Distant speech emotion recognition in an indoor human-robot interaction
scenario

Abstract

Social robotics and human-robot partnership are becoming very
relevant topics defining many challenges for state-of-the-art
speech technology. This paper presents the first evaluation of
speech emotion recognition (SER) technology with non-acted
speech data recorded in a real indoor human-robot interaction
(HRI) scenario. The challenge is typified by distant speech
processing, reverberation, and additive external and robot
engine noise. We train and evaluate a machine learning-based
based on simulated acoustic modelling that includes room
impulse responses (RIRs), external noise, and beamforming
response. We observe increased performance in the prediction
of arousal, valence, and dominance with the proposed training
procedure combined with delay-and-sum and minimum
variance distortionless response (MVDR), with gain as high as
180%, compared with the result obtained with the model trained
with the original data in controlled environments. Moreover,
the degradation achieved when compared with the original
matched training/testing condition is just 39%.

Index Terms: speech emotion recognition, human-computer
interaction.

1. Introduction

Social interaction is a very complex challenge for robotics, in
part because it requires effectively recognizing or detecting
gaze directions, facial expressions, linguistic content, and
prosody of speech, and then acting accordingly. Depending on
the cultural context, the difference between human emotional
states can be as subtle as "a simple wink, or an upward
inflection in a single phoneme." [1]. To achieve this purpose,
robotic systems will need to combine multiple input modalities.
However, some of these inputs, such as physiological signals,
require wearable sensors that may be invasive from the user's
point of view. In addition, image processing is not always
possible depending on the operating conditions. In contrast,
speech conveys an enormous amount of linguistic and
paralinguistic information (e.g., prosody). Beyond voice
commands to robots, speech is awindow into the psychological,
physical and emotional state of humans.

Social wuser profiling is essential for Human-Robot
Interaction (HRI), because the robots are expected to be able to
recognize the intentions and goals behind the user's actions, in
order to adapt their behavior to them [2]. In addition, social
profiling also refers to the ability to recognize social
phenomena, such as commitment, conflict, empathy, interest
and emotions, which cannot be observed directly, but must be
inferred by examining indirect indicators. Some of these
indirect indicators can be body posture [3], facial expressions
[4], gaze direction [5], and voice volume. Within social user
profiling, the concept of emotion recognition arises, which
seeks to dynamically detect the emotional state of the user

during the interaction, because, while a person's emotional
profile does not change during a single interaction with the
robot, the user may exhibit multiple emotions during the
interaction. This continuous detection approach allows the
user's profile to be frequently updated.

The process of identifying human emotions using the voice,
mainly non-verbal elements of the voice is defined as speech
emotion recognition (SER). The vast majority of the research in
this discipline is focused on Human-Computer Interaction
(HCI) [6], assuming the user is directly next to the microphone.
However, in this case, the influence of the acoustic channel is
neglected. Only a few studies have tested distant SER in noisy
environments. The most used techniques to address this
challenge are the selection of features that are more robust to
distance distortions and the creation of encoder-decoder
models, which are known to be robust in tasks involving various
types of distortions. Salekin et al. [7] selected 48 low-level
descriptors (LLD), which were extracted per frame and passed
through a long short-term memory (LSTM) network for final
classification. The test environment of this study is a meeting
room with seven fixed microphones distributed throughout the
room. They performed spectral and temporal filtering.
However, no beamforming technique was used. Ahmed et al.
[8] employed a metric to determine the distortion of the features
according to the distance to the microphone. In addition, they
trained their classifier with convoluted audio with artificially
generated room impulse responses (RIRs) and use the weighted
prediction error (WPE) algorithm to remove reverberation from
the test audios and Coherent-to-Diffuse Power Ratio Estimation
(CDR) to perform noise cancelling. However, the
implementation of the system with a robot was not explored. A
feature acquisition technique using a robotic platform with a
Kinect mounted was evaluated in Chen et al. [9]. Nevertheless,
the test database is acted upon by volunteers from their own
research lab and has only 500 utterances. Furthermore, the
study does not address the effects of external noise, which is
important to consider since robots, which can generate noisy
during operation, are crucial in both industrial tasks [10], [11]
and butler or personal assistant tasks [9], [12]. Although there
is a consensus on the importance of HRI, there are few studies
that analyze the effect of this kind of environment on the
acoustic channel in systems that use voice as input.

One of the most popular architectures in SER is the ladder
network, especially those using semi-supervised training [13—
16]. This type of network consists of an encoder-decoder
scheme with lateral connections between these two modules.
The encoder is trained to perform the classification or linear
regression task (as the case may be) with an input to which
noise, usually Gaussian, is added at each of the layers. While
the decoder is trained to perform a reconstruction of the original
input (before adding the noise) of each layer. Leem et al. [17]
tested a ladder network implementation in a noisy environment
using the microphone of a smartphone, a speaker that
reproduces speech, and another speaker at an opposite end that



reproduces noise. The setting was fixed, as the microphones and
speakers did not move during the data collection.

This paper addresses the challenging problem of SER using
distant speech in the context of HRI. We envision a human-
robot collaborative scenario. This scenario also considers the
noise in the audio produced by environmental conditions and
the robot. The proposed approach evaluates beamforming
techniques combined with source localization to deal with
distant speech. We address the generalization of the SER model
to a new domain by using the semi-supervised strategy based
on the ladder network. The approach is implemented and
evaluated with the MSP-Podcast corpus, which is the "largest
naturalistic emotional dataset in the community” [18]. This
database, unlike most databases [19-21], contains fragments of
non-acted audio, in normal speech environments, so it better
matches real world recordings. It is impossible to fully describe
the complexity of human emotions using a few categorical
labels [22][23], which is why emotion recognition in a
continuous three-dimensional space of emotional attributes
(arousal, dominance, and valence) is selected as the task for this
research.

Beamforming is one of the spatial filtering techniques used

successfully to enhance signals coming from a certain direction
relative to a set of microphones, reducing noise and interference
coming from other directions. However, the ability of
traditional beamforming approaches to decrease reverberation
and diffuse noise is limited [24]. Some studies [25][26]
compare the application of different beamforming techniques
for an ASR system on a robotic platform, achieving
improvements with respect to the base cases. This paper
evaluates two widely employed beamforming techniques with
SER in a complex, non-stationary HRI scenario. These
techniques are the well-known delay-and-sum (D&S) scheme
[27], and the minimum variance distortionless response
(MVDR) method [28]. Surprisingly, the performance of SER
models in complex HRI scenarios has hardly been tested so far.
However, there are studies on the effect of a complex scenario
in HRI for speech-to-text task [25]. Based on these studies, we
propose a setup for re-recording the test partition of the MSP-
Podcast database. The proposed testbed illustrates the generic
problem of HRI in mobile robotics regarding SER including
distant speech processing, external noise sources, and noise
coming from the engine of the robot. In addition, we simulate
target source localization for beamforming, which in turn is
feasible with the sensors mounted on the robot (e.g., cameras),
to steer the main mic array lobe. This method is a first step
towards more complete integration of SER to complex HRI
scenarios. This paper addresses the acoustic channel modelling
problem by using the RIR to simulate a real environment in the
training database.
The main contribution of this study is the proposed setting to
simulate scenarios for HRI during social, collaborative
interactions and the evaluation of state-of-the-art techniques for
noise robustness and semi-supervised SER solutions to address
this challenging problem. An important contribution is also the
database re-collected using the proposed setting, which will be
shared with the community.

2. Proposed framework

In HRI situations, robots can use sensors such as cameras to
determine the position of the target speaker and, therefore, have
a more precise estimate of the angle of incidence or direction of
arrival (DOA) corresponding to the speech source [26]. By

doing so, it is possible to avoid the error introduced by
reverberation in indoor scenarios.

2.1. Proposed system

This paper proposes the framework in Fig. 1 to address the
problem of SER in mobile HRI to cope with the challenges
imposed by the source-microphone distance, noise sources, and
time-varying acoustic channel (TVAC) [25]. The following
assumptions are included in this framework: first, the angular
position of the target source can be estimated accurately
independently of the error introduced by indoor reverberation;
second, beamforming technology can use the target speaker’s
angular position to deliver improved spatial filtering; third,
TVAC in an indoor environment can be addressed by making
use of RIRs obtained in static conditions as in Novoa et al. [25].
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Figure 1: Proposed SER system in HRI.

Two beamforming techniques are considered in this study:
D&S and MVDR. In the case of MVDR, the noise covariance
matrix in speech segments was made equal to the interpolation
of the matrices corresponding to the pre and post noise
intervals. For the purpose of this paper, indoor acoustic
modelling (AM) represents the reflections of both the target
speech and the additive external noise signals using RIRS
experimentally obtained in the same environment as in the HRI
test datasets.

As indicated in Fig. 1, to improve the performance of SER
models in real HRI indoor scenarios, the indoor AM is modelled
similarly to Novoa et al. [25] with RIRs obtained in static
conditions and additive noise. The original training data and
additive noise are convoluted with the corresponding RIRS
before being artificially added. The resulting training dataset
represents better real HRI conditions.

2.2. Robotic platform and recording settings

We use the publicly available MSP-Podcast corpus (version
1.9), collected by the Multimodal Signal Processing Laboratory
at the University of Texas in Dallas. It has 86,389 speech turns,
corresponding to 137 hours of speech annotated with emotional
labels. Each speech turn has emotional labels for attribute-based
descriptors (valence, activation, and dominance) and
categorical labels (happiness, surprise, contempt, neutral,
anger, fear, disgust, sadness, and others) that were annotated via
crowdsourcing.



The test partition of the corpus was played back in complex real
HRI scenarios. This test partition has 21,560 turns of speech
and accumulates more than 32 hours of audio. The HRI testbed
was implemented with the PR2 robot equipped with a Microsoft
Xbox 360 Kinect sensor mounted on top of its head. As shown
in Fig. 4, we use one speech and two noise sources, each one
located 2m away from point P2. The noise sources are 45° on
either side of the speech source. The average recording signal-
to-noise ratio (SNR) was adjusted to be equal to 5dB measured
at point P2. For the static scenario, the PR2 robot stays still at
P2, with its head pointing directly to the speech source.
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Figure 2: Diagram of the testbed
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Figure 3: Side view of the testbed
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Figure 4: Microphone array geometry of the Microsoft
Kinect, where: T, is the time delay between
microphone n and microphone 1; and, ¢ is the look
direction or DOA.

In contrast to Novoa et al. [25], three sets of 63 RIR per each
Microsoft Kinect microphone were obtained with the PR2 robot
positioned at P1, P2, and P3 (Fig. 2) and by orienting the robot
head at 21 different angles with respect to the source. The head
angle was varied from -50° to 50° in 5° steps. The 0° angle
corresponds to the PR2 robot head looking directly toward the
speech source. The RIRs were computed with the swept-sine
method proposed in Farina [29]. An exponential sweep from 64
Hz to 8 kHz sine functions was generated and played back with
a studio loudspeaker located at the points target, Noise 1 and
Noise 2 source positions (see Fig. 2). The audio of the
reproduced sweep was recorded with the four Microsoft Kinect
microphones. An impulse response was estimated for each
channel by convoluting the corresponding recorded signal with
the time reversal of the original exponential sinusoidal sweep.
The three sets of 63 RIRs were named according to where the
studio loudspeaker was positioned to reproduce the swept sine
functions: RIR-Target_Source, RIR-Noisel_Source and RIR-
Noise2_Source.

3. Experiment and results

3.1. Training datasets

The SER architectures evaluated here were trained with two
types of data. First, we use the original MSP-Podcast corpus,
which we referred to as Original_training_dataset. The second
training data corresponds to the same audios but convoluted
with the RIRs estimated as aforementioned and with noise
added artificially to emulate the real HRI testing scenario. We
referred this setting to as Simulated_training_dataset.

A simulated training dataset was generated with the set
RIR-Target_Source of impulse responses as follows: 25% of
the data from each partition was convoluted with the RIR
obtained at P1 while the robot head looks directly to the target
source. The remaining 75% of the audio files from each
partition were convoluted with the remaining 62 RIRs, so that
each of these RIRs was used in the same number of simulated
audios. Then, the noise was added artificially to the resulting
audios at SNRs that were randomly chosen between 10dB and
20dB. The additive noise was obtained as follows: noise
segments from DEMAND [30] were convoluted with the
impulse responses from RIR-Noisel_Source and RIR-
Noise2_Source; then, they were added with the same ratio and
considering the same robot position of the speech signal that
they were adding to; and, the resulting external additive noise
was summed to the PR2 engine noise at SNRs between -5dB
and 5db. Moreover, the resulting reverberated noisy data from
the four Microsoft Kinect microphones were delayed and
combined with the D&S and MVDR beamforming methods.

3.2. Training of the SER System using Ladder network

We employ the SER architecture based on the ladder network
proposed by Parthasarathy and Busso [15]. The network is
trained with multitask learning, jointly predicting arousal,
valence, and dominance. The input to the network is the
ComParE feature set [31], which has 6,373 high-level
descriptors (HLD), regardless of the audio duration of the
speech segment. For training, 100 epochs were run with
learning rate equal to 0.0001 on an NVDIA 3080 GPU.

3.3. Testing databases

We report results with three testing conditions:
Original_testing_data, corresponding to audios from the test



partition of the MSP-Podcast corpus; Simulated_testing_data,
corresponding to audios from the test partition of the MSP-
Podcast corpus, which were similarly processed to those in the
Simulated_training_data; and HRI_static_data, corresponding
to testing audios from the MSP-Podcast corpus re-recorded in
the robotic platform in static conditions (see section 3). We
assess the use of the beamforming schemes D&S and MVDR
with Simulated_testing_data and HRI_static_data.

3.4. Original training data & real HRI testing

Table 1 shows the concordance correlation coefficient (CCC)
obtained when Ladder Network was trained with
Original_training_data and tested with dynamic testing
scenarios. The  testing  subsets corresponded to
Original_testing_data, HRI_static_data,
HRI_static_data+D&S and HRI_static_data+MVDR.
According to Table 1, the highest degradation in CCC Arousal,
CCC Dominance and CCC Valence when compared with
Original_testing_data was observed with HRI_static_data with
Ladder Network. Beamforming schemes D&S and MVDR
increase the SNR and decrease the degradation in CCC for
arousal, dominance and valence when compared with the
Original_testing_data using Ladder Network. The increase in
SNR is equal to 52.75% and 71.25% with D&S and MVDR,
respectively. When compared with the HRI_static_data, D&S
and MVDR led to an increase in the summation of CCC’s equal
to 108.77% and 117.09%, respectively, when using Ladder

Table 2: Results obtained with models trained and
tested with simulated data.

Train and test type Aro Dom Val
Simulated_data+D&S 0520 0.374 0.120
Simulated_data+MVDR  0.492 0.352  0.095

3.6. Models trained with simulated & tested in real HRI

Table 3 presents the results when Ladder Network was trained
with simulated data and tested with real static HRI data. As can
be seen in Tables 2 and 3, the difference between the sum of
CCC scores obtained with HRI_static_data+D&S and
Simulated_testing_data+D&S when Ladder Network was
trained with Simulated_training_data+D&S was just 17.65%.
A similar result was observed with HRI_static_data+MVDR
and Simulated_testing_data+MVDR when the difference in the
sum of the CCC metrics was only 6.32%.

Results in Table 3 basically suggest that the simulated training
conditions  proposed here, represented by subsets
Simulated_training_data+D&S and
Simulated_training_data+MVDR, are quite close
approximations to real static HRI scenarios.

Table 3: Results obtained with models trained with
simulated data and tested in HRI static position.

Network. Train type Test type Aro  Dom Val
Simulated_data HRI_static_data
Table 1: Results obtained with models trained with +D&s +D&S 0426 0.3166 0.093
original data Simulated_data HRI_static_data
' +MVDR + MVDR 0.437 0.342 0.100
Test type SNR Aro Dom Val
Original_testing_data - 0629 0536  0.266
HRI_static_data 546  0.175 0.0655 0.0732 4. Conclusions

HRI_static_data + D&S 834 03428 0.2332 0.0789
HRI_static_data+ MVDR 9.35  0.3125 0.2507 0.1178

3.5. Models trained & tested with simulated data

Table 2 shows the results when Ladder Network was trained
and tested with the simulated database described in section 3.1
for the real static database. . Two training/testing conditions
were employed: Simulated_data+D&S and
Simulated_data+MVDR, where D&S and MVDR were applied
after, as explained above, respectively. Results with
Simulated_data+D&S and Simulated_data+MVDR correspond
to static conditions and can be compared with results obtained
with  Original_training_data and Original_testing_data.
According to Tables 1 and 2, Simulated_data+D&S and
Simulated_data+MVDR with Ladder Network still led to
reductions in the summation of the CCC scores equal to 29.15%
and 34.44%, respectively, when compared with the
Original_training_data and Original_testing_data. Although
the conditions in Table 2 are somehow matched, this result
suggests that the added noise and reverberation still introduce
some uncertainty. Nevertheless, the achieved sums in CCC
metrics are 54.80% and 37.75% greater than those with the
testing subsets HRI_static_data+D&S and
HRI_static_data+MVDR, which in turn is also caused by the
fact that training and testing data were generated in similar
conditions.

This paper describes the first evaluation of SER technology
with non-acted speech data recorded in a real indoor HRI
scenario. The challenge is characterized by distant speech
processing, reverberation, and additive external and robot
engine noise. We evaluate machine learning training based on
simulated acoustic modelling that includes RIRs, external noise
and beamforming response. The average increase in the sum of
CCC metrics with the proposed training procedure combined
with delay-and-sum and MVDR when compared with the result
obtained with the model trained with the original data in
controlled environments is 166% and 180%, respectively. The
degradation obtained when compared with the original matched
training/testing condition is just 39%. We propose as future
research to test with dynamic real HRI scenarios and other SER
classifiers.
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