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This paper explores the many aspects of precipitation measurement that are relevant to pro-
viding an accurate global assessment of this important environmental parameter. Methods
discussed include ground data, satellite estimates and numerical models. First, the methods
for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant
datasets gathering precipitation information from those three sources are presented. The
third part of the paper illustrates a number of the many applications of those measurements
and databases, namely hydropower, data assimilation and validation of Regional Climate
Models (RCM). The aim of the paper is to organize the many links and feedbacks between pre-
cipitation measurement, estimation and modeling, indicating the uncertainties and limitations
of each technique in order to identify areas requiring further attention, and to show the limits
within which datasets can be used. Special emphasis is put on the central role of the upcoming
Global Precipitation Measurement (GPM) mission in precipitation science.
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1. Introduction

Today, precipitation science is at the crossroads of differ-
ent scientific disciplines including among others hydrology,
numerical modeling, climate change, remote sensing, fore-
casting and more recent innovations such as renewable ener-
gy research. Research directions range from improving the
description of rain microphysics for climate change studies
to areal interpolation of surface rain for agricultural applica-
tions, to name but two quite different approaches.

Rainfall and solid precipitation at the basin scale are the pri-
mary input to hydrological models predicting stream flow
when used to manage hydropower operations. Early warning
systems for landslides also require a good knowledge of recent
precipitation, while in agriculture, irrigation scheduling is con-
tingent upon recent and expected rainfall in the near future, es-
pecially in semiarid environments. In the realm of weather,
precipitation estimates are used for nowcasting and for assim-
ilation into global and regional models, aiming to improve the
forecasts of not only precipitation but other variables such as
temperature, evaporation and wind speed.

In the field of climate change assessment, apart from the
intrinsic importance of detecting changes in water availabili-
ty in the future, precipitation is routinely used to gauge the
skill of model simulations, a task which is realized by com-
paring the climatology of present-climate simulations with
that of observational datasets. Also, precipitation estimates
over land and the oceans are instrumental to closing the
global water cycle.
Bothmeasuring and forecasting precipitation are important
for these and other applications. Prediction might be seen as
clearly preferable as it allows for the preparation of future
events. However, improving the skill of the forecasts is closely
intertwined with the ability to measure precipitation. The bet-
ter the precipitation measurement, the better the likelihood of
improved forecasts of precipitation and other meteorological
parameters. Here, an area of fertile exchange is model parame-
terization, as the advances in the physics of precipitation re-
quired to improve numerical models heavily rely on testing
new hypotheses by actual measurements of precipitation.
This is particularly the case of, for instance, theoretical param-
eterizations of rain microphysics used in models, which should
be consistent with ground or in-situ observations.

Given the breadth of the applications and their impor-
tance for human activities, the interest and effort devoted
to accurate precipitation monitoring is not surprising. The
growing importance of the field, however, runs in parallel
with difficulties in the actual measurement. Precipitation is
a very difficult variable to estimate both because of its irreg-
ular spatial occurrence, and also due to very diverse physical
processes. For example, while cold and warm-based clouds
both eventually generate precipitation, the processes leading
to the formation of the liquid water are quite different. Such
diverse meteorological conditions present a challenge to
space-based remote sensing techniques for estimating
precipitation.

Scientific advancements in quantitative precipitation esti-
mation and their applications throughout the last decade
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have crystallized into the Global Precipitation Measurement
(GPM) mission, organized as an international project led by
the National Aeronautics and Space Administration (NASA,
USA) and the Japanese Space Agency (JAXA, Japan). Given
its approaching launch date (February 14, 2014), it seems
timely for this paper to organize the many links and feed-
backs between precipitation measurement, estimation and
modeling, focusing on those methods suitable for generating
a picture of global precipitation patterns. The body of this
paper is organized in three sections. First, the methods for
measuring, estimating, and modeling precipitation are dis-
cussed. Then, the most relevant datasets gathering precipita-
tion information from those three sources are presented. The
third part of the paper illustrates a few of the many applica-
tions of the databases.

Within the paper, the term measurement is used depend-
ing on context as a general term or to specify the direct phys-
ical readings of precipitation, thus being restricted to rain
gauges and optical and video disdrometers. Estimation refers
to inferring precipitation from a measure such as brightness
temperature, momentum, or reflectivity, whereas the term
forecasts is used to the hours to days predictions of numerical
weather prediction (NWP) models. Projections refers to pre-
dictions from seasonal models, and simulations to the com-
Fig. 1. (Top) The first scientific communication reporting differences in mea-
sured precipitation with height (Heberden 1770). In a series of experiments
Heberden compared the estimates of identical rain gauges at several heights
He first placed two at the same level to ensure consistency and then moved
one at different heights. In his final crucial experiment in London, which he
carried out for a year he used three rain gauges. One was placed at ground
level, another one at the roof of a house above nearby chimneys, and the
third at the top of Westminster Abbey nave. (Bottom) The results of Heber-
den's experiments: a consistent pattern of decreasing measured precipita-
tion with height across both individual episodes, monthly accumulations
and annual totals. Differences up to 87.4% were found in just 32 m.
,
.

puter file outputs from either Global Climate Models (GCMs)
or Regional Climate Models (RCMs). Reanalysis is defined as a
retrospective analysis of the atmosphere using data assimila-
tion methods and a numerical model.

2. Ground observations of precipitation

Ground observations of precipitation include those from
rain gauges, disdrometers and radars. With a few exceptions
which are immaterial on the global scale, these are restricted
to land and to a few atolls. Rain gauges are universally con-
sidered as the source of reference data for precipitation ob-
servations as they provide a direct physical record of the
precipitation in a given spot. Disdrometers are a relatively
new instrument that estimate not only the total precipitation
but also the relative contribution of each drop size category
(the drop size distribution, or DSD) to the total, which is an
important parameter for microwave-based estimation of pre-
cipitation. Both instruments are direct in that they respond to
individual drops, but have a fairly small sampling area (tens
of square centimeters), which affects the representativeness
of the measurements. In contrast, ground radars sample a
large volume but provide an estimate of the precipitation
based on the backscattered echo, an indirect observation
which relates to total rainfall through the DSD.

2.1. Rain gauges

There are several rain gauge types, each one with its own
limitations and strengths (cfr. Strangeways, 2004, 2010 for
reviews). The tipping bucket type is one of the most common
rain gauges. It typically consists of a collecting area that
drains into coupled oscillating buckets. Each time one bucket
is filled, it discharges the water then producing a signal on an
electric circuit. The bucket then is replaced by the other buck-
et and the process repeats. Each recorded oscillation then
corresponds to a small volume of precipitation. Being a me-
chanical instrument, rain gauges are subject to many poten-
tial error sources, which are exacerbated by the fact that
only a fraction of such gauges are carefully maintained.
They are known to underestimate heavy precipitation, not
only because the collection area is relatively small but also
because water can accumulate into the collector faster that
the buckets are capable of draining it, resulting in a satura-
tion effect at high rainfall rates (above 300 mm h−1) albeit
this effect is rare. They are also problematic for light rainfall
that may evaporate in the collector or in the bucket, and
prone to problems due to leaves jamming the collector,
birds or insects, rust or dust in the mechanism, or clock
drift, which may affect the timing of the measurements rela-
tive to other instruments. Also, for light precipitation, the tip-
size and the logger sampling rate are critical to provide prop-
er representation. Rain gauge response to snow or to hail is
problematic, as those have to melt to trigger the signal.

Less common are gauges based uponmeasuring precipita-
tion by weighing the water accumulated at different sam-
pling rates. The saturation effect is then not relevant, but
they are modern instruments, more expensive and less com-
mon. Other types, such as siphon-based rain gauges exist, but
virtually all the reference databases suitable for



73F.J. Tapiador et al. / Atmospheric Research 104–105 (2012) 70–97
meteorological and climatic research are made up from tip-
ping bucket rain gauges or to direct-reading accumulation
gauges.

Apart from errors due to instrumental problems, there are
other intrinsic error sources affecting rain gauges. Wind flow
effects are one of the major contributors to the error as it
modifies the effective cross-section measurement area and
consequently introduce a bias in the readings. Turbulence in-
duced by the gauge also influences the measurements and
can make the readings unrepresentative of actual rainfall.
The wind flow effect is a particular challenge for light rain
and snow because the hydrometeors more closely follow
the air flow. Also, as wind speed rapidly increases with height
into the boundary layer, two rain gauges at different heights
will measure different amounts of precipitation, thus requir-
ing careful adjustments to create meaningful rain maps. This
effect was already demonstrated in 1769 by William Heber-
den (Fig. 1). It is now accepted that three dimensional inter-
polation is required to account for the topographic bias when
gridded datasets are derived from station data, not only be-
cause the negative height gradient but also because precipi-
tation may increase with height due to orographic effects
(Briggs and Cogley, 1996).

Modern experiments better quantify the effect of wind on
rain gauge measurements. Using numerical simulations and
empirical estimates, Nespor et al.(2000) found that the larger
the blockage of the airflow by the gauge body, the larger the
error. They also found that error is dependent on drop size
and wind speed, with larger errors for rain with larger frac-
tions of smaller drops and for higher wind speeds. In a recent
experiment (Ciach, 2003) fifteen rain gauges placed within
an 8 m×8 m square recorded substantial differences be-
tween identical instruments, even with such close proximity.
To further complicate the issue the errors were found to be
highly dependent on rainfall intensity and timescale, mean-
ing that no clear functional relationship with distance can
be proposed to adjust for biases.

As reported in New et al.(2000) effects such as undercatch
varies with rain gauge type while historical instrument
changes result in inhomogeneities in the records. The correc-
tion of precipitation data series requires local meteorological
and station metainformation, which are often not readily
available. The error sources are reasonably well understood
and include, for example, basic mechanical and electrical fail-
ure, undercatch in heavy rain (i.e., rates exceeding
50 mm h−1 depending on the gauge) and/or strong winds,
reduced sensitivity to low rainfall rates, susceptibility to par-
tial or even total blockage of the collection area by biological
debris, dynamic changes in calibration and varying degrees of
sensitivity to rain rate that often require integration times of
5 min to 15 min or more (Habib et al., 2001; Sieck et al.,
2007; Krajewski, 2007).

Another issue regarding the use of rain gauges to generate
global databases is the natural variability of precipitation.
Precipitation physics develops below the centimeter scale
and the statistics cascade up as we aggregate in space. Differ-
ences in precipitation at the kilometer scale are noticeable
and increase in mountainous areas due to orographic influ-
ences. The sparse distribution of the gauges makes interpola-
tion necessary in order to provide estimates over large areas.
Interpolated rainfall, however, is seldom representative of
the actual rain field, and the utility of rain gauges to represent
areal rainfall has been repeatedly contested. Methods to in-
terpolate point to areal estimates are based on some quanti-
tative estimate of the spatial variability of the fields. An
often used quantity, such as the semi-variance, is empirically
derived, modeled, or inferred from the climatology, and then
applied to the point measurements.

In spite of all these issues, rain gauges still represent the
vast majority of the instrumentation available for building
reference precipitation datasets. Since they are relatively
cheap and easy to install and calibrate, they have been a
fundamental instrument for decades, and thus the only
available information from which to derive long records of
reference precipitation. Future progress on this topic might
depend on the combination of very dense observational net-
works with advances in stochastic modeling aimed at find-
ing a robust method to select the most likely spatial
model among a large number of data-consistent structures
(Tapiador et al., 2011). Better knowledge of mountain pre-
cipitation will also certainly be required to improve interpo-
lations, given the large variability of precipitation with
height and the complex orographic effected by the wind
flow.

2.1.1. Rain gauges in satellite ground validation (GV)
The use of precipitation gauges as a de facto reference for

rainfall measurement and hence satellite ground validation
(GV) or climate model verification, has evolved in response
to the relatively simple, low-cost, wide-use, and direct mea-
surement provided by single gauges. Many of the ambiguities
associated with individual gauge errors in the quality control
process and even reduction of measurement random error
can be mitigated by collocating multiple gauge at a given
site (Krajewski et al., 2003; Ciach and Krajewski, 2006;
Habib et al., 2001), however this is typically not a standard
practice for most operational networks. From an integrated
validation and applications perspective even if a network of
rain gauges makes perfect measurements, one must be mind-
ful of point-to-area representativeness errors when upscaling
gauge derived point estimates for comparison to area-means
computed over satellite footprint scales (O[0.25°×0.25°]
grid), or even smaller areas typical of a radar estimate
(4 km2), as these errors can be substantial and must be ade-
quately quantified (Morrissey et al., 1995; Anagnostou et
al., 1999; Wood et al., 2000; Moore et al., 2000; Habib and
Krajewski, 2002; Ciach and Krajewski, 2006; Hong et al.,
2006; Villarini et al., 2008).

For rain gauge networks that are well maintained, regu-
larly calibrated (e.g., at least twice per year), constructed
with suitable gauge density, and used at appropriate tempo-
ral and spatial averaging scales, the application to problems
of satellite GV is relatively robust (cf. review by Ebert et al.,
2007). However, such networks are relatively recent and typ-
ically found in countries with the necessary infrastructure.
Nonetheless, even these networks are also subject to signifi-
cant sources of error, both intrinsic to the instruments them-
selves (Veurich et al., 2009) and due to the occasionally
difficult operator logistics associated with required mainte-
nance and calibration. Moreover, the overwhelming majority
of rain gauge networks consist of individual instruments. In
practice, quality control of individual gauges that may be



Fig. 2. Experimental setup in Toledo, Spain, to analyze the stability of Parsi-
vel DSD estimates (top). Cross-correlation of the individual estimates from
the 16 disdrometers in terms of rain rate for an episode (middle), and (bot-
tom) relationship of the observed variability in rain rate estimate (squared
line) of the episode with the turbulence as measured by the co-located
10 Hz sonic anemometer (grey line: original 10 Hz sampling; blue line: mov-
ing average). The results provide the first empirical evidence of the short-
scale variability of the DSD as being due to turbulence.
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only marginally performing (e.g., partially blocked funnel in a
tipping bucket gauge) in such networks is difficult at best.

2.2. Disdrometers

A more physical approach useful for satellite comparisons
demands that we ascertain the fundamental properties of the
medium we are trying to observe. Specifically, it is of interest
to identify the coupling between key physical properties of
the precipitation (e.g., DSD, particle shape) and the remotely
sensed variables of interest. The need for DSD studies using
disdrometers span applications related to validating DSD as-
sumptions and implicit impacts on retrieval sensitivities
found in various components of satellite-based precipitation
retrieval algorithms (Grecu et al., 2004; Iguchi et al., 2009),
and verifying the calibration of DSD retrieval algorithms
using polarimetric radar (Bringi et al., 2009).

For this particular problem disdrometers provide a means
to quantify DSD and individual hydrometeor physics across a
multitude of precipitation types (Tokay and Short, 1996;
Yuter et al., 2006; Chang et al., 2009), temporal scales
(Tokay and Short, 1996, 2003; 2008), and if deployed in net-
works, spatial scales (Miriovsky et al., 2004; Tokay and
Bashor, 2010; Jaffrain et al., 2011; Tapiador et al., 2010).

In general, disdrometers can be subdivided into two basic
types: optical and impact sensors. The most common impact
disdrometer type is the Joss–Waldvogel disdrometer (JW)
(Joss and Waldvogel, 1967), with a more recent instrument
for rainfall rate measurement (and only coarse representa-
tion of the DSD) being the Vaisala WXT-510 model. The JW
has been traditionally used as a reference in numerous stud-
ies of the DSD, and in particular, relationships between the
DSDmeasurement and the equivalent radar reflectivity factor
(Z) in efforts to assess/calibrate climatological rainrate rela-
tionships (Z–R relations) (Tokay and Short, 1996).

Impact disdrometers rely on piezoelectric measurements
of individual drop impacts on a Styrofoam cone with an
area of 50 cm2 and assume a fixed fall speed, typically
based on (Gunn and Kinze, 1949). Number concentration
and fallspeeds are used to compute products such as rain
rate, reflectivity, liquid water content etc. when multiplied
by an appropriate moment of the DSD. Noted weaknesses of
the JW include sensitivity to acoustic noise and its impact
on DSDmeasurements on the small drop end of the spectrum
(e.g., b0.7 mm), inability to resolve the large end of the DSD
spectrum (e.g., diameters >5 mm), and recovery dead time
during heavy rainfall events.

Complementing the impact disdrometers such as the JW
are oft-used optical disdrometers including the OTT Parsivel
(Löffler-Mang and Joss, 2000) and Thiess disdrometers
(Maraes-Frasson et al., 2011) which operate on very similar
principles, and finally the 2-dimensional video disdrometer
(2DVD) (Schonhuber et al., 2008). At the most basic level,
both the Parsivel and Thies disdrometers rely on measure-
ments of the amplitude and duration of a voltage reduction
associated with drop extinction of light in a laser sheet as
registered by opposing photodiodes (Knollenberg, 1970).
Thies disdrometers measure the diameter and fall velocity
of individual hydrometeors over size ranges from 0.2 to
8 mm and 0.2 to 10 m s−1 over 20 diameter and 22 velocity
evenly spaced bins respectively. Parsivel disdrometers
measure diameters from 0.2 to 25 mm in a velocity range of
0.2–20 m s−1 over 32 diameter and 32 velocity non uniform-
ly spaced bins.

In contrast, disdrometers such as the 2DVD use high
speed orthogonally mounted line scanning cameras oriented

image of Fig.�2
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along imaging planes separated by a 6–7 mm vertical dis-
tance to infer hydrometeor diameters, fall speeds, shapes
and horizontal velocities in the intersection of the camera
fields of view. The 2DVD measures drop sizes in user-
defined bins over a relatively large 10×10 cm2, at the finest
resolution of ~0.2 mm and in a diameter range of 0.2 mm to
8 mm. Velocity measurements are accurate to 4% for fall
speeds of 10 m s−1 or less. Since its inception, the 2DVD
has gone through three basic models, beginning with the
classic tall model and subsequent movement to a low-profile
version to deal with adverse wind impacts of the tall model
(Nespor et al., 2000). More recently Joanneum Inc. produced
a third-generation compact model designed to be more ro-
bust in terms of unattended operation during field deploy-
ments. The compact model is currently being used in NASA
GPM Ground Validation field campaigns (Petersen et al.,
2010) and was rigorously tested and compared relative to
collocated second-generation 2DVD datasets in Huntsville,
Alabama. Tests indicate nearly identical performance be-
tween the second- and third-generation 2DVD (Thurai et
al., 2011).

Collectively the DSD requirements provided by the afore-
mentioned disdrometer types are required to test and vali-
date the assumptions of satellite retrieval algorithms which
are then combined into global databases. Indeed, these re-
quirements go beyond the provision of providing a single
point measurement, sampling at a single point over long
timer intervals, or even extension to a single narrow column
of the atmosphere. Rather, the need extends to quantification
of the 4-D DSD behavior and intrinsic variability at scales
ranging from a single satellite pixel to those of mesoscale do-
mains (Grecu et al., 2004). Accordingly, studies and instru-
ment facilities deploying networks of disdrometers such as
those described in Tapiador et al.(2010) and Jaffrain et al.
Hail impact-meter    

Large hail imprints

Small hail imprints

Fig. 3. Hail impact meter (left) consisting in two of pads of foam where hail
stones impact and leave an imprint proportional to its size. The figures on
the right show two examples of records for small (top-right) and large
(bottom-right) hail episodes. The pads are replaced after every hailstorm, and
the imprints analyzed using image-processing algorithms in order to derive
the hail size distribution.
(2011), and those being developed within the NASA GPM
GV program (Petersen et al., 2010) are the next step in com-
pleting broader radar and satellite GV activities. Here the idea
is to not only use the disdrometer information as a means to
define the natural variability of the DSD over space and time,
but also to characterize that variability as it pertains to quan-
tifying measurement error characteristics of the DSD using
platforms such as polarimetric radars (Cao et al., 2008;
Thurai et al., 2009); the polarimetric radars being a primary
physical validation bridge between the disdrometer point
measurement and the DSD or rainfall retrieval over the larger
footprint of a satellite, for example. In this regard, intercom-
parisons between individual disdrometers in a network and
between disdrometer types will be critical (Tokay et al.,
2001; Krajewski et al., 2006; Jaffrain et al., 2011; Thurai et
al., 2011; Maraes-Frasson et al., 2011). For example, when
compared to rain gauges, JW, and/or 2DVD disdrometer esti-
mates of rainfall, it appears that the current versions of Parsi-
vel and Thiess optical disdrometers tend to overestimate
rainfall accumulation at heavy rain rates (Lanzinger et al.,
2006; Krajewski et al., 2006; Maraes-Frasson et al., 2011;
Thurai et al., 2011). In one comparison of the Parsivel to
Thies the Parsivel significantly undercounted small drops rel-
ative to the Thies in the small drop end of the spectrum (e.g.,
b0.5 mm; Upton and Brawn, 2008). In contrast, Thurai et al.
(2011) note a distinct departure in measurement of the
mass-weighted mean diameter and mean diameter spectra
of the DSD by the Parsivel instrument with rainfall rates of
~20 mm h−1 or greater. The consistency of the Parsivel disd-
rometers, however, has been proved: experiments with sev-
eral (16) co-located Parsivels show the stability and
coherence of the instrument, and have provided empirical
evidence of small-scale (decimeter) variability of the DSD as
being due to turbulence (Fig. 2).

Lastly, precipitation is not only limited to liquid forms of
precipitation; quantification of frozen precipitation will be
especially important in the GPM era. Indeed instrumentation
designed to remotely sense snowfall water equivalent (SWE)
rates, for example, be it via weighing gauge, radar, or disd-
rometer have all addressed the challenges to deal with main-
tenance, calibration, point-to-area representativeness,
measurement error, wind, etc., in addition to the irregular
shapes, sizes, and bulk density of snowfall. There are ways
to retrieve SWE rates over larger areas using combinations
of polarimetric radar, disdrometer and weighing gauge data
(Brandes et al., 2007; Huang et al., 2010), however doing so
is tedious and case specific. As such the next decade of
ground-validation science, as it pertains to snowfall measure-
ment, will require large strides in measurement methods
and/or technologies to satisfactorily quantify errors not only
in the satellite estimates, but errors intrinsic to the instru-
mentation used and ground validation methodologies/
diagnostic approaches used. Solid frozen precipitation types
such as hail represents an additional challenge (García-
Ortega et al., 2011) due to, for instance, hail being highly lo-
calized in space and in time, which makes estimates depen-
dent on the density of the observation network (Sánchez et
al., 2009a, 2009b, 2009c; Tuovinen et al., 2009). Hail observa-
tions networks for GV using hail-impact meters (Fig. 3) are
expensive to maintain and require intensive fieldwork and
lab post-processing (García-Ortega et al., 2005, 2006).



Fig. 4. An example of a cloud classification using an X-band dual polarization radar.
Image credits: INPE, Brazil.
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2.3. Ground radars

Deployment of and care for rain gauges deployed in suffi-
cient density to accurately measure rainfall accumulations at
scales ranging from sub-hourly to even daily can be a logisti-
cally challenging exercise at best. Consequently, ever more
sophisticated schemes using radar estimates of precipitation
have developed to fill the sampling void. The notion that
returned echo power from radar could be used to map rain-
fall originates from the mid-1940s.

The associated evolution of radar Z–R based approaches to
making rainfall estimates on scales of 2 km×2 km has ma-
tured such that, when carefully constructed and applied,
radar-based estimates can be routinely used to validate satel-
lite estimates of rainfall (Amitai et al., 2011). More recent op-
erational products now include the development of relatively
high quality combined rain gauge and radar products. Such
combined radar-gauge approaches have been used exten-
sively in the validation process of satellite-based precipita-
tion products created from the Tropical Rainfall
Measurement Mission (TRMM) (Wolff et al., 2005).

Direct validation products are often created by time-
integrating a measurement of interest (e.g., rainfall measured
by a gauge), often followed by some application of a spatial
weighting scheme, including optimal combinations of plat-
form estimates, to create a ground-validation dataset appro-
priate for statistical comparison to the footprint and time
scale of the satellite product in question (cf., Levizzani et al.,
2007; Michaelides et al., 2009 for reviews). These GV prod-
ucts are often anchored by the use of precipitation gauge net-
works of varying spatial density, type and quality (tipping
bucket, siphon, weighting etc.).

With the advent of widespread and reliable operational
national radar networks, typically composed of C-band to S-
band wavelengths, many direct validation efforts now use
the point observation of rainfall provided by a rain gauge
measurement as a tuning metric for Z–R estimates, which
are subsequently used to extend area-mean precipitation es-
timates to a much larger sampling domain, thus providing
more robust statistics for the satellite validation effort. The
rapid growth in polarization-enabled radars for research
and operational use now affords the opportunity to reduce
fundamental and limiting errors in Z–R approaches for esti-
mation of rainfall due to the intrinsic ability of, in particular,
dual-polarization radar to account for hydrometeor phase
(liquid, melting, or frozen, Fig. 4) and changes in drop size
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distribution (DSD) variability within individual storm sys-
tems and between meteorological regimes (Bringi and
Chandrasekar, 2001; Ryzhkov et al., 2005; Chandrasekar et
al., 2008). Broader domain applications to physical validation
of DSD properties are also possible (Bringi et al., 2003, 2009;
Chandrasekar et al., 2008; Thurai et al., 2011). Moreover,
the self consistency of polarimetric variables provides an
added means to ensure calibration of the radar measure-
ments. Where appropriately applied (i.e., recognizing the re-
alistic constraints of a radar measurement as a function of
range and sampling), it is not unreasonable to imagine future
combined gauge and polarimetric radar estimates to provide
area mean rainfall and DSD products with total errors of
order 15% or less at nearly instantaneous timescales, with
rainfall accumulation errors of less than 10–20% (comparable
to gauge errors) on scales of 1-hour or better over a
2 km×2 km grid within 100 km of a given polarimetric
radar (Petersen et al., 1999; Bringi and Chandrasekar, 2001;
Ryzhkov et al., 2005; Moreau et al., 2009). Assessment of
the accuracy of polarimetric radar or combined estimates rel-
ative to an independent rain gauge reference will still require
a fundamental understanding of rainfall variability, instru-
ment estimation errors, and characterization of all error var-
iance contributions as a function of scale and rainfall type. As
demonstrated in recent radar studies (Moreau et al., 2009;
Bringi et al., 2009), it is possible to determine these errors,
and therefore it is likely that future polarimetric radar esti-
mates will provide high quality data sets, including estima-
tion uncertainties, for validation of satellite-based estimates
of rainfall.

3. Satellite estimates

Sensors onboard low-Earth orbiting satellites are the only
instruments capable of retrieving global and relatively homo-
geneous estimates of precipitation. Early statistical or quali-
tative forms of precipitation measurement have steadily
progressed towards more direct methods and more physical-
ly based algorithms. The methods used to derive precipita-
tion from the radiances measured by the satellites have
evolved from visible (VIS) and infrared (IR) based methods
to active and passive microwave (MW) techniques and
merged IR and MW approaches.

3.1. Infrared-based methods

Current IR-based methods to derive precipitation from
satellites have the advantage of providing high temporal
sampling (i.e. 15 min refresh for the Meteosat Second Gener-
ation geostationary satellites operated by EUMETSAT), fine
spatial resolution (down to 3 km), and for geostationary plat-
forms, wide coverage. The rationale of the estimation method
is that cold cloud tops indicate large vertical development of
the cloud and therefore more rain. However, the relationship
between the cold cloud tops and surface rainfall is indirect
and often the location of the coldest clouds is not collocated
with the heaviest surface rainfall. The problem is further
complicated by multi-layer cloud systems that may block
the view of the cloud layer that is actually precipitating.

High, cold, non-precipitating cirrus clouds are also a per-
sistent problem and must to be screened, a strategy only
straightforward if visible and/or Near Infrared (NIR) informa-
tion is used. These channels provide some microphysical in-
formation for satellite algorithms such as an estimate of the
effective drop radius at cloud top, but visible channels cannot
be used at night and close to the day/night terminator.

The solution of combining several algorithms using differ-
ent wavelengths for different parts of the day may help mete-
orological operations, but introduces a bias that make those
products less suitable for climate-quality applications. Anoth-
er known problem for IR methods is that the statistical rela-
tionship between cloud top temperature and ground rainfall
is highly dependent on season and location. Early operational
methods such as the Global Precipitation Index (GPI) (Arkin
and Meisner, 1987), the Convective/Stratiform (CST) tech-
nique (Adler and Negri, 1988), the Autoestimator (Vicente
et al., 1998), and the Hydroestimator (Scofield and
Kuligowski, 2003) have to cope with this variability and re-
quire a specific calibration to perform well. Resorting to em-
pirical data, however, limits an algorithm's applicability in
global climate studies.

Alternative approaches for deriving a relationship be-
tween precipitation and IR radiances aloft include the use of
clusters or feature extractions. Clouds are systems organized
in several space–time scales, from a few meters to thousands
kilometers and from minutes to days. This fact allows precip-
itation to be associated to the resulting clusters. As an exam-
ple, Machado and Rossow(1993) investigated the
distribution of cloud clusters for the regions covered by the
Geostationary Operational Earth Satellite (GOES), the Geosta-
tionary Meteorological Satellite (GMS) and Meteosat. They
found that the number of cloud clusters can be expressed as
a function of the cloud radius and that the relationship can
be approximated by a power law with an exponent of −2.
This size distribution means a nearly equal area is covered
by each effective radius class up to a break radius where
size distributions slope becomes much steeper. This break
can be interpreted as the end scale of the cloud cover organi-
zation over the Earth. This size distribution includes different
kinds of synoptic — mesoscale cloud organization as well the
cloud cluster evolution during the life cycle.

Another useful observation to inform algorithms is the
nearly linear relationship between space and time scale of
cloud clusters. In the tropics, the cloud cluster radius has
been found to be as linearly related to the average lifetime.
Thus for instance systems with a 6-h lifetime have an average
radius of 150 km, whereas systems with a 27-h lifetime have
a mean radius of 270 km (Machado et al., 1998). Within its
lifetime, clouds evolve having different proportion of hydro-
meteors from the initiation to the decay phase. Empirical ev-
idence exists: Machado and Martins (2008) used S-Band
radar data collected during the RACCI/LBA experiment in
the Amazon to describe the reflectivity profile of the long
lived rain cells as a function of the lifecycle.

3.2. Microwave techniques

A more direct approach to estimate precipitation from
satellites involves measurements at microwave and
millimeter-wave frequencies, roughly between Ku (10 GHz)
and W (95 GHz) bands, although frequencies above and
below this are used in some instances. Within this spectral



Fig. 6. Illustration of the multiple precipitation measurement satellites
which comprise the GPM constellation.
Image credits: NASA.
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range, cloud and precipitation-sized particles emit, absorb
and scatter radiation. Microwave satellite sensors can either
measure the net thermal emission emanating from the top
of the atmosphere (passive microwave, or PMW techniques),
or measure the power backscattered from a transmitted se-
ries of pulses (active microwave techniques).

3.2.1. Passive microwave (PMW) methods
PMW techniques exploit the fact that microwave radia-

tion emitted from the surface interacts with atmospheric
constituents such as water vapor and distributed clouds and
precipitation particles. Depending on the frequency of the
MW radiation, scattering or emission dominates the signal
measured by the sensor. Thus, the measurement is the de-
sired signal from the atmospheric constituents mixed with
the radiometric contribution from the Earth's surface.
Depending upon the surface emissivity, the relative contribu-
tion of the hydrometeor-affected signal to the overall re-
ceived signal can be small, and surface emission can
dominate, especially over land.

Emission-based techniques are used over ocean with fre-
quencies below about 20 GHz. At these wavelengths, the
ocean is radiometrically cool and the presence of liquid
phase precipitation produces an overall warming in the top-
of-atmosphere radiation measured by the radiometer. Emis-
sion methods are not used over land because it has high sur-
face emissivity, nor can it be employed for high rainfall rates
Fig. 5. Diagram of swath coverage by GPM core satellite sensors.
Image credits: NASA.
as the relative contribution of hydrometeors to the emission
signature saturates exponentially with increasing optical
depth.

An indirect scattering-based approach can be used both
over land and ocean. Frozen precipitation scatters the upwell-
ing thermal microwave radiation away from the satellite field
of view, resulting in a distinct radiometric cooling especially

image of Fig.�6
image of Fig.�5
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for convective type precipitation. Somewhat similar to IR
techniques, the scattering signal at high frequencies (typically
near 85 GHz) is dependent on the ice above the freezing layer.
Unlike IR techniques however, the thermal emission is more
closely related to rainfall processes and hence surface rainfall.
Rainfall from cold clouds comes from melted solid phase
water, making scattering techniques useful for high latitudes

While the subject of microwave-based precipitation re-
trieval techniques is beyond the scope of this article, most
modern algorithms are built around simulated databases,
which themselves are based on radiative transfer calculations
(Elsaesser and Kummerow, 2008) to build a database of sim-
ulated observations and their associated geophysical param-
eters, and then Bayesian or other probabilistic-type
methods are used to select the best fits to measured
radiances.

A fundamental issue with MW sensors that affects estima-
tion error is that in order to maintain a reasonable antenna
size, sensors onboard low orbit satellites have a fairly coarse
spatial resolution (anywhere from 5 to 60 km), and the limit-
ed fields of view for low Earth orbits reduces their temporal
revisit over any given location.

An associated problem to this engineering constraint is
the beam-filling effect (Kummerow, 1998), which arises
when only a fraction of the large Instantaneous Field of
View (IFOV) of the sensor is filled with precipitation, which
is common with convective precipitation situations. Unless
accounted for, the combined effect of the spatial inhomoge-
neity of rainfall rates and the nonlinear dependence between
MW brightness temperature and rain rate introduces a bias
in the retrieval (Wilheit et al., 1991; Chiu et al., 1993).

3.2.2. Active microwave sensors: spaceborne radars
The first spaceborne precipitation radar was the Ku-band

TRMM Precipitation Radar (PR) which has operated since
1997; this is extensively reviewed in the literature
(Michaelides et al., 2009; Prigent, 2010). The CloudSat satel-
lite, launched in 2006, carries the first W-band cloud radar,
capable of quantifying cloud properties and light rainfall
rates along the orbit nadir track (i.e. a non-scanning radar).
Its orbit in the A-train constellation makes CloudSat a com-
plementary source of information to the fully fledged,
precipitation-oriented TRMM satellite and to the AMSR-E ra-
diometer onboard the Aqua satellite.

The many approaches proposed in the last decade to build
upon the success of the TRMM era have crystallized into the
Global Precipitation Measurement (GPM) mission. It will be
launched in February 2014, and is organized as an interna-
tional project led by the National Aeronautics and Space Ad-
ministration (NASA, USA) and the Japanese Space Agency
(JAXA, Japan). The GPM mission consists of a core satellite
(Fig. 5) in non-sun-synchronous orbit (65° inclination on a
407 km-high circular orbit) with a dual-frequency precipita-
tion radar (DPR) and a microwave radiometer (GPM Micro-
wave Imager, GMI). The combination of radar and
radiometric methods has already proved useful with TRMM
TMI and PR instruments. The DPR will improve the single-
frequency radar capabilities of the TRMM era, providing esti-
mates of the shape and size of hydrometeors and the water
phase. In addition to the dual frequency (Ku/Ka-band) radar
capability, the DPR can also scan in an interlaced mode with
higher sensitivity at Ka-band for detection of light rain and
snow.

The remainder of the GPM constellation (Fig. 6) is com-
prised of a number of satellites with GMI-like radiometers
or microwave sounding instruments, including the DMSP
F19 and F20 (U.S. DoD; imager), GCOM-W1 (JAXA; imager),
JPSS-1 (NASA/NOAA; sounder), Megha–Tropiques (CNES/
ISRO; imager and sounder), MetOp B and C (EUMETSAT;
sounder), NOAA 19 (NOAA; sounder) and NPP (NASA/
NOAA; sounder) satellites. The GPM core satellite sensors
will be used as a reference to intercalibrate the partner con-
stellation radiometers, thus providing self-consistent radio-
metric observations across the constellation.

3.2.3. Merged techniques
The development of single-channel or single-sensor tech-

niques for estimating precipitation has a number of advan-
tages, notably simplicity in algorithm design. However, such
techniques are often limited in their frequency of observa-
tion, only several times per day for low-Earth orbits. As men-
tioned above, techniques using visible channels rely
essentially on the presence/absence of cloud, while the infra-
red techniques rely primarily upon the temperature of the
cloud tops. Although techniques based upon PMW sensors
provide more direct observations of the hydrometeors that
form precipitation, these observations are of limited availabil-
ity. The dichotomy of Vis/IR and PMW observations has been
emphasized in a number of algorithm intercomparisons that
have been carried out which showed that PMW techniques
provide the best instantaneous estimates of precipitation,
while Vis/IR techniques provide the best longer-term esti-
mates (Ebert, 2007).

The combination of Vis/IR and PMW observations was
therefore seen as an opportunity to combine the good sam-
pling (Vis/IR) with better retrievals (PMW) to provide not
only better estimates overall, but estimates with improved
temporal and spatial resolution. Initial studies of incorporat-
ing PMW estimates into existing Vis/IR schemes included
Bristol-NOAA InterActive Scheme (BIAS) (Barrett et al.,
1987) where PMW estimates replaced Vis/IR estimates of
precipitation and were then interactively advected using
cloud development and movement. (Adler et al., 1993) used
the PMW estimates to calibrate IR cloud top temperatures
allowing regional-scale corrections to be made. Such IR-
calibrated techniques were generated at relatively coarse res-
olutions (about 2.5°×2.5°) at monthly time scales. Increases
in computing power and data storage meant that the acquisi-
tion, storage and processing of large data sets became more
feasible, and opened the possibility of developing higher
temporal and spatial resolution products.

Current techniques that combine information from the
Vis/IR and PMW fall broadly into two main categories. The
first are a development of the initial PMW calibration of the
IR observations. Such techniques include the NRL-Blended
technique (Turk and Mehta, 2007) and the Passive
Microwave-InfraRed (PMIR) technique (Kidd et al., 2003).
These techniques use a moving spatial and temporal window
to generate a local relationship between the IR observations
and the precipitation estimates sourced from PMW observa-
tions. The TRMM Multi-Satellite Precipitation Analysis
(TMPA; Huffman et al., 2007) provides four products: a
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merged-microwave product, a microwave-calibrated IR
product, a combined merged-microwave product, and lastly
a raingauge-adjusted product. PMW-calibrated IR techniques
rely on the ability of the PMW to capture the precipitation
characteristics and for the IR to faithfully track the precipita-
tion distribution. In order to improve the retrieval ability of
the Vis/IR part of the merged scheme some techniques have
utilized artificial neural networks (ANN). As an example,
the Precipitation Estimation from Remote-Sensed Informa-
tion using ANN (PERSIANN; Sorooshian et al., 2000) uses
multi-source information from satellite and surface data
sets to establish, and update the relationship between the
precipitation and Vis/IR observations. A discussion of the
use of ANN in rainfall estimation can be found in Tapiador
et al.(2004).

The second major category of merged techniques are the
advection or Lagrangian time-interpolation schemes. Exam-
ples of such schemes include CMORPH (Joyce et al., 2004),
GSMaP (Kubota et al., 2007) and REFAME (Behrangi et al.,
2010). These techniques are based on the fact that PMW esti-
mates provide the best measure of precipitation, relying
upon the IR observations to provide information about the
movement of the precipitation system. Thus these techniques
are broken down into a number of stages including the gen-
eration of the precipitation estimate from the PMW data,
and the generation on the motion vectors from the IR obser-
vations. Vector techniques currently used in operational
products are correlation- or mesh-based techniques
(Bellerby, 2006) and the morphing of the estimates between
the overpass times of the available PMW observations (Joyce
et al., 2004). More physically based approaches based linear-
izations of fluid dynamic equations (optical flow techniques)
have been suggested for this purpose (Tapiador, 2008). These
merged scheme currently produce precipitation products at a
nominal resolution of 3-hourly, 0.25°, although finer resolu-
tion data products are available up to the resolution/
sampling of the component data sets.

4. Modeling

Direct observation and estimation of precipitation are im-
portant to provide a realistic picture of the several compo-
nents of the water cycle. However, they cannot be used to
predict ahead at the temporal and spatial scales required for
most scientific studies and applications. The location and
timing of model predicted precipitation, on the other hand,
often bears little resemblance with observed patterns except
when averaged over fairly coarse scales.

Models predict precipitation after solving many physical
processes. Typically, a model works as follows. From a set of
3D initial and boundary conditions of temperature, air mois-
ture, horizontal wind and geopotential in several pressure
levels the model solves linearized forms of the non-linear dif-
ferential equations (called primitive equations) that express
the conservation of mass, energy and momentum. Those var-
iables are said to be prognosed (forecasted) at every time
step of the model, i.e. stepped forward in time. Other vari-
ables such as the state variables are said to be diagnosed,
meaning that their values are calculated at once from the in-
stantaneous values, usually using different time steps than
the model time step.
Since many physical processes operate below the grid res-
olution, it is necessary to parameterize many of the diag-
nosed quantities. For instance, cumulus convection can only
be resolved at the kilometer scale. Models using a grid larger
than about 5 km need to parameterize the process, meaning
that a value has to be provide a sensible estimate of convec-
tive precipitation without solving the whole set of equations
that describe convection. The same applies to turbulence,
which operates at the Kolmogorov scale and also affects pre-
cipitation, or to surface processes such as runoff or soil mois-
ture, which cannot be efficiently resolved at kilometer scale.

As a consequence of the many steps involved, precipita-
tion is a good proxy of model performance, since the proba-
bility of obtaining a good match between modeled and
observed precipitation by chance is small. Thus, the model's
dynamical core has to be capable of placing the precipitating
system in the right place, thermodynamics should diagnose
the correct amount of water in the right phase at each time
step, advection has to provide the right amount of water in
a precise place to create clouds that eventually precipitate,
and the parameterizations of turbulence, cumulus, radiation,
and surface processes have to be realistic enough that precip-
itation is possible at a particular grid point. The microphysics
has to be sufficiently detailed in order to distinguish between
the phase of the hydrometeors, to provide the appropriate
conversion efficiencies, and to decide whether precipitable
water is to finally precipitate or not. Otherwise, for instance,
cold clouds may be too cold for snow to generate rain or
warm clouds may generate too much rain too soon. Impor-
tant processes such as entrainment, or evaporation below
cloud base have also to be taken into account into the param-
eterizations in order to generate rainfall fields that can be
compared with observations.

Unrealistic values of parameters such as the roughness
length in the boundary layer module would translate into ad-
vanced/delayed arrival times for fronts; oversimplified tur-
bulence schemes may result in dissipation of the kinetic
energy needed to allow vertical movements, thus affecting
the condensation of water vapor into clouds; and incorrect
soil moisture or 3D relative humidity can result in missing
light rainfall before it arrives to the ground. Having accurate
both long-wave and short-wave radiation models is also in-
strumental as they simulated the energy balance and thus
the energy available to the atmospheric dynamics, rain mi-
crophysics and thermodynamics.

This complexity of modeled precipitation, and the patchy
character of rain fields make this variable a suitable yardstick
to gauge model performance. Compared with temperature,
for instance, which is a variable included into the initial con-
ditions, prognosed instead of diagnosed, and exhibiting
smooth gradients except in fronts, precipitation is more chal-
lenging for a model to simulate correctly.

It is worth remembering here that precipitation is not
used to initialize the model, but rather is the result of
the physics within the model. While an active area of re-
search is the assimilation of precipitation estimates into
models (see section below), the assimilation of precipita-
tion is not carried out by inserting it into the initial condi-
tions, but through adjusting the initial condition fields
towards a physical state congruent with the observed
precipitation.
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4.1. General Circulation Models (GCMs)

Outputs from GCMs running from a single set of initial
conditions and driven by periodic boundary conditions can
only be compared with observations in terms of climatol-
ogies, and not on a day-by-day basis. It is the climate pro-
duced by such GCMs, and not the individual weather
situations, what it makes sense to compare with other data.
In the case of GCMs periodically updated with model reana-
lyses, the comparison with observational databases is possi-
ble, but then the results are not fully independent of the
observations as these may have been previously assimilated
into the forcing reanalysis (below). This effect explains the
excellent scores sometimes reported on those comparisons.
On the other hand, the consequences of either once-
initialized or nudged-to-reanalyses GCM outputs in impact
models deserve further attention. While climatologies, spa-
tial statistics, cycles or other periodic components of the se-
ries is justified in both cases, coupled models may generate
unpredictable modes of resonance in freely running models,
thus further increasing the current large uncertainty of for in-
stance crop models (cfr. Rötter et al., 2011 for a review on
current uncertainties in crop models). Uncoupled models do
not present such potential problems, as they use the final cli-
matology from the GCM to derive the impacts.
4.2. Reanalyses

Model reanalyses provide spatial and temporal homoge-
nous data that amalgamates all the available high-quality ob-
servations through a physically consistent process. The basic
idea is to run a model for a very limited time and iterate
until the state is consistent with the observations. Reanalyses
offer a method to mitigate several shortcomings of observa-
tions, chiefly the sparse distribution, as they embed observa-
tions using data assimilation methods into a physical model.
The best guess (background forecast) created by the model
is a representation of the atmospheric state that is the most
consistent with observations, which may have a different
weight in the final product. Thus, well-observed processes
such as mean sea level pressure depends strongly on obser-
vations, whereas precipitation is more a product of the
model. Also, depending on data availability in time, reana-
lyses may be using a varying combination of datasets
Fig. 7. Geographical domain of the Regional Climate Models involved in the
ENSEMBLES project.
(weather stations, aircraft, satellites, etc.) also with a differ-
ent density of observations for each instrument.

The data quality and the moderate spatial resolution of
reanalyses (T159 for ERA40, roughly equivalent to 125 km)
make them useful to conduct climate change studies at scales
of hundreds of kilometers, and to characterize large scale cli-
matologies of many meteorological variables, since reana-
lyses estimate derived fields such as evapotranspiration, soil
moisture, or shortwave radiation that lack comprehensive
observations. Besides, reanalyses are fully tridimensional,
thus permitting investigating for instance the genesis of
weather systems or the role of columnar water vapor in the
radiative forcing.

It is worth remembering that most outputs from reana-
lyses, or from RCM nested on reanalyses can only be validat-
ed using observations if the observations themselves have
not been previously assimilated into the reanalysis. Self-
reference may happen in spite of precipitation not being
nominally assimilated. Simply the fact that clear sky radi-
ances represent the vast majority of the assimilated data im-
plies that information on what constitutes a rainy grid point
is being included into the reanalysis. If microwave radiances
are assimilated, then the comparison with observational da-
tabases is even less independent. While these comparisons
are always useful to improve model physics, they do not con-
stitute a verification of model performance.

4.3. Regional Climate Models (RCMs)

For climate studies at scales below hundreds of kilometers
where local conditions such as orography and land cover
greatly affect meteorological processes, the comparisons of
global models with observations are even worse than at
coarse spatial resolution. The output from a global model rep-
resents the average values for the grid point of the model. If
the variable varies smoothly with distance, as is the case of
temperature or water vapor content, the average is represen-
tative of the values across the grid. However, if the variable
has a large spatial variance then quite dissimilar values may
coexist within a grid point, making the average an unrepre-
sentative statistic. This problem associated with coarse grids
is particularly acute for patchy variables such as precipitation
(Pedersen et al., 2010), which are likely to be unevenly dis-
tributed in a square often larger than 100×100 km (Larsen
et al., 2010). This issue is the modeling analog to the beamfill-
ing problem (Kummerow, 1998) in satellite and radar data.

Regional Climate Models are physically based downscal-
ing tools designed to tackle this problem. The RCM physics
and the numerical methods are the same as those in a GCM.
The differences are the grid size (from 10 to 75 km) and
hence smaller time steps, and a more limited area of opera-
tion (e.g. Fig. 7). The geographical domain of the RCM re-
ceives initial and boundary conditions from a parent GCM
in a procedure known as one-way nesting (Giorgi et al.,
1990). However, the improvement of introducing a single
RCM does not solve the problem of obtaining better estimates
of precipitation, because relevant physical processes at finer
resolutions, including cloud and precipitation microphysics,
surface processes and turbulence still must be parameterized,
as described above. To the extent that these parameteriza-
tions contain important simplifications, it is the combination

image of Fig.�7
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of several RCMs with different parameterizations which con-
stitutes the most likely climate state.

It has to be remembered that there is a fundamental distinc-
tion in nesting the RCM into a GCM or into reanalysis. If nested
on GCM boundary conditions (as done in the PRUDENCE pro-
ject, below), the result can only be treated statistically (i.e., in
aclimatological sense), and the results reflect the previous lim-
itations of the parent GCM. Nesting on reanalysis and forcing
the RCM for a sequence of observed days (as in the ENSEMBLES
project, below) is different and generates dynamically-
downscaled, observationally consistent climatologies that
might even be compared with weather observations. In this
case, the model time is not synthetic, 30-day month time as
when nested on a GCM, but calendar time. It is alsoworthmen-
tioning that RCM outputs must be delivered without any bias
correction in order to be scientifically usable.

4.4. Ensemble methods

The Perturbed Initial Conditions (PIC) ensemble is a tech-
nique consisting in running many numerical simulations
(some tens or hundreds) with slightly different initial condi-
tions. The aim is to cope with two unavoidable structural fea-
tures of atmospheric research, namely sensitivity to initial
conditions (SIC), which mainly affects NWP models, and our
imperfect modeling of the real world, a problem that is
shared by NWP models, GCMs, RCMs and reanalyses.

To address SIC, ensembles are built with a range of per-
turbed initial conditions. Using techniques such as the bred
vectors, the spread of the forecasts is maximized and the
whole ensemble clusters around a central value. The spread
is indicative of the predictability of the weather, whereas
the mean value of the ensemble is deemed to be the least-
biased prediction.

Another ensemble strategy, the Perturbed Physics (PP)
ensemble, aims to tackle imperfect model physics by running
a variety of different models, each one with a different pa-
rameterization for key physical processes. Thus for instance,
large uncertainties remain in the modeling of the precipita-
tion microphysics used in numerical models so that ensem-
bles of model simulations are generated, each produced by
different model physics, and then the results are combined.
It is assumed that the shortcomings of the parameterizations
are compensated in that way, and that the resulting average
outperforms individual models.

The ensemble strategy multiplies computing power re-
quirements, as ensembles of tens or hundreds of members
are common. An experiment useful for climate research
may involve running a model over a continent such as Europe
at 25 kilometer grid space to calculate several decades worth
of data. Some weeks of wall clock time are required to com-
plete a 30 year simulation in a 2011 High Performance Com-
puter (HPC). To generate a full PP ensemble, this procedure
has to be repeated as many times as ensemble members are
desired.

In order to meet growing computing demands, grid com-
puting infrastructure has recently appeared as a powerful
tool for precipitation science. The grid strategy consists of
distributing the calculations over a large number of regular,
not necessarily homogeneous machines connected through
a network. HPC systems can act as nodes, thus in a sense
HPC computing is a subset of Grid computing. The grid ap-
proach represents an advance loading the computational
burden on a highly coupled machine, as a HPC does, and mul-
tiplies the computing power and thus enable running more
complex models. Even so, it is worth noting that a full multi-
ensemble, i.e., running PP ensembles with each member
being at its turn a PIC ensemble is not currently feasible due
to the computer power required.

5. Datasets of global precipitation

The preceding sections describe satellites and models to
provide precipitation data that are accumulated at several
temporal and spatial scales to create databases. Such refer-
ence datasets are critical to assess the actual uncertainties
in climate projections, which are primary tools for global
warming studies, by comparing projections with observa-
tions and estimates. They are also valuable in their own
right to analyze the many aspects of the hydrological cycle,
and provide information for economic activities such as agri-
culture and obviously water resources management.

A number of the precipitation datasets discussed below
are publicly available across the Web, although formats and
completeness of record vary widely. As a community service,
the International Precipitation Working Group (IPWG) of the
Coordinating Group for Meteorological Satellites maintains
lists of such data sets at http://www.isac.cnr.it/~ipwg/data/
datasets.html. Also, the Program to Evaluate High Resolution
Precipitation Products (PEHRPP) project maintains a web at
http://cics.umd.edu/~msapiano/PEHRPP/index.html where
several datasets are compared. Tables 1–4 group several data-
sets according to the dominant input data types: they respec-
tively list precipitation gauge analyses (Table 1), single sensor
types (Table 2), combinations of satellite data (Table 3) and
combinations of satellites and precipitation gauge data
(Table 4). Some of the databases are discussed below.

It is worth noting that apart from these global databases
there are also regional databases, such as for instance the Eu-
ropean Climate Assessment (ECA) for Europe (Klein Tank et
al., 2002), or the database described by Liebmann and
Allured(2005) for South America.

5.1. Observational databases

The observational databases are based on historical pre-
cipitation records from land stations. It is important to note
that the original data in the different databases is sometimes
the same, the databases differing in how the station records
are filtered, interpolated, and homogenized so the agreement
is not surprising. Thus, Chen et al.(2002) showed that CRU
and GPCP (below) provide reliable information in accumulat-
ed monthly precipitation at a global scale, with a close agree-
ment in the phase and the magnitude of the mean annual
cycles. However, discrepancies may appear even with the
same data depending on the analysis and application. For in-
stance, Qian et al.(2006) reported large differences in the
total annual amounts over different rivers basins around the
world. The differences may be due to different gauge cover-
age especially over tropical Africa and tropical South America
where the coverage is sparser.

http://www.isac.cnr.it/~ipwg/data/datasets.html
http://www.isac.cnr.it/~ipwg/data/datasets.html
http://cics.umd.edu/~msapiano/PEHRPP/index.html


Table 1
Summary of publicly available, quasi-operational, quasi-global precipitation estimates from precipitation gauge data. Where appropriate, the algorithms applied to the individual input data sets are mentioned.

Precipitation gauge analyses

Algorithm Input data Space/time scales Areal coverage/start date Update frequency Latency Producer (developer) URL

CPC Unified Gauge-based Anal.
of Global Daily Precip.

>30,000 gauges (optimal interp. with
orographic effects)

0.5°/daily Global/1979–2005 – – NOAA/NWS CPC (Chen and
Xie) [1]

>17,000 gauges realtime (optimal
interp. with orographic effects)

0.5°/daily Global/2006 Daily 1 day NOAA/NWS CPC (Chen and
Xie) [2]

CRU Gauge ~12,000 gauges (anomaly analysis) 0.5°/monthly Global/1900–1998 – – U. East Anglia (New and
Viner) [3]

CRU TS 2.0 Gauge ~20,000 gauges (anomaly analysis) 2.5°×3.75°, 5°/
monthly

Global/1901–2000 – – U. East Anglia (Mitchell) [4]

Dai Gauge Dataset 2 ~4000 gauges (anomalies rel. to
1950–1979)

2.5°/monthly Global regions with data/
1850–1996

– – NCAR (Dai) [5]

GHCN+CAMS Gauge ~3800 gauges (SPHEREMAP) 2.5°/monthly Global/1979 Monthly 1 week NOAA/NWS CPC (Xie) [6]
GPCC Monitoring ~8000 gauges (climatology-anomaly) 1°, 2.5°/monthly Global/1986–2006 Version 1; 2007

Version 3
Monthly 2 months DWD GPCC (Becker) [7]

GPCC Full Analysis Version 5 ~64,000 gauges (climatology-anomaly) 0.5°, 1°, 2.5°/monthly Global/1901–2009 Occasional; possible end of
2011

– DWD GPCC (Becker) [8]

GPCC VASClimO Version 1.1 ~9000 gauges (climatology-anomaly) 0.5°, 1°, 2.5°/monthly Global/1950–2000 Occasional – DWD GPCC (Beck) [9]

[1] ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/V1.0/.
[2] ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/RT/.
[3] http://www.cru.uea.ac.uk/cru/data/precip/.
[4] http://www.cru.uea.ac.uk/~timm/grid/CRU_TS_2_0.html.
[5] http://data.giss.nasa.gov/precip_dai/.
[6] pingping.xie@noaa.gov; Dr. Pingping Xie.
[7] ftp://ftp-anon.dwd.de/pub/data/gpcc/html/monitoring_download.html.
[8] ftp://ftp-anon.dwd.de/pub/data/gpcc/html/fulldata_download.html.
[9] ftp://ftp-anon.dwd.de/pub/data/gpcc/vasclimo_50y_precip_clim_v1_1.zip.
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Table 2
Summary of publicly available, quasi-operational, quasi-global precipitation estimates from a single satellite sensor type. Where appropriate, the algorithms ap-
plied to the individual input data sets are mentioned. The GPROF TMI and PR are available as separate products from the Goddard DISC, in addition to the 3G68
compilation.

Single-source data sets

Algorithm Input data Space/time scales Areal coverage/start date Update frequency Latency Producer (developer) URL

AMP-4 AMSU-A/-B,
AMSU/MHS

Level 2 (swath/pixel)/orbit Global/2002 Orbit (~100 min) 4 h MIT and Prince of Songkla
Univ. (Surussavadee and
Staelin) [1]

AMP-5 AMSU-A/-B,
AMSU/MHS

Level 2 (swath/pixel)/orbit Global/2002 Orbit (~100 min) 4 h MIT and Prince of Songkla
Univ. (Surussavadee and
Staelin) [1]

GPI GEO-IR, LEO-IR
in GEO gaps

2.5°/monthly Global — 40
°N–S/1986–Feb. 2004

– – NOAA/NWS CPC (Xie) [2]

GEO-, LEO-IR 2.5°/pentad Global — 40
°N–S/1986–Nov. 2004

– – NOAA/NWS CPC (Xie) [3]

GEO-, LEO-IR 1°/daily Global — 40
°N–S/Oct. 1996

Monthly 1 week NOAA/NWS CPC (Xie) [4]

GPROF2004 AMSR-E 0.5°/orbits Global — 70
°N–S/June 2002

Daily 1 day NSIDC (Kummerow) [5]

GPROF2010 AMSR-E 0.25°/daily (asc. and desc.);
0.25°/monthly

Global — 70
°N–S/June 2002

Daily; monthly 1 day;
1 month

Colo. State Univ.
(Kummerow) [6]

GPROF2010 SSM/I 0.25°/daily (asc. and desc.);
0.25°/monthly

Global — 70
°N–S/July 1987–Nov. 2009

– – Colo. State Univ.
(Kummerow) [6]

Level 2 (swath/pixel)/orbit Global — 70
°N–S/July 1987–Nov. 2009

– – Colo. State Univ.
(Kummerow) [7]

GPROF2010 SSMIS 0.25°/daily (asc. and desc.);
0.25°/monthly

Global — 70
°N–S/Oct. 2003

Daily; monthly 1 day;
1 month

Colo. State Univ.
(Kummerow) [6]

GPROF2010 TMI 0.25°/daily (asc. and desc.);
0.25°/monthly

Global — 40
°N–S/Dec. 1997

Daily; monthly 1 day;
1 month

Colo. State Univ.
(Kummerow) [6]

GPROF2010
(3G68)

TMI 0.5°/hourly; 0.1°/hourly land Global — 40
°N–S/Dec. 1997

Daily 4 days NASA/GSFC PPS
(Kummerow) [8]

HOAPS-3 SSM/I Swath;1°/12-hour; 0.5°/pentad,
monthly

Global ocean — 80
°N–S/July 1987–2007

Update through 2008
due 2011 by CM-SAF

Not routinely
schedule d

HOAPS/Univ. of Hamburg,
MPI (Klepp,Andersson) [9]

Hydro-
Estimator

GEO-IR 4 km/hourly Global — 60
°N–S/March 2007

Hourly 3 h NOAA/NESDIS/STAR
(Kuligowski) [10]

METH SSM/I, SSMIS 2.5°/monthly Global ocean — 60
°N–S/July 1987–2010

Monthly 1 month George Mason Univ.
(Chiu) [11]

METH (3A11) TMI 5°/monthly Global ocean — 40
°N–S/Jan. 1998

Monthly 1 week NASA/GSFC PPS
(Chiu) [8]

MiRS AMSU/MHS,
SSMIS

Swath Global/Aug. 2007 Orbits; Daily 4 h NOAA OSDPD
(Boukabara) [12]

NESDIS/
FNMOC
Scattering
index

SSM/I 1.0°/monthly 2.5°/pentad,
monthly

Global/July 1987–Nov.
2009

Daily 1–2 h NESDIS/STAR (Ferraro) [13]

NESDIS High
Frequency

AMSU/MHS 0.25°/daily 1.0°/pentad, monthly
2.5°/pentad, monthly

Global/2000 Monthly 1 week NESDIS/STAR
(Weng and Ferraro) [14]

OPI AVHRR 2.5°/daily Global/1979 Daily 1 day NOAA/NWS CPC (Xie) [15]
RSS TMI,AMSRE,

SSM/I, SSMIS,
QSCAT

0.25°/1-, 3-, 7-day; monthly Global Ocean — July 1987 1-, 3-, 7-day;
monthly

6–12 h; each
day, week,
month

RSS (Wentz and Hilburn)
[16]

TRMM PR
Precip
(3 G68)

PR 0.5°/hourly Global — 37°N–S/Dec.
1997

Daily 4 days NASA/GSFC PPS (Iguchi) [8]

[1] http://www.aned.psu.ac.th; http://web.mit.edu/surusc/www/AP/.
[2] ftp://ftp.cpc.ncep.noaa.gov/precip/gpi/monthly/.
[3] ftp://ftp.cpc.ncep.noaa.gov/precip/gpi/pentad/.
[4] ftp://ftp.cpc.ncep.noaa.gov/precip/gpi/daily/.
[5] http://nsidc.org/data/ae_rain.html.
[6] http://rain.atmos.colostate.edu/RAINMAP10/.
[7] berg@atmos.colostate.edu; Dr. Wesley Berg.
[8] http://pps.gsfc.nasa.gov.
[9] http://www.hoaps.org.
[10] http://www.star.nesdis.noaa.gov/smcd/emb/ff/digGlobalData.php.
[11] ftp://gpcp-pspdc.gmu.edu/V6/2.5/.
[12] http://mirs.nesdis.noaa.gov; http://www.osdpd.noaa.gov/ml/mirs.
[13] http://www.ncdc.noaa.gov/oa/rsad/ssmi/gridded/index.php?name=data_access.
[14] http://www.star.nesdis.noaa.gov/corp/scsb/mspps/main.html; http://www.osdpd.noaa.gov/ml/mspps/index.html.
[15] pingping.xie@noaa.gov; Dr. Pingping Xie.
[16] http://www.ssmi.com.
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Related to this fact, it is worth noting also that topography
induces a large error in the evaluation of precipitation re-
gimes. In areas with a dense network the problem is
somewhat masked because the information is dense enough
to cope with the spatial variability of the precipitation. Thus
for instance CRU over Europe, United States and Canada

http://www.aned.psu.ac.th
http://web.mit.edu/surusc/www/AP/
ftp://ftp.cpc.ncep.noaa.gov/precip/gpi/monthly/
ftp://ftp.cpc.ncep.noaa.gov/precip/gpi/pentad/
ftp://ftp.cpc.ncep.noaa.gov/precip/gpi/daily/
http://nsidc.org/data/ae_rain.html
http://rain.atmos.colostate.edu/RAINMAP10/
mailto:berg@atmos.colostate.edu
http://pps.gsfc.nasa.gov
http://www.hoaps.org
http://www.star.nesdis.noaa.gov/smcd/emb/ff/digGlobalData.php
ftp://gpcp-pspdc.gmu.edu/V6/2.5/
http://mirs.nesdis.noaa.gov
http://www.osdpd.noaa.gov/ml/mirs
http://www.ncdc.noaa.gov/oa/rsad/ssmi/gridded/index.php?name=data_access
http://www.star.nesdis.noaa.gov/corp/scsb/mspps/main.html
http://www.osdpd.noaa.gov/ml/mspps/index.html
mailto:pingping.xie@noaa.gov
http://www.ssmi.com


Table 3
Summary of publicly available, quasi-operational, quasi-global precipitation estimates that are produced by combining input data from several satellite sensor types. Where appropriate, the algorithms applied to the in-
dividual input data sets are mentioned. The TCI is available as a separate product from the Goddard DISC, in addition to the 3G68 compilation.

Satellite combination data sets

Algorithm Input data Space/time scales Areal coverage/start date Update interval Latency Producer (developer) [URL]

AIRS AIRS sounding retrievals Swath/orbit segments Global/May 2002 Daily 1 day NASA/GSFC 610 (Susskind) [1]
CMORPH TMI, AMSR-E, SSM/I, AMSU, IR vectors 8 km/30-min 50°N–S/1998 Daily 18 h NOAA/CPC (Xie) [2]
GSMaP NRT TMI, AMSR-E, SSM/I, SSMIS, AMSU, IR vectors 0.1°/hourly 60°N–S/Oct. 2007 1 h 4 h JAXA (Kachi and Kubota) [3]
GSMaP MWR TMI, AMSR-E, AMSR, SSM/I, IR vectors 0.25°/hourly, daily, monthly 60°N–S/1998–2006 – – JAXA (Aonashi and Kubota) [4]
GSMaP MVK TMI, AMSR-E, AMSR, SSM/I, SSMIS,

AMSU, IR vectors
0.1°/hourly 60°N–S/2000 (currently

2003–2008 data available)
Monthly Reprocess now; will

become operational
JAXA (Ushio) [3]

GSMaP MVK+ TMI, AMSR-E, AMSR, SSM/I, AMSU, IR vectors 0.1°/hourly 60°N–S/2003–2006 – – JAXA (Ushio) [4]
NRL Real TIme SSM/I-cal PMM (IR) 0.25°/hourly Global — 40°N–S/July 2000 Hourly 3 h NRL Monterey (Turk) [5]
TCI (3G68) PR, TMI 0.5°/hourly Global — 37°N–S/Dec. 1997 Daily 4 days NASA/GSFC PPS (Haddad) [6]
TOVS HIRS, MSU 1°/daily Global/1979–April 2005 Daily 1 month NASA/GSFC 610 (Susskind) [1]
TRMM Real-Time HQ (3B40RT) TMI, TMI-SSM/I, TMIAMSR-E,

TMI-AMSU
0.25°/3-hourly Global — 70°N–S/Feb. 2005 3 h 9 h NASA/GSFC PPS (Adler and

Huffman) [7]
TRMM Real-Time VAR (3B41RT) MW-VAR 0.25°/hourly Global — 50°N–S/Feb. 2005 1 h 9 h NASA/GSFC PPS (Adler and

Huffman) [8]
TRMM Real-Time HQVAR (3B42RT) HQ, MW-VAR 0.25°/3-hourly Global — 50°N–S/Feb. 2005 3 h 9 h NASA/GSFC PPS (Adler and

Huffman) [9]

[1] joel.susskind-1@nasa.gov; Dr. Joel Susskind.
[2] http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html.
[3] http://sharaku.eorc.jaxa.jp/GSMaP/.
[4] http://sharaku.eorc.jaxa.jp/GSMaP_crest/.
[5] song.yang@nrlmry.navy.mil; Dr. Song Yang.
[6] ftp://pps.gsfc.nasa.gov/pub/trmmdata/3G/3G68/.
[7] ftp://trmmopen.nascom.nasa.gov/pub/merged/combinedMicro/.
[8] ftp://trmmopen.nascom.nasa.gov/pub/merged/calibratedIR/.
[9] ftp://trmmopen.nascom.nasa.gov/pub/merged/mergeIRMicro/.
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Table 4
Summary of publicly available, quasi-operational, quasi-global precipitation estimates that are produced by combining input data from several sensor types, including satellite sensors and precipitation gauges. Where ap-
propriate, the algorithms applied to the individual input data sets are mentioned.

Combination data sets with gauge data

Algorithm Input data Space/time
scales

Areal coverage/start date Update
frequency

Latency Producer (developer) URL

CAMS/OPI CMAP-OPI, gauge 2.5°/daily Global/1979 Monthly 6 h NOAA/NWS CPC (Xie) [1]
CMAP OPI, SSM/I, SSMIS, GPI, MSU, gauge, model 2.5°/monthly Global/1979–Oct. 2010 Seasonal 3 months NOAA/NWS CPC (Xie) [2]

OPI, SSM/I, GPI, MSU, gauge, model 2.5°/pentad Global/1979–Sept. 2009 Seasonal 3 months NOAA/NWS CPC (Xie) [3]
OPI, SSM/I, GPI, gauge 2.5°/pentad-RT Global/2000 Pentad 1 day NOAA/NWS CPC (Xie) [4]

GPCP One-Degree Daily (Version
1.1)

SSM/I-TMPI (IR), GPCP monthly 1°/daily Global — 50°N–50°S/Oct.
1997–Sept. 2009

Monthly 3 months NASA/GSFC 613.1 (Huffman) [5]

GPCP pentad (Version 1.1) OPI, SSM/I, GPI, MSU, gauge, GPCP monthly 2.5°/5-day Global/1979–2008 Seasonal 3 months NOAA/NWS CPC (Xie) [6]
GPCP Version 2.1 Satellite-Gauge
(SG)

GPCP-OPI, gauge 1/79–6/87, 12/87 SSM/I-AGPI (IR),
gauge, TOVS 7/87–4/05 except 12/87, AIRS 5/05–present

2.5°/monthly Global/1979–2010 Monthly 2 months NASA/GSFC 613.1 (Adler and
Huffman) [7]

TRMM Plus Other Data (3B43
Version 6)

TCI-TMI, TCI-SSM/I, TCIAMSR-E, TCI-AMSU, MW-VAR (IR),
gauge

0.25°/monthly Global — 50°N–S/Jan
1998

Monthly 1 week NASA/GSFC PPS (Adler and Huffman)
[8]

TRMM Plus Other Satellites
(3B42 Version 6)

TCI-TMI, TCI-SSM/I, TCIAMSR-E, TCI-AMSU, MW-VAR (IR),
V.6 3B43

0.25°/3-hourly Global — 50°N–S/Jan
1998

Monthly 1 week NASA/GSFC PPS (Adler and Huffman)
[8]

RFE GPI, NOAA SSM/I, gauge 10 km/daily Africa/Oct. 2000 Daily 6 h NOAA/NWS CPC (Xie) [9]
10 km/daily South Asia/April 2001 Daily 6 h NOAA/NWS CPC (Xie) [10]

[1] ftp://ftp.cpc.ncep.noaa.gov/precip/data-req/cams_opi_v0208/.
[2] ftp://ftp.cpc.ncep.noaa.gov/precip/cmap/monthly/.
[3] ftp://ftp.cpc.ncep.noaa.gov/precip/cmap/pentad/.
[4] ftp://ftp.cpc.ncep.noaa.gov/precip/cmap/pentad_rt/.
[5] ftp://rsd.gsfc.nasa.gov/pub/1dd-v1.1/.
[6] ftp://ftp.cpc.ncep.noaa.gov/precip/GPCP_PEN/.
[7] ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/psg/.
[8] http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&project=TRMM&dataGroup=Gridded.
[9] ftp://ftp.cpc.ncep.noaa.gov/fews/newalgo_est/.
[10] ftp://ftp.cpc.ncep.noaa.gov/fews/S.Asia/.
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comprises enough stations to generate realistic fields, but in
some other regions of the world (e.g. South America, Africa
or Asia) the error over high elevation sites is large. Some da-
tabases, such as GPCP version 2 (Adler et al., 2003) has tack-
led this problem and devised a specific algorithm to correct
this effect, whereas others rely on the ability of the interpola-
tion techniques to deal with the issue.

5.1.1. CRU
The Climate Research Unit (CRU) at the University of East

Anglia has been created gridded climate datasets that in-
cludes precipitation (New et al., 1999, 2000). The original in-
formation from stations is interpolated over the continents
except over Antarctica, considering a 0.5×0.5 degree global
grid covering the period 1901 to 2001 (New et al., 2000).
Up to 14,500 stations are used for databases, but the number
varies (from 4957 in 1901 to 14,579 in 1981). Although the
records are different in each case, for this interpolation re-
cords with at least 30 years of data are used. The data are in-
terpolated by first calculating the anomaly to the average of
the years 1961–1990. The anomaly is calculated as the per-
centage value of the monthly accumulated rainfall from the
average of 1961–1990 and then the anomaly is interpolated
using thin-plate splines as a function of latitude and longi-
tude. All station available over the globe are first weighted
as a function of the distance of the grid point with an empir-
ical correlation decay distance coefficient between the avail-
able stations. The coefficient used in the present dataset is
450 km for precipitation, this was created to prevent extrap-
olations to unrealistic values and the precipitation anomaly
at the grid point is forced to be zero over regions beyond
the 450 km range.

It is worth noting when using CRU as a reference database
that gridded values are obtained by applying a smooth fitting
in 3D space to available surface observations at stations (New
et al., 2000). This interpolation technique changes the spatial au-
tocorrelation of data and introduces a known bias to the results.
Additional sources of uncertainty in this dataset include those
related to rain gauges problems, such as undercatch due to
wind effects, undersampling in mountain areas or areas with a
few instruments, and postprocessing artifacts from observation-
al data. Known nominal errors of the database are described in
New et al.(1999). Error sources arise from differences in gauge
type, in the evaluation of the ratio of solid to liquid precipitation,
and the effects of wind conditions and turbulence.

As in the rest of the precipitation databases, a clear under-
standing of the input data is crucial for a proper use of the
data in for instance climate change studies. As an example,
CRU exhibits large differences between observed and inter-
polated data over the Amazon area in the beginning of the
twentieth century. The reason is that from 1901 to 1921 the
data for the whole area comes from a single station. Ignoring
this and several other particularities may result in extracting
the wrong conclusions on model performance and even on
the sign of the climate change signal.

5.1.2. GPCC
The German Weather Service Global Precipitation Clima-

tology Centre (GPCC) has made available a 0.5°×0.5° global
land-only climatology from 1951 to 2000 period, at monthly
temporal resolution. Original data come from the historical
databases of the U.N. Food and Agriculture Organization
(FAO) (13,500 stations), the Climatic Research Unit (9500
stations), and the Global Historical Climatology Network
(GHCN) (22,600 stations). Additional contribution includes
the GPCC-Synop, the CPC-Synop, and Climat-network (Beck
et al., 2004). Only station time series with a minimum of
90% data availability during 1951–2000 are used for interpo-
lation using ordinary kriging. This method is deemed to en-
sure that the estimates are optimized for homogeneity in
time and for application in climate variability studies.

The dataset contains nominal error estimates computed
as jackknife-error estimates. This error is the difference of
the interpolated value of the location of the nearest station,
taking only neighboring stations into account, and the obser-
vation at that station. In other words, it is what would have
been estimated if there were no observation at the point.
5.1.3. GPCP
The GPCP produces several products that are intended to

approach Climate Data Record standards. The monthly
Satellite-Gauge (SG) precipitation analysis (Huffman et al.,
1997, 2010; Adler et al., 2003) provides globally complete es-
timate at 2.5°×2.5° resolution from 1979 forward. The pre-
cipitation estimates from the 6 am/pm low-orbit satellite
SSM/I and SSMIS microwave satellites provide calibration
(varying by month and location) for geosynchronous-orbit
satellite infrared (IR) data in the latitude band 40°N–S. Out-
side that band the SSM/I and SSMIS microwave estimates
are combined with estimates based on TOVS or AIRS to pro-
vide globally complete satellite-only precipitation estimates.
The multi-satellite field is combined with a rain-gauge ana-
lyses (over land), first adjusting the satellite estimates to
the gauge bias and then combining the (adjusted) satellite
and gauge fields with inverse error-variance weighting. The
gauge analysis is the GPCC Full analysis for the period avail-
able, and the Monitoring product thereafter.

The GPCP pentad precipitation analysis (Xie et al., 2003)
uses the SG to adjust the pentad CPC Merged Analysis of Pre-
cipitation (CMAP) pentad analysis such that the overall mag-
nitude of the pentad product matches the monthly product
and the sub-monthly variability in the pentad CMAP product
is retained. It is available at 2.5°×2.5° resolution from 1979
forward. The GPCP One-Degree Daily (1DD) precipitation
analysis (Huffman et al., 2001, 2010) is available at 1°×1°
resolution from October 1996 forward. It uses a Threshold-
Matched Precipitation Index (TMPI) in the latitude band 40°
N–S to produce instantaneous precipitation from the geo-IR
brightness temperatures (Tb). The TMPI takes GPROF esti-
mates of precipitation fractional coverage with SSM/I and
SSMIS data to choose a (regionally varying) Tb threshold
that makes geo-IR fractional coverage equal to that of the
GPROF-SSM/I and -SSMIS estimates. Then a single “raining”
geo-IR pixel rainrate is computed (again, regionally varying)
that makes the full month of TMPI sum to the corresponding
SG monthly value. Outside of the 40° N–S band, TOVS and
AIRS precipitation estimates are adjusted in terms of
frequency of precipitation using GPROF frequencies at 40°
latitude and in terms of the amount by the monthly analysis.
The SG dataset also includes a combined satellite-gauge pre-
cipitation error estimate. (Huffman et al., 1997) reported that
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the bias error frequently can be neglected compared to ran-
dom error (both sampling-based and algorithmic).

5.1.4. CPC PREC/L DATA
The US Climate Prediction Center (CPC) produces, the

Monthly Analysis of Global Land Precipitation from 1948 to
the Present, at a 0.5°×0.5° spatial resolution [PREC/L; (Chen
et al., 2002), CPC data hereafter]. Original data in this case
comes from rain gauges from about 17,000 stations.

The interpolation in this database is performed using the
Gandin optimal interpolation (OI) technique. The correlation
between the analysis values and withdrawn independent
station observations is about 0.8 and the bias is almost 0 for
interpolation of monthly precipitation using the OI algorithm
(Chen et al., 2002).

5.1.5. CMAP
The CMAP provides monthly land and ocean estimates of

global precipitation from rain gauges and satellite precipita-
tion estimates. The spatial resolution of the dataset is
2.5°×2.5° for the 1979-onwards period. The merging tech-
nique is described in (Xie and Arkin, 1996). As stated there,
the methodology used reduces random errors by linearly
combining satellite estimates using the maximum likelihood
method, giving an inversely proportional weight to the linear
combination coefficients in relation to the square of the ran-
dom error of the individual sources. Over global land areas
the random error is defined for each time period and grid lo-
cation by comparing the data source with the rain gauge
analysis over the surrounding area. Over oceans, the random
error is defined by comparing the data sources with the rain
gauge observations over the Pacific atolls. Bias is reduced
when the data sources are blended in the second step using
a variational blending technique.

5.1.6. TRMM products
The precipitation radar (PR) onboard TRMM was the first

orbital radar to estimate precipitation, and has been provid-
ing good quality estimates for the tropical regions since
15

Fig. 8. A sample of daily precipitation estimates (TRMM 3B42RT product). A year w
1998. Merging of the TMI radiometer and the PR instrument
with other MW sources has been used to extend the spatial
coverage beyond the original area. Thus, the Multi-satellite
Precipitation Analysis (TMPA) algorithm provides 3-hourly
0.25°×0.25° latitude/longitude gridded precipitation data
for the latitude band 50° N–50° S over the period 1998–pre-
sent (Huffman et al., 2007). It is designed to use as many
satellite-based precipitation estimates as possible with cali-
bration to a single sensor. The TMPA is computed twice,
first in near-realtime (TRMM product 3B42RT) and then as
a post-realtime research-grade product (currently TRMM
Version 7 product 3B42) to accommodate different user
needs. The 3B42 product uses the (Haddad et al., 1997a,
1997b) combined TRMM Microwave Imager — Precipitation
Radar estimates (TRMM product 2B31) for calibration,
while the real-time product uses a real-time version of the
Goddard Profiling (GPROF) algorithm (Kummerow et al.,
1996) applied to TMI data (TRMM product 2A12RT). The
intercalibration for the various passive microwave (PMW)
estimates is carried out with histogram matching for large
global regions that are specific to each data source. Thereaf-
ter, the PMW data are merged in 3-hourly windows centered
on the nominal observation time.

The second step in the TMPA is to calibrate infrared (IR)
brightness temperatures with the combined PMW estimates.
This is done with histogram matching for overlapping 3°×3°
squares for roughly 30 days of data to ensure stability. The
scheme assumes that colder clouds precipitate more, which
is not necessarily true for instantaneous estimates, but yields
correct averages for larger scales. There is a fallback scheme
that continues to provide (reduced quality) calibration coeffi-
cients in cases where the microwave estimates fail, mostly
over snowy/frozen land and sea ice. Thereafter, the PMW
and IR estimates are combined by using the IR to fill gaps in
the PMW for each 3-hourly image. Finally, the multi-
satellite field is adjusted to reduce bias. In the production
3B42, this is done using the monthly GPCC Monitoring
gauge analyses. For each grid box, all of the combined satel-
lite estimates for the month are summed to create a monthly
orth of data is available as a video in the supplementary information section
.

image of Fig.�8


Fig. 9. South America seasonal precipitation estimates (1998–2000) as derived from 3-hourly TRMM data.
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multi-satellite estimate. This monthly multi-satellite and the
gauge analysis are combined with an inverse random error
variance weighting to create TRMM product 3B43, then all
the individual 3-hourly combined PWM-IR fields are scaled
to sum to the gridbox values of 3B43 and output as TRMM
product 3B42. This gives the products the large-area bias of
the wind-corrected gauge analysis, with minimal depen-
dence on the gauge analysis where gauges are not present.
In the real-time 3B42RT product (Fig. 8), the adjustment is
a monthly climatological two-step adjustment, first to the
TRMM Combined Instrument (2B31), and then to 3B43
(Huffman et al., 2010). Those products are the basic input of
seasonal accumulations, which are useful for climate or natu-
ral risk assessment studies (Fig. 9).
5.2. Model datasets

The second group of precipitation datasets consists in
those build upon computer models. These include reanalyses,
which explicitly include observations; General Circulation (or
Global Climate, depending on context) Models (GCMs) used
for climate research and that may or may not include obser-
vations; and Regional Climate Models, which in terms of
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embedded observational data inherit the properties of the
GCMs or reanalysis used for nesting.

5.3. Global Climate Models (GCMs)

The new standard reference database for GCM output is the
CMIP5 archive, a follow-on to several Climate Model Intercom-
parison Programs (CMIP). In the current CMIP5, the Working
Group on CoupledModeling (WGCM)within theWorld Climate
Research Program (WCRP) is promoting a set of climate model
experiments, aiming to be the basis of the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment Report
(AR5). Presently, both present-climate and future-climate simu-
lations are been carried out by a number of international groups.
An advantage of the coordinated approach is standardized out-
puts that will make the results more readily comparable and
thus less prone to potential errors in the codes.

Several of the intended decadal hindcasts experiments are
directly comparable with observational data. These will also
be used to verify the models' ability to simulate the present
climate, a prerequisite to trust any future-climate simulation.
Simulations for near-future climates (up to 2035) under sev-
eral assumptions in the form of socioeconomic scenarios are
important for a continuous monitoring of ongoing global
warming, while long-term (2100 onwards) within CMIP5
will serve to ascertain the most likely effects on increasing
greenhouse emissions when the effects are clearly seen in
the simulations, and well beyond uncertainty limits.

5.3.1. Reanalyses
Datasets of reanalyses such as NCEP's NCEP-2 (Kalnay et

al., 1996), CFSR (NCEP's), ERA40 (ECMWF) (Uppala et al.,
2005), ERA-interim (ECMWF's, extensively described in Dee
et al. (2011), JRA-25 (Japan Meteorological Agency) (Onogi
et al., 2007) or MERRA (NASA's Global Modeling and Assimi-
lation Office) (Bosilovich, 2009) provide global data useful for
RCM downscaling and for comparison with observational da-
tabases. Table 5 gathers the relevant characteristics and links
of these datasets. A comparison of the differential character-
istics of those reanalysis is summarized below.

NCEP-2 (from 1979 to present day) has a grid resolution
of approximately 210 km and does not use some satellite
sources such as the SSMI data. The CFSR (1979–present), a
NCEP-2 reanalysis follow-up, has a horizontal resolution of
38 km, whereas ERA-40 (1957–2002) has a resolution of
about 120 km. ERA-40 does not assimilate precipitation,
while ERA-interim (1989–present) does but over ocean
only, as microwave sensor retrievals over land are highly af-
fected by soil emissivity and thus deemed as unreliable. The
JRA-25 (125 km, 1979–present) correlates better with pre-
cipitation observations than NCEP-2 and ERA-40
(Bosilovich, 2009), probably due to the assimilation of re-
trievals from Terra and Aqua satellites and the QuikSCAT in-
strument. CFSR, on the other hand, assimilates radiances
and uses a fully coupled modeling strategy (ocean – including
sea ice – and land processes).

In terms of vertical resolution,MERRA (50 km, 1979–present)
has 72 vertical levels, which compares to 28 in NCEP-2,
64 in CFSR, 60 in ERA-40 and ERA-Interim, and 40 in JRA-25.
ERA-Interim uses 4D variational assimilation, compared to 3D
in the others, and seems to have reduced the ERA-40 problem

http://reanalyses.org/atmosphere/comparison-table
http://polarmet.osu.edu/PolarMet/ASR.html
http://www.ecmwf.int/research/era/do/get/era-interim
http://www.ecmwf.int/research/era/do/get/era-interim
http://jra.kishou.go.jp/
http://gmao.gsfc.nasa.gov/research/merra/
http://cfs.ncep.noaa.gov/cfsr/
http://www.cpc.noaa.gov/products/wesley/reanalysis2/
http://www.cpc.noaa.gov/products/wesley/reanalysis.html
http://www.emc.ncep.noaa.gov/mmb/rreanl/
http://www.esrl.noaa.gov/psd/data/20thC_Rean/


Fig. 10. Sample output of a NARCCAP present-climate experiment. Daily precipitation from several RCMs forced with reanalysis (NCEP/DOE) for Jan 11, 2001.
Note that the simulation domains and grids differ. TRMM 3B42RT estimates (up to 50N latitude) included as a reference.
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of excess precipitation in the tropics after 1991. Other reanaly-
sis initiatives, such as the one derived from the Japanese Earth
Simulator does not currently deliver precipitation fields. The
AGCM for the Earth Simulator 2 (AFES 2, Enomoto et al.,
2008) is an experiment run at a resolution of about 80 km in
the horizontal, with 48 layers in the vertical, and using an en-
semble of 40 members over about two years worth of data.

AFES assimilated some observational data (although
not satellite radiances) through a local ensemble transform
Kalman filter, and presents the novelty over single GCM
runs of providing the spread of the ensemble in addition to
the mean values. Such improvements occur at the expense
of reducing the temporal span of the simulations.

5.4. Databases of Regional Climate Models

Publicly available databases for research include the results of
the EU project PRUDENCE (Christensen and Christensen, 2007),

image of Fig.�10
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Fig. 11. Summer (JJA) precipitation climatologies as derived by two ensembles of RCMs, ENSEMBLES project (25 km grid size) and PRUDENCE project (50 km grid
size), compared with two observational databases, CRU and GPCC. ENSEMBLES RCMs are nested on ERA40 whereas PRUDENCEmodels are nested on a GCM. Units
are mm/season.
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where RCMs were nested in GCMs. PRUDENCE was an effort to
establish uncertainty limits in climate modeling, providing
high-resolution (50 km) estimates from present (1961–1990)
and future (2071–2100) climate. The models in the project
were quite heterogeneous and included hydrostatic and non-
hydrostatic models, with very different parameterizations. Even
so, the simulations compare well with observations, especially
in terms of aggregated statistics such as model average.

PRUDENCE results were used as a part of the 2007 IPCC
scientific report. As in the case of GCMs, the widespread dis-
semination of IPCC assessments have galvanized the efforts of
the climate community, and is driving the efforts of the com-
munity to fulfill the needs arising from the reports.

The ENSEMBLES project went a step forward by increas-
ing the spatial resolution to 25 km and by including nesting
on the ERA-40 reanalysis (van der Linden and Mitchell,
2009). Comparison of PRUDENCE and ENSEMBLES climates
shows that both approaches are consistent but that large un-
certainties still remain, specially in the case of precipitation
modeling.

The North American Regional Climate Change Assessment
Program (NARCCAP; Mearns et al., 2007, 2009), can be seen
as the counterpart of European RCM efforts, also nesting
RCMs in a reanalysis, the 1979–2004 NCEP/DOE-Reanalysis
(Fig. 10).

In order to complete the global picture and to fill the geo-
graphical gaps, the CORDEX initiative seeks now to combine
these and other RCM efforts such as the CLARIS project
(Menéndez et al., 2010) and generate a global land RCM esti-
mate of present and future climates. CORDEX also has a spe-
cific focus on providing input for the AR5. While the grid
spacing of the intended CORDEX runs is quite coarse (about
50 km; 10 km for Europe) compared with ERA-interim
(about 79 km), nesting on GCM simulations of future climate
CMIP5 simulation will allow the generation of an estimate of
global precipitation patterns at regional scale for at least one
climate change scenario.

6. Applications of global precipitation measurements

The applications of global precipitation measurement
span from direct application of the databases to their use as
input of tailored models such as those to estimate local
water use and allocation in a global warming scenario. As ex-
amples, three very different applications are presented: hy-
dropower assessment, data assimilation and validation of
regional climate models.

6.1. Hydropower

Hydropower is viewed as the basis of the energy mix
sought by policy makers to respond to both growing energy
needs and to increasing environmental concerns. Regarding
the former, it has been argued that there are no technological
limitations for wind, water and solar technologies (referred
to as WWS) meeting the world's energy demands by 2030.
Within this WWS smart mix, hydropower would play a cen-
tral role: contrary to other more intermittent renewable
technologies such as wind and solar power, hydropower
can easily be adjusted to satisfy power demand by simply
switching the flow on or off through the penstocks. Hydro-
electricity currently represents 86% of total renewable energy
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production worldwide (equivalent to 16% of total energy pro-
duction). China is the largest producer (14.3%), followed by
Brazil (12.3%), Canada (12.2%), the US (8.3%), and Russia
(5.8%). Some countries, most notably in Central America, vir-
tually rely on hydropower for all their energy needs, making
precipitation climatologies much more important to under-
stand and quantify.

The usefulness of the estimates of precipitation from both
observation systems and models to hydropower has been re-
cently explored by Tapiador et al.(2011). In terms of daily op-
erations, satellite data can assist to adapt the production to
the demand, optimizing the operations. Here, outputs such
as those shown in Fig. 8 can be used as inputs for hydrological
models. In the long term, simulations of future precipitation
are useful to planning new installations, since climate change
may adversely affect the financial viability of both existing
and potential hydropower. Within this area, a knowledge of
not only rainfall amounts but also cycles is fundamental:
changes in river regimes in the future climate may result in
oversized or undersized plants. Regional studies of the effects
of climate change on the hydropower potential have been
carried out for Europe (Lehner et al., 2005) illustrating the
need for informed knowledge about changes in future
precipitation.

Regarding climate modeling, policy consequences in
terms of planning and sizing resources can derived drawing
on the outcomes of RCMs. This has to be done within the un-
certainty limits of the projections, most of which are derived
from comparing with observations. Therefore, constructing
reliable present-climate climatologies is crucial to informed
decisions in this area. It has to be noted that the hydropower
potential is still well above the current installed capacity in
all regions, except Europe which has already achieved high
capacity. A threefold increase is believed to be possible in
Asia and Africa, and there is room to more than double the
capacity in North America, Africa and Latin America.

6.2. Data assimilation into NWP models

Numerical Weather Prediction (NWP) is an initial-
boundary value problem. With a given estimate of the state
of the atmosphere (initial conditions) and lateral boundary
conditions, the model simulates the atmospheric evolution.
Obtaining these initial conditions is a very important and
complex issue and has become a science itself (Daley,
1996). In NWP, a previous short-range forecast is the starting
point to obtain a first guess of the initial state of the atmo-
sphere, and here the use of observations considerably im-
proves the performances of the model. It is within this
aspect that precipitation plays a central role

Data assimilation is the process through which real obser-
vations are added to the initial conditions of the model, thus
improving the background of the first guess. The observa-
tions come from different instruments at different locations
and times and must be decoded and assembled for use into
the assimilation system. Not all types of observations are as-
similated in the same way. Thus for example, cloudy condi-
tions may affect suitable satellite radiance data but clouds
may allow for satellite cloud-track wind data at cloud top.

Analysis increments are obtained as the weighted differ-
ence between the observations and the model first guess.
Objective analysis procedures are used to obtain the analysis
increments, as a result of changes applied to the first guess
fields taking into account the effect of all observations. Here,
precipitation information helps to nudge the model towards a
more realistic state. The weight factor can be determined
from estimated statistical error covariances of both, forecast
and observations (Kalnay, 2003) using several possible
schemes.

The background error covariance matrix is the way to
spread the information to those grid points and model vari-
ables that are not used explicitly to formulate the observation
operator. Bergthorsson and Döös (1955), Cressman (1959),
and Barnes (1964) have used different correction methods
(SCM) to obtain weights empirically as functions of the dis-
tance between observations and grid points. The Optimal In-
terpolation (OI) scheme was applied by Gandin(1963) and
became the standard operational analysis scheme during
the 1980s and 1990s.

Precipitation can also be assimilated into 3D or 4D
schemes. The three-dimensional variational data assimilation
procedure (3DVAR) (Parrish and Derber, 1992; Courtier et al.,
1998; Gauthier et al., 1998; Cohn et al., 1998) is equivalent to
the OI scheme, although the method for solving it is quite dif-
ferent. 3DVAR allows nonlinearity in the relationship be-
tween observed quantities and analysis variables. Several
weather forecast services have implemented this procedure
for their operational forecasts, among others the National
Center for Environmental Prediction (NCEP) (Parrish and
Derber, 1992) and the ECMWF (Courtier et al., 1998).

The main limitation of standard 3DVAR is that it spreads
the influence of observations following an isotropic scheme
for each weather situation, regardless of the presence of
fronts, stable layers or any other features. The scheme was
reformulated to define the analysis increments on the verti-
cal coordinate of the model and to provide a new view of
the background error covariances (Gauthier et al., 1999).
The concept of ‘anisotropic background error covariances’
was then introduced as a different set of assumptions that
control the influence pattern that an observation increment
can have on the analysis.

Talagrand and Courtier (1987) demonstrated that the use
of the adjoint of a numerical model enables us to obtain the
initial conditions leading to a forecast that would best fit
data available over a finite time interval. A four-dimensional
variational data assimilation formulation (4DVAR, Le Dimet
and Talagrand, 1986; Lewis and Derber, 1985; Talagrand
and Courtier, 1987; Courtier and Talagrand, 1987) makes
use of this result extending 3DVAR in the time dimension.
4DVAR improves the integration of all variables, including
vertical motion, clouds and precipitation. This system also
makes a better use of more observations from the same
sites, including observations from geostationary satellites.
4DVAR has been used in different models with subsequent
and sophisticated physical parameterizations (Zou and
Kuo, 1996; Zou, 1997; Tsuyuki, 1997; Zupanski and
Mesinger, 1995; Zupanski, 1993; Mahfouf et al., 2000). This
approach has been used in the context of an operational en-
vironment at the European Centre for Medium-Range
Weather Forecasts (ECMWF) since 1997 (Rabier et al.,
2000) or at Meteo-France since 2000 (Gauthier and
Thépaut, 2001), the Japan Meteorological Agency in 2002
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(Ishikawa and Koizumi, 2002) or the Met Office in 2004
(Collard, 2004).

A more efficient alternative to 3DVAR or 4DVAR to assim-
ilate precipitation is the Kalman filtering method. The fore-
cast error covariance is computed using the forecast model
itself (Kalnay, 2003). The covariance patterns are statistically
estimated using ensemble forecasts and require a high com-
putational power.

The Ensemble Kalman Filter (EKF) combines an ensemble
forecast and a data assimilation system. The process begins
with an ensemble of analyses and an ensemble of short-
range forecasts to the time of the next observations available.
The different ensemble members are used to estimate the
forecast covariances required to assimilate the new observa-
tions. The new observations obtained by assimilating a set of
perturbed observations then provide a new scenario
(Houtekamer et al., 1996; Houtekamer and Mitchell, 1998,
2001; Hamill and Snyder, 2000; Hamill et al., 2001;
Anderson, 2001).

6.3. RCM validation

In climate applications, there is also a need for better pre-
cipitation estimates, which are used as validation data. While
it is acknowledged that a good match with observations in
present climate does not guarantee model performance in fu-
ture climates, successful control runs are a prerequisite to
trust any model. Thus, modelers use present-day climatol-
ogies to gauge the model ability to capture important pro-
cesses such as convection and cloud microphysics.

Satellite precipitation data can assist to this validation/
verification task. Fig. 11 shows the results of one such valida-
tions. The present-climate simulations of eleven regional cli-
mate models involved in the EU PRUDENCE and ENSEMBLES
projects are here compared with rain gauge observations
(CRU and GPCC). The match of the ensemble mean is good
enough to place confidence in the performances in future cli-
mates under the assumption that the same processes and
feedbacks that operate in the present climate will operate
in the same way in the future.

For climatological uses, the availability of long series (typ-
ically 30 years) of data is a requirement, but shorter periods
have been found also useful to validate the models. Thus,
thanks to satellite data it has been shown that RCMs provide
consistent estimates of precipitation after accounting for
known uncertainties in the reference data (Tapiador, 2010).
Gauge and satellite-merged data (CRU, GPCP, CMAP, CPC,
and GPCC databases) have compared with RCMs simulations
over Europe both in terms spatially reproducing the climatol-
ogy and the pdfs of precipitation (Tapiador, 2009), and in
terms of capturing the phase and power of precipitation cy-
cles (Tapiador and Sanchez, 2008), obtaining consistent re-
sults. These topics are fertile research ground, as a good
match within uncertainties between models and observa-
tions builds confidence in models been capable of simulating
the climates of the future.

7. Outlook

Precipitation is a meteorological variable that is difficult
to measure precisely (Levizzani et al., 2007; Anagnostou et
al., 1999). Disdrometers, scanners, radars and radiometers
present their own sources of error, limitations and uncer-
tainties. This results in a challenge for those aiming to pro-
vide a timely and precise estimate of how much
precipitation reaches the ground, and in which state (solid,
liquid, or mixed).

Large international projects such as the Global Precipita-
tion Measurement (GPM) mission seek advances in this
field. The GPMmissionwill be highly relevant for hydrological
applications as it will be provide, for the first time, adequate
sampling of precipitation in middle to high latitudes using
an orbital radar. The mission will provide global retrievals of
precipitation, with a goal of 3-hour revisit over land owing
to the mixed non-sun-synchronous/sun-synchronous orbits
of the constellation members including the MW sounders.
This configuration will expand the TRMM capability for phys-
ically direct sensing of precipitation to higher latitudes.

Currently at issue is the optimum combination of mea-
surements, estimates and model outputs to reinforce the in-
dividual strengths and address the shortcomings to
providing a better understanding of precipitation. While the
performance of most NWP models lags behind satellite algo-
rithms in estimating current precipitation, only models can
give the estimates of future precipitation.

Regarding climate, observational databases are routinely
used to fine-tuning RCMs parameterizations, whereas GCMs
and RCMs can provide insight into changes in the immediate
future to applications currently using those databases, such
as agriculture, hydropower, or water resource management.
Within the precipitation science umbrella, cross-fertilization
between different branches can only help each other.

Supplementary materials related to this article can be
found online at doi:10.1016/j.atmosres.2011.10.021.
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