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1 Introduction

1.1 Why Use Hydrological Modeling to Project
Impacts of Climate Change?

The impacts of anthropogenic climate change on the
water cycle are already apparent [1–3]. These impacts
include changes in annual river streamflow [4], shifts in
both flood peak magnitude and timing [5], alterations in
flow duration curves [6], and changes in magnitude of
low-flow periods [7]. The continued increase of global
temperatures will lead to further changes in regional
hydrology within the next decades through shifts in
precipitation trends, melting of glaciers and permafrost
[8], and a growing rain-to-snow ratio in cold regions
[3, 9]. In addition, changes in natural vegetation cover,
land use practices, crop water requirements, prolonged
growing seasons, and soil functions may further alter
the hydrological cycle [10]. Extreme events such as
river flooding pose a potential threat to human soci-
eties and are likely to occur more often [2, 11]. Given
that these changes directly affect agriculture, forestry,
energy production, drinking water supply, sanitation,
and ecosystems, there are likely to be substantial conse-
quences for societies in many regions around the world
[12]. Reliable information on potential changes to future
hydrological conditions is fundamental for deciding
on long-term management strategies and adaptation
measures [13].

Given the impact of climate change on hydrology,
hydrologists are asked to provide the hydrological basis
for future water development and management, which
requires an understanding of the impact of climatic and
environmental change on future hydrological conditions

[13]. Computer models are suitable tools to obtain such
quantitative information for possible future conditions.
However, any model is a simplification of reality and
model simulations are uncertain, especially when a
combination of models is used to represent the climate
and land-surface processes, as is the case in hydrological
climate change impact studies. Therefore, addressing
uncertainties is an important aspect of carrying out a
hydrological climate change impact study.

1.2 Goals of the Article

This article provides relevant information to understand
(i) hydrological climate change impact research, (ii) the
steps to perform an impact study, and (iii) the main
challenges encountered in an impact study and how
they can be addressed. Hydrological climate change
research is an active field of research and although
much progress has been made, many challenges remain.
Sometimes, these challenges are difficult to overcome
and being aware of the limitations is the best one
can achieve. This article does not aim to provide a
complete review of all models, datasets, and methods
used for hydrological climate change impact studies.
Rather, we summarize the most relevant subcomponents
of hydrological climate change research. Uncertain-
ties are a main focus throughout the article and best
practices to characterize them are discussed. Supple-
mentary material includes a guide to perform some
key tasks leading to the production of hydrological
projections, and a basis for course material to teach
the analysis of climate impacts on water resources (see
Section 5.6). The materials presented here presume a
working knowledge of climate and hydrological sciences,
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2 Human Dimensions

corresponding to approximately a bachelor’s degree
in, for instance, geosciences. This article was written
as an introduction for researchers and students who
are planning their own hydrological climate change
impact assessment study. However, this article can
also be used to guide experienced scientists through
aspects of the modeling chain with which they are less
familiar.

This article is structured into seven sections. Fol-
lowing the introduction, Section 2 describes the basics
of the model chain as a whole, providing an overview
of the standard model chain used to produce hydro-
logical projections. Section 3 provides background
information on each step of the model chain and
its associated uncertainties. In Section 4 uncertainty
sampling and decomposition are discussed. Section
5 provides practical guidance on how to design and
carry out an impact study and introduces best prac-
tices on how to evaluate streamflow projections.
Section 6 contains an overview of research ques-
tions currently addressed in the literature and makes
the reader aware of limitations of the approaches
presented in the previous sections. In Section 7, a
general outlook of hydrological climate change impact
research is provided. Important terms are explained
as they appear in the text; for a glossary, please see
for instance the Annex III within the Intergovern-
mental Panel on Climate Change’s (IPCC) Working
Group I Fifth Assessment Report (IPCC [14]; avail-
able at https://www.ipcc.ch/site/assets/uploads/2018/
02/WG1AR5_AnnexIII_FINAL.pdf).

2 Overview of the Modeling Chain

To investigate hydrological behavior under climate
change, projections of future climate are needed, which
are generated using general circulation models (GCMs,
also sometimes referred to as global climate models).
Over time, GCMs have been developed to include more
systems besides the ocean and atmosphere, and they
now include other processes such as global carbon
cycle, dynamic vegetation, or atmospheric chemistry
[3]. These models now go beyond the original defini-
tion of GCM and are thus referred to as earth system
models (ESM). Owing to the evolving nature of these
models, there is some ambiguity amongst these terms
in climate science literature. In most cases in this arti-
cle, when we are referring to GCMs, we are actually
discussing ESMs. However, to keep consistent with the
climate modeling community, we will use the acronym
GCM.

For projections of future climate, a wide range of
potential scenarios is available (Figure 1), including for
example greenhouse gas emission scenarios based on
specific socioeconomic assumptions or so-called rep-
resentative concentration pathway scenarios based on
forcing projections that could, in theory, be realized with
more than one socioeconomic scenario.

Because of the coarse spatial resolution of GCMs
(horizontal grid spacing∼100–300 km), modelers usu-
ally downscale their output to a finer resolution, using
a regional climate model (RCM) or using statistical
techniques. Yet, the downscaled data can still show
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Figure 1 Schematic of a typical model chain used for the assessment of climate change impacts on streamflow. Graphics of the modeling
chain are shown in the first row with the names of the steps listed in the second row. The last two rows refer to the sections of this article in
which each step is discussed.
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Hydrological Modeling of Climate Change Impacts 3

considerable biases compared to observed data [15].
Various post-processing methods (often referred to as
“bias correction”) have been developed to reduce biases
in simulated time series. When climate model simula-
tions are used as input to hydrological models, such bias
correction generally leads to improved discharge simu-
lations [16]. Therefore, climate projections are typically
bias corrected before being used as input to hydrological
models to create projections of streamflow under the
influence of different climate scenarios (Figure 1). The
calibration of the hydrological model (usually using
observational meteorological and hydrological data)
is performed in order to tune the parameters of the
hydrological model so that the differences between
simulated and observed discharge are minimized.
These optimized parameter sets are then used in the
simulations where climate projections force the hydro-
logical model. Subsequent analysis of the projected
streamflow and communication of results then follow
(Figure 1).

Although hydrological models are ordinarily used to
generate streamflow time series, simulated discharge
can also be retrieved directly from climate models. The
newest generation of GCMs include detailed descrip-
tions of the land surface (via a coupled land surface
model), which make use of river routing schemes and
methods (see Figure 1 within Shaad [17]). Many different
river routing schemes are now available (for a review
see Clark et al. [18]). Given these advancements, and
depending on the catchment size, it may make sense
to consider the direct hydrological changes within the
GCM or RCM output. For instance Hagemann et al. [19]
compared hydrological simulations from five reanalysis
driven (i.e. a global historical data set describing the
state of the Earth system created by combining obser-
vations with a numerical model [20]) RCMs over two
large European catchments with areas of 1.8 million km2

and 800 000 km2. Depending on the catchment, their
results showed that generally one to two of the five
RCMs were capable of simulating the annual discharge
cycle fairly well, however, biases were evident in all
RCM derived discharge. The authors attribute these
biases to systematic errors in the model dynamics
or deficiencies in the land surface parameterization.
Another study by González-Zeas et al. [21] analyzed
discharge output from 10 RCMs forced by GCMs for
mainland Spain, which has an area of 504 782 km2. After
applying a bias correction using an “observed” global dis-
charge dataset [22] as a benchmark, they compared the
observed annual discharge cycle with that derived using
raw RCM and bias-corrected discharge. Their results
show that bias-corrected discharge corresponds well to
observation and the raw discharge from a few RCMs
reasonably captures the annual discharge cycle. Despite

such applications, the catchment sizes in impact studies
are often smaller than those found within the aforemen-
tioned studies and the spatial resolution of GCM and
RCM hydrological output is often not appropriate. Fur-
thermore, biases within the atmospheric forcing will be
inherited by the hydrological output of a GCM or RCM.
While the use of GCM or RCM hydrological output may
be worth considering for particular applications [23–25],
one also has to be aware that sometimes there are large
deviations of GCM or RCM simulated discharge from
observations [15].

The next section discusses in more detail the main steps
of the typical model chain and reviews their main uncer-
tainties.

3 Steps of the Modeling Chain
and Their Uncertainty

3.1 Emission Scenarios

Emission scenarios are based on historical greenhouse
gas (GHG) concentration data and provide estimates of
future GHG concentration in the atmosphere, following
assumptions of how emissions will change with evolving
societal elements, such as demography, economic devel-
opment, energy consumption, and land use. GCMs are
then run with these scenarios to create projections of the
climate under changing GHG concentrations.

Emission scenarios were developed by the IPCC, estab-
lished in 1988 by two United Nations organizations, the
World Meteorological Organization (WMO) and the
United Nations Environment Programme (UNEP). So
far, the IPCC has published five assessment reports.
The First Assessment Report (FAR, 1990) used SA90
scenarios and the Second Assessment Report (SAR,
1995) used the IS92a to f emission scenarios. In 2000, the
Special Report on Emission Scenarios (SRES) introduced
the IPCC’s third generation of scenarios. The SRES sce-
narios were used in IPCC’s Third Assessment Report
(TAR) and Fourth Assessment Reports (AR4). The Fifth
Assessment Report (AR5) was completed in 2014 and
relies on the fourth generation of emission scenarios
referred to as Representative Concentration Pathways
(RCPs), which are the most comprehensive attempt to
characterize global emissions so far. The RCPs feature
four trajectories (RCP2.6, RCP4.5, RCP6, and RP8.5),
which are named after their associated anthropogenic
radiative forcing for the year 2100 (+2.6, +4.5, +6.0,
and +8.5 W m−2). The RCP2.6 scenario is the most
optimistic in that it assumes that GHG concentrations
peak between 2010–2020 and then decline afterward.
In contrast, RCP8.5 is the most pessimistic scenario
which assumes that GHG concentrations will continue
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to increase throughout the twenty-first century. The
Sixth Assessment Report is expected to be published in
2022.

3.1.1 Uncertainties Related to Emission Scenarios
Human component: The uncertainties in future GHG
concentration are not of the same nature as those dis-
cussed in the remainder of this article. Future emissions
will be determined by political and socio-economical
decisions, whereas uncertainties in other elements of
the model chain stem principally from our incom-
plete understanding of our natural environment and its
imperfect representation in models. Early on, different
emissions scenarios were developed to reflect the uncer-
tainties in future emissions. Typically, the differences
between the emission scenarios remain small for the first
half of the twenty-first century but they can be significant
in the second half of the century [3, 26].

3.2 Climate Models

GCMs are computer models, which embody simplified
representations of the climate system [27]. They are
essential for the understanding of the Earth’s global pro-
cesses under past, present, and future conditions. GCMs
capture the interactions between the major components
of the climate system, including the atmosphere, the
oceans, the biosphere, and sea ice [28]. While simpler
one- or two-dimensional models have been used to
provide globally or regionally averaged estimates of
climate change, GCMs are based on a three-dimensional
grid covering the Earth (latitude, longitude and vertical
“height”), and compute atmospheric variables (such as
temperature and humidity) for each grid cell. GCMs
thus, have the ability to provide both spatially and
physically realistic estimates of climate change, which
is the first requirement for any impact analysis. For a
review of climate models of different complexity and
their development over time please see Kour et al. [29].

Over the years, projections from several generations
of GCMs have been produced within the framework
of successive Climate Model Intercomparison Projects
(CMIPs), led by the World Climate Research Program
(WCRP). The goal of CMIP is to coordinate the produc-
tion of GCM simulations, in order to provide consistent
and reliable data, used in particular for the IPCC assess-
ment reports. With each phase of the CMIP, model
projections are further improved. Knutti et al. [30]
compared CMIP5, CMIP3, and CMIP2 and found that
although most models are strongly related to their pre-
decessors, the models in the new ensemble agree more
closely with observations. Model output from CMIP5
were released around 2011 and constitute the reference
simulations until the release of CMIP6 simulations [31].

CMIP5 data can be downloaded through a portal pro-
vided by the Earth System Grid Federation-Center for
Enabling Technologies website: http://pcmdi9.llnl.gov.
A “Getting started” page is available here: https://cmip
.llnl.gov/cmip5/data_getting_started.html. Note that
the resolution of the GCM runs is often too coarse to
realistically capture processes essential for the correct
representation of streamflow generation at the local
scale (such as convective events or snow accumulation
in mountainous areas). Hence the majority of hydro-
logical impact assessments do not directly use GCM
simulations at their original resolution, but instead, use
downscaling techniques to refine the projections.

3.2.1 Uncertainties Related to Climate Models
Model structure/parameterization: Climate models are
developed by different groups across the world. These
groups make different choices when deciding which
processes should be represented, and how they should
be represented. For instance, convection occurs at a
spatial scale smaller than the grid size of GCMs, so it
cannot be explicitly represented, and instead, it has to be
parameterized. Different groups will use different param-
eterization schemes for convection, resulting in different
projections of intense precipitation events. The spread
among the projections of models produced by different
groups reflects both limitations in our understanding of
the climate system and limitations of what can be repre-
sented by climate models running at a relatively coarse
resolution. To account for climate model uncertainties,
it is now a standard procedure to use an ensemble of
climate models, instead of a single model (see Section 4.2
for discussion of the ensemble approach to test model
structural uncertainty and Section 4.3 for an ensemble
approach to analyze parametric uncertainty).

Natural variability: The atmosphere is a chaotic sys-
tem, meaning that a small perturbation in the initial
conditions of a climate state can lead to large differences
in the future [32]. This makes weather forecasting diffi-
cult and also reduces the predictability of future climate.
For instance, Deser et al. [33] demonstrated the impor-
tance of natural climate variability by running the same
climate model several times and only changing the initial
conditions by introducing an infinitesimal perturbation.
This led to very different trends in the projections. The
spread in the projections reflects natural variability of
the climatic system, which exists even in absence of
climate change. Unlike other sources of uncertainty, nat-
ural variability has an inherently unpredictable nature
and is unlikely to be reduced even as newer generations
of climate models are unveiled. For an extended dis-
cussion of methods to analyze natural variability, see
Section 4.4.

http://pcmdi9.llnl.gov
https://cmip.llnl.gov/cmip5/data_getting_started.html
https://cmip.llnl.gov/cmip5/data_getting_started.html
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3.3 Downscaling

The term downscaling refers to the procedure of trans-
ferring large-scale information from GCMs to a regional
or local scale, whereby the spatial resolution of the data
is increased. Downscaling provides refined output at a
higher spatial resolution, which is able to explicitly rep-
resent sub-grid scale heterogeneities. Consider precipi-
tation as an example: because of the limited representa-
tion of regional topography and poor representation of
mesoscale processes in GCMs, the spatial variations in
precipitation intensity on regional scales often cannot be
resolved. Therefore, downscaling plays a substantial role
in mountainous areas, where precipitation patterns are
strongly dependent on orography (Groppelli et al. [34]).

To bridge the gap between GCM output and the
high-resolution climate variables required for hydro-
logical modeling, various downscaling techniques have
been developed. They can be classified into statistical
downscaling (SD) and dynamical downscaling (DD).
The basis for creating downscaled climate variables (e.g.
temperature or precipitation) using SD is the under-
lying assumption that statistical relationships can be
established between atmospheric processes occurring at
different spatial scales [35]. These statistical relationships
are used for downscaling, for instance, using weather
typing schemes, transfer functions or weather genera-
tors [36]. SD is flexible and computationally cheap but
is based on the assumption that the utilized statistical
relationships do not change over time. Owing to the
low computational cost of SD, many realizations are
possible, which is for example useful when sampling
uncertainties related to internal variability. DD, on
the other hand, involves the use of higher-resolution
(10–50 km) RCMs for limited regions (GCMs are run
over the entire globe). These RCMs are run using bound-
ary conditions provided by GCMs or reanalysis data. By
using RCMs, DD offers a more physically realistic basis
to downscaling when compared to SD because RCMs
explicitly resolve mesoscale atmospheric processes that
produce, for instance, heavy rainfall [37]. When a GCM
is used to force an RCM (also called “nesting” and within
this article referred to with the acronym GCM–RCM),
regional detail is provided which is generally consis-
tent with the driving GCM and also spatially coherent.
For many parts of the world, climate change scenarios
simulated by different RCMs are already freely avail-
able from public databases, e.g. through the CORDEX
project for CMIP5 projections [38] or the ENSEMBLES
project for CMIP3 projections [39]. There is no central
archive for CORDEX, however, CORDEX data can be
accessed from different portals, see: http://cordex.org/
data-access/.

In some research papers, the terms SD and bias correc-
tion (bias correction is described in detail within Section
3.4) are used interchangeably or are instead referred to
as simply “downscaling” or “statistical transformations”
e.g. see the following papers which use these different
terms in synonymous ways: Sunyer et al. [40], Fang
et al. [41] or Gudmundsson et al. [42]. However, SD and
bias correction have separate uses in some contexts, as
evidenced by their motivation. The origin of SD and bias
correction both date back to their use within numerical
weather prediction (NWP). The first SD methods were
implemented in the late 1940s [43], while bias correction
developed some decades later. During the mid twentieth
century NWP forecasts were too coarse to forecast
weather variables at a local scale. SD models were,
therefore, used to infer a statistical relationship between
large-scale observational information (predictor) and
an observed local variable (predictand). The statistical
model was then applied to downscale the large-scale
NWP forecast to the local-scale. In this circumstance,
the large-scale NWP forecast is assumed to be perfectly
fitted to large-scale observations. However, archived
forecasts showed that the forecasts deviated heavily
away from observations. Therefore, model output statis-
tics (MOS) was introduced as a separate method from SD
to correct for model biases. MOS infers a statistical rela-
tionship between a large-scale modeled predictor and an
observed local-scale variable. Model biases already enter
into the statistical relationship during MOS, allowing
it to account for these biases. The terms MOS and bias
correction are both found within current literature,
where bias correction can be considered a subcategory
of MOS. For further discussion of the origins of the
terms bias correction, MOS, SD and their relatedness we
refer the reader to Chapters 3 and 12 within the book by
Maraun [44].

3.3.1 Uncertainties Related to Downscaling
Statistical downscaling: Given that statistical rela-
tionships are established between observed and
climate-modeled data, uncertainties related to obser-
vational datasets will influence the effectiveness of the
SD technique. Section 5.2 discusses methods to accom-
modate for uncertainties stemming from observational
datasets. In addition, the use of SD includes the uncer-
tainty that results from the assumption that large-scale
predictors are able to capture the climate change signal.
This is discussed in greater detail within Section 6.3.
Numerous SD methods exist and uncertainties can be
introduced depending on the method used. It is, there-
fore, common to use multiple methods to accommodate
for these uncertainties; see Section 4 for guidance on
ensemble methods. For a review of different SD methods,
see for instance Fowler et al. [45] or Maraun et al. [46].

http://cordex.org/data-access/
http://cordex.org/data-access/
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Dynamical downscaling: Although their resolution is
finer, RCMs are affected by issues that also affect GCMs
and by the uncertainties listed in Section 3.2 (i.e. model
structure/parameterization, natural variability). This
causes systematic model errors, implying that there is
the need to further post-process RCM data with bias
correction and to use an ensemble approach (see Section
4) when using RCM simulations as input for modeling
future streamflow [47, 48].

3.4 Bias Correction

In the context of this article, a bias is defined as “the
systematic difference between a modeled property of
the climate system and the corresponding real proper-
ty” [49]. Such properties include mean temperature or
summer precipitation. Bias correction is the process of
correcting climate model output to reduce the effects
of systematic errors in the climate models and to make
the output more suitable as driving data for hydrological
models. In the case where bias correction is applied
between climate model output and observational data
of different resolutions, then the bias correction also
inherently closes the scale gap. Whether it is reasonable
to use bias correction as a downscaling measure depends
on the variable being downscaled, the difference in res-
olution, the study location, the bias correction method,
and the statistical climate aspects that could be affected
[44]. Initially, biases between observed and simulated
climate variables over a historical period are identi-
fied (during the so-called “control run”). These biases
then serve as a basis for establishing a transformation
algorithm, which is used to correct both control and

scenario driven RCM runs. This implicitly assumes that
the biases are invariant over time, which is not always the
case [48]. Although bias correction is usually performed
on RCM data output, it should be noted that a direct bias
correction of GCM data is also possible and likely com-
putationally cheaper. However, the finer RCM resolution
better resolves the regional-scale variability [50], which
is beneficial especially in complex topography [51].

A large number of bias correction approaches have
been developed to adjust climate model simulations as
reviewed by Maraun et al. [50], Teutschbein and Seibert
[52] or Chen et al. [53]. They can be classified according
to their degree of complexity (i.e. how many statistical
moments they are able to correct), ranging from simple
scaling factors to more sophisticated methods such as
quantile mapping. Among the different bias correction
methods, quantile mapping (also referred to in the liter-
ature as distribution mapping, probability mapping, SD
and histogram equalization) has been identified as the
most efficient in adjusting RCM simulations. The idea
behind this approach is to match the distribution of the
RCM-simulated climate values with the observed distri-
bution with the help of transfer functions (Figure 2). This
has been shown to be superior to other bias correction
methods because it is able to correct quantile dependent
biases including wet day frequencies and intensities.
The aforementioned bias correction methods can be
considered “direct methods.” The delta change approach
is another widely used method to correct RCM data.
The delta change method is considered separate from
direct methods since it uses observations as a basis
and then perturbs the observed time series rather than
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applying a correction to modeled data. The change fac-
tors are derived from changes simulated by the climate
models. The statistical characteristics of the new time
series remain the same as the observed time series,
which makes it a stable and robust method. However,
since the projected changes (i.e. the difference between
simulated future and simulated past) are simply super-
imposed upon the observed data, it produces future time
series with dynamics similar to current conditions. This
implies that the delta change approach does not account
for potential future changes in climate dynamics (e.g. the
number of dry vs. wet days) and that major events (e.g.
heavy precipitation or hot days) will change by the same
amount as all other events (e.g. drizzle or cold days),
which makes the delta change approach less suitable in
hydrological climate change impact studies (Teutschbein
and Seibert [48]). However, due to its simplistic nature
this method is still very popular in the literature and
can also easily be used within a classroom for teaching
purposes (see Section 5.6).

Typically, bias correction methods are univariate,
i.e. they adjust only one RCM-simulated variable at a
time without guaranteeing consistency in spatiotem-
poral fields and different climate variables [50]. Bias
correction has been shown to have a moderate effect on
inter-variable relationships [54]. However, this remains
an understudied aspect of hydrological climate change
impact studies, and the use of a multivariate method
versus a univariate method may lead to different conclu-
sions in an impact study. For instance, when temperature
and precipitation are jointly corrected within glacier-
ized catchments, this may lead to more snowfall due
to more precipitation falling while temperatures are
below 0 ∘C as compared to a univariate approach [55].
Different multivariate methods are beginning to appear
in the literature, for instance, Cannon [56] introduced a
method based on the N-dimensional probability density
function transform, which was originally used as an
image processing technique. The technique combines
univariate quantile mapping and random orthogonal
rotations to match the multivariate distributions of
climate model data to that of observed data. Another
method called Multivariate Recursive Quantile Nesting
Bias Correction (MRQNBC; [57]) corrects attributes
of individual variables that result in a correction of
the dependence biases between different variables. The
Frequency Bias Correction (FBC; [58]) method is based
on the concept that the variance of the time series can
be expressed as a function of frequency. The biased time
series is converted into the frequency domain using the
forward Fourier transform and the peaks and phases
are matched with that of the observational time series.
In addition, a few attempts have been made to improve
the physical links between bias-corrected variables by

introducing copula-based correction methods [59–61].
Copulas are used to link univariate marginal distribution
functions to form a multivariate distribution function.
These two-dimensional methods are, however, not yet
technically mature as they either do not establish a
rigorous statistical relationship between the variables or
are not able to correct data at a daily timescale.

3.4.1 Uncertainties Related to Bias Correction
Symptom vs. origin: A major criticism of bias correction
methods is that they only target the symptoms of model
imperfections (i.e. biases in the simulations) and not
the origins of these imperfections [49]. This leads to
concerns about the ability of bias correction methods
to correct future biases in a robust way. In a sense, bias
correction provides the right answer (i.e. simulations
looking like observations) but not necessarily for the
right reasons. In addition, bias correction does not cre-
ate subgrid variability [50] and assumes a stationarity of
the bias (see Section 6.3 for further discussion). Despite
these limitations, bias correction methods are still essen-
tial for hydrological impact studies, because without
bias correction, systematic biases of raw climate model
output would lead to substantial errors in hydrological
projections.

Bias correction method: Studies have shown that the
choice of bias correction method can also contribute
to the total uncertainty of the modeling chain [40, 62].
For instance, Sunyer et al. [40] compared eight methods
to downscale precipitation output (including four bias
correction methods) from 15 RCMs from the ENSEM-
BLES project. Their results showed that the differences
between the methods vary according to the catchments
and the season being analyzed.

Observational datasets: Bias correction establishes
statistical relationships between observed and modeled
data. Therefore, uncertainty related to observed datasets
will influence the effectiveness of the bias correction
technique applied. Section 5.2 discusses methods related
to the processing of observational dataset uncertainties.

3.5 Hydrological Models

Hydrological models are a simplification of real-world
catchments and aim at representing the dominant
hydrological processes. Hydrological models vary in
their complexity ranging from purely empirical black
box models to fully distributed physically based models
[63]. For use in climate impact studies, bucket-type
models, such as the HBV model [64, 65], are commonly
used, as they are often considered to have sufficient
complexity to capture the dominant hydrological pro-
cesses, yet their data requirements are relatively modest.
These models, also called conceptual models within the
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hydrological community, are based on some physical
reasoning and represent catchment processes by several
interconnected buckets, which mimic water storage and
transfer within a landscape. These models typically rep-
resent a catchment in a lumped or semi-distributed way.
In lumped models, the catchment is considered to be
spatially homogeneous, while in semi-distributed mod-
els, the heterogeneity within the catchment is accounted
for using subunits. For snow-dominated catchments,
for instance, the division into elevation zones is cru-
cial, as it allows the model to account for changes in
temperature and precipitation with elevation. The data
requirements of these models include precipitation,
temperature, and evapotranspiration which are usually
sufficient for discharge modeling. Another advantage of
bucket-type models is that they are simple enough to be
easily applied and allow, due to their smaller computa-
tional demand, a more thorough uncertainty analysis.
However, there are some instances where the use of a dis-
tributed process-based model is necessary to realistically
capture the variable or process of interest. For a review
of applications of process-based models in hydrology, we
refer the reader to Fatichi et al. [66]. When starting with
the production of streamflow projections, it is advisable
to use a bucket-type hydrological model. Such models
are easier to setup and run than process-based models,
as they have lower data requirements (this is particularly
important in data-scarce regions) and their run time is
lower, enabling a larger ensemble of projections. For a
thorough review of the different types of hydrological
models and the pros and cons of different model com-
plexities, we refer the reader to Hrachowitz and Clark
[63]. For a historical overview of the development of
catchment modeling see Todini [67].

3.5.1 Uncertainties Related to Hydrological Models
Parameters: Parameter uncertainty is generally caused
by (i) assumed stationarity of parameter values under
changing climatic conditions and (ii) the difficulty to
constrain model parameters using available data and
knowledge. These two aspects of parameter uncer-
tainty are limitations within hydrological climate change
impact research and are further discussed in Sections
6.3 and 6.4, respectively.

Model structure: The response of the hydrological sys-
tem to climate change can be impacted by model choice
[63, 68, 69]. In practice, simpler models (i.e. lumped
bucket-type models) often perform at least as well as
the more complex models with regard to catchment dis-
charge (Breuer et al. [70]), and more complexity does not
guarantee that a model performs better under changed
conditions [71–73]. However, this does not imply that
models should not be improved; research has shown
that improving process representation could increase

model transferability into future conditions [74]. Yet,
adding more complexity without the necessary data
to support the additional scheme or parameter could
lead to an increase in uncertainty along with slower run
times. See Section 4.2 for a discussion of how to analyze
model structure and Section 6.1 for limitations related to
sampling within the hydrological model structure space.

Observational datasets: Hydrological models rely on
observational data both as input to drive the simulations
and for comparing the simulated time series of dis-
charge for calibration. However, observational networks
can contain uncertainty stemming from (i) instrument
errors, (ii) errors in the conversion of relating measured
values to the variable of interest (e.g. rating curve for
discharge observations), (iii) spatial heterogeneities of
the variable of interest (representativeness of the vari-
ations in the sample across space), and (iv) temporal
variability of the variable of interest (whether sample
variations are captured by temporal sampling) [75].
Since it is common practice to repetitively compare
simulations to observation for calibration and valida-
tion purposes, issues within the observational network
can lead to improper model setup and interpretation
of results. Hydrological climate change impact studies
rely on various observational data networks, which
have different sources of uncertainty (see the earlier
discussion) depending on the variable considered. For
instance, although simulated discharge stemming from
a calibrated hydrological model may match well with
observed discharge, it is important to keep in mind that
streamflow measurements during floods are uncertain.
Please see Section 6.6 for a discussion of limitations
related to observational dataset uncertainties.

4 Uncertainty Sampling
and Decomposition

4.1 Ensemble Approach

It is now standard for studies investigating climate
change impacts to rely on an ensemble approach [76].
This means that multiple runs rather than a single
model run are performed and that the result is a range
of possible outcomes rather than a single simulation.
The various simulation runs differ in one or several
aspects (e.g. different emission scenarios, climate mod-
els, climate model members, downscaling methods,
bias correction methods, hydrological models, and
parameter sets). Depending on computational resources
and data availability, an ensemble can consist of a few
(∼10) to many (1000 or more) ensemble members. The
different simulation runs are then often aggregated by
computing the mean or median change and the spread
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in the projections. The aggregation of the ensemble runs
is usually a more robust estimate of future changes than
if one would use one single run. Note that although
both the mean and median can be used to combine
ensemble runs, the median is often preferred over the
mean since it is less affected by individual outliers,
such as poorly performing models. The spread of the
ensemble provides an estimate of the uncertainty in the
projections. The following sections describe three ways
to use ensembles to account for different forms of uncer-
tainty: (i) uncertainties in the formulation of the models
(structural uncertainty), (ii) uncertainties in parameter
values within the models (parametric uncertainty) or (iii)
uncertainty due to natural climate variability. Ensembles
are also often used to isolate the contribution of other
forms of uncertainty by utilizing different emission sce-
narios, bias correction methods, observational forcing,
among other components of the modeling chain.

4.2 Ensembles to Test Structural Uncertainty

The assessment of model structural uncertainty is gener-
ally performed by using different model structures and
characterizing the range of their output, known as the
multi-model approach (Jiang et al. [77]; Hublart et al.
[78]; Seiller et al. [79]). This method is applied in both
climate and hydrological modeling. Hydrological models
are developed by different modeling groups, hence their
modeling philosophies and therefore structures vary
(even amongst bucket-type models). Similarly, GCMs
and RCMs are developed at different institutes, resulting
in different representations of Earth system processes
from one model to another (although often not entirely,

see Section 6.2). This leads to a spread in the projections,
representing model uncertainty. Figure 3 illustrates this
concept for discharge projections: The spread of the pro-
jections was produced by forcing HBV using different
GCM–RCMs.

4.3 Ensembles to Characterize Parametric
Uncertainty

In a hydrological modeling context, the perturbed
parameter approach consists of running the hydrolog-
ical model multiple times using different parameter
sets, generated using, for instance, Monte-Carlo proce-
dures [80, 81], Bayesian methods [82, 83], evolutionary
algorithms [84], or depth functions [85].

Within climate and hydrological modeling, the
perturbed-parameter approach (also known as the
perturbed physics ensembles [86]) involves the per-
turbation of model parameters (typically those poorly
constrained by observational data) or parameterization
schemes, thus creating separate simulations using each
variant. This is done in order to test the model system
sensitivity to the perturbations and to develop a range
of equally likely model responses consistent with uncer-
tain parameters/schemes. In the simplest form of this
analysis, a single parameter is identified and the model
is run. This parameter is then changed and the model is
then rerun. The collection of the climate model runs as
a whole is defined as an ensemble of different realiza-
tions. Typically, this approach entails the simultaneous
modification of several parameters to evaluate their
combined impact on the system and to estimate the
range of uncertainty related to their prescribed values.
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4.4 Ensemble Approach to Characterize Natural
Variability

Recent studies showed that the importance of natural
variability has often been underestimated when inter-
preting climate model projections. Initial condition
ensembles involve the use of the same model and forcing
but different start dates. Because of the chaotic nature
of the climate system, small changes in temperature,
humidity, etc. can result in highly different realizations
of the system. This approach is, therefore, only applied
to stochastic models or models with a stochastic setting.
The chaotic nature of the atmosphere amplifies these
slight differences, which results in some spread among
the ensemble members. The spread provides a quanti-
tative estimate of the natural variability of the climate
system, often associated to noise.

Initial condition ensembles are utilized in a modeling
setup like Deser et al. [33], who used one GCM, one
emission scenario, identical initial conditions in the
ocean, land and sea-ice components with different initial
conditions in the atmospheric model. In this setup, the
different model runs show the range of climate realities
that can be achieved in the model world as a result of
natural variability. Their study revealed considerable
differences among the ensemble members, as a con-
sequence of natural variability. In other words, even
if models were perfect and future emissions known,
the projections would still be uncertain, because of the
chaotic nature of the atmosphere. A similar method was
employed by Zhuan et al. [87], who used 29 different
GCMs as well as a 40-member ensemble from one par-
ticular GCM. The differences among the 40 members
are used to study the role of internal climate variabil-
ity. The 40-member ensemble is further compared to
the 29 GCM ensemble to estimate the timing of when
human-induced climate change stands apart from inter-
nal climate variability. Other methodologies to analyze
natural variability have also been employed, see Vidal
et al. [88] and Fatichi et al. [89] who used a combination
of a SD method and hydrological modeling. Natural
variability represents a challenge to hydrological climate
change impact studies because of its irreducible nature.

4.5 Techniques to Decompose Projection
Uncertainty

The uncertainty in the projected hydrological changes
can be decomposed and assigned to the different sources
of uncertainty described previously. This requires a care-
fully developed experimental design, typically relying on
the factorial combination of the different elements of
the model chain (including all possible combinations of
the model elements). It is a computationally demanding

task, but it is necessary to isolate the contributions of
each element of the model chain to the total uncertainty.
Uncertainty partitioning is most commonly performed
using an analysis of variance (ANOVA, Hawkins and
Sutton [26]; Bosshard et al. [90]; Eisner et al. [91]). In
an ANOVA framework (see Figure 4), the uncertainty is
estimated from the variance among the ensemble mem-
bers and the contribution of the elements of the model
chain is additive. An uncertainty assessment of this kind
allows for the determination of which elements of the
model chain cause the most uncertainty, which helps
with the design of future impact assessments. Including
an additional hydrological model, for instance, might
barely influence the projections, so additional runs can
be avoided, which is helpful if computing resources are
limited. Figure 4 shows an example of the outcome of
an ANOVA decomposition where climate models are
responsible for most of the spread in the projections,
although there is some dependency on the variable,
future period, and catchment of interest.

Studies such as Wilby [93] have suggested that the
relative contribution of uncertainty from each step of
the modeling chain to the final discharge projection is
dependent on catchment characteristics. Addor et al.
[92] produced streamflow projections for six Swiss
catchments and showed that in nonglacierized catch-
ments, uncertainty was mainly caused by GCM–RCMs.
In contrast, in partially glacierized catchments, hydro-
logical models played an equivalent role in discharge
uncertainty. Bosshard et al. [90] showed that the time
of year can also impact the contributions of uncertainty
from different sources. They performed a variance
decomposition on discharge projections and identified
the GCM–RCMs to be the dominant source of uncer-
tainty in the summer and autumn. Toward the end of the
century, in winter and spring, the role of GCM–RCMs
was found to diminish and instead hydrological models
(as well as post-processing methods) become more
important. Besides considering different catchment
characteristics and the time of year, the contribution
of uncertainty from the modeling chain is also depen-
dent on which aspects of the hydrograph one evaluates.
Meresa et al. [94] considered three sources of uncer-
tainty: climate models obtained from EURO-CORDEX,
hydrological model parameters achieved by calibration
using observed streamflow over a reference period, and
the process of fitting distribution models to extreme
flow time series. The uncertainty of the hydrological
parameters was estimated using the generalized like-
lihood uncertainty estimation (GLUE) approach. An
ANOVA analysis showed that for low-flow extremes the
uncertainty stemming from the hydrological parameters
can be greater than the uncertainty from the climate
models and distribution fitting process. For high-flow
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Figure 4 Decomposition of the projection variance. ANOVA partitioning among the four selected sources of uncertainty, the significant
interactions, and the residual errors. Results for discharge changes in (a) winter (DJF) and (b) summer (JJA) are shown for the three 30-year
future periods, centered on 2035, 2060, and 2085 for six Swiss catchments. Source: Figure provided by Addor et al. (2014) [92].

extremes, they found the climate models to be the
greatest contributor to total uncertainty.

5 Application of the Modeling Chain

5.1 Design of the Modeling Chain

Modeling chains can quickly become computationally
demanding, and it is beyond a single modeling study
to account for all uncertainties. System sensitivity tests
(changing one or a few components of the model chain
and leaving the other components unchanged) are often
conducted (see Section 4 on uncertainty decomposition).
A key decision is which emission scenario(s), climate
model(s), bias correction technique(s), and hydrological
model(s) to involve. The next subsections summarize the
main steps involved in the production of hydrological
projections.

5.2 Collection and Processing of Observed
and Modeled Data

Besides the climate model simulations, the required data
for a hydrological climate change impact study typically

include observed precipitation, temperature, potential
evaporation, and streamflow time series.

Meteorological observational data are often available
as either station data or as a gridded product, which are
derived from station data using interpolation techniques
[95]. Incomplete or unavailable observational data are a
common concern in climate change studies, which can
be somewhat overcome by advanced methods to fill in
the data [96] (e.g. interpolation, hindcasting). Since both
precipitation and temperature vary with elevation, values
always correspond to a certain reference elevation. For
station data, this is simply the elevation of the station.
For gridded datasets (including RCMs), however, values
correspond to the mean elevation of the grid cell. If the
study area is located in a region of complex topography,
such as the Alps, temperature, and precipitation values
derived from a gridded product should be corrected to
account for the difference of the mean elevation of the
grid cell and that of the actual elevation of the study area.
This is especially important for gridded data with coarse
resolution such as that of RCMs. Some hydrological
models can automatically account for such differences
by applying an additive correction to temperature and
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a multiplicative correction to precipitation. Otherwise,
this correction can also be performed by the modeler
outside of the hydrological model. In addition, any
systematic bias stemming from elevation differences is
implicitly corrected through bias correction (see Section
3.4). However, it is important to note that when ranking
the performance of raw RCM simulations, some of the
biases within the data stem from elevation differences.
When comparing raw RCM simulations, it is suggested
to correct for elevation differences separately from
bias correction, so that individual raw RCMs are not
punished for issues related to elevation [97].

Potential evapotranspiration is not usually measured
directly, but rather estimated using methods ranging
from simple temperature-based equations such as Harg-
reaves and Blaney–Criddle (Xu and Singh [98]), to more
physically based methods like the Penman–Monteith
formulation [99]. Parsimonious formulations, such as
temperature-based formulations, are useful in that
they require less data compared to physically based
formulations, but a downside of temperature equations
is that they may be overly sensitive to climate change
[100]. For a review on formulations used for estimating
evaporation, McMahon et al. [101].

5.3 Estimation of the Hydrological Model
Parameters

Parameters of a bucket-type model represent effective
average values and most often cannot be linked to a
specific property in the catchment that can be measured
directly. Instead, calibration is used to estimate parame-
ter values. Hydrological models are commonly calibrated
against observed discharge, which means that a certain
goodness-of-fit measure, such as Nash–Sutcliffe effi-
ciency (NSE, Nash and Sutcliffe [102]) and Kling–Gupta
efficiency (Gupta et al. [103]), is optimized by changing
the parameter values. This can be done manually but
usually automated methods are used (e.g. Monte Carlo
simulations, genetic algorithms, Golberg [104]; Duan
et al. [105]).

Once the model has been calibrated, it is important
to test it over a period of time not used for the cali-
bration, a step usually called validation. One particular
challenge in climate impact studies is that the model is
used to simulate streamflow under future climate, for
which no observations are available. The assumption
is often made that the same parameter values are still
valid for the new situation. It is important to evaluate
whether this assumption is reasonable and whether the
model is “stable” under the respective change. This can
be done using a differential split sample test (DSST).
Using a DSST approach [106] for model evaluation
is a suitable approach to explore the impacts of the

assumed parameter stationarity on the simulations, i.e.
to explore the transposability in time of the calibrated
model. DSST relies on the calibration and validation of
a hydrological model using sub-periods with contrasted
climate conditions. The idea behind DSST is that the
errors made by extrapolation from a time period with
certain climate conditions to a time period with different
conditions (both time periods using observational data
so that the extrapolation errors can be quantified) can
be used as a basis to determine whether the model will
perform well under future climatic conditions [107].
Coron et al. [108], developed a generalized version of
DSST (general split sample test: GSST), that allows for
a large number of calibration-validation exercises by
generating sub-periods systematically using a sliding
window over the reference period. The main variables
used to define the contrasted condition of sub-periods
for DSST are precipitation (Vaze et al. [109]; Seiller
et al. [110]; Tramblay et al. [111]; Ruelland et al. [112]),
temperature (Hartmann and Bárdossy [113]), potential
evapotranspiration (Coron et al. [108]), and discharge
(Seibert [107]).

5.4 Evaluation and Bias Correction of the Climate
Models

Until recently, subsets of GCM–RCMs have normally
been chosen based on their ability to replicate current
climate (temperature and precipitation metrics; Mendlik
and Gobiet [114]; Wilcke and Bärring [115]). In this
case, the evaluation of the GCM–RCMs and their bias
correction takes place prior to hydrological modeling
(Section 5.5). Recent studies such as Dalelane et al. [116]
have targeted how representative the ensemble spread
is by selection. Such a study is based on the notion that
a climate ensemble is not fully robust because model
results are not truly independent, as described in Section
6.2. The methodology first rejects poorly performing
models and then selects the most independent models
from the remaining ones. Besides evaluating a climate
model’s performance based on its ability to accurately
represent climate variables, the use of hydrological
metrics has recently gained more attention (e.g. high
and low discharge) as evaluation criteria for the per-
formance of GCM–RCMs and their bias correction.
Streamflow can be considered an integrator of all atmo-
spheric variables over a watershed. This approach allows
for an instantaneous focus on atmospheric data with
the largest influence on the simulated discharge [97].
With this approach, the evaluation of performance of
GCM–RCMs and their bias correction is to be per-
formed after hydrological modeling (Section 5.5) using
hydrological metrics as standards for evaluation. It has
been shown that climate model evaluation based on only



Hydrological Modeling of Climate Change Impacts 13

a single variable/metric is not sufficient [117] and that a
robust selection should rather include the evaluation of
a wide variety of variables/metrics.

The selection of an appropriate bias correction method
is dependent upon multiple factors. The following list
summarizes the most important considerations:

1) Can the model bias be considered time invariant
(should a method which alters the climate change
signal be applied)? A trend preserving method is
justified if the bias can be considered time-invariant
and conversely a nontrend preserving method can be
applied if the method can be assumed to correct the
time invariance of the bias.

2) Is downscaling to a higher resolution required? If so,
the downscaling should capture local variations and
the response to climate change.

3) How should the bulk of the climate distribution be
corrected? Consider the correction of spatial, tempo-
ral, and multivariate aspects [50].

For a deeper discussion of this topic, Chapter 12,
Section 10 of the book by Maraun [44] includes back-
ground information on the points listed above and
provides a decision tree for the selection and evaluation
of bias correction methods (Figure 12.17). The stepwise
procedures to implement a particular bias correction are
highly dependent on the method employed. Teutschbein
and Seibert [52] provide an overview of the steps to carry
out the following bias correction methods: linear scaling,
local intensity scaling, power transformation, variance
scaling, distribution mapping (i.e. quantile mapping),
and the delta-change approach. The authors imple-
mented these different methods and evaluated their
ability to correct GCM-RCM temperature and precip-
itation for five Swedish catchments. The bias-corrected
GCM-RCM data was then used to force a hydrological
model to create discharge simulations for present and
future conditions. Their results show that quantile map-
ping outperforms the other methods in that it corrects
the most statistical characteristics and has the narrowest
variability ranges.

5.5 Force Hydrological Model with Bias-corrected
Climate Simulations and Analyze Streamflow

Once the hydrological model has been run with
bias-corrected GCM-RCM data using parameters
from Section 5.3, the discharge projections can then be
analyzed. The general approach to analyze catchment
discharge is as follows:

1) Apply the hydrological model for current conditions
using observed historical precipitation and tempera-
ture (PTobs) as forcing data. This usually implies some

form of model calibration against observed discharge
(Qobs). This results in a time series of simulated dis-
charge (Qref) based on observed climate data (PTobs).
This step should be conducted first, in order to estab-
lish the reliability of the hydrological model.

2) Compare the observed time series for precipitation
and temperature (PTobs) with the raw simulations
from the climate model for current conditions
(PTraw), also called control run. Identify any biases.

3) Use the calibrated model to simulate the discharge
for current conditions using the simulated time series
for precipitation and temperature from the climate
model, Qraw, PTraw. This step should be completed
prior to bias correction in order to test whether the
discharge is sensitive to biases in the climate model
data. If biases in the climate model data are apparent
in the discharge, then proceed to step 4. If biases
are not apparent in both steps 2 and 3, step 4 can
be skipped and references to Qcor and PTcor can be
neglected in the following steps.

4) In most cases, biases in the climate simulations will
significantly impact the streamflow simulations, mak-
ing the bias correction of the raw simulations precip-
itation and temperature data (PTcor) necessary.

5) Use the calibrated hydrological model to simu-
late the discharge for current conditions using the
bias-corrected simulated time series for precipitation
and temperature from the climate model, Qcor, PTcor.

6) Compare the various pairs of observed and/or simu-
lated discharge to assess different sources of error (see
Figure 5 for an example of these time series):

a) Qobs to Qref: biases associated with the hydrological
model.

b) Qref to Qraw: biases related to the climate model.
c) Qraw to Qcor: effect of the bias correction method.
d) Qref to Qcor: performance of the model chain after bias

correction.

To consider uncertainties it is recommended to per-
form each step multiple times (i.e. use an ensemble
method) whenever possible/suitable in the steps above.
In step 1 for instance, due to parameter uncertainty, it is a
good practice to allow for different parameterizations, i.e.
to compile an ensemble of suitable parameter sets to be
used in the further analyses. Ensemble means and medi-
ans, as well as spread measures, are suitable methods to
show results and uncertainties (see Section 4).

5.6 Materials Available to Get Started

The Supplementary Materials for this article are available
at the website: https://www.geo.uzh.ch/en/units/h2k/
Services/Encyclopedia-Climate-Change.html. When

https://www.geo.uzh.ch/en/units/h2k/Services/Encyclopedia-Climate-Change.html
https://www.geo.uzh.ch/en/units/h2k/Services/Encyclopedia-Climate-Change.html
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Figure 5 Seasonal hydrographs for the Allenbach catchment (a) and Guerbe catchment (b), both located in Switzerland. Within each
figure, observed discharge (Qobs) is compared to simulated discharge driven by: observed climate data (Qref), raw RCM data (Qraw), and bias
corrected RCM data (Qcor). The numbered lines refer to biases described in Section 5.5, step 6, where (1) Qobs to Qref: hydrological model
biases, (2) Qref to Qraw: climate model biases, (3) Qraw to Qcor: effect of the bias correction, and (4) Qref to Qcor: performance of model chain
after bias correction.

beginning a hydrological climate change impact assess-
ment, a necessary step is to download GCM-RCM
data and to clip the data to the area of interest. This
can be a challenge for those who are new to climate
change projects. A guide is provided within the Supple-
mentary Materials which walks the reader through the
steps for pre-processing GCM-RCM data in NetCDF
format.

For detailed instructions on how to apply a distribution-
based bias correction method, the “qmap” package in
R [42, 118] provides information on the application
of quantile mapping. For those new to working with
a hydrological model, the hydrological model HBV
(Hydrologiska Byråns Vattenbalansavdelning; Bergström
[64]; Bergstrom [119]; Seibert and Vis [120]) is available
for download on the Supplementary Materials website.
HBV is provided as a starting point given its successful
implementation in classroom settings [120]. In addition,
a simplified hydrological climate change impact project
(using the delta change approach) is available in the Sup-
plementary Materials. This project has been successfully
used in a master’s level course in the Department of
Geography at the University of Zurich in the past years.
The materials can be used as a guide for self-teaching or
as a starting point for faculty wishing to assign a hydro-
logical climate change research project in a classroom
setting.

5.7 Potential Mistakes

It is important to note that GCM–RCM simulations
cannot be used as weather conditions for “real” days.

Climate models provide one possible realization of
the climate evolution during a certain time period,
and while this realization should reproduce the statis-
tics of the observations, the individual values will
be different from the observation. In other words, a
GCM–RCM simulation for a certain day, say 1 Jan-
uary 1980 cannot and should not be compared to the
observation on that specific date. Instead, GCM–RCM
simulations should be evaluated in a climatological
sense, by comparing long-term variables, such as the
mean or variability over a long period (typically 20–30
years). Similarly, computing a goodness of fit mea-
sure such as NSE using daily discharge values does
not make any sense when the hydrological model is
driven by climate model output. An exception to this is
when the RCM is driven by re-analysis data instead of
a GCM.

Another potential mistake in the quantification of cli-
mate change impacts on discharge is the direct compar-
ison of the discharge simulations driven by GCM–RCM
output for the future with that of the observed discharge
or the simulated discharge using observed atmospheric
forcing. Both these comparisons are not suitable to quan-
tify the effect of the simulated climate change because
differences do not only arise from a changing climate but
also include model errors. The appropriate approach is to
compare the simulated discharge based on climate model
outputs for both current and future conditions. By keep-
ing the driving models the same between the historical
and future time periods, the effects of climate change can
be more easily isolated.
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6 Limitations and Challenges

6.1 Sampling Within the Hydrological Model
Structure Space

Most hydrological impact studies only involve a few
different model structures that represent only a small
sample of the multitude of model structures currently
available. This poses a problem for two reasons. First,
only a small part of the model structure space is sampled,
meaning the spread in the projections may not reflect
the full uncertainty in the future conditions. Second,
these few models differ in so many respects that it is
particularly difficult to determine which differences
between them contribute most to the uncertainty in
the projections. A methodology to diagnose differences
in hydrological model structures is to use modular
modeling frameworks, such as the Framework for
Understanding Structural Errors (FUSE; [121]) or the
structure for unifying multiple modeling alternatives
(SUMMA; [18]).

6.2 Interdependence of Climate Model Structure

A main objective of combining the output from several
climate models is to produce more robust projections.
Some climate models perform better than others, leaving
the researcher to decide whether to give higher weight to
some models. The implementation of this can often be
particularly difficult in that climate model groups often
share code with one another and therefore the basis for
the modeled physical processes can be very similar. As
Knutti et al. [122] point out, new generations of GCMs
often resemble their predecessors demonstrating that
much of the physics and code remains the same through
generations. In such cases, model agreement does not
necessarily indicate correctness. The sharing of code
means that models make similar assumptions of the
physical system and therefore agreement amongst the
models may come from an error shared by all models,
and likewise, a low spread does not necessarily mean
a low uncertainty. It could instead be the result of
model interdependence, i.e. models relying on the same
principles, sharing code, and being tuned using the
same observations [30, 123]. In the current state of the
research, there is no particular best practice approach to
the combination of interdependent ensemble members.

6.3 Stationarity/Instability of Model Parameters

Both bias correction and SD methods are based on the
assumption of stationarity, which implies that the cor-
rection algorithm or transfer function is assumed to also
be valid under future conditions. In general, a transfer

function/correction is derived based on the differences
between the observational data and that of the climate
model output over the historical period. For the future
time period, the same transfer function/correction
is applied. Maraun [124] analyzed the validity of the
assumption of stationarity, by using an ensemble of
GCM–RCMs to simulate present and future climate. All
RCMs were forced by the same GCM, which was used
to represent observed large-scale boundary conditions
and a particular RCM was chosen to represent regional
observations. By comparing the modeled simulations
to the pseudo observational data, biases were found to
be generally stable and bias correction was shown to
considerably improve the future climate simulations. Yet,
in some regions and for some seasons, bias correction
was found to increase the future bias. While this will
not be the case in all situations, bias correction usually
reduces the biases of the raw RCM data even in the case
of nonstationarity [54]. In addition, bias correction and
SD are often applied only on a single temporal reso-
lution (usually daily values); this does not ensure that
multi-day statistics, which are essential for the modeling
of droughts and high flows, are correctly captured [125].

Under nonstationary conditions, such as climate
change, the effects of parameter uncertainty can be
expected to be considerable (Coron et al. [108]; Poulin
et al. [126]; Thompson et al. [127]). While parameter
values in hydrological models theoretically should reflect
the physical catchment characteristics and functioning,
and not climatic conditions, several studies indicate that
under climate change, parameter instability is mainly
due to climate dependence of the calibrated parameter
values [109, 128–130]. Caution is, therefore, needed
when applying parameter values to different conditions.
Several studies found that transferring parameters to
different climate conditions resulted in significant uncer-
tainties especially when moving to a drier and warmer
climate [108, 109, 128].

6.4 Equifinality of Parameters

Parameter uncertainty is caused by the general diffi-
culty of identifying a single “correct” parameter set. For
instance, within bucket-type models, parameter values
represent effective values at the catchment scale and
are usually found by calibration (or regionalization of
parameter values, which have been calibrated elsewhere)
and many studies have demonstrated that it is impossible
to identify one single “best” parameter set. This concept,
also termed equifinality [131], means that there are mul-
tiple possible parameter sets, which perform similarly
for a given calibration period but might result in signif-
icantly different results when being used for particular
conditions, especially if these are outside the calibration
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conditions [107, 132]. This provides a challenge to
modelers because it implies that a certain level of under-
standing of hydrological processes cannot be gained
through hydrological modeling as it exists today.

6.5 Climate Model Selection and Evaluation

At the time of this publication, there exists no general,
all-purpose method to select and evaluate GCM–RCM
combinations. Often selection is not in the control
of the hydrological modeler since only some of the
GCM–RCM combinations are available due to lim-
ited computing resources. A major difficulty in model
selection and evaluation is the dependency on observa-
tional data as a benchmark (e.g. a model may perform
well according to one observational dataset but poorly
according to another). For instance, Gómez-Navarro
et al. [133] and Kotlarski et al. [134] showed that the
ranking of climate models differs depending on which
observational datasets are used. Uncertainties in the
observational dataset need to be smaller than the uncer-
tainties stemming from the climate models so that
climate models are not punished for the wrong reasons.

6.6 Accounting for Observational Uncertainties

A model, despite being firmly based on physical realism
or empirically justified by performance, cannot produce
accurate discharge predictions if forced with inaccurate
data [135]. In many hydrological climate change impact
studies, explicit consideration of observational dataset
uncertainty is overlooked because it is often overshad-
owed by the more prominent biases and limitations
associated with climate and hydrological models. It
remains a major challenge for a practicing modeler to
accommodate for imperfect observational data. In a
practical sense, it is hardly possible to collect additional
data for a particular model application. Interpolation,
extrapolation, regionalization (i.e. relating informa-
tion from a data-rich area to a data-poor area), and
other more advanced methods are commonly used to
accommodate for observational data deficiencies.

7 General Outlook

The main objectives of this article have been to introduce
the topic of hydrological climate change impact modeling
and to highlight how uncertainties are embedded within
such research. The uncertainties discussed represent
the areas within current research which have proven
to be formidable roadblocks in the path to progress.
Kundzewicz and Gerten [136] argue that uncertainty in
projections of water resources have actually increased
over time. This is due to the fact that with more informa-
tion, we increasingly know more about what we do not
know. Knutti and Sedláček [122] reiterate this idea by
stating that uncertainties in climate change projections
are not likely to be reduced quickly. Yet efforts to improve
hydrological climate change impact modeling is of vital
importance and progress should not be measured by
how quickly model uncertainty decreases, but instead by
how well we understand the processes driving climate
change and its impacts.

Hydrological climate change research should be
viewed with optimism. Although some uncertainties in
projections may remain for the time being or cannot be
reduced (e.g. natural variability), uncertainties should
not prevent decisions from being made [122] nor deter
those working on climate change impact research. Some
of the most pressing research needs are those that may
lead to more robust decisions and to a decrease in the
uncertainty related to observations and projections of
climate change [136]. Uncertainty can never be fully
avoided and it is, thus, important to consider these
uncertainties in decision making related to climate
change impacts.
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