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Abstract

Social robotics and human-robot partnership are becoming
very relevant topics in the next decades defining many
challenges for speech technology. In addition, the COVID
pandemic imposed an awareness of technology challenges to
fight massive health problems. In this paper, the first system to
estimate respiratory distress in a human-robot interaction (HRI)
environment is presented. The training procedure of the
dyspnea estimation models by simulating the HRI acoustic
environment with real room impulse responses (estimated with
a PR2 robot) and additive noise is described. The training and
testing data were processed using two beamforming techniques:
delay-and-sum and MVDR. The results suggest that it should
be possible to reduce significantly the degradation in precision
of estimates of respiratory distress in a real HRI scenario. The
improvements in accuracy and AUC with MVDR when
compared to baseline processing without beamforming are 7%
and 4%, respectively.

Index Terms: Respiratory distress estimation, human-robot
interaction, speech based user profiling.

1. Introduction

1.1. Social Robots and user profiling

Social robots are designed to communicate and coordinate
with people to achieve common goals. These types of robots are
especially potentially useful in areas such as education or
healthcare [1]. To emulate human communication successfully,
it is necessary for the robot to characterize the user's profile
physically, cognitively and/or socially [2]. In this way, the
robot can adapt its response based on the user's behavior and
needs. Physically characterizing the person is a complicated
task, as obtaining the information needed to do so is often very
invasive, such as blood pressure measurements, blood tests or
lung capacity measurements. Other less invasive options
involve the use of wearables, which allow measurements of
sleep, movement, neurology, cardiovascular status, etc., in a
fast and comfortable way for the user [3]. However, wearables
are not accurate or robust, so improving their performance
remains a major challenge [4], [5].

In this context, the use of voice emerges as an important
alternative for user profiling in HRI [6]. The voice includes
linguistic and paralinguistic information (prosody) which are
especially useful in several applications [7], and it also allows
the capture of information to detect respiratory problems [8].
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1.2. Estimation of Respiratory Distress

In recent years, the growing demand for health services has
led to a significant increase in the development of remote health
monitoring tools [9]. Significant efforts have been made to
prevent her COPD using machine learning (ML). Because these
methods are effective in collecting and integrating large-scale
disparate medical data in precision medicine [10]. This
development has been driven by the COVID-19 pandemic [11]
and has resulted in the development of several artificial
intelligence (Al)-based solutions for automatically detecting
SARS-CoV-2 [12]. These ML-based solutions were primarily
focused on smartphones due to the great scalability, ubiquity,
and flexibility offered by these devices [13].

Various studies, methods and databases focused on remote
monitoring of respiratory diseases by voice analysis was
performed in the state-of-art [14]. Detection is done by voice
analysis, so evaluation can be standardized, resulting in reduced
variability or bias between different physicians who administer
the test in the form of questionnaires. Moreover, the responses
given in a questionnaire can be influenced by the patient’s
mood or habituation to the disease [15]-[17] .

1.3. Human-robot interaction in respiratory distress

Although the confinements caused by the pandemic seem
to have come to an end, problems in healthcare centers persist,
such as lack of supplies, shortage of professionals and the
growth of vulnerable populations. This is where an ideal
environment arises for social robots to intrude into this world.
Surprisingly, the use of social robots to estimate dyspnea is null,
especially considering the rise of the independent respiratory
distress and Human-robot interaction (HRI) studies in recent
years.

As mentioned above, several studies postulate the use of
voice for estimating respiratory disorders. However, the effects
of external conditions such as additive noise (noisy cocktail
parties), reverberation and/or movement of the speakers has not
been addressed in the literature. In contrast, classical
beamforming schemes such as delay-and-sum (D&S) [18] and
MVDR [19] have widely been used in the literature to filter the
target signal spatially [20].

In this paper, an automatic dyspnea detection system is
proposed in an HRI environment. This design allows
monitoring the degree of respiratory distress on the modified
Medical Research Council (mMMRC) scale that classifies
dyspnea into five levels, from zero (healthy) to four (very
severe). Surprisingly, this topic has not been studied, since there
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are no studies that combine the evaluation of respiratory distress
with HRI.

In [21] a system to estimate dyspnea on the phone with deep
learning was proposed. The database that was used to train the
system was composed of three types of controlled vocalizations
that were obtained by prompting the users to take deep breaths
and to vocalize them until gasping for air. The idea was to
represent the level of dyspnea by characterizing the user's
behavior while pronouncing the controlled vocalizations. The
first two phonetizations correspond to /ae-ae/and/sa-sa/ [21].
They provide relevant information about the amount of air
exhaled by the individuals. In contrast to sustained vowels
employed elsewhere, they are not stationary and are not
cancelled by the noise suppression schemes in smart phones.
The third phonetization corresponded to counting from one to
thirty as fast as possible, to assess the spontaneous behavior of
the subjects who must make an effort to reach the goal. The idea
was to cause involuntary breathing, voice pauses, coughing,
tone variation, etc., that could characterize dyspnea severity
[21].

The method described in [21] extracted time-dependent and
time-independent features from each vocalization. The time-
independent features were processed by MLP based classifiers.
In contrast, the time-dependent features employed CNN based
architectures for /ae-ae/ and /sa-sa/ vocalizations, and a CNN-
LSTM based for the one-to-30 counting.

In this paper, we train dyspnea estimation models by
simulating the HRI acoustic environment with real room
impulse responses (RIR) and additive noise as suggested in
[22] for speech recognition. The RIRs were estimated with our
robotic platform composed of a PR2 robot and studio
loudspeakers. Additionally, two beamforming algorithms were
evaluated: D&S and MVDR. The results reported here suggests
that it should be possible to reduce significantly the precision
degradation of the respiratory distress estimation in a HRI
scenario. The main contributions of this paper are: design and
evaluation of a respiratory distress estimation system in HRI,
which is the first one to our knowledge; and, the incorporation
of acoustic modelling and beamforming methods to improve
the robustness of this system in HRI scenarios.

2. HRI Scenario Testing Databases

2.1. Database

The database employed here was generated from the one
used in [21] after asking again the informed consent from all
subjects. Those that agreed to participate in this study were
included in the new database. This is composed of patients
recruited at the Clinical Hospital at the University of Chile
(HCUCH) and of healthy volunteers from the Faculty of
Physical and Mathematical Sciences (FCFM) at the same
university. The scientific ethics committees at HCUCH and
FCFM approved the study.

Individuals were prompted to produce the three controlled
vocalizations without pauses after taking deep breaths until they
gasped for air. The first vocalization is the Spanish phoneme
sequence /a/ and /e/, denoted as /ae-ae/; the next one is the
Spanish syllable sequence /sa/, denoted as /sa-sa/; and the last
one was inspired by the Roth Test [23] where subjects were
asked to count in Spanish from one to 30 as fast as they could.

The database had 100 people, of whom 66 were patients
with respiratory problems persons (39 COPD, 22 Pulmonary
Fibrosis and 5 sequelae of COVID-19) and 34 were healthy.
Clinical evaluation of the patients revealed that 18 had mMRC

scores of one, 27 had mMRC scores of two, 19 had mMRC
scores of three, and two had mMRC scores of four. The healthy
participants received an mMRC mark equal to zero. Our deep
learning-based models were trained using the clinical
evaluation (Gold standard) as references. Only two patients
presented mMRC scores equal to four and they were
incorporated in the subset corresponding to mMRC score equal
to three. Hence, four mMRC levels were considered from zero
to three.

Each type of vocalization was repeated twice by each
individual. As a result, the whole database was composed of
two repetitions per type of phonetization and per individual x
three types of phonetizations x 100 individuals = 600
vocalizations. An automatic speech recognition (ASR) system
was trained to separate the target vocalizations from the
background noise or unwanted audio after recording.

2.2. Testing and training database

The original telephone database mentioned above was used
to generate training data by simulating the acoustic model of
the HRI scenario as in [22]. All the 600 audios that compose
the database were convolved with 33 real RIRs obtained with
the testbed shown in Fig. 1 in 33 static positions: three robot-
audio speaker distances denoted by positions P1, P2 and P3;
and 11 angles of the robot head. Figure 2 shows the
experimental robotic setup where the RIRs were estimated. In
addition, additive noise was added at SNRs within the range of
5 dB and 15 dB. The additive noise was generated by
combining the PR2 engine noise with noise samples from the
Aurora database (street, cars, babble, airport, train, subway) at
SNRs within the range of -5 dB to 5 dB. The Aurora noise
signals at each microphone had the phases modified to simulate
different DOAs (direction of arrival) and represent real HRI
scenarios as close as possible.
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Figure 1: Plan view of room used for RIRs estimation
and HRI simulated scenario.

Figure 2: The experimental setup used to record
RIRs.



3. Respiratory distress estimation system
in HRI

The block diagram of the proposed system is shown in
Figure 3. First, it is assumed that acoustic sources can be
localized with sensors (e.g. cameras) in the robot providing the
DOA information for the beamforming technology. This is
particularly important in indoor environments where DOA
estimation is affected by both reverberation and noise sources.
Second, the enhanced target source signals and the acoustic
model of the HRI indoor scenario are employed to train and
estimate the mMRC score.
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Figure 3: Block diagram of the respiratory distress
estimation in HRI scenario.

3.1. Source localization

The PR2 robot automatically saves the azimuthal angle of
its head, which provides the DOA info required by the
beamforming schemes. This is considered an input from the
beamformer point of view.

3.2. Beamforming based speech enhancement

The second block of the proposed system consists of speech
enhancement. Here the aim is to improve the quality of the
target speech signal by employing spatial filtering. In this paper,
two beamforming methods were tested: D&S and MVDR.

3.3. Deep learning based respiratory distress estimation
module

The system's goal is to classify users' dyspnea levels on the
mMRC scale based on how they behave while performing
controlled vocalizations. This system based on telephone
speech is described in detail in [21], and is based on
characterizing the users’ spontaneous behavior while
vocalizing controlled phonetizations. The time-dependent
features are computed frame-by-frame and attempt to capture
the dynamics of the voice signals. On the other hand, time-
independent features provide information concerning the whole
vocalizations.

The MLP and CNN/LSTM architectures and training
configurations in [21] were optimized again in this paper
without additive noise, where the optimal configuration was
obtained when the validation-1 subset (see Section 3.4) returned
the best accuracy and AUC. For time-independent features, the
MLP network had two hidden layers with 40 neurons each and
a learning rate equal to 0.01 in the case of /ae-ae/. In the MLP
corresponding to /sa-sa/, the optimal setup corresponding to two
hidden layers with 20 nodes each and a learning rate of 0.01
was adopted. Finally, five hidden layers of 10 nodes each were
found to be optimal in the case of the one-to-30 counting, with
a learning rate equal to 0.001. On the other hand, the time-
dependent features are based on the FFT log power spectrum
and were optimized for each type of phonetization. 512-sample

FFTs are estimated in 50-ms windows with 50% overlap where
257 frequency bins are obtained. After that, 14 logarithmic Mel-
frame filter energies are calculated for phonetizations /ae-ae/
and /sa-sa/. For the one-to-30 counting, 75% of the lowest
frequency bins were chosen to compute the log spectrum. Then,
the corresponding first derivative or delta features were
included only in one-to-30 counting. Parameter means and
variances are calculated for the entire database, and MVN is
applied to the temporal trajectories of the time-dependent
features. The time-dependent feature architecture and hyper
parameter optimization resulted in the use of neuron stick
breaking, cross-entropy as a loss function, the use of the ADAM
optimizer, and a learning rate of 0.0005 for /ae-ae/ and /sa-sa/,
and of 0.0001 for the one-to-30 counting. Figure 4 depicts the
resulting deep learning architectures for the three types of
vocalizations.
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Figure 4: Neural network architectures for time
dependent features.

3.4. K-fold training with double validation

To optimize the available database, a nine-fold cross-
validation was performed, from which 11 users were removed
from each of the partitions for testing, except for one partition
from where 12 individuals were removed. It is important to
mention that this data division scheme ensures that a given
speaker could not have vocalizations in the training, validation,
or testing subsets simultaneously. Besides the testing
individuals, each partition was composed of training,
validation-1 and validation-2 subsets corresponding to 70%,
15% and 15% of the partition individuals, respectively. The
classifiers were trained and tested as in [21].

The classifiers were trained eight times with each partition.
Subset validation-1 data was employed to stop the iterations
with an early stopping of 20. For each partition, the optimal
model was chosen by picking the one with the highest average
accuracy on the validation-1 and validation-2 subsets. The



whole procedure was repeated five times to obtain more reliable
statistics. A GeForce GTX 1080 GPU was employed.

3.5. Acoustic modeling training for respiratory distress
estimation in HRI

As mentioned above, the proposed acoustic model was
based on convolving the original audio signals with real RIRs
estimated at static positions and adding additive noise [22].
Moreover, noise was added emulating different DOAs and the
responses of the D&S and MVDR beamforming methods were
also incorporated in the model.

4. Results

In this section we show the performance of the respiratory
distress system when performing matched training and testing
databases. As in our work described in [21], the results
correspond to propagating the test subsets of the nine folds
(Section 3.4) through the corresponding trained models. It is
worth highlighting that the nine-fold testing subsets cover the
whole 100 subject database.

Figures 5 and 6 show accuracy (i.e. the percentage of trials
for which the estimated and reference mMMRC scores are the
same) and the area under the curve (AUC), respectively, with
the original telephone (Telephone), simulated HRI with no
additive noise (Sim-HRI-noiseless), simulated HRI with
additive noise (Sim-HRI-noisy), HRI with additive noise and
D&S response (Sim-HRI-D&S) and HRI with additive noise
and MVDR response (Sim-HRI-MVDR). As seen in Figs. 5 and
6, the model trained and tested with Sim-HRI-noiseless
provided an accuracy and AUC with combined features that is
11% and 0.5% lower, respectively than those obtained with the
model trained and tested with the original conditions employed
in [21], i.e. Telephone. This must be due to the effect of the
distortion introduced by reverberation. As expected, the worst
performance was observed with Sim-HRI-noisy, which in turn
provided an accuracy and AUC degradation with combined
features equal to 5% and 5%, respectively, when compared with
Sim-HRI-noiseless. These results of further distortion
introduced by additive noise. In contrast, the incorporation of
the beamforming response in the training and testing process,
i,.e, Sim-HRI-D&S and Sim-HRI-MVDR, provided much lower
average degradations in AUC (3%) with combined features
than Sim-HRI-noisy when compared with Sim-HRI-noiseless,
even in accuracy improves by 3%. This result strongly suggests
that spatial filtering can be of a great help in distant respiratory
distress assessment even in matched training and testing
conditions. It is interesting to observe that MVDR gave slightly
worse accuracy than D&S. This might be a result of the artifacts
introduced by this beamforming scheme.

As can be seen in Figs. 5 and 6, in most cases the best
performance was achieved with the combination of time-
dependent and time-independent based classifiers. These results
confirm the pertinence of the definition and combination
scheme of the engineered features employed here. Another
critical point to highlight is the greater robustness of the time-
independent parameters. These coefficients led to standard
deviations in accuracy and AUC of 1.52% and 0.021%,
respectively, across all the five training/testing conditions. In
contrast, the standard deviations in accuracy and AUC obtained
with time-dependent parameters were 3.15% and 0.027%,
respectively, across all the five training and testing scenarios.
This result suggests that, despite the fact that the time-
dependent features provide more information than the time-

independent ones, the latter depend less on the training/testing
scenarios than the former.
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Figure 5: Accuracy in simulated data for time
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Figure 6: AUC in simulated data for time dependent,
time independent and combined features.

5. Conclusions

In this paper we present the first system to estimate
respiratory distress in a human-robot interaction environment.
A telephone database was processed to simulate an HRI
scenario. We proposed to train the dyspnea estimation models
by simulating the HRI acoustic environment with real room
impulsive responses (estimated with a PR2 robot and loud
speakers) and additive noise, similar to our previous work with
a speech recognition task in previous papers. Additionally, the
training and testing data were also processed with the response
of two beamforming techniques, i.e. delay-and-sum and
MVDR. The results suggest that it should be possible to reduce
significantly the degradation in precision of estimates of
respiratory distress in a real HRI scenario. The improvements
in accuracy and AUC with MVDR when compared with the
baseline situation without spatial filtering are 7% and 4%,
respectively. Addressing the problem of respiratory distress
estimation in real static and dynamic HRI conditions is
proposed as future research.
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