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[1] A new global optimization algorithm, dynamically dimensioned search (DDS), is
introduced for automatic calibration of watershed simulation models. DDS is designed for
calibration problems with many parameters, requires no algorithm parameter tuning, and
automatically scales the search to find good solutions within the maximum number of
user-specified function (or model) evaluations. As a result, DDS is ideally suited for
computationally expensive optimization problems such as distributed watershed model
calibration. DDS performance is compared to the shuffled complex evolution (SCE)
algorithm for multiple optimization test functions as well as real and synthetic SWAT2000
model automatic calibration formulations. Algorithms are compared for optimization
problems ranging from 6 to 30 dimensions, and each problem is solved in 1000 to 10,000
total function evaluations per optimization trial. Results are presented so that future
modelers can assess algorithm performance at a computational scale relevant to their
modeling case study. In all four of the computationally expensive real SWAT2000
calibration formulations considered here (14, 14, 26, and 30 calibration parameters),
results show DDS to be more efficient and effective than SCE. In two cases, DDS requires
only 15–20% of the number of model evaluations used by SCE in order to find equally
good values of the objective function. Overall, the results also show that DDS rapidly
converges to good calibration solutions and easily avoids poor local optima. The
simplicity of the DDS algorithm allows for easy recoding and subsequent adoption into
any watershed modeling application framework.
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1. Introduction

[2] Almost all watershed simulation models contain
effective physical and/or conceptual model parameters
that are either difficult or impossible to directly measure.
Applications of these models therefore require that model
parameters are adjusted so that model predictions closely
replicate the observed environmental system response
data. The process of model parameter conditioning to
historical system response data is called calibration. The
traditional approach to model calibration has been to
calibrate the model manually by trial and error. While
such a manual calibration is useful as a learning exercise
for modelers, it can be extremely labor intensive and difficult
to implement for complex model calibration situations where
models are calibrated to long time series of measured system
response datawith different constituents atmultiple locations.
[3] Watershed modelers have long since recognized that

optimization algorithms could be used to automate the cali-
bration process. Automatic calibration is defined here as an
optimization algorithm based search for a set of watershed

model parameter values that minimize the model prediction
errors relative to available measured data for the system
being modeled. This study will focus on the automatic
calibration of watershed simulation models. The results of
this study however are also relevant to all other environ-
mental simulation models requiring calibration. Gupta et al.
[1998] and Singh and Woolhiser [2002] note that the
automatic calibration methodology has a number of impor-
tant parts including: (1) the selection of appropriate calibra-
tion data, (2) the definition of the objective function that
measures the error between model predictions and the
calibration data, and (3) the optimization algorithm used
to optimize the selected objective function. This study is
focused on investigating optimization algorithms for auto-
matic calibration and in particular will introduce a new and
efficient algorithm called the dynamically dimensioned
search (DDS).
[4] Early automatic calibration studies utilized local op-

timization techniques that find locally optimal solutions
close to the initial solution [Ibbitt, 1970; Nash and Sutcliffe,
1970; Sorooshian and Gupta, 1983]. Examples include
derivative-based (e.g., quasi-Newton) algorithms or deriva-
tive free algorithms like the Nelder-Mead Simplex method
[Nelder and Mead, 1965]. The problem with these methods
is that they may find only a local optimum and never get
close to the global optimum. Given the inherent complexity
of watershed models, recent studies have utilized more
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advanced global search methods. Duan [2003] provides a
good review of optimization algorithms for watershed
model calibration and his list of global optimization algo-
rithms applied to watershed model calibration includes
adaptive random sampling [Masri et al., 1980], controlled
random search [Price, 1978], the multistart Simplex, genetic
algorithm [Wang, 1991], simulated annealing [Thyer et al.,
1999], and the shuffled complex evolution (SCE) algorithm
[Duan et al., 1993, 1992]. SCE is the dominant optimization
algorithm in the watershed model automatic calibration
literature over the past 10 years given that more than
300 different publications reference the original set of SCE
publications [Duan et al., 1993, 1992, 1994]. Therefore our
new DDS algorithm is tested extensively against SCE.
[5] The introduction of SCE for automatic calibration of

watershed models was a great advancement that has enabled
a substantial number of modelers to solve difficult calibra-
tion problems. A review of the algorithm performance com-
parisons in the watershed modeling literature shows that the
SCE algorithm was judged to outperform the other global
optimization algorithms in the previous paragraph in at least
one study (and often multiple studies). However, most of
these SCE comparisons involved computationally efficient
lumped parameter conceptual watershed models with sim-
ulation times often on the order of a few seconds or less. As
a result, most previous SCE comparisons utilize very large
numbers of total allowable model evaluations per optimi-
zation trial. For example, in three studies calibrating 11–
13 model parameters, SCE results were generated using
11,000 to 23,000 model evaluations [Duan et al., 1994; Gan
and Biftu, 1996; Sorooshian et al., 1993]. In more complex
model calibration examples, Tanakamaru and Burges
[1996] used 39,000 to 49,000 model evaluations for SCE
in a 16 parameter problem, while Franchini et al. [1998]
use 250,000 model evaluations in a 37 parameter problem.
Consider that the Soil and Water Assessment Tool version
2000 (SWAT2000) distributed watershed model calibration
case study utilized here (see section 2.4) requires at least
2 minutes to execute a single, 9-year, daily time step
simulation on a Pentium IV 3-GHz processor. Therefore
one SCE optimization run in this situation would require
about 14 days of computation time for 10,000 SWAT model
evaluations and about 4.6 months for 100,000 model
evaluations. With such extreme computational burdens in
mind, this study is focused on evaluating optimization
algorithm performance on rather limited computational
budgets (1000 to 10,000 model evaluations).
[6] One approach to address this SCE efficiency issue is

to simply run SCE for as long as the case study specific
computational constraints allow for (e.g., �1000 rather than
100,000 simulations). While this approach will produce
results, and perhaps even a seemingly reasonable objective
function value, SCE was not specifically developed and
tested against other algorithms from this perspective. In-
stead, SCE was developed so that optimal or near-optimal
solutions are returned with high reliability upon algorithm
convergence (typically more than 10,000 model evalua-
tions). The available SCE comparison literature almost
exclusively presents algorithm performance comparisons
in terms of effectiveness (solution quality) and computa-
tional effort required to find the final best solutions at algo-
rithm termination or convergence but do not assess

algorithm effectiveness prior to termination [see, e.g., Duan
et al., 1993; Gan and Biftu, 1996; Franchini et al., 1998].
This comparison approach is entirely appropriate given that
the hydrologic models being calibrated in these case studies
were lumped parameter conceptual models with very short
simulation times.
[7] When automatic calibration is applied to spatially

distributed models, or more generally any model that
presents a significant computational burden, the comparison
of two optimization algorithms must consider how solution
quality changes with varying computational effort. This is
because distributed modeling computational timescales can
vary by many orders of magnitude depending on what
model, spatial discretization level and watershed size is
selected for the modeling case study. Singh and Woolhiser
[2002] report in their review of mathematical modeling of
watershed hydrology that many current watershed hydrolo-
gy models are spatially distributed. In fact, as soon as one
considers a limited number of model evaluations perspec-
tive, the idea of achieving global optimality becomes
unreasonable in most automatic calibration problems. As a
result, the methods for comparing algorithm performance in
this paper are necessarily different from the methods found
in the great majority of previous SCE literature. In addition,
we believe that improved automatic calibration optimization
algorithms can be developed with such a perspective in
mind and introduce the new DDS as one such algorithm
focused on identifying good calibration solutions when
model evaluations are limited.
[8] The specific goals of this study are (1) to introduce

the new DDS algorithm for watershed model calibration and
(2) present DDS and SCE comparative algorithm perfor-
mance results in ways that are meaningful for modelers
subject to a wide range of computational limitations. DDS
requires essentially no parameter tuning and the search
strategy is scaled to the user-specified maximum number
of objective function evaluations in order to return good
solutions across a range of computational limitations. Nu-
merical results will show that DDS is robust and effective
and it outperforms the SCE algorithm for real SWAT2000
watershed simulation model calibration formulations of
14, 26, and 30 parameters limited to 10,000 or fewer
total model evaluations. This study limits DDS algorithm
comparisons to the SCE algorithm because SCE is so fre-
quently applied to hydrologic or watershed simulation
model calibration.
[9] The remainder of the paper is organized as follows.

Section 2.1 highlights the benchmark optimization algo-
rithms utilized in this study, and the DDS algorithm is
described in detail in section 2.2. The optimization test
problems and SWAT2000 automatic calibration case studies
are introduced in sections 2.3 and 2.4, respectively. All
algorithm comparison results are provided in section 3,
while section 4 summarizes and highlights the significance
of the results. Conclusions and future research directions are
detailed in section 5.

2. Methodology

2.1. Benchmark Optimization Algorithms

[10] The main focus of this study is the introduction of
the DDS algorithm (see section 2.2) and the subsequent
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performance comparisons with alternative algorithms,
including the SCE algorithm. The Matlab# (R13) opti-
mization toolbox implementations of a derivative-based
optimization algorithm (Matlab fmincon function) and a
Nelder-Mead Simplex algorithm (Matlab fminsearch func-
tion) were applied to a subset of model calibration
problems in order to confirm that they were in fact
difficult multimodal optimization problems. The Matlab
implemented derivative-based search (referred to as ‘‘Fmincon’’
in the remainder of this paper) as utilized here approximates
derivatives by finite differences and implements sequential
quadratic programming to find a local minimum.

[11] The Simplex and Fmincon algorithms are local
optimization methods. In order to utilize them for global
optimization, they were applied as multistart algorithms. For
example, in each Simplex or Fmincon optimization trial
with multiple restarts, once an algorithm run converged and
stopped, another run was started at a different initial solut-
ion that was randomly selected. This was repeated until the
maximum function evaluation limit was reached or it was
clear that restarting the Simplex or Fmincon algorithm
would not significantly improve the current best solutions.
Since the Simplex algorithm is an unconstrained optimiza-
tion algorithm, bound constraints on the decision variables
were accounted for by using a penalty function approach
that assigns infeasible solutions objective function values
that are worse than the worst feasible solution found so far.
[12] In this study, the original SCE algorithm was recoded

in Matlab and used to generate almost all SCE results
reported here. Tests against the original Fortran SCE version
(referred to as SCE-UA for ‘‘University of Arizona’’) on
multiple test functions confirmed both SCE implementa-
tions were consistent. The original Fortran-coded SCE
algorithm is referred to as SCE-UA where appropriate in
the remainder of this paper. Besides the random number
generation routines, the only other difference between our
Matlab SCE and SCE-UA is that our Matlab SCE imple-
mentation only stops when the maximum function evalua-
tion limit is reached.
[13] SCE is applied to all test functions and calibration

formulations considered in this study. An overview of the
algorithm based largely on the summary by Duan et al.
[1992] is as follows. SCE is a probabilistic population-
based evolutionary type of algorithm. The initial population
is sampled randomly from the space of feasible solutions.
The population is divided into a number of subpopulations
called complexes after sorting the population based on
objective function value. Each complex is evolved (i.e.,
improved) using the competitive complex evolution (CCE)
algorithm which utilizes the Simplex procedure of Nelder
and Mead [1965]. After the CCE algorithm terminates, the
entire population is recombined and then partitioned again
into a number of complexes and this shuffling step functions
to share information between complexes. This process is
repeated many times and as the search process continues,
the entire population tends to converge to a local or global
optimum. See Duan et al. [1992, 1993, 1994] for a detailed
description of SCE.

2.2. Dynamically Dimensioned Search Algorithm

[14] The DDS algorithm is a novel and simple stochastic
single-solution based heuristic global search algorithm that
was developed for the purpose of finding good global

solutions (as opposed to globally optimal solutions) within
a specified maximum function (or model) evaluation limit.
The algorithm is designed to scale the search to the user-
specified number of maximum function evaluations and
thus has no other stopping criteria. In short, the algorithm
searches globally at the start of the search and becomes a
more local search as the number of iterations approaches the
maximum allowable number of function evaluations. The
adjustment from global to local search is achieved by
dynamically and probabilistically reducing the number of
dimensions in the neighborhood (i.e., the set of decision
variables or parameters modified from their best value). The
decision variables in automatic calibration are the model
parameters being calibrated, and the dimension being varied
is the number of model parameter values being changed to
generate a new search neighborhood. Candidate solutions
are created by perturbing the current solution values in the
randomly selected dimensions only. These perturbations
magnitudes are randomly sampled from a normal distribu-
tion with a mean of zero. Our algorithm design choices to
select a subset of dimensions for perturbation completely at
random without reference to sensitivity information and the
use of the normal distribution were made to keep DDS as
simple and parsimonious as possible. However, DDS could
also be applied with alternative probability distributions.
DDS is a greedy type of algorithm since the current
solution, also the best solution identified so far, is never
updated with a solution that has an inferior value of the
objective function. The complete DDS algorithm pseudo-
code for minimization is provided in Figure 1.
[15] The DDS algorithm is unique relative to current

optimization algorithms because of the way the neighbor-
hood is dynamically adjusted by changing the dimension of
the search. For example, the dynamic adjustment in the
number of parameter dimensions varied in the neighbor-
hood (step 3 in Figure 1) distinguishes DDS from adaptive
random sampling (ARS) as described by Masri et al.
[1980], the ARS implementation used by Duan et al.
[1992] and a (1 + 1) evolutionary strategy (ES). Masri et
al. [1980] adjust neighborhood size by modifying the
perturbation magnitude (variance) in each dimension while
Duan et al. [1992] narrow the sampling bounds. In a basic
(1 + 1) ES with the 1/5th success rule for step length control
[see, e.g., Schwefel, 1995], the mutation variances increase
or decrease in response to whether the objective function
has recently been improved. In contrast, the DDS perturba-
tion variances remain constant and the number of decision
variables perturbed from their current best value decreases
as the number of function evaluations approaches the
maximum function evaluation limit. This key feature of
DDS was motivated by our experience with manual cali-
bration of watershed models where early in the calibration
exercise relatively poor solutions suggested the simulta-
neous modification of a number of model parameters but as
the calibration results improved, it became necessary to only
modify one or perhaps a few parameters simultaneously so
that the current gain in calibration results were not lost.
[16] The only algorithm parameter to set in the DDS

algorithm is the scalar neighborhood size perturbation
parameter (r) that defines the random perturbation size
standard deviation as a fraction of the decision variable
range. A default value of the r parameter is recommended as
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0.2 (and used in this study) because this yields a sampling
range that practically spans the normalized decision variable
range for a current decision variable value halfway between
the minimum and maximum. This sampling region size is
designed to allow the algorithm to escape regions around
poor local minima. An r value of 0.2 means that for a
decision variable with a range of 10 units, the standard
deviation of the perturbation random variable is equal to
0.2 � 10 = 2 units. Thus r is a scaling factor assigning the
same relative variation to each decision variable (relative to
the decision variable ranges). In cases where the initial
solution is known to yield good objective function values,
reducing r to perhaps 0.1 may also be reasonable to better
focus the search around the initial solution. However, in all

other cases, reducing r below 0.2 is only recommended to
restart terminated DDS runs for which further solution
refinement is desired.
[17] The one-dimensional decision variable perturbations

in step 4 of the DDS algorithm (Figure 1) can generate new
decision variable values outside of the decision variable
bounds (or box constraints). In order to ensure that each
one-dimensional perturbation results in a new decision
variable that respects the bounds, the minimum and maxi-
mum decision variable limits act as reflecting boundaries in
the DDS algorithm. (see step 4 of Figure 1.) For example, if
a random perturbation went 0.2 units past the lower bound-
ary, the new decision variable for the candidate solution
would be the minimum value plus 0.2. This reflecting
boundary approach allows decision variable values to more
easily approach their minimum or maximum values in
comparison with a simple perturbation resampling approach
for ensuring decision variable boundaries are respected.
[18] The maximum number of function evaluations (m) is

an algorithm input (like the initial solution) rather than
algorithm parameter because it should be set according to
the problem specific available (or desired) computational
time to expend on the optimization problem. The value of m
therefore depends on the time to compute the objective
function and the available computational resources. Except
for the most trivial objective functions, essentially 100% of
DDS execution time is associated with the objective func-
tion evaluation. Remember that the DDS algorithm scales
the search strategy from global in the initial iterations to
more local in the final iterations regardless of whether m is
100 or 10,000 function evaluations. After initial testing, it
was decided that in the absence of a specific initial solution,
a simple approach to reduce DDS sensitivity to a poor
randomly sampled initial solution was to initialize DDS to
the best of M uniform random solutions, where M is the
largest integer of 0.005m and 5. It must be clarified that
the DDS algorithm is not designed to converge to the
precise global optimum. Instead, it is designed to converge
to the region of the global optimum in the best case or the
region of a good local optimum in the worst case. Local,
perhaps derivative-based, searches could be initialized from
the final DDS solution in order to identify a more precise
estimate of the local optimum close to where DDS con-
verged. However, this additional solution refinement step
may be unnecessary in many practical model calibration
case studies.

2.3. Optimization Test Functions and Problems

[19] Four difficult generalized D-dimensional global opti-
mization test functions (Rastrigin, Griewank, Ackley and
Bump) were selected in order to compare SCE and DDS
performance. As global optimization test functions, they each
have a high number of local optima, which is a type of
problem both SCE and DDS are designed to solve. Table 1
lists the functions and their characteristics (see Tolson [2005]
for Bump function). Ten and 30 dimensions were selected for
the Rastrigin, Griewank and Ackley functions to roughly
span the range of dimensions for the real SWAT2000 model
calibration problems defined later in section 2.4. The Bump
function is a maximization problem with 20 dimensions from
Keane [1996]. For the Bump function and all other maximi-
zation problems, the optimization algorithms minimize (�1)
times the objective function value.

Figure 1. Dynamically dimensioned search (DDS)
algorithm.
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[20] The SCE algorithm was originally demonstrated as an
effective and efficient algorithm based largely on a synthetic
six-dimensional hydrologic model calibration problem called
‘Sixpar’ [Duan et al., 1993, 1992]. Therefore it was deemed
important to revisit the Sixpar test problem in this study.
Hence Matlab SCE, DDS, and Fmincon algorithms were
applied to the Sixpar problem. The objective for the Sixpar
problem is to minimize the sum of squared errors (SSE)
between the model predictions and a synthetically generated
time series of measured data. Duan et al. [1993] report all
other details on the problem except that in addition to the
bound constraints on the six decision variables, there are four
linear constraints that are checked in the Sixpar example. The
original SCE algorithm handles constraint violations by
randomly sampling around the best solution when one or
more of the constraints (bound or linear) are violated. The
Matlab SCE handles constraint violations the same way as
SCE-UA. Linear constraint handling for the Sixpar problem
in this study is discussed further in section 3.4.

2.4. SWAT2000 Cannonsville Watershed Model
Calibration Case Study

[21] Tolson and Shoemaker [2004] and Tolson [2005]
recently applied a slightly modified version of the
SWAT2000 [Neitsch et al., 2001] watershed simulation
model to predict flow, sediment and phosphorus delivery
to the Cannonsville Reservoir in upstate New York. The
nearly 1200 km2 reservoir watershed is dominated by
forests and agricultural lands and is only about 1% urban
land. Tolson [2005] manually calibrated the model to a rich
data set for flow, total suspended sediment (TSS) and
phosphorus. Multiple SWAT2000 model calibration prob-
lems were derived from the Cannonsville case study and
formulated as optimization problems and then solved with
the DDS and the other algorithms listed in section 2.1.
[22] The Soil and Water Assessment Tool version 2000

(SWAT2000) is a spatially distributed continuous simulation
model for predicting flow, sediment, nutrient and other
contaminant transport. SWAT2000 is designed to compute
long-term runoff and nutrient export from rural watersheds,
especially those dominated by agriculture [Arnold et al.,
1998] like the Cannonsville Reservoir Watershed. The
model is maintained by the Agricultural Research Service
of the U.S. Department of Agriculture (USDA) and
distributed by the U.S. Environmental Protection Agency
(EPA) for nonpoint source modeling. Further details about
the SWAT2000 model application to the Cannonsville
Reservoir watershed are provided by Tolson [2005] and
Tolson and Shoemaker [2004].

[23] The SWAT2000 model Fortran source code was
slightly modified and then recompiled in order to create
an efficient case study. SWAT2000 was changed so that all
model optimization parameters were read from the input
files to five decimal places of precision and unnecessary
output files and screen printing were eliminated. Since
Matlab was the programming language used to code all
optimization algorithms, Matlab programs were mainly
used to transfer new model parameter values to the appro-
priate model input files and extract model time series
predictions from the model output files and then calculate
the necessary objective function values.
[24] Two scales of SWAT2000 models within the Can-

nonsville Reservoir Watershed were utilized in this study.
The multiple subbasin watershed model (43 subbasins, 758
hydrologic response units) was used here to calibrate model
predictions to the main watershed monitoring stations
(Walton and Beerston). The largest flow monitoring loca-
tion in the watershed is the Walton USGS station
(01423000) located on the main stem West Branch Dela-
ware River and drains an area of 860 km2. The Beerston
water quality station is just downstream of Walton and
drains 913 km2. The Walton/Beerston calibration was the
main focus of the manual calibration effort in Tolson [2005]
and is therefore repeated here. However, since one
execution of the Cannonsville watershed scale model
requires 2 minutes of computation time on a Pentium
IV 3 GHz processor even after substantial code optimi-
zations, the total number of model evaluations available
for calibration was quite limited. This is especially true
since replicate optimization trials were implemented to com-
pare multiple algorithms. Therefore a second single subbasin
model was created for the TownBrook subwatershed (37 km2

drainage area) to allow for a higher number of model evalua-
tions in algorithm testing. Town Brook is also monitored for
flow (USGS station 01421618) and water quality. The New
York State Department of Environmental Conservation
(NYSDEC) provided daily TSS and total phosphorus loads
calculated at each monitoring location.
[25] A number of SWAT2000 model parameters opti-

mized in this case study are not spatially variable and are
instead a constant value across all model spatial units (e.g.,
all snowmelt parameters). Other parameters such as SCS
curve numbers and soil properties are spatially variable and
can therefore be assigned different values for different spa-
tial units. These could be calibrated by considering each
spatial unit parameter value an independent calibration
parameter. However, in this study, such an approach would
have increased the total number of calibrated parameters to
more than 100. Since the calibration formulations presented

Table 1. Summary of Optimization Test Functions

Reference/Name Equation Dimensions D
Bound and Other

Constraints Minimum

Rastrigin [1974] f(x) =
PD
i¼1

[xi
2 � cos(2pxi)] 10 and 30 [�2, 2]D -D

Griewank [1981]
f(x) =

PD
i¼1

(xi
2/4000) �

QD
i¼1

cos (xi/
ffiffi
i

p
) + 1

10 and 30 [�500, 700]D 0

Ackley [1987]
f(x) = �20 exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD
i¼1

x2i

s #
� exp

1

D

XD
i¼1

ðcos ð2�xiÞÞ
" #

10 and 30 [�1, 3]D �20-e

Sixpar see Duan et al. [1992] 6 Duan et al. [1992] 0
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below focus on one monitoring location and thus repre-
sented the integral of all upstream spatial predictions,
spatially variable model parameters were not calibrated for
each spatial unit independently. Instead, a single calibration
factor was used to increase or decrease spatially variable
parameter values from their base or default values. For each
spatially variable parameter, this approach maintained the
relative differences in the base or default parameter values
assigned to different spatial units.
2.4.1. Flow Calibration Formulations
[26] Three flow calibration problems were formulated

based on the set of SWAT2000 flow parameters calibrated
manually by Tolson [2005]. These 14 model parameters
impact snowmelt, surface runoff, groundwater, lateral flow
and evapotranspiration predictions and are listed along with
their ranges in Table 2. The parameter ranges were based
mainly on ranges in the SWAT2000 model documentation
[Neitsch et al., 2001] in order to replicate the automatic
calibration process that would have occurred with little prior
knowledge of the model application to this case study area.
For computational efficiency reasons, the model calibration
formulations below are based on model simulation time
periods that were shorter than the calibration periods used
by Tolson [2005]. Therefore automatic flow calibration
results achieved here are not compared to manual calibra-
tion results of Tolson [2005].
2.4.1.1. Formulation 1
[27] The 37 km2 Town Brook single subbasin SWAT2000

model was calibrated for flow against real measured flow
data according to the optimization model below:

Min
x

SSEQ xð Þ ¼
XT

t¼1
Qmeast � Qsimtð Þ2

s:t: xmin
d � xd � xmax

d ; d ¼ 1; . . . ;D ð1Þ

where SSEQ is the sum of squared error for daily flows, x is
a vector of D model parameters that are each subject to
bound constraints listed in Table 2, Qmeast and Qsimt are
the measured and simulated flows on day t and T is the total
number of days in the calibration period. For this for-
mulation, D is 14 and T is 1096 days (October 1997 to
September 2000). The best theoretical SSEQ value is 0.0.
However, the true minimum SSEQ for this real calibration

problem, as with all others, is some unknown positive
quantity.
2.4.1.2. Formulation 2
[28] The Town Brook SWAT2000 model used in Formu-

lation 1 was calibrated for flow against synthetically gen-
erated flow data. The optimization model in formulation 2
is exactly the same as equation (1) except that the measured
data (Qmeas) was synthetically generated using the manu-
ally calibrated SWAT2000 model parameter values estab-
lished by Tolson [2005]. Therefore the known solution to
this problem has a minimum SSEQ of 0.0.
2.4.1.3. Formulation 3
[29] The 1200 km2 Cannonsville Reservoir multiple sub-

basin SWAT2000 model was calibrated for flow against real
measured flow data according to the following:

Max
x

E
Q
NS xð Þ ¼ 1�

PT
t¼1 Qmeast � Qsimtð Þ2PT

t¼1 Qmeast � T�1
PT

t¼1 Qmeast

� 	2

s:t: xmin
d � xd � xmax

d ; d ¼ 1; . . . ;D ð2Þ

where ENS
Q is the Nash-Sutcliffe coefficient for daily flows

(Q), x is a vector of D model parameters that are each
subject to bound constraints listed in Table 2, Qmeast and
Qsimt are the measured and simulated flows on day t and T
is the total number of days in the calibration period. ENS

values range from negative infinity to 1. The true maximum
ENS
Q value in this case study, as with all others, is not known.

For this formulation, D is 14 and T is 2191 days (1990–
1995). As described for the Bump function in section 2.3,
this and all other maximization problems are solved by
minimizing (�1) times the objective function value.
2.4.2. Simultaneous Flow, Sediment, and Phosphorus
Calibration Formulations
[30] Two calibration problems were formulated for the

simultaneous calibration of flow, sediment and phosphorus.
The model was simultaneously calibrated to the three
constituents since flow predictions, namely surface runoff
volumes, largely influence the water quality predictions.
The parameters to be optimized were selected based on the
set of model parameters that Tolson [2005] modified from
their default values. These 30 optimized model parameters

Table 2. SWAT2000 Flow-Related Parameters Optimized in Formulations 1, 2, and 3

Parameter Brief Description (units) Minimum Maximum

SFTMP snow fall temperature (�C) �5 5
SMTMP snowmelt temperature threshold (�C) �5 5
SMFMX melt factor for snow (mm H2O/�C day) 1.5 8
TIMP snowpack temperature lag factor 0.01 1
SURLAG surface runoff lag coefficient 1 24
GW_DELAY groundwater delay time (days) 0.001 500
ALPHA_BF base flow alpha factor 0.001 1
GWQMN threshold groundwater depth for return flow (mm) 0.001 500
LAT_TIME lateral flow traveltime (days) 0.001 180
ESCO soil evaporation compensation factor 0.01 1
CN2_fa runoff curve number multiplicative factor 0.75 1.25
AWC_fb available water capacity range factor 0 1
Ksat_fb saturated hydraulic conductivity range factor 0 1
DepthT_fb soil profile total depth range factor 0 1

aCN2_f is a multiplicative factor used to simultaneously adjust all spatially variable base runoff curve numbers (CN2) up to a maximum 98.0.
bAWC_f, Ksat_f, and DepthT_f are factors linearly scaling the physical properties (AWC, Ksat, and DepthT) between their minimum (factor = 0) and

maximum (factor = 1) soil type specific values. The ranges of AWC and Ksat were derived from soil survey data while the total soil depth range (DepthT)
range was assumed to be ±25% of the soil survey data.
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include the 14 flow parameters considered in formulations
1, 2 and 3. In addition, land surface and channel erosion
parameters, as well as phosphorus related parameters were
considered as optimization parameters. The optimized pa-
rameter names and ranges are listed in Table 3. The
parameter ranges were based mainly on ranges in the
SWAT2000 model documentation [Neitsch et al., 2001] in
order to replicate the automatic calibration process that
would have occurred with little prior knowledge of the
model application to this case study area.
2.4.2.1. Formulation 4
[31] The 37 km2 Town Brook SWAT2000 model used in

formulation 1 was calibrated simultaneously for flow, sed-
iment and total phosphorus against real daily flow and water
quality loading data according to the following:

Max
x

EW xð Þ ¼ 0:5 E
Q
NS �max 0; j%BQj � 10


 �
*0:01

h i
þ 0:2

h
ETSS
NS �max 0; j%BTSSj � 30


 �
*0:01

i
þ 0:3

h
ETP
NS �max 0; j%BTPj � 30


 �
*0:01

i
s:t: xmin

d � xd � xmax
d ; d ¼ 1; . . . ;D ð3Þ

where Ew is a weighted summation of reduced Nash-
Sutcliffe coefficients for flow (ENS

Q ), total suspended sedi-
ment (ENS

TSS) and total phosphorus (ENS
TP), x is a vector of D

model parameters that are each subject to bound constraints
in Table 3, and %B is the percent bias of model predictions
for a given constituent calculated as follows:

%B ¼
100

PT
t¼1 Simulatedt �

PT
t¼1 Measuredt

� 	
PT

t¼1 Measuredt
ð4Þ

[32] The weights assigned to equation (3), which are 0.5
for flow, 0.2 for TSS and 0.3 for TP, reflect the higher
quality and longer period of flow data (October 1997 to
September 2000) relative to water quality data (only Octo-
ber 1998 to September 2000) and the fact that accurate
phosphorus prediction is more important than accurate TSS
prediction in this case study. Equation (3) combines the %B
and ENS values into a single objective function designed to
maximize ENS and reduce j%Bj values to a specific thresh-
old. Minimizing j%Bj was only considered beneficial up to
these thresholds (10% for flow, 30% for TP and TSS) due to
the data errors associated with large flow events. Ew, like a
real ENS coefficient, ranges from negative infinity to 1.
However, the true maximum Ew value is not known. For
this formulation, D is 26 and T is 1096 days for flow and
731 days for TSS and TP.
2.4.2.2. Formulation 5
[33] The 1200 km2 Cannonsville Reservoir Watershed

multiple subbasin SWAT2000 model used in formulation
2 was calibrated simultaneously for flow, sediment and total
phosphorus against real daily flow data at Walton and real
daily water quality loading data at Beerston. The optimiza-
tion model has the same form as equation (3). The only
differences are that since data were deemed to be slightly
more reliable for Beerston, the thresholds for applying a
%Bias penalty for TSS and TP were reduced to 20% (from
30%), the number of calibrated parameters increases to 30,
and T is 2191 days for flow and 1553 days for TSS and TP.
[34] There are a myriad of alternative ways to formulate

the above calibration problems including solving the cali-
bration problem as a multiobjective problem. The calibra-
tion problems formulated here are relatively simple and
could be further extended to consider alternative low-flow
weighting schemes, alternative performance statistics, and
even take better advantage of other available measured data
sources within the basin. However, for the purposes of

Table 3. SWAT2000 Flow-, Sediment-, and Phosphorus-Related Parameters Optimized in Formulations 4 and 5

Parameter Brief Description (units) Minimum Maximum

See Table 2 same parameters and ranges as formulations 1, 2 and 3 - -
APM tributary channel peak rate adjustment sediment routing factor 0.5 1.5
PRFa main channel peak rate adjustment sediment routing factor 0.5 1.5
SPCONa channel sediment routing parameter (linear) 0.0001 0.001
SPEXPa channel sediment routing parameter (exponential) 1 2
PPERCO phosphorus (P) percolation coefficient (10 m3/Mg) 10 17.5
PHOSKD P soil partitioning coefficient (m3/Mg) 100 200
CMN rate factor for humus mineralization of active organic P 0.0001 0.003
UBP plant P uptake distribution parameter 0.1 100
LAT_SED sediment concentration in lateral & groundwater flow (mg/L) 0.1 22.8
ERGORGP P enrichment ratio for loading with sediment 1 5
SLSUBBSN_fb average slope length (m) 0.5 1.5
SLSOIL_fb slope length for lateral subsurface flow (m) 0.5 1.5
CH_ERODa channel erodibility factor 0 0.6
CLAY_fc soil layer clay content range factor 0 1
ROCK_fc soil layer rock content range factor 0 1
MUSLEadjd erosion under snow cover adjustment parameter 0 1

aParameters are not used in Town Brook model (formulation 4) because the processes the parameters control are not simulated for a single subbasin
model.

bSLSUBBSN_f, SLSOIL_f, and CN2_f are multiplicative factors used to simultaneously adjust all spatially variable base values of the SLSUBBSN,
SLSOIL, and CN2 parameters, respectively.

cCLAY_f andROCK_f are factors linearly scaling the physical properties (CLAYandROCK) between theirminimum (factor = 0) andmaximum (factor = 1)
soil type specific values. The ranges for CLAYand ROCK were derived from soil survey data.

dThe MUSLEadj parameter was added to SWAT2000 for the Cannonsville application of Tolson [2005] and controls the snow cover influence on
hydrologic response unit sediment yield.
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demonstrating the single-objective DDS optimization algo-
rithm and comparing it to the single-objective SCE optimi-
zation algorithm, this set of calibration formulations was
deemed sufficient.

2.5. Outline of Algorithm Comparisons

[35] Since this study is focused on the introduction of the
DDS algorithm and the subsequent comparison to SCE with
respect to optimization performance for model calibration
problems, these comparisons are focused on the ability of
each algorithm to optimize the value of the objective
function in both the test function and calibration formula-
tion problems considered here. Results are evaluated from a
distributed model calibration perspective such that total
function (i.e., model) evaluations are limited and thus
achieving a highly precise globally optimal solution is an
unreasonable expectation. In addition, errors in measured
data undermine the value of such precision in parameter
calibration. Given this perspective and the fact that we do
not know the optimal solution in the real calibration for-
mulations, we do not report on the final parameter values
returned by DDS or SCE.
[36] Due to the stochastic nature of the SCE and DDS

algorithm, their relative performance must be assessed over
multiple optimization trials each initialized to independent
populations or solutions. Algorithms are compared using 5
to 100 optimization trials. Optimization test function com-
parisons cover 10-, 20-, and 30-dimensional (i.e., the
number of decision variables) problems while comparisons
on the watershed model calibration formulations are pre-
sented for 6-, 10-, 14-, 26-, and 30-dimensional problems
(i.e., the number of calibrated model parameters). The
maximum number of model or function evaluations per
optimization trial varies from 1000 to 10,000 (except for
one test function). Since it is typical in global optimization
to compare average algorithm performance [Ali et al.,
2005], average algorithm convergence in terms of the best
solution found is plotted against the number of objective
function evaluations for each algorithm. In other words, for
a particular algorithm, the average of the best solution found
so far across all optimization trials is computed after each
additional objective function evaluation. These algorithm
convergence plots provide comparative results relevant to
future modelers who are constrained to anywhere from
�100 to �10,000 model evaluations for calibration. Given
that average algorithm performance does not provide a
complete picture of results, the distribution or range of the
best DDS and SCE objective function values is also
graphically assessed for the majority of optimization prob-
lems considered.
[37] Unless otherwise noted, the initial solution for DDS

is generated as described in section 2.2 and the neighbor-
hood size parameter, r, is set to the default value of 0.2. All
Fmincon and Simplex searches are initialized to the same
set of initial solutions that start the DDS algorithm. Stop-
ping criteria for the Fmincon and Simplex algorithms are
noted in section 3 for each problem they are applied to. All
SCE results presented in this paper are based on our
Matlab SCE algorithm unless otherwise noted. As in the
original SCE-UA algorithm, our SCE is initialized to
a population generated by uniform random sampling.
Default SCE algorithm parameters recommended by Duan
et al. [1994] are used except in some problems the

number of complexes was tuned to improve SCE results.
The use of default algorithm parameters best replicates
how the majority of modelers would use each algorithm.
SCE and DDS are only stopped when the maximum
function evaluation limit is reached.

3. Results

[38] The results are presented here in four sections.
Section 3.1 compares the DDS algorithm with the SCE
algorithm for a few common optimization test functions. In
section 3.2, the algorithm results for the SWAT2000 Can-
nonsville Watershed real and synthetic flow calibration
formulations for Town Brook and Walton are presented.
Section 3.3 compares SCE and DDS performance on the
high-dimension SWAT2000 Cannonsville Watershed simul-
taneous flow, sediment and phosphorus real calibration
problems for Town Brook and Walton. Lastly, section 3.4
revisits the original synthetic Sixpar hydrologic model
calibration problem as described and investigated by Duan
et al. [1992, 1993].

3.1. Algorithm Comparisons for the Test Functions

[39] The average SCE and DDS algorithm results for
some of the test functions listed in Table 1 are shown in
Figure 2 as a function of the number of function evalua-
tions. The number of SCE complexes for the 10-D test
functions was set to four based on recommendations by
Duan et al. [1994] for 10-D optimization problems. van
Griensven and Bauwens [2003] used SCE with five com-
plexes and approximately 8000 function evaluations for a
32-D model calibration problem. Therefore it was assumed
reasonable to use five complexes for the 30-D test functions
optimized with a maximum of 10,000 function evaluations.
The 30-D test functions were also minimized using 10 com-
plexes based on other studies that report using a much
higher number of complexes [e.g., Franchini et al., 1998;
Kuczera, 1997]. The averages for the 10-D test functions are
for 100 optimization trials while the averages for the 30-D
test functions are for 30 optimization trials. For each trial,
we record the best solution found on or before the ith
function evaluation for a specific algorithm and then aver-
age these best solutions over the total number of trials for
that algorithm to obtain the ‘‘average best function value’’
for i function evaluations. The maximum number of func-
tion evaluations used for the test functions (1000–10,000)
were fixed so as to cover the range of maximum SWAT
model evaluations used to solve the calibration case study
formulations in sections 3.2 and 3.3. Algorithm compar-
isons for the test functions in Figure 2 were limited to SCE
and DDS in order to clearly highlight some general algo-
rithm performance differences.
[40] In general, Figure 2 shows that DDS does better if

the number of function evaluations is limited. For the
Griewank 10-D function, the SCE algorithm finds slightly
better average solutions than DDS after 2000 function
evaluations. However, DDS provides substantially better
average solutions than SCE for the Griewank 10-D function
when function evaluations are limited to fewer than around
1000 function evaluations. Similar results are obtained
(although not presented) for the Ackley 10-D function and
the Griewank 30-D function. Figure 2c shows a comparable
pattern for the Ackley 30-D function in that the SCE
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algorithm finds slightly better average solutions than DDS
after 10,000 function evaluations. However, DDS provides
substantially better average solutions than SCE for the
Ackley 30-D function in Figure 2c when function evalua-
tions are more limited (less than �3000). This substantial
performance difference is clearly demonstrated in Figure 2c
by the DDS optimization runs to a maximum of 1000 and
2500 function evaluations. Unlike the other two functions in
Figure 2, DDS results for the Rastrigin 30-D (Figure 2b) are
better than SCE across all function evaluations considered.

[41] Results from Figure 2 show that SCE is sensitive to
the number of complexes selected. To investigate this more
closely and try to determine the optimal number of SCE
complexes for a specific example, the 10-D Rastrigin func-
tion was minimized with SCE using 1, 2, 3 and 4 complexes
and results are compared to the default DDS results in
Figure 3. Figure 3a shows the average results and identi-
fies an Ideal SCE series that is the best average results
across all four SCE parameter settings. The Ideal SCE series
is clearly unattainable with a single SCE optimization run
and shows that the optimal number of complexes depends
verymuch on the number of function evaluations utilized. For
example, SCE (p = 1) is best for less than about 600 function
evaluations but SCE (p = 2) is then best for between 600 to
1000 function evaluations. In contrast, DDS2000 produces
lower function values on average than the Ideal SCE for
nearly all function evaluations (except between 250 and
500) and the DDS1000 results are even lower than
DDS2000.
[42] Figure 3b shows the empirical cumulative distribu-

tion function of the final best objective function values from
all 100 optimization trials after 2000 function evaluations.
The minimum function value is �10 and the almost vertical
line at �10 for DDS indicates all of the DDS solutions are
very close (within 0.08) to the minimum. The vertical lines
for SCE at �9.0, �8.0, �7.0, and �6.0 indicate SCE con-
verges to very poor local minima with significant to
substantial frequency (5–75% of trials) depending on the
number of complexes. Note that the SCE results for one and
two complexes typically converge in fewer than 1000
function evaluations and thus could be improved by simply
restarting SCE and using a total of 2000 total function
evaluations. Even with one or two restarts, SCE with one or
two complexes would still converge to quite poor solutions
with notable frequency. Although not obvious due to scaling
in the figure, when SCE does manage to avoid the poor
local minima, it converges to the global minimum with
more significant digits than DDS. However, improving the
final DDS solutions after 2000 function evaluations with the
derivative-based Fmincon algorithm also yielded the global
minimum in all 100 trials with less than 100 additional
function evaluations on average.
[43] The DDS and SCE algorithms were also tested on a

20-D version of the extremely multimodal ‘‘bump’’ function
[Keane, 1996]. The bump function has one nonlinear and
one linear constraint in addition to decision variable bound
constraints. Following the approach taken by Keane [1996],
all SCE and DDS solutions that were infeasible were simply
assigned a function value of 0. In comparison with five
other global optimization methods (including genetic algo-
rithms and evolution strategy), DDS generated the best
average results after 150,000 function evaluations (slightly
better than the GA) while SCE performed second worst out
of six algorithms on this problem. Complete Bump function
results are available from Tolson [2005].

3.2. SWAT2000 Flow Calibration

[44] The SWAT2000 flow calibration problems described
in section 2.4.1 are solved here using the optimization
algorithms described in section 2.1. The default number
of SCE complexes (p) for the three 14-D flow calibration
problems was set to four based on recommendations by
Duan et al. [1994] for a 13-D calibration problem.

Figure 2. SCE (with varying complexes, p) and DDS
(with varying maximum function evaluation limits) perfor-
mance comparisons for various 10-D and 30-D optimization
test functions: (a) 10-D Griewank, (b) 30-D Rastrigin, and
(c) 30-D Ackley. In the legend the DDS number means m
set to that number of function evaluations; for example,
DDS2000 indicates m set to 2000 function evaluations.
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[45] Figure 4 summarizes algorithm performance on
formulation 1. The DDS, SCE with two and four com-
plexes, Simplex and Fmincon results are plotted versus the
number of model evaluations in Figure 4a. Fmincon and
Simplex optimization trials used two restarts and both
results in Figure 4 are shown as points connected by a
dashed line because intermediate algorithm results were
unavailable and were therefore linearly interpolated. The
Fmincon and Simplex points in Figure 4 are the average
function values plotted against the corresponding average
number of model evaluations required for convergence after
one and two restarts. The minimum difference for comput-
ing finite difference derivatives in Fmincon was set to 10�5

to match the modified SWAT2000 input precision levels.
All other Fmincon and Simplex algorithm inputs were left at
their default values. Clearly, both Fmincon and the Simplex
are converging to poor local minima with the simplex
performing slightly better. The default SCE (p = 4) con-
verges substantially slower than DDS and somewhat slower
than SCE with p = 2. DDS finds lower average SSE values
than either SCE result for any number of model evaluations
in Figure 4a.

[46] Figure 4b provides a more complete description of
algorithm performance by plotting all 20 objective function
values for the DDS and SCE algorithms for fixed levels of
computational effort (1000 and 2500 model evaluations).
After 1000 model evaluations, the median DDS solution is
lower than both SCE results. Reducing p to 2 improves
average SCE performance after 1000 evaluations, but after
2500 evaluations, average and median SCE results are
nearly indistinguishable. At 2500 model evaluations, Figure
4b shows that reducing the number of complexes increases
the variance (i.e., spread) of SCE solutions. Although the
variance of DDS solutions after 2500 model evaluations is
noticeably higher than SCE with p = 4, half the DDS
solutions are within 10 SSE units of the minimum SSE
found (601).
[47] The synthetic Town Brook flow calibration

(formulation 2) results for SCE, DDS, Fmincon and the
Simplex algorithms are compared in Figure 5. The average
best solutions are plotted on a logarithmic scale versus the
number of SWAT model evaluations in order to clearly
display the differences in algorithm performance. All Fmin-
con and Simplex algorithm inputs are the same as in
formulation 1. Similar to Figure 4, Fmincon and Simplex

Figure 4. Algorithm performance comparisons for the 14-D Town Brook real flow calibration
(formulation 1): (a) Average best SSE across 20 optimization trials as a function of the number of model
evaluations. (b) All SCE and DDS solutions after 1000 and 2500 model evaluations.

Figure 3. SCE and DDS performance comparisons based 100 optimization trials of the 10-D Rastrigin
function: (a) Average best function values and (b) empirical cumulative distribution function of final best
function values after a maximum of 2000 function evaluations. The ideal SCE series is the unattainable
best average SCE result of the four SCE parameter settings considered.
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converge to poor local solutions. Fmincon was not restarted
since it was clear results would not substantially improve.
Although the DDS and SCE algorithms converge to nearly
the same SSE value after 2500 model evaluations under
default algorithm parameters, the DDS algorithm reached
good solutions more quickly. When p was reduced to two
from four, SCE convergence speed and effectiveness was
improved. In fact, SCE results with p = 2 are slightly better
on average than the default DDS algorithm (r = 0.2) results
after 2500 function evaluations. However, this difference is
not significant from a practical calibration perspective since
SCE improves the corresponding average ENS coefficient by
only 0.001 over DDS. If DDS is also fine-tuned by reducing
r to 0.1, DDS produces the lowest average SSE values of all
algorithms after 2500 model evaluations.
[48] The more computationally expensive Cannonsville

Reservoir watershed calibration problem (formulation 3)
was solved using only DDS and SCE algorithms since
previous results for formulations 1 and 2 suggest that even
with restarts, the Fmincon and Simplex algorithms were not
capable of avoiding poor local minima. All 10 optimization
trial results for this maximization problem are shown for
both DDS and SCE in Figure 6 for up to 1000 SWAT model
evaluations. The DDS algorithm clearly outperforms SCE
for this problem for all model evaluations. Furthermore, the
DDS variance is smaller than the variance in SCE solutions.

3.3. SWAT2000 Simultaneous Flow, Sediment, and
Phosphorus Calibration

[49] The SWAT2000 simultaneous flow, TSS and phos-
phorus problems discussed in section 2.4.2 are solved here
using only the SCE and DDS algorithms. Since the dimen-
sionality and thus problem difficulty increases relative to the
previous three flow calibration problems, the number of
model evaluations used for calibration was also increased.
The objective functions for formulations 4 and 5 can be
roughly interpreted as a weighted ENS coefficient.
[50] For the 26-D Town Brook calibration problem (for-

mulation 4), 10,000 model evaluations were used for SCE
while only 5000 model evaluations were used for DDS due
to restrictions on available computational time. Five SCE

complexes were selected based on van Griensven and
Bauwens [2003]. In addition, an alternative SCE parameter
setting approach described by Sorooshian et al. [1993] as
relatively more efficient was evaluated where the number of
complexes was set to five initially and then reduced to a
minimum of two as the search progressed. Figure 7a shows
the average best solution across 10 optimization trials for
SCE and DDS versus the number of model evaluations.
Results show the dominant performance of DDS over both
SCE parameterizations. Even after twice as many model
evaluations (10,000), the SCE (p = 5) average solution is
still worse than DDS by more than 0.02 objective function
units. Figure 7b presents all DDS solutions after 1000 and
5000 model evaluations and all SCE solutions after 5000
and 10,000 model evaluations. Although the SCE complex
reduction strategy (p = 5 to p = 2) shows improved
efficiency relative to SCE with a constant number of
complexes, DDS results are still notably better than either
SCE result. For example, Figure 7b shows the worst DDS
solution after 5000 evaluations is approximately the same as
the median SCE solution for either SCE parameterization.
[51] For the 30-D Cannonsville Reservoir Watershed

problem (formulation 5), 2000 model evaluations were used
for both SCE and DDS. Note that each optimization trial
required approximately 68 hours of computation time on a
Pentium IV, 3-Ghz processor. In light of the previous SCE
results, SCE was applied to this problem using only two
complexes in an attempt to improve SCE efficiency for this
high-dimension, limited number of model evaluations prob-
lem. Figure 8 shows DDS and SCE average performance as
well as the best and worst performance over five optimiza-
tion trials. SCE simply cannot compete with DDS on this
computational scale. The worst DDS solution was always
better than the best SCE solution after approximately 200
function evaluations.
[52] Performance statistics for flow, TSS and total phos-

phorus are summarized in Table 4 for the best solutions
from SCE and DDS to the simultaneous flow and water
quality calibration problems (formulations 4 and 5). Dis-
aggregating the objective function component performance
statistics in equation (3), namely for flow, TSS and total P,
demonstrates the differences in algorithm results in more
interpretable units. For formulation 4, with only half the

Figure 5. Algorithm performance comparison for the
14-D Town Brook synthetic flow calibration (formulation 2):
Average best SSE across 20 (SCE p = 4, DDS r = 0.2,
Fmincon, and Simplex) or 10 (SCE p = 2 and DDS r = 0.1)
optimization trials as a function of the number of model
evaluations.

Figure 6. DDS and SCE results for 14-D Walton flow
calibration (formulation 3) showing the distribution of best
Nash-Sutcliffe coefficients (ENS) for 10 optimization trials
as a function of the number of model evaluations.
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computationally effort (5000 DDS versus 10,000 SCE
(p = 5) model evaluations), DDS was able to identify a
solution that was slightly better than SCE for all three
constituents. For formulation 5, using the same computa-
tional effort, the best DDS solution was substantially better
than the best SCE solution in terms of the ENS coefficient.
For example, the daily sediment and total P ENS coefficients
for DDS were 0.20 and 0.10 higher, respectively, than the
corresponding SCE values. In all cases in Table 4, the
thresholds for the maximum absolute %Bias (30% and
20% for water quality constituents in formulation 4 and 5,
respectively) were attained. In comparison with the DDS
results from formulation 3 (calibration to Walton flows),
where an average ENS of 0.85 was obtained, the simulta-
neous inclusion of sediment and phosphorus in the objective
function in formulation 5 only slightly reduced the flow ENS

coefficient to 0.82.

3.4. Sixpar Model Calibration Problem from Duan
et al. [1993, 1992]

[53] The synthetic Sixpar six parameter hydrologic model
calibration problem was an integral part of the original set
of optimization problems used to introduce SCE [Duan et
al., 1993, 1992]. Although DDS was designed with larger
dimensional problems in mind, DDS, along with our Matlab
SCE, and the Fmincon algorithm were applied to the Sixpar
problem available with the original SCE-UA Fortran code.
SCE-UA results on the Sixpar problem are compared to the
new results generated in this study. Our Matlab SCE
handles the linear Sixpar constraints the same way as
SCE-UA, while the DDS algorithm repeatedly samples
new candidate solutions (steps 3 and 4 in Figure 1) until
the linear constraints are satisfied. The Fmincon algorithm
accounts for the linear constraints explicitly as they can be
input to the algorithm. Duan et al. [1993] defined successful
convergence to the global minimum as SSE values less than
10�3. Thus each of the Fmincon optimization trials was
restarted at new random initial solutions until a restart
terminated with an SSE value less than 10�3. All results
for this problem were generated using 100 optimization
trials. Further comparison details and results measuring

multiple aspects of algorithm performance are summarized
in Table 5.
[54] The most interesting result in Table 5 is that Fmincon

is substantially more efficient and effective than all other
algorithms. For example, after a maximum of three restarts,
all 100 Fmincon optimization trials converged and stopped
after an average of only 409 total Sixpar model evaluations
to the SSE target value of 10�3 or better. In comparison,
SCE-UA with p = 2 only achieved the target SSE value in
79/100 optimization trials and took an average of almost
three times as many Sixpar evaluations (1104) as Fmincon
to achieve the SSE target. SCE-UAwith p = 6 shows higher
reliability (99/100 achieve SSE target) but requires almost
eight times as many Sixpar evaluations as Fmincon. The
success of Fmincon on Sixpar is in contrast to the poor
Fmincon performance on the SWAT2000 model calibration
problems. Sixpar does not appear to be as difficult a global

Figure 7. Algorithm performance comparison for the 26-D Town Brook simultaneous flow, sediment
and phosphorus calibration maximization problem (formulation 4): (a) Average best objective function
value (equation (3)) across 10 optimization trials as a function of the number of model evaluations. (b) All
SCE andDDSoptimization trial results after various numbers ofmodel evaluations. Sorooshian et al. [1993]
recommends SCE (p = 5 to p = 2) as efficient SCE strategy.

Figure 8. Algorithm performance comparison for the 30-
D Walton/Beerston simultaneous flow, sediment and
phosphorus calibration maximization problem (formulation
5): Average and bounds of best objective function value
across five optimization trials as a function of the number of
model evaluations. Bounds are based on the minimum and
maximum best objective function value of the five
optimization trials.
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optimization test problem as the SWAT2000 calibration
problems.
[55] The results in Table 5 do show that for this classical

problem, SCE finds the global solution to the problem,
much more effectively and efficiently than DDS. However,
based on the equivalent ENS calculated for the DDS and
SCE solutions, the numerical difference between the DDS
and SCE SSE values are not at all practically significant.
For example, after 1104 Sixpar evaluations, DDS achieves
an ENS of 0.9996 in comparison with 1.0000 for SCEwith p =
2. When flow measurement errors are considered in real
calibration problems (where an ENS of 0.8 is often considered
to be good), such a small difference between the ENS values is
irrelevant. Note that our Matlab SCE shows an improved
reliability over SCE-UA because unlike SCE-UA, it contin-
ues refining the solution after SCE-UAwould have otherwise
stopped due to additional SCE-UA convergence criteria.

4. Discussion

4.1. DDS and SCE Performance Comparison
Summary

[56] Both SCE and DDS were developed as global
optimizers to solve difficult watershed model calibration
problems. No evidence has been presented to suggest that

DDS is a better optimizer than SCE for lower-dimensional
(six or fewer) problems. In addition, because comparisons
here have been carried out largely from a limited total
allowable function evaluation perspective, it is not clear
which of DDS or SCE is a more appropriate optimizer for
higher-dimensional problems when total allowable function
evaluations are essentially unlimited (which is not typically
the case for distributed watershed model calibration). Lim-
ited results in this study when 10,000 or more function
evaluations were used provide examples where SCE per-
forms better than DDS (e.g., 30-D Griewank and Ackley
test functions) and where DDS performs better than SCE
(e.g., Bump and 30-D Rastrigin test functions). In order to
evaluate SCE and DDS suitability for automatic calibration
of current computationally demanding watershed simulation
models the remainder of the discussion will interpret results
from a more limited total allowable function evaluation
perspective.
[57] Available evidence in this study for the Sixpar model

calibration example (Table 5) and the synthetic Town Brook
flow calibration results in Figure 5 demonstrate numerically
better SCE algorithm performance that was insignificant
from a practical model calibration perspective. These two
cases were the only model calibration problems in this study

Table 4. Values of Weighted Objective Function Components (Flow, TSS, and Total P Performance Statistics) for the Best SCE and DDS

Solutions to Formulations 4 and 5a

Formulation
Number,
Algorithm

Flow TSS Total P

Objective
Function, Ew

Daily
Nash-Sutcliffe ENS Percent Biasa

Daily
Nash-Sutcliffe ENS Percent Biasa

Daily
Nash-Sutcliffe ENS Percent Biasb

4, SCE (p = 5)c 0.65 �5.6% 0.72 �9.2% 0.71 �23.5% 0.68
4, DDSc 0.68 �5.5% 0.74 �4.0% 0.73 �22.8 0.71
5, SCE (p = 2) 0.79 �0.1% 0.34 4.9% 0.40 �12.8% 0.58
5, DDS 0.82 3.9% 0.54 16.7% 0.50 �8.0% 0.67

aSee equations (3) and (4).
bAll four solutions satisfied the maximum tolerable percent bias levels.
cDDS used 50% fewer model evaluations compared to SCE for formulation 4.

Table 5. Comparative Algorithm Performance Averaged Over 100 Optimization Trials for the Sixpar Calibration Problem From Duan et

al. [1992, 1993]

Algorithma
Average SSE

Across 100 Trials
ENS Equivalent to
Average SSEb

Number of Trials
With SSE < 10�3 AFEc

Average Sixpar Evaluations
Across 100 Trials

Fmincon, 1 restartd 1.7689 0.9999 84 <314 399
Fmincon, 3 restartsd 0.0002 1.0000 100 < 409 409
SCE, p = 2 0.1857 1.0000 92 < 1104 1104e

SCE, p = 6 0.0002 1.0000 100 < 2118 2118
SCE-UA, p = 2f NA NA 79 1104 NA
SCE-UA, p = 6f NA NA 99 3133 NA
DDSg 5.3762 0.9996 0 NA 1104

aHere p is number of complexes.
bCalculated using the data in the Sixpar model example files as ENS = 1 – SSEavg/12281. A high value for ENS is best. Maximum possible ENS is 1.0000

(corresponding to global minimum of SSE = 0).
cAverage Sixpar evaluations to reach SSE < 10�3. Only trials achieving SSE < 10�3 included. The AFE performance metric was used by Duan et al.

[1993].
dFmincon restarts initialized to the best of 15 randomly selected parameter sets. The minimum difference for computing finite difference derivatives in

Fmincon was set to 10�4 and the objective function and decision variable tolerances were set to 10�6 and 10�5, respectively. Only three Fmincon trials
needed to be restarted a third time. AFE is smaller than reported since Fmincon only stopped when convergence criterion met (often when SSE was much
smaller than 10�3) and intermediate results were not available.

eAll 100 Matlab SCE optimization trials reached SSE < 10�3 in 1555 Sixpar evaluations or less.
fAvailable results taken from Table 2h of Duan et al. [1993]. NA means results not available.
gDDS results taken from optimization trials using 2500 Sixpar evaluations but results are only reported after 1104 Sixpar evaluations in order to compare

against SCE, p = 2 for the same computational effort.
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where SCE was observed to find better average final
solutions than DDS. For the Sixpar results, very different
conclusions about SCE versus DDS algorithm performance
are reached when the strict numerical results (i.e., column 4
in Table 5) are used rather than the more practical calibra-
tion interpretation of results (i.e., column 3 in Table 5).
[58] In contrast, our results show that for all high-dimen-

sional problems investigated here (those with 10 or more
decision variables) the DDS algorithm offers quite substan-
tial improvements over SCE performance for a wide range
of total allowable objective function evaluations without
requiring any algorithm parameter adjustment. DDS results
were better than SCE in spite of the fact that the number of
SCE complexes was fine-tuned and modified from default
or recommended values for some problems in order to
improve SCE performance (e.g., Figures 3, 4, 5, and 7).
In 8 of 13 algorithm performance comparisons in this study,
(including all four real SWAT2000 calibration formulations)
the DDS algorithm produced better average solutions than
SCE for the entire range of function or model evaluations
considered (see Figures 2b, 3a, 4a, 5, 6, 7a, and 8). For
SWAT2000 model calibration, the DDS performance ad-
vantage over SCE at various numbers of model evaluations
was notable from a practical calibration perspective. For
example, DDS bettered the average ENS achieved by SCE
by 0.05 to 0.15 for the range of model evaluations consid-
ered in Figure 6. In addition, in the 26 and 30 dimensional
real calibration problems (see Figures 7a and 8), DDS
required only 15–20% of the number of SCE model
evaluations in order to find solutions with a better average
objective function value than the final best average SCE
objective function values.
[59] Duan [2003] recommends that SCE users experi-

ment with the selection of algorithmic parameters on their
own problem. Even if algorithmic parameter experimenta-
tion is limited to the number of complexes (p), conducting
such experiments is clearly problematic when dealing with
computationally expensive objective functions. Madsen et
al. [2002] describe the problem of specifying the number of
complexes for SCE when the number of model evaluations
is limited as a general trade-off between efficiency and
algorithm reliability and Figure 3 shows results from our
case study highlighting this issue. No such algorithm
parameter tuning is recommended when applying the
DDS algorithm since DDS with a default r value of 0.2
was demonstrated to find relatively good solutions quickly
for the range of dimensions and model (or objective
function) evaluations considered in this study.

4.2. Summary of Previous SCE Algorithm
Applications

[60] In the automatic watershed model calibration litera-
ture, the SCE algorithm has widely been considered for
13 years to be the standard for optimization as it is generally
found to be robust, effective and efficient [Duan, 2003] and
the original SCE publications [Duan et al., 1993, 1992,
1994] are referenced in hundreds of publications. Further
evidence of the stature of the SCE algorithm is the incor-
poration of SCE into advanced algorithms for uncertainty
analysis [Vrugt et al., 2003a, 2003b] and multiobjective
optimization [Vrugt et al., 2003a; Yapo et al., 1998]. The
contrast between this large body of SCE literature and our
findings, which show that the new DDS algorithm outper-

forms the SCE algorithm for many problems, is somewhat
surprising. It is therefore important to more closely review
previous SCE studies in order to show that our SCE
findings are not unreasonable or completely without
precedent.
[61] In a recent review of global optimization for water-

shed models by Duan [2003], 20 studies were referenced
that compare or apply the original SCE-UA algorithm for
either watershed model calibration or application in other
areas of hydrology. Tolson [2005] reviewed this set of SCE
literature in order to look for similarities with the results
reported in section 3 of this study. A subset of nine of these
20 studies [Duan et al., 1993, 1992; Franchini et al., 1998;
Gan and Biftu, 1996; Kuczera, 1997; Luce and Cundy,
1994; Sorooshian et al., 1993; Tanakamaru and Burges,
1996; Thyer et al., 1999] compare SCE to other optimiza-
tion algorithms. The majority of results in these nine
publications only focus their comparison on final algorithm
results after convergence and/or an extremely large number
of model evaluations (often more than 10,000). Of the nine
SCE comparison studies listed above, only two [Kuczera,
1997; Tanakamaru and Burges, 1996] present algorithm
convergence rates versus the number of model evaluations
similar to Figure 2. Presumably, this type of assessment led
Kuczera [1997] to note GA performance was better than
SCE in some limited cases. Tolson [2005] reports that
results of Tanakamaru and Burges [1996] also show SCE
to perform worse than at least one other algorithm if
available model evaluations were limited to roughly 2000
or less.
[62] In summary, a closer analysis of some of the previ-

ous algorithm comparison studies involving SCE revealed
that when total allowable objective function evaluations are
limiting (i.e., SCE is not run to convergence), other algo-
rithms have been found to perform equally well or better
than SCE. For problem dimensions of ten or more, fewer
than 10,000 function evaluations would generally be con-
sidered limiting based on the majority of SCE studies noted
in section 1 and the paragraph above. There is a sizable suite
of hydrologic or watershed simulation models, particularly
distributed models, for which it is not practically feasible to
conduct 10,000 or more model evaluations for calibration.
The evidence in this paper combined with available evi-
dence from earlier SCE comparative studies demonstrate
that the ranking of SCE performance relative to other
algorithms depends very much on the maximum number
of model evaluations used for calibration.

4.3. DDS Algorithm Comments

[63] The default value of the neighborhood perturbation
size parameter, r, of 0.2 produced good results across all the
test functions and model calibration problems reported in
section 3. These good results covered 6-, 10-, 14-, 20-, 26-
and 30-dimensional optimization problems ranging mainly
from 1000 to 10,000 total function evaluations. Therefore
the default value for r seems robust and is suggested for
most future DDS applications. In two of the relatively easier
optimization problems considered in this study (the 10-D
Griewank function because it has one main region of
attraction and the synthetic SWAT2000 calibration problem
(formulation 2) because error free measured data are used)
reducing the r parameter from 0.2 to 0.1 improved DDS
results. Another situation not investigated here that may call
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for a decrease in the r parameter from 0.20 is when the
default watershed model parameter set provides a reason-
able objective function value such that modelers think it a
good idea to concentrate the search closer to the default
model parameter values. However, the probability DDS
becomes mired near a poor local optima increases as
r decreases.
[64] The DDS algorithm search strategy is scaled to the

maximum number of total allowable function or model
evaluations that the user wishes to expend on solving their
problem. This scaling is designed to produce good DDS
results after m function evaluations, regardless of whether m
is 100 or 100,000. A demonstration of the results of this
scaling behavior is shown in Figure 9 for the 10-dimen-
sional Griewank function with the DDS neighborhood size
parameter, r, set to the default of 0.2. Each set of DDS
optimization trials in Figure 9 (DDS to 200, 500, 1000 and
2000 function evaluations) minimized the Griewank func-
tion 30 times from the same set of random initial solutions.
Clearly, Figure 9 shows that the DDS algorithm effectively
scales to any number of maximum function evaluations in a
way that does not require users to determine unique r values
for problems subject to different computational time con-
straints. The behavior of DDS depicted in Figure 9 was also
observed for the test functions in Figure 2. From a calibra-
tion perspective, this DDS scaling behavior is attractive
because it shows modelers do not necessarily need to
experiment with DDS parameters if their total allowable
model evaluations for calibration changes due to increased
model complexity, time or space discretization, or more
stringent modeling timelines.

5. Conclusions and Future Work

[65] For the range of test functions and watershed model
calibration examples considered in this study, numerical
results demonstrate that the DDS algorithm is a more
computationally efficient and robust optimization algorithm
than SCE in the context of distributed watershed model

automatic calibration. DDS has been specifically shown to
outperform SCE for multiple computationally intensive
SWAT2000 model calibration examples. The value of
DDS over SCE is greatest for computationally demanding
models where the total number of model evaluations for
calibration is limited and the number of calibrated param-
eters is high (10 or more). We have no conclusive evidence
that DDS is better than SCE when 6 or fewer parameters are
calibrated or an essentially unlimited number of model
evaluations are used for calibration. In this study, the
objective function or model evaluations were mainly limited
to 10,000 or fewer and in 8 out of 13 optimization problems
(including all four real SWAT2000 calibration formulations
with 14 or more parameters calibrated), the DDS algorithm
produced better average solutions than SCE for the entire
range of function or model evaluations considered. A close
review of previous SCE comparison literature from a
distributed modeling perspective (i.e., total model evalua-
tions for calibration are limited) show that our finding of
relative SCE inefficiency is not without precedent.
[66] In the only automatic calibration formulation exam-

ples where SCE numerically outperformed DDS (two syn-
thetic calibration examples) the numerical difference in
terms of the common Nash-Sutcliffe calibration metric is
too small to be of any interest (e.g., in the third or fourth
decimal place). Furthermore, in the Sixpar synthetic cali-
bration example [Duan et al., 1992], a multistart derivative
based method found the global minimum most reliably and
efficiently. This shows that the Sixpar problem is not as
difficult a global optimization problem as the SWAT2000
calibration problems introduced in this study.
[67] DDS is robust across a range of model calibration

parameters (e.g., 6 to 30 in our examples) since it generated
relatively good solutions without requiring any algorithm
parameter adjustments. Results across multiple test func-
tions show DDS can automatically scale to search for good
calibration solutions within case study specific computa-
tional time limits without requiring algorithm parameter
adjustment. The DDS algorithm is very simple and thus
can be easily coded in whatever programming language is
most convenient for the model being calibrated. Although
this study focused on watershed models, the results are
just as relevant to all environmental simulation modelers
calibrating six or more parameters of a computationally
demanding model.
[68] Algorithm comparisons presented here assessed

DDS performance against SCE because SCE is currently
the most commonly applied algorithm for automatic cali-
bration of watershed simulation models. However, there
have been substantial algorithmic advancements in the field
of global optimization since SCE was introduced. It would
be prudent to follow up this study with one that compares
SCE, DDS, additional global optimization algorithms, and
other efficiency-oriented optimization algorithms such as
the environmental simulation model parameter estimation
(PEST) method [e.g., Doherty and Johnston, 2003]. In
addition, the authors are currently investigating and testing
modifications to the DDS methodology to (1) improve
algorithm performance on lower-dimensional (i.e., <10)
optimization problems, (2) increase ability of DDS to locate
the exact global optimum, and (3) implement a parallelized
version of DDS. The authors have also incorporated DDS

Figure 9. Average DDS behavior over 30 optimization
trials as the maximum number of function evaluations (m) is
varied for the 10-D Griewank function. DDS number means
m set to that number of function evaluations. Same set of 30
initial solutions is used for each m.
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into a new and efficient approximate uncertainty analysis
methodology [Tolson, 2005].
[69] Matlab and Fortran 90 source codes for DDS, as well

as a compiled DDS program linkable via text files to user-
specific objective functions, are available by emailing the
first author.
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