

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica EL3003 – Laboratorio de Ingeniería Eléctrica

Guía de Trabajo

Rectificadores Trifásicos No Controlados

1. Contenido

Temas a Investig			1
Trabajo de Laborato			2
Equipamier		2.1	:
Consideraciones de segurid		2.2	
Rectificador Trifásico de Media Onda No Controla		2.3	
3.1 Carga Resistiva	.1 Car	2.3.1	
3.2 Carga RC.	.2 Car	2.3.2	
3.3 Carga RL.	.3 Car	2.3.3	
3.4 Carga RLC.	.4 Car	2.3.4	
Rectificador Trifásico de Onda Completa No Controlac		2.4	
I.1 Carga Resistiva.	.1 Car	2.4.1	
I.2 Carga RC.	.2 Car	2.4.2	
I.3 Carga RL	.3 Car	2.4.3	
I.4 Carga RLC.	.4 Car	2.4.4	
Anex			3
Dat		3.1	;
1 Rectificador trifásico de media onda no controlado	.1 Red	3.1.1	
2 Rectificador trifásico de onda completa no controlado	2 Por	212	

1 Temas a Investigar

Investigue sobre los siguientes temas relevantes para la realización de la presente experiencia de laboratorio:

- Rectificadores de Media Onda y Onda Completa:
 - o Principios de funcionamiento.
 - o Formas de Onda.
 - o Esquemas de conexiones.
 - o Diferencias y ventajas comparativas.
- Filtros Pasivos:
 - o Componentes.
 - o Principio de Funcionamiento.
 - o Aplicación con rectificadores.

2 Trabajo de Laboratorio

2.1 Equipamiento

Para el desarrollo de esta experiencia dispone del siguiente equipamiento:

Tabla 1: Equipamiento de la experiencia a realizar y sus códigos

Cantidad	Descripción	Código
1	Módulo Circuitos Rectificadores	C22/EV
1	Unidad Transformadora de Voltaje	TRR-22
1	Osciloscopio	
1	Multímetro	
1	Condensadores externos (opcional)	
1	Sonda de Tensión Diferencial	

2.2 Consideraciones de seguridad

- Ud. debe *levantar la tierra* del osciloscopio, ya que la conexión de referencia o tierra de las sondas del osciloscopio están conectadas directamente a la tierra de la conexión del osciloscopio con la red de energía, por lo que al conectar esta referencia al módulo se puede producir un corto circuito debido a la diferencia de potencial en ambos contactos y dañar algún equipo.
- No conecte las tierras de las sondas del osciloscopio a distintos puntos que tengan diferente nivel de potencial (tensión), puesto que provocará un cortocircuito (todas las tierras están conectadas internamente en el osciloscopio).
- La unidad TRR-22 alimenta al módulo C22/EV, para lo cual debe utilizar el cable especial para la conexión al módulo mencionado.
- Cabe mencionar que este módulo se alimenta desde la unidad TRR-22, la cual transforma una tensión de 380 V_{fase-fase} en 42 V_{fase-fase}. Así, la tensión alterna entre una fase y el neutro V_{fase-neutro} de la conexión trifásica del módulo C22/EV será de 24_{VRMS}.
- Recordar que se está trabajando con tensiones cercanas a los 380 Volts entre fases, por lo tanto, se debe tener mucha precaución al manipular esa conexión. Ante dudas consulta al auxiliar del laboratorio.
- Desenergice en caso de hacer modificaciones drásticas en el diseño; esto además de proteger los equipos de posibles peaks, permitirá que el módulo se enfríe.
- **No tocar los bornes de la placa.** Por efecto de inducción, esto puede provocar cortocircuitos y mal funcionamiento del sistema.
- Desenergice cada cierto intervalo de tiempo para permitir que los equipos se enfríen.

ADVERTENCIA

Consulte al auxiliar del laboratorio antes de energizar.

2.3 Rectificador Trifásico de Media Onda No Controlado

En este ejercicio Ud. observará y analizará las formas de onda que se obtienen de un rectificador trifásico de diodos (no controlado) de media onda. Deberá obtener valores de tensiones y corriente para distintas cargas y comparar los resultados experimentales con los teóricos. También deberá aplicar conceptos de valor medio, RMS, peak-to-peak. Registre sus resultados en las tablas correspondientes en el anexo.

2.3.1 Carga Resistiva

2.3.1.1 Procedimiento

- Conecte las tres fases (R), (S), (T) en los puntos (1), (2) y (3) respectivamente y el neutro al punto (N), como se indica en la Figura 1.
- Conecte la carga R como se muestra en la Figura 1.
- Conecte el multímetro digital como amperímetro en serie con la carga R.
- Conecte el switch del módulo C22 a modo trifásico.
- Conecte la sonda del canal 2 del osciloscopio en el punto (+), de manera de observar la onda de salida, y la sonda de canal 1 en el punto (1), para observar la onda de entrada. Ambas conexiones de tierra deben ir al punto (N).
- Energice el circuito.
- Identifique dónde está la contribución de esta fase a la forma de la señal de salida.
- Identifique la contribución de las otras fases a la forma de la señal de salida. Para esto, cambie el canal 1 al punto (2) y (3) respectivamente.

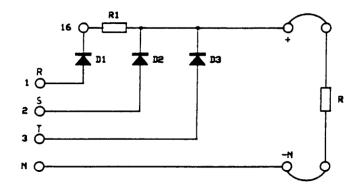


Figura 1: Conexión del rectificador trifásico de media onda con carga resistiva.

2.3.1.2 Mediciones

- Compare la tensión de entrada (onda del punto (1)) con la tensión en la carga (onda del punto (+)). Obtenga los gráficos respectivos y comente.
- Mida y anote en la Tabla 2 valores medios, peak to peak y rms de la tensión de entrada y de la carga. Compare posteriormente con valores teóricos.
- Mida y anote en la Tabla 3 corriente media (amperímetro en DC) y corriente efectiva (amperímetro en AC) por la carga. Compare con los resultados de la teoría.
- Desconecte y el canal 2 del punto (+) y la tierra del punto (N) (ver consideraciones de seguridad)
- Intercambie la sonda del canal 1 por la sonda de tensión diferencial.
- Mida y anote en la Tabla 4 la tensión inversa máxima que deben soportar los diodos y grafíquelo. Para ello, conecte el canal 1 (sonda roja) al punto (16) y su tierra (sonda negra) al punto (1), y analice la onda observada en el osciloscopio.
- Con la sonda positiva del multímetro en punto (16) y su tierra al punto (+). Mida la amplitud media y RMS (de la tensión) de la señal y calcule la corriente media y RMS sabiendo que R1 = 0.1 ∧. Anote el valor en la Tabla 4.

2.3.2 Carga RC.

2.3.2.1 Procedimiento

- **Desenergice** el circuito.
- Mantenga las conexiones de las fases (R), (S), (T) y el neutro como en la sección anterior.
- Conecte el condensador en paralelo con la resistencia como en la Figura 2.
- Conecte el multímetro digital como amperímetro en serie con la carga RC.
- Mantenga el switch del módulo C22 en modo trifásico.
- Conecte la sonda del canal 2 del osciloscopio al punto (+), de manera de observar la onda de salida, y la sonda del canal 1 al punto (1), para observar la onda de entrada. Ambas conexiones de tierra deben ir al punto (N).
- Energice el circuito.

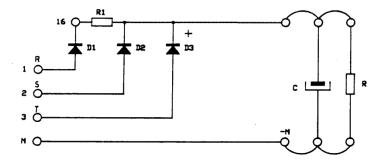


Figura 2: Conexión del rectificador trifásico de media onda con carga resistivo-capacitiva.

2.3.2.2 Mediciones.

- Compare la tensión de entrada (onda del punto (1)) con la tensión en la carga (onda del punto (+)). Obtenga los gráficos respectivos y comente.
- Mida y anote en la Tabla 2 los valores medios, peak to peak y rms de la tensión de entrada y de la carga. Compare posteriormente con valores teóricos.
- Mida y anote en la Tabla 3 la corriente media (amperímetro en DC) y corriente efectiva (amperímetro en AC) por la carga. Compare con los resultados de la teoría.
- Desconecte el canal 2 del punto (+) y la tierra del punto (N) (ver consideraciones de seguridad)
- Intercambie la sonda del canal 1 por la sonda de tensión diferencial.
- Mida y anote en la Tabla 4 la tensión inversa máxima que deben soportar los diodos y grafíquelo. Para ello, conecte el canal 1 (sonda roja) al punto (16) y su tierra (sonda negra) al punto (1), y analice la onda observada en el osciloscopio.
- Con la sonda positiva del multímetro en punto (16) y su tierra al punto (+). Mida la amplitud media y RMS (de la tensión) de la señal y calcule la corriente media y RMS sabiendo que R1 = 0.1 ∧. Anote el valor en la Tabla 4.

2.3.3 Carga RL.

2.3.3.1 Procedimiento

- **Desenergice** el circuito.
- Mantenga las conexiones de las fases (R), (S), (T) y el neutro como en la sección anterior.
- Desconecte el condensador en paralelo con la resistencia.
- Conecte la inductancia en serie con la resistencia como en la Figura 3.
- Conecte el multímetro digital como amperímetro en serie con la carga RL.
- Mantenga el switch del módulo C22 en modo trifásico.
- Conecte la sonda del canal 2 del osciloscopio al punto (+), de manera de observar la onda de salida, y la sonda del canal 1 al punto (1), para observar la onda de entrada. Ambas conexiones de tierra deben ir al punto (N).
- Energice el circuito.

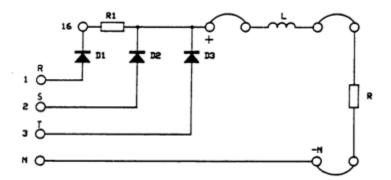


Figura 3: Conexión del rectificador trifásico de media onda con carga resistivo-inductiva.

2.3.3.2 Mediciones.

- Compare la tensión de entrada (onda del punto (1)) con la tensión en la carga (onda del punto (+)). Obtenga los gráficos respectivos y comente.
- Mida y anote en la Tabla 2 los valores medios, peak to peak y rms de la tensión de entrada y de la carga. Compare posteriormente con valores teóricos.
- Mida y anote en la Tabla 3 la corriente media (amperímetro en DC) y corriente efectiva (amperímetro en AC) por la carga. Compare con los resultados de la teoría.
- **Desconecte** el canal 2 del punto (+) y la tierra del punto (N) (ver consideraciones de seguridad)
- Intercambie la sonda del canal 1 por la sonda de tensión diferencial.
- Mida y anote en la Tabla 4 la tensión inversa máxima que deben soportar los diodos y grafíquelo. Para ello, conecte el canal 1 (sonda roja) al punto (16) y su tierra (sonda negra) al punto (1), y analice la onda observada en el osciloscopio.
- Con la sonda positiva del multímetro en punto (16) y su tierra al punto (+). Mida la amplitud media y RMS (de la tensión) de la señal y calcule la corriente media y RMS sabiendo que R1 = 0.1 ∧. Anote el valor en la Tabla 4.

2.3.4 Carga RLC.

2.3.4.1 Procedimiento

- **Desenergice** el circuito.
- Mantenga las conexiones de las fases (R), (S), (T), el neutro y la inductancia como en la sección anterior.
- Conecte el condensador en paralelo con la resistencia como en la Figura 4.
- Conecte el multímetro digital como amperímetro en serie con la carga RLC.
- Mantenga el switch del módulo C22 en modo trifásico.
- Conecte la sonda del canal 2 del osciloscopio al punto (+), de manera de observar la onda de salida, y la sonda del canal 1 al punto (1), para observar la onda de entrada. Ambas conexiones de tierra deben ir al punto (N).
- Energice el circuito.

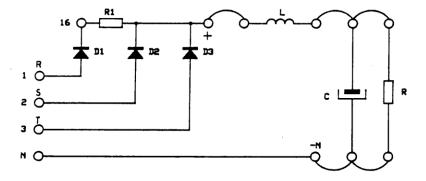


Figura 4: Conexión del rectificador trifásico de media onda con carga RLC.

2.3.4.2 Mediciones.

- Compare la tensión de entrada (onda del punto (1)) con la tensión en la carga (onda del punto (+)). Obtenga los gráficos respectivos y comente.
- Mida y anote en la Tabla 2 los valores medios, peak to peak y rms de la tensión de entrada y de la carga. Compare posteriormente con valores teóricos.
- Mida y anote en la Tabla 3 la corriente media (amperímetro en DC) y corriente efectiva (amperímetro en AC) por la carga. Compare con los resultados de la teoría.
- Desconecte el canal 2 del punto (+) y la tierra del punto (N) (ver consideraciones de seguridad)
- Intercambie la sonda del canal 1 por la sonda de tensión diferencial.
- Mida y anote en la Tabla 4 la tensión inversa máxima que deben soportar los diodos y grafíquelo. Para ello, conecte el canal 1 (sonda roja) al punto (16) y su tierra (sonda negra) al punto (1), y analice la onda observada en el osciloscopio.
- Con la sonda positiva del multímetro en punto (16) y su tierra al punto (+). Mida la amplitud media y RMS (de la tensión) de la señal y calcule la corriente media y RMS sabiendo que R1 = 0.1 ∧. Anote el valor en la Tabla 4.

2.4 Rectificador Trifásico de Onda Completa No Controlado.

En este ejercicio Ud. observará y analizará las formas de onda que se obtienen de un rectificador trifásico de diodos (no controlado) de onda completa. Deberá obtener valores de tensiones y corriente para distintas cargas y comparar los resultados experimentales con los teóricos. También deberá aplicar conceptos de valor medio, RMS, peak-to-peak. Registre sus resultados en las tablas del anexo.

2.4.1 Carga Resistiva.

2.4.1.1 Procedimiento

- Desenergice el circuito.
- Mantenga las conexiones de las fases (R), (S), (T) como en la sección anterior.
- Desconecte el neutro del punto (N).
- Conecte los puntos (4)-(5), (6)-(7) y (8)-(9) como en la Figura 5.
- Conecte la carga R como en la Figura 5.
- Conecte el multímetro digital como amperímetro en serie con la carga R.
- Mantenga el switch del módulo C22 en modo trifásico.
- Conecte la sonda de tensión diferencial del canal 1 del osciloscopio al punto (+), de manera de observar la onda de salida, y luego al punto (1), para observar la onda de entrada. Para ambas conexiones la tierra debe ir al punto (-).
- Energice el circuito.
- Encuentre las contribuciones de cada fase en la forma de onda de tensión de la carga.

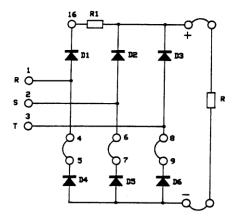


Figura 5: Conexión del rectificador trifásico de onda completa con carga resistiva.

2.4.1.2 Mediciones.

- Compare la tensión de entrada (onda del punto (1)) con la tensión en la carga (onda del punto (+)). Obtenga los gráficos respectivos y comente.
- Mida y anote en la Tabla 5 los valores medio, peak to peak y rms de la tensión de entrada y de la carga. Compare posteriormente con los valores teóricos.
- Mida y anote en la Tabla 6 la corriente media (amperímetro en DC) y corriente efectiva (amperímetro en AC) por la carga. Compare con los resultados de la teoría.
- **Desconecte** el canal 1 del punto (+) y la tierra del punto (-) (ver consideraciones de seguridad).
- Mida y anote en la Tabla 7 la tensión inversa máxima que deben soportar los diodos y grafíquelo. Para ello, cambie el canal 1 al punto (16) y su tierra al punto (1). Analice la onda observada en el osciloscopio.
- Con la sonda positiva del multímetro en punto (16) y su tierra al punto (+). Mida la amplitud media y RMS (de la tensión) de la señal y calcule la corriente media y RMS sabiendo que R1 = $0.1 \land$. Anote su valor en la Tabla 7.

2.4.2 Carga RC.

2.4.2.1 Procedimiento

- Desenergice el circuito.
- Mantenga las conexiones de las fases (R), (S), (T) y los puntos (4)-(5), (6)-(7) y (8)-(9) como en la sección anterior.
- Conecte el condensador en paralelo con la resistencia como en la Figura 6.
- Conecte la carga R como en la Figura 5.
- Conecte el multímetro digital como amperímetro en serie con la carga RC.
- Mantenga el switch del módulo C22 en modo trifásico.
- Conecte la sonda de tensión diferencial del canal 1 del osciloscopio al punto (+), de manera de observar la onda de salida, y luego al punto (1), para observar la onda de entrada. Para ambas conexiones la tierra debe ir al punto (-).
- Energice el circuito.

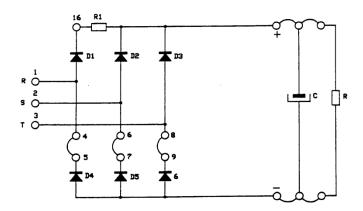


Figura 6: Conexión del rectificador trifásico de onda completa con carga resistiva.

2.4.2.2 Mediciones.

- Compare la tensión de entrada (onda del punto (1)) con la tensión en la carga (onda del punto (+)). Obtenga los gráficos respectivos y comente.
- Mida y anote en la Tabla 5 los valores medio, peak to peak y rms de la tensión de entrada y de la carga. Compare posteriormente con los valores teóricos.
- Mida y anote en la Tabla 6 la corriente media (amperímetro en DC) y corriente efectiva (amperímetro en AC) por la carga. Compare con los resultados de la teoría.
- **Desconecte** el canal 1 del punto (+) y la tierra del punto (-) (ver consideraciones de seguridad).
- Mida y anote en la Tabla 7 la tensión inversa máxima que deben soportar los diodos y grafíquelo. Para ello, cambie el canal 1 al punto (16) y su tierra al punto (1). Analice la onda observada en el osciloscopio.
- Con la sonda positiva del multímetro en punto (16) y su tierra al punto (+). Mida la amplitud media y RMS (de la tensión) de la señal y calcule la corriente media y RMS sabiendo que R1 = $0.1 \land$. Anote su valor en la Tabla 7.

2.4.3 Carga RL

2.4.3.1 Procedimiento

- Desenergice el circuito.
- Mantenga las conexiones de las fases (R), (S), (T) y los puntos (4)-(5), (6)-(7) y (8)-(9) como en la sección anterior.
- Desconecte el condensador en paralelo con la resistencia.
- Conecte la inductancia en serie con la resistencia como en la Figura 7.
- Conecte el multímetro digital como amperímetro en serie con la carga RL.
- Mantenga el switch del módulo C22 en modo trifásico.
- Conecte la sonda de tensión diferencial del canal 1 del osciloscopio al punto (+), de manera de observar la onda de salida, y luego al punto (1), para observar la onda de entrada. Para ambas conexiones la tierra debe ir al punto (-).
- Energice el circuito.

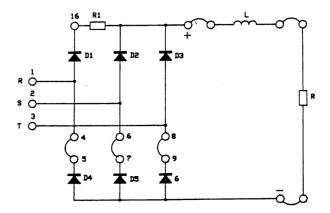


Figura 7: Conexión del rectificador trifásico de onda completa con carga resistiva.

2.4.3.2 Mediciones.

- Compare la tensión de entrada (onda del punto (1)) con la tensión en la carga (onda del punto (+)). Obtenga los gráficos respectivos y comente.
- Mida y anote en la Tabla 5 los valores medio, peak to peak y rms de la tensión de entrada y de la carga. Compare posteriormente con los valores teóricos.
- Mida y anote en la Tabla 6 la corriente media (amperímetro en DC) y corriente efectiva (amperímetro en AC) por la carga. Compare con los resultados de la teoría.
- **Desconecte** el canal 1 del punto (+) y la tierra del punto (-) (ver consideraciones de seguridad).
- Mida y anote en la Tabla 7 la tensión inversa máxima que deben soportar los diodos y grafíquelo. Para ello, cambie el canal 1 al punto (16) y su tierra al punto (1). Analice la onda observada en el osciloscopio.
- Con la sonda positiva del multímetro en punto (16) y su tierra al punto (+). Mida la amplitud media y RMS (de la tensión) de la señal y calcule la corriente media y RMS sabiendo que R1 = 0.1 ∧. Anote su valor en la Tabla 7.

2.4.4 Carga RLC.

2.4.4.1 Procedimiento

- Desenergice el circuito.
- Mantenga las conexiones de las fases (R), (S), (T) y los puntos (4)-(5), (6)-(7) y (8)-(9) como en la sección anterior. Además, mantenga conectada la inductancia en serie con la carga.
- Conecte el condensador en paralelo con la resistencia como en la Figura 8.
- Conecte el multímetro digital como amperímetro en serie con la carga RLC.
- Mantenga el switch del módulo C22 en modo trifásico.
- Conecte la sonda de tensión diferencial del canal 1 del osciloscopio al punto (+), de manera de observar la onda de salida, y luego al punto (1), para observar la onda de entrada. Para ambas conexiones la tierra debe ir al punto (-).
- Energice el circuito.

U. de Chile. FCFM. DIE ~10~

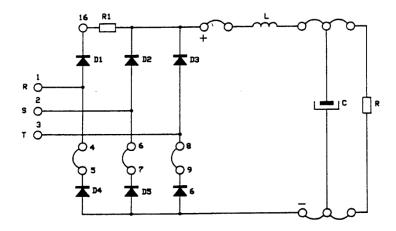


Figura 8: Conexión del rectificador trifásico de onda completa con carga RLC.

2.4.4.2 Mediciones.

- Compare la tensión de entrada (onda del punto (1)) con la tensión en la carga (onda del punto (+)). Obtenga los gráficos respectivos y comente.
- Mida y anote en la Tabla 5 los valores medio, peak to peak y rms de la tensión de entrada y de la carga. Compare posteriormente con los valores teóricos.
- Mida y anote en la Tabla 6 la corriente media (amperímetro en DC) y corriente efectiva (amperímetro en AC) por la carga. Compare con los resultados de la teoría.
- **Desconecte** el canal 1 del punto (+) y la tierra del punto (-) (ver consideraciones de seguridad).
- Mida y anote en la Tabla 7 la tensión inversa máxima que deben soportar los diodos y grafíquelo. Para ello, cambie el canal 1 al punto (16) y su tierra al punto (1). Analice la onda observada en el osciloscopio.
- Con la sonda positiva del multímetro en punto (16) y su tierra al punto (+). Mida la amplitud media y RMS (de la tensión) de la señal y calcule la corriente media y RMS sabiendo que R1 = $0.1 \land$. Anote su valor en la Tabla 7.

3 Nota

Al conectar el condensador disponible en la placa del rectificador la señal será completamente rectificada. Para obtener señales en las que se aprecia la caída de voltaje (el ripple) y así analizar el efecto de agregar un condensador en el sistema, puede conectar un condensador externo de menor valor. Consulte a su ayudante.

U. de Chile. FCFM. DIE ~11~

4 Anexos

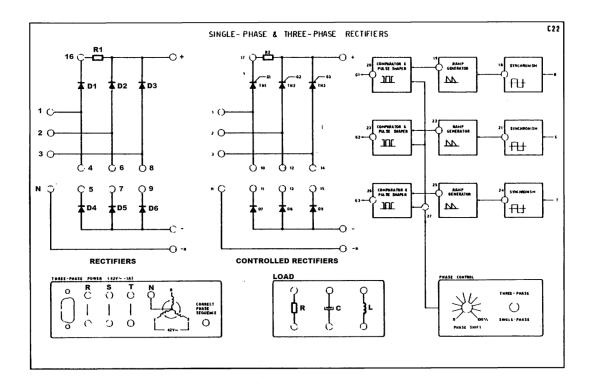


Figura 9: Módulo de Rectificadores y cargas C22.

U. de Chile. FCFM. DIE ~12~

4.1 Datos

Estos datos deben ser entregados al ayudante a cargo al finalizar la sesión correspondiente.

4.1.1 Rectificador trifásico de media onda no controlado

Tabla 2: Valores de tensión de entrada y en la carga del rectificador de media onda para cargas en estudio.

Carga	Tensión de Entrada			Tensión en la carga		
	$V_{medio}[V]$	$V_{peak-peak}[V]$	$V_{RMS}[V]$	$V_{medio}[V]$	$V_{peak-peak}[V]$	$V_{RMS}[V]$
Resistiva						
RC						
RL						
RLC						

Tabla 3: Valores de corriente en la carga del rectificador de media onda para cargas en estudio.

Carga	$I_{medio}[A]$	$I_{RMS}[A]$
Resistiva		
RC		
RL		
RLC		

Tabla 4: Tensión inversa máxima y corriente media y RMS en el diodo D1 del rectificador de media onda para cargas en estudio.

Carga	$V_{inv\ max}[V]$	$V_{medio R_1}[V]$	$V_{RMS R_1}[V]$	$I_{medio R_1}[A]$	$I_{RMS R_1}[A]$
Resistiva					
RC					
RL					
RLC					

4.1.2 Rectificador trifásico de onda completa no controlado

Tabla 5: Valores de tensión de entrada y en la carga del rectificador de onda completa para cargas en estudio.

Carga	Tensión de Entrada			Tensión en la carga		
	$V_{medio}[V]$	$V_{peak-peak}[V]$	$V_{RMS}[V]$	$V_{medio}[V]$	$V_{peak-peak}[V]$	$V_{RMS}[V]$
Resistiva						
RC						
RL						
RLC						

Tabla 6: Valores de corriente en la carga del rectificador de onda completa. para cargas en estudio.

Carga	$I_{medio}[A]$	$I_{RMS}[A]$
Resistiva		
RC		
RL		
RLC		

Tabla 7: Tensión inversa máxima y corriente media y RMS en el diodo D1 del rectificador de onda completa para cargas en estudio.

Carga	$V_{inv\ max}[V]$	$V_{medio R_1}[V]$	$V_{RMSR_1}[V]$	$I_{medio R_1}[A]$	$I_{RMSR_1}[A]$
Resistiva					
RC					
RL					
RLC					