

angular position to deliver improved spatial filtering; third, 

TVAC in an indoor environment can be addressed by making 

use of RIRs obtained in static conditions as in Novoa et al. [25].  

 

Figure 1: Proposed SER system in HRI. 

Two beamforming techniques are considered in this study: 

D&S and MVDR. In the case of MVDR, the noise covariance 

matrix in speech segments was made equal to the interpolation 

of the matrices corresponding to the pre and post noise 

intervals. For the purpose of this paper, indoor acoustic 

modelling (AM) represents the reflections of both the target 

speech and the additive external noise signals using RIRs 

experimentally obtained in the same environment as in the HRI 

test datasets.  

As indicated in Fig. 1, to improve the performance of SER 

models in real HRI indoor scenarios, the indoor AM is modelled 

similarly to Novoa et al. [25] with RIRs obtained in static 

conditions and additive noise. The original training data and 

additive noise are convoluted with the corresponding RIRs 

before being artificially added. The resulting training dataset 

represents better real HRI conditions.  

2.2. Robotic platform and recording settings 

We use the publicly available  MSP-Podcast corpus (version 

1.9), collected by the Multimodal Signal Processing Laboratory 

at the University of Texas in Dallas. It has 86,389 speech turns, 

corresponding to 137 hours of speech annotated with emotional 

labels. Each speech turn has emotional labels for attribute-based 

descriptors (valence, activation, and dominance) and 

categorical labels (happiness, surprise, contempt, neutral, 

anger, fear, disgust, sadness, and others) that were annotated via 

crowdsourcing. 



The test partition of the corpus was played back in complex real 

HRI scenarios. This test partition has 21,560 turns of speech 

and accumulates more than 32 hours of audio. The HRI testbed 

was implemented with the PR2 robot equipped with a Microsoft 

Xbox 360 Kinect sensor mounted on top of its head. As shown 

in Fig. 4, we use one speech and two noise sources, each one 

located 2m away from point P2. The noise sources are 45° on 

either side of the speech source. The average recording signal-

to-noise ratio (SNR) was adjusted to be equal to 5dB measured 

at point P2. For the static scenario, the PR2 robot stays still at 

P2, with its head pointing directly to the speech source. 

 

Figure 2: Diagram of the testbed 

 

Figure 3: Side view of the testbed 

 

Figure 4: Microphone array geometry of the Microsoft 

Kinect, where: τ𝑛  is the time delay between 

microphone n and microphone 1; and, ϕ is the look 

direction or DOA. 

In contrast to Novoa et al. [25], three sets of 63 RIR per each 

Microsoft Kinect microphone were obtained with the PR2 robot 

positioned at P1, P2, and P3 (Fig. 2) and by orienting the robot 

head at 21 different angles with respect to the source. The head 

angle was varied from -50° to 50° in 5° steps. The 0° angle 

corresponds to the PR2 robot head looking directly toward the 

speech source. The RIRs were computed with the swept-sine 

method proposed in Farina [29]. An exponential sweep from 64 

Hz to 8 kHz sine functions was generated and played back with 

a studio loudspeaker located at the points target, Noise 1 and 

Noise 2 source positions (see Fig. 2). The audio of the 

reproduced sweep was recorded with the four Microsoft Kinect 

microphones. An impulse response was estimated for each 

channel by convoluting the corresponding recorded signal with 

the time reversal of the original exponential sinusoidal sweep. 

The three sets of 63 RIRs were named according to where the 

studio loudspeaker was positioned to reproduce the swept sine 

functions: RIR-Target_Source, RIR-Noise1_Source and RIR-

Noise2_Source.  

3. Experiment and results 

3.1. Training datasets 

The SER architectures evaluated here were trained with two 

types of data. First, we use the original MSP-Podcast corpus, 

which we referred to as Original_training_dataset. The second 

training data corresponds to the same audios but convoluted 

with the RIRs estimated as aforementioned and with noise 

added artificially to emulate the real HRI testing scenario. We 

referred this setting to as Simulated_training_dataset. 

A simulated training dataset was generated with the set 

RIR-Target_Source of impulse responses as follows: 25% of 

the data from each partition was convoluted with the RIR 

obtained at P1 while the robot head looks directly to the target 

source. The remaining 75% of the audio files from each 

partition were convoluted with the remaining 62 RIRs, so that 

each of these RIRs was used in the same number of simulated 

audios. Then, the noise was added artificially to the resulting 

audios at SNRs that were randomly chosen between 10dB and 

20dB.  The additive noise was obtained as follows:  noise 

segments from DEMAND [30] were convoluted with the 

impulse responses from RIR-Noise1_Source and RIR-

Noise2_Source; then, they were added with the same ratio and 

considering the same robot position of the speech signal that 

they were adding to; and, the resulting external additive noise 

was summed to the PR2 engine noise at SNRs between -5dB 

and 5db. Moreover, the resulting reverberated noisy data from 

the four Microsoft Kinect microphones were delayed and 

combined with the D&S and MVDR beamforming methods.  

3.2. Training of the SER System using Ladder network 

We employ the SER architecture based on the ladder network 

proposed by Parthasarathy and Busso [15]. The network is 

trained with multitask learning, jointly predicting arousal, 

valence, and dominance. The input to the network is the 

ComParE feature set [31], which has 6,373 high-level 

descriptors (HLD), regardless of the audio duration of the 

speech segment. For training, 100 epochs were run with 

learning rate equal to 0.0001 on an NVDIA 3080 GPU. 

3.3. Testing databases 

We report results with three testing conditions: 

Original_testing_data, corresponding to audios from the test 



partition of the MSP-Podcast corpus; Simulated_testing_data, 

corresponding to audios from the test partition of the MSP-

Podcast corpus, which were similarly processed to those in the 

Simulated_training_data; and HRI_static_data, corresponding 

to testing audios from the MSP-Podcast corpus re-recorded in 

the robotic platform in static conditions (see section 3). We 

assess the use of the beamforming schemes D&S and MVDR 

with Simulated_testing_data and HRI_static_data. 

3.4. Original training data & real HRI testing 

Table 1 shows the concordance correlation coefficient (CCC) 

obtained when Ladder Network was trained with 

Original_training_data and tested with dynamic testing 

scenarios. The testing subsets corresponded to 

Original_testing_data, HRI_static_data, 

HRI_static_data+D&S and HRI_static_data+MVDR. 

According to Table 1, the highest degradation in CCC Arousal, 

CCC Dominance and CCC Valence when compared with 

Original_testing_data was observed with HRI_static_data with 

Ladder Network. Beamforming schemes D&S and MVDR 

increase the SNR and decrease the degradation in CCC for 

arousal, dominance and valence when compared with the 

Original_testing_data using Ladder Network. The increase in 

SNR is equal to 52.75% and 71.25% with D&S and MVDR, 

respectively. When compared with the HRI_static_data,  D&S 

and MVDR led to an increase in the summation of CCC´s equal 

to 108.77% and 117.09%, respectively, when using Ladder 

Network. 

Table 1: Results obtained with models trained with 

original data. 

Test type SNR Aro Dom Val 
Original_testing_data - 0.629 0.536 0.266 
HRI_static_data 5.46 0.175 0.0655 0.0732 
HRI_static_data + D&S 8.34 0.3428 0.2332 0.0789 
HRI_static_data+ MVDR 9.35 0.3125 0.2507 0.1178 

 

3.5. Models trained & tested with simulated data 

Table 2 shows the results when Ladder Network was trained 

and tested with the simulated database described in section 3.1 

for the real static database. . Two training/testing conditions 

were employed: Simulated_data+D&S and 

Simulated_data+MVDR, where D&S and MVDR were applied 

after, as explained above, respectively. Results with 

Simulated_data+D&S and Simulated_data+MVDR correspond 

to static conditions and can be compared with results obtained 

with Original_training_data and Original_testing_data. 

According to Tables 1 and 2, Simulated_data+D&S and 

Simulated_data+MVDR  with Ladder Network still led to 

reductions in the summation of the CCC scores equal to 29.15% 

and 34.44%, respectively, when compared with the 

Original_training_data and Original_testing_data. Although 

the conditions in Table 2 are somehow matched, this result 

suggests that the added noise and reverberation still introduce 

some uncertainty. Nevertheless, the achieved sums in CCC 

metrics are 54.80% and 37.75% greater than those with the 

testing subsets HRI_static_data+D&S and 

HRI_static_data+MVDR, which in turn is also caused by the 

fact that training and testing data were generated in similar 

conditions.  

 

Table 2: Results obtained with models trained and 

tested with simulated data. 

Train and test type Aro Dom Val 
Simulated_data+D&S 0.520 0.374 0.120 
Simulated_data+MVDR 0.492 0.352 0.095 

 

3.6. Models trained with simulated & tested in real HRI 

Table 3 presents the results when Ladder Network was trained 

with simulated data and tested with real static HRI data. As can 

be seen in Tables 2 and 3, the difference between the sum of 

CCC scores obtained with HRI_static_data+D&S and 

Simulated_testing_data+D&S when Ladder Network was 

trained with Simulated_training_data+D&S was just 17.65%. 

A similar result was observed with HRI_static_data+MVDR 

and Simulated_testing_data+MVDR when the difference in the 

sum of the CCC metrics was only 6.32%.  

Results in Table 3 basically suggest that the simulated training 

conditions proposed here, represented by subsets 

Simulated_training_data+D&S and 

Simulated_training_data+MVDR, are quite close 

approximations to real static HRI scenarios.  

 

Table 3: Results obtained with models trained with 

simulated data and tested in HRI static position. 

Train type Test type Aro Dom Val 
Simulated_data 

+D&S 
HRI_static_data 

+ D&S 0.426 0.3166 0.093 
Simulated_data 

+MVDR 
HRI_static_data 

+ MVDR 0.437 0.342 0.100 

 

4. Conclusions 

This paper describes the first evaluation of SER technology 

with non-acted speech data recorded in a real indoor HRI 

scenario.  The challenge is characterized by distant speech 

processing, reverberation, and additive external and robot 

engine noise. We evaluate machine learning training based on 

simulated acoustic modelling that includes RIRs, external noise 

and beamforming response. The average increase in the sum of 

CCC metrics with the proposed training procedure combined 

with delay-and-sum and MVDR when compared with the result 

obtained with the model trained with the original data in 

controlled environments is 166% and 180%, respectively. The 

degradation obtained when compared with the original matched 

training/testing condition is just 39%. We propose as future 

research to test with dynamic real HRI scenarios and other SER 

classifiers.  

5. Acknowledgements 

Omitted due to double-blinded review. 

 

 

 

 

 

 

 

 

 



6. References 

[1] G. Z. Yang et al., ‘The grand challenges of science robotics’, 

Science Robotics, vol. 3, no. 14. 2018. doi: 

10.1126/scirobotics.aar7650. 
[2] S. Rossi, F. Ferland, and A. Tapus, ‘User profiling and behavioral 

adaptation for HRI: A survey’, Pattern Recognit Lett, vol. 99, 

2017, doi: 10.1016/j.patrec.2017.06.002. 
[3] A. Gaschler, S. Jentzsch, M. Giuliani, K. Huth, J. de Ruiter, and 

A. Knoll, ‘Social behavior recognition using body posture and 

head pose for human-robot interaction’, in IEEE International 
Conference on Intelligent Robots and Systems, 2012. doi: 

10.1109/IROS.2012.6385460. 

[4] D. R. Faria, M. Vieira, F. C. C. Faria, and C. Premebida, 
‘Affective facial expressions recognition for human-robot 

interaction’, in RO-MAN 2017 - 26th IEEE International 

Symposium on Robot and Human Interactive Communication, 
2017, vol. 2017-January. doi: 10.1109/ROMAN.2017.8172395. 

[5] P. Chakraborty, S. Ahmed, M. A. Yousuf, A. Azad, S. A. Alyami, 

and M. A. Moni, ‘A Human-Robot Interaction System 
Calculating Visual Focus of Human’s Attention Level’, IEEE 

Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3091642. 

[6] M. Shah Fahad, A. Ranjan, J. Yadav, and A. Deepak, ‘A survey 
of speech emotion recognition in natural environment’, Digital 

Signal Processing: A Review Journal, vol. 110. 2021. doi: 

10.1016/j.dsp.2020.102951. 
[7] A. Salekin et al., ‘Distant Emotion Recognition’, Proc ACM 

Interact Mob Wearable Ubiquitous Technol, vol. 1, no. 3, 2017, 

doi: 10.1145/3130961. 
[8]  M. Y. Ahmed, Z. Chen, E. Fass, and J. Stankovic, ‘Real time 

distant speech emotion recognition in indoor environments’, in 

ACM International Conference Proceeding Series, 2017. doi: 
10.1145/3144457.3144503. 

[9] L. Chen, W. Su, Y. Feng, M. Wu, J. She, and K. Hirota, ‘Two-

layer fuzzy multiple random forest for speech emotion 
recognition in human-robot interaction’, Inf Sci (N Y), vol. 509, 

2020, doi: 10.1016/j.ins.2019.09.005. 

[10] J. Berg, A. Lottermoser, C. Richter, and G. Reinhart, ‘Human-
Robot-Interaction for mobile industrial robot teams’, in Procedia 

CIRP, 2019, vol. 79. doi: 10.1016/j.procir.2019.02.080. 

[11] N. Kousi, C. Stoubos, C. Gkournelos, G. Michalos, and S. Makris, 
‘Enabling human robot interaction in flexible robotic assembly 

lines: An augmented reality based software suite’, in Procedia 

CIRP, 2019, vol. 81. doi: 10.1016/j.procir.2019.04.328. 
[12] J. Miseikis et al., ‘Lio-A Personal Robot Assistant for Human-

Robot Interaction and Care Applications’, IEEE Robot Autom 

Lett, vol. 5, no. 4, 2020, doi: 10.1109/LRA.2020.3007462. 
[13] J. Huang, Y. Li, J. Tao, Z. Lian, M. Niu, and J. Yi, ‘Speech 

Emotion Recognition Using Semi-supervised Learning with 

Ladder Networks’, in 2018 1st Asian Conference on Affective 
Computing and Intelligent Interaction, ACII Asia 2018, 2018. doi: 

10.1109/ACIIAsia.2018.8470363. 
[14] S. Parthasarathy and C. Busso, ‘Ladder networks for emotion 

recognition: Using unsupervised auxiliary tasks to improve 

predictions of emotional attributes’, in Proceedings of the Annual 

Conference of the International Speech Communication 

Association, INTERSPEECH, 2018, vol. 2018-September. doi: 

10.21437/Interspeech.2018-1391. 
[15] S. Parthasarathy and C. Busso, ‘Semi-Supervised Speech 

Emotion Recognition with Ladder Networks’, IEEE/ACM Trans 

Audio Speech Lang Process, vol. 28, 2020, doi: 
10.1109/TASLP.2020.3023632. 

[16] J. H. Tao, J. Huang, Y. Li, Z. Lian, and M. Y. Niu, ‘Semi-

supervised Ladder Networks for Speech Emotion Recognition’, 
International Journal of Automation and Computing, vol. 16, no. 

4, 2019, doi: 10.1007/s11633-019-1175-x. 

[17] S. G. Leem, D. Fulford, J. P. Onnela, D. Gard, and C. Busso, 
‘Separation of emotional and reconstruction embeddings on 

ladder network to improve speech emotion recognition robustness 

in noisy conditions’, in Proceedings of the Annual Conference of 
the International Speech Communication Association, 

INTERSPEECH, 2021, vol. 1. doi: 10.21437/Interspeech.2021-

1438. 

[18] R. Lotfian and C. Busso, ‘Building Naturalistic Emotionally 
Balanced Speech Corpus by Retrieving Emotional Speech from 

Existing Podcast Recordings’, IEEE Trans Affect Comput, vol. 

10, no. 4, 2019, doi: 10.1109/TAFFC.2017.2736999. 
[19] C. Busso et al., ‘IEMOCAP: Interactive emotional dyadic motion 

capture database’, Lang Resour Eval, vol. 42, no. 4, 2008, doi: 

10.1007/s10579-008-9076-6. 
[20] A. Metallinou, Z. Yang, C. chun Lee, C. Busso, S. Carnicke, and 

S. Narayanan, ‘The USC CreativeIT database of multimodal 

dyadic interactions: from speech and full body motion capture to 
continuous emotional annotations’, Lang Resour Eval, vol. 50, no. 

3, 2016, doi: 10.1007/s10579-015-9300-0. 

[21] H. Cao, D. G. Cooper, M. K. Keutmann, R. C. Gur, A. Nenkova, 
and R. Verma, ‘CREMA-D: Crowd-sourced emotional 

multimodal actors dataset’, IEEE Trans Affect Comput, vol. 5, no. 

4, 2014, doi: 10.1109/TAFFC.2014.2336244. 
[22] L. Devillers, L. Vidrascu, and L. Lamel, ‘Challenges in real-life 

emotion annotation and machine learning based detection’, 

Neural Networks, vol. 18, no. 4, 2005, doi: 
10.1016/j.neunet.2005.03.007. 

[23] E. Mower et al., ‘Interpreting ambiguous emotional expressions’, 

in Proceedings - 2009 3rd International Conference on Affective 
Computing and Intelligent Interaction and Workshops, ACII 

2009, 2009. doi: 10.1109/ACII.2009.5349500. 

[24] K. U. Simmer, J. Bitzer, and C. Marro, ‘Post-Filtering 
Techniques’, 2001. doi: 10.1007/978-3-662-04619-7_3. 

[25] J. Novoa, R. Mahu, J. Wuth, J. P. Escudero, J. Fredes, and N. B. 

Yoma, ‘Automatic Speech Recognition for Indoor HRI 
Scenarios’, ACM Trans Hum Robot Interact, vol. 10, no. 2, 2021, 

doi: 10.1145/3442629. 

[26] A. Díaz, R. Mahu, J. Novoa, J. Wuth, J. Datta, and N. B. Yoma, 
‘Assessing the effect of visual servoing on the performance of 

linear microphone arrays in moving human-robot interaction 

scenarios’, Comput Speech Lang, vol. 65, 2021, doi: 
10.1016/j.csl.2020.101136. 

[27] M. Omologo, M. Matassoni, and P. Svaizer, ‘Speech Recognition 

with Microphone Arrays’, in Microphone Arrays: Signal 
Processing Techniques and Applications, M. Brandstein and D. 

Ward, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, 

pp. 331–353. doi: 10.1007/978-3-662-04619-7_15. 
[28] J. Bitzer and K. U. Simmer, ‘Superdirective Microphone Arrays’, 

in Microphone Arrays: Signal Processing Techniques and 

Applications, M. Brandstein and D. Ward, Eds. Berlin, 
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 19–38. doi: 

10.1007/978-3-662-04619-7_2. 

[29] A. Farina, ‘Simultaneous measurement of impulse response and 
distortion with a swept-sine technique’, Proc. AES 108th conv, 

Paris, France, no. I, 2000. 

[30] J. Thiemann, N. Ito, and E. Vincent, ‘The diverse environments 
multi-channel acoustic noise database (demand): A database of 

multichannel environmental noise recordings’, in Proceedings of 
Meetings on Acoustics ICA2013, 2013, vol. 19, no. 1, p. 35081. 

[31] B. Schuller et al., ‘The INTERSPEECH 2013 computational 

paralinguistics challenge: Social signals, conflict, emotion, 
autism’, in Proceedings of the Annual Conference of the 

International Speech Communication Association, 

INTERSPEECH, 2013. doi: 10.21437/interspeech.2013-56. 


