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Abstract Projections of discharge are key for future water resources management. These projections are
subject to uncertainties, which are difficult to handle in the decision process on adaptation strategies.
Uncertainties arise from different sources such as the emission scenarios, the climate models and their post-
processing, the hydrological models, and the natural variability. Here we present a detailed and quantitative
uncertainty assessment, based on recent climate scenarios for Switzerland (CH2011 data set) and covering
catchments representative for midlatitude alpine areas. This study relies on a particularly wide range of dis-
charge projections resulting from the factorial combination of 3 emission scenarios, 10–20 regional climate
models, 2 postprocessing methods, and 3 hydrological models of different complexity. This enabled us to
decompose the uncertainty in the ensemble of projections using analyses of variance (ANOVA). We applied
the same modeling setup to six catchments to assess the influence of catchment characteristics on the pro-
jected streamflow, and focused on changes in the annual discharge cycle. The uncertainties captured by
our setup originate mainly from the climate models and natural climate variability, but the choice of emis-
sion scenario plays a large role by the end of the 21st century. The contribution of the hydrological models
to the projection uncertainty varied strongly with catchment elevation. The discharge changes were com-
pared to the estimated natural decadal variability, which revealed that a climate change signal emerges
even under the lowest emission scenario (RCP2.6) by the end of the century. Limiting emissions to RCP2.6
levels would nevertheless reduce the largest regime changes by the end of the century by approximately a
factor of two, in comparison to impacts projected for the high emission scenario SRES A2. We finally show
that robust regime changes emerge despite the projection uncertainty. These changes are significant and
are consistent across a wide range of scenarios and catchments. We propose their identification as a way to
aid decision making under uncertainty.

1. Introduction

Designing adaptation strategies to a changing climate implies making decisions on the basis of an uncertain
knowledge of future conditions. Uncertainties in climate projections are being investigated on the basis of
consequent coordinated experiments such as the global Coupled Model Intercomparison Projects (CMIPs)
[Taylor et al., 2012] or the European ENSEMBLES project [van der Linden and Mitchell, 2009]. A clearly defined
setup, with an agreement on, for instance, emission scenarios or the simulated region, makes simulations
comparable and allows for detailed uncertainty assessments [Fischer et al., 2012; Knutti and Sedl�aček, 2012].
The main sources of uncertainties investigated in such studies are the emission scenario, the model formu-
lation and parameterization, and the natural climate variability [Hawkins and Sutton, 2010]. Studies exploring
the future consequences of climate change on catchment discharge deal with additional sources of uncer-
tainty, namely, the hydrological models and the downscaling or bias correction method. A key challenge is
then to quantify the contribution of each of these sources to the uncertainty of the discharge projections
[Bosshard et al., 2013].

A common approach is to produce simulations based on a model chain in which a set of climate projections
forces various impact models. Each element of the chain influences the simulated impact and thereby con-
tributes to its uncertainty. Uncertainty propagation is then explored by applying an ensemble approach, i.e.,
by varying the elements of the chain and by interpreting the resulting projection variability as uncertainty.
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This method was successfully applied in a number of cases [e.g., Horton et al., 2006; Wilby and Harris,
2006; Prudhomme and Davies, 2009; Dobler et al., 2012; Finger et al., 2012; Bosshard et al., 2013;]. These
studies and others constitute a solid basis for the exploration of uncertainty in discharge projections.
They were conducted in a variety of locations, using different climate and hydrological models, and
considered a wide breadth of hydrological parameters. This diversity provides us with a wealth of in-
depth analyses but, at the same time, makes a comparison of results difficult. While there seems to be a
general agreement on the dominant contribution of climate models to the uncertainty in discharge pro-
jections, different conclusions were drawn about the contribution of the hydrological models, for exam-
ple. Because of the diversity of the setups employed, the causes for these differences are hard to
identify. It is in particular unclear whether these results reflect more the differences between the model
chains or between the study basins. Further, when studies focus on one or two catchments, the general-
ization of their results to other areas and the assessment of their robustness is difficult [Gupta et al.,
2014].

Our study brings together three research groups applying their models to the same six catchments
and relying on the same set of climate projections as input. Using the same setup for all catchments
allows for the separation of the influence of the catchments from that of the other elements of the
model chain. Another novel aspect is the use of climate projections under an intervention scenario
(RCP2.6). Whereas most studies deal with one single scenario, or with scenarios involving no climate
policy intervention, we investigate the impacts under the scenario RCP2.6 that implies stringent
efforts to reduce emissions with the objective to keep global temperature increase below 2�C. We
hence extend previous uncertainty studies by including, in a systematic way, a larger set of emission
scenarios and by covering a wider range of catchment types. In this paper, the following questions
are addressed: where does the uncertainty in discharge projections come from and how does this
partitioning change with catchment characteristics? Do robust changes in regime emerge despite
projection uncertainty? Would limiting emissions to RCP2.6 levels lead to significant reductions of
the impacts on discharge?

2. Data and Methods

2.1. Experimental Design
We combined three emission scenarios, three regional climate model estimates (based on 10–20 cli-
mate model runs), two postprocessing methods, and three hydrological models in a factorial way,
leading to a total of 54 model chains applied to six catchments and three future periods, 2020–2049,
2045–2079, and 2070–2099 (Figure 1). In total, 972 hydrological projections of 30 years each were pro-
duced and analyzed. The factorial design of this modeling experiment reduces the risk of sampling
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Figure 1. Flowchart of the experimental design. The boxes represent the model chain elements. For each element, several methods were
used which are listed under the boxes and described in the main text. The three GCM-RCM estimates were derived from 10 to 20 different
GCM-RCMs (see section 2.3).
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artifacts, i.e., of reporting a result which only stems from a particular combination of models and is
not representative of the other possible combinations. Further, it allows us to disentangle the contri-
bution of the different elements of the model chain to the ensemble variance and to quantify the
eventual interactions between these factors.

2.2. Catchments
Discharge was simulated in six mesoscale catchments in Switzerland, which are representative of the main
discharge types in midlatitude alpine regions. These basins were shown to react differently to climate change
by K€oplin et al. [2012], who clustered 186 Swiss mesoscale catchments into seven response types (Figure 2).
Their mean elevation covers the range 700–2370 masl., their size varies between 231 and 1696 km2, and two
of them are partially glacierized. They can be characterized as humid, as their evaporation is mainly energy
limited. The Venoge River flows on the plateau at the foothills of the Jura, a comparatively low-elevation
mountain chain. Emme and Thur basins have their headwaters in the pre-Alps, whereas Rhone and Vorder-
rhein are alpine catchments, dominated by snow and ice melt. The Verzasca basin is located on the southern
side of the Alps. Further information on the catchment characteristics are provided in Table 1.

Dams are present in most of the large Swiss alpine catchments. According to the Swiss Committee on Dams
(www.swissdams.ch), three dams are upstream of the Brig gauging station for the Rhone catchment and
seven are upstream of Ilanz for the Vorderrhein catchment. The reservoirs are in average larger in Vorder-
rhein catchment. Their total volume is about 31 3 106 m3 for the Rhone and 260 3 106 m3 for Vorderrhein,
which corresponds to �2.3% and �24.9%, respectively, of the mean annual discharge at the gauging
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Figure 2. Map of the six study catchments within Switzerland. The color coding refers to clusters of catchments subject to a similar hydro-
climatological changes. The discharge changes projected for these watersheds are summarized by the plus and minus signs. The clustering
methodology and the model chain used to produce those projections are detailed in K€oplin et al. [2012].
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station for these two basins. The other four study basins, located at lower elevation, are essentially
unregulated.

2.3. Climate Projections
We used climate projections of the CH2011 data set [CH2011, 2011] from the Center for Climate Systems
Modeling (C2SM). This recently released data set consists of two types of projections for Switzerland,
both based on the climate model runs of the ENSEMBLES project [van der Linden and Mitchell, 2009] and
both relying on the delta change approach. According to this technique, projections are produced by
combining observations to additive (multiplicative) factors for temperature (precipitation). These factors
were assessed in a deterministic way by spectral smoothing of 10 general circulation and regional climate
model (GCM-RCMs) chains, and in a probabilistic way by a Bayesian multimodel approach combining 20
runs until 2050, and then 14 runs until 2099, respectively. CH2011 projections are not transient but
available as mean temperature and precipitation changes over 2020–2049, 2045–2074 and 2070–2099,
1980–2009 being the reference period. This defines the periods over which hydrological simulations were
run. The delta change factors were estimated from GCM-RCM simulations run with a daily time step.
These factors were provided for each day of the year (365 values) and, once combined with station obser-
vations, yielded projections at the station scale. The interpolation within the catchments was performed
by the hydrological models using the methods listed in Table 2. As the delta change method does not
capture changes in variance, we restricted our analysis to the changes in the annual discharge cycle and
did not consider extremes.

The production of the projections by the CH2011 team and their use to force hydrological models in this
study can be summarized as follows. For the deterministic data set, the delta change factors were deter-
mined for each of the 10 GCM-RCM chains by spectral smoothing. This technique enables the isolation of
the precipitation and temperature annual cycles by removing fluctuations arising from natural variability,
which may result in artifacts in the estimated climate change signal (see Bosshard et al. [2011] for more
details). Hydrological simulations were run for each of the 10 GCM-RCM chains and then the lower (mini-
mum of the 10), medium (median), and upper (maximum) estimates of discharge changes were derived.
For the probabilistic data set, the 14–20 GCM-RCM chains were combined into probability distributions
using a Bayesian multimodel combination algorithm. As this algorithm requires data to be normally dis-
tributed, precipitation data were transformed to their square root before their processing, and retrans-
formed after it. Similarly, the internal decadal variability was subtracted before the multimodel
combination and was then readded. The delta change factors corresponding to the 2.5, 50, and 97.5%
quantiles were then extracted from the posterior distributions, after data retransformation and the read-
dition of the internal variability (see Fischer et al. [2012] and Zubler et al. [2014] for more details on the
method and on its application to the alpine range, respectively). These projections, corresponding to the
lower, medium, and upper climate estimates, were used to force the hydrological models. Hence, in the
deterministic case, each discharge simulation was driven by a single GCM-RCM chain, whereas in the

Table 1. Key Characteristics of the Six Catchmentsa

River-Gauging
Station

Areab

(km2)

Mean
Elevationb

(masl)

Elevation
Rangec

(masl)

Glacierized
Area in

1995d (%)

Mean Annual
Temperaturee

(�C)

Mean Annual
Precipitatione

(mm)

Mean Annual
Dischargeb

(mm)

Mean Date of Half-Flow
Computed Using

Observed Dischargeb

Cluster of the
Hydroclimatological

Change Signalf

Rhone-Brig 913 2370 667–4256 22.3 0.1 1859 1480 6 Jul C4
Vorderrhein-Ilanz 776 2020 693–3609 2.9 2.1 1531 1347 3 Jun C5
Verzasca-Lavertezzo 186 1672 490–2856 0.0 4.8 2026 1763g 11 Mayg C6
Emme-Wiler 939 860 458–2216 0.0 7.3 1432 648 8 Apr C2-C1
Thur-Andelfingen 1696 770 356–2500 0.0 7.7 1421 892 10 Apr C2-C1
Venoge-Ecublens 231 700 383–1677 0.0 9.6 1216 577 27 Feb C2

aMean annual values computed over the period 1980–2009, unless indicated otherwise.
bData source: Swiss Federal Office for the Environment.
cData source: 25 m digital elevation model of the Swiss Federal Office for Topography.
dData source: Fischer et al. [2014].
eData source: Swiss Federal Office of Meteorology and Climatology 2 m gridded data sets TabsD [Frei, 2013] and RhiresD [Frei and Sch€ar, 1998; Schwarb, 2000; Frei et al., 2006,

section 4.1].
fData source: K€oplin et al. [2012].
gMean over 1990–2009.
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probabilistic case, it was driven by, e.g., the median of the GCM-RCM chains. The name of the climate
models used and of the institutions responsible for the simulations are provided in Bosshard et al. [2011,
Table 1] and Fischer et al. [2012, Figure 1].

The CH2011 projections were produced for three possible evolutions of greenhouse gas emissions and con-
centration: SRES A1B, SRES A2, and RCP2.6. The first two storylines were defined in the Special Report on

Table 2. Key Characteristics of the Three Hydrological Models as Used in This Study

HBV PREVAH WaSiM

Time step Daily Daily Daily

Spatial units 100 m elevation zones (average
area: 33 km2; range for all
catchments: 8–77 km2)

Hydrological response units (HRUs)
based on a 500 3 500 m2 grid
(average HRU area: 2.4 km2; range
for all catchments: 0.6–5.6 km2)

Distributed on a 250 3 250 m2 grid

Number of land cover classes 1 22 25

Snow and glacier
melt parametrization

Snow and glacier melt: degree-day
approach with aspect correction
[Konz and Seibert, 2010]

Snow and glacier melt:
temperature-index approach
under consideration of the daily
potential direct radiation [Hock, 1999]

Snowmelt: degree-day approach with aspect
correction. Glacier melt: temperature-index
approach under consideration of the daily
observed direct radiation (Schulla [2013]
after Hock [1999])

Evapotranspiration
parametrization

Potential evapotranspiration [Oudin
et al., 2005]

Actual evapotranspiration:
Penman-Monteith

Actual evapotranspiration: Penman-Monteith

Input variables Precipitation and temperature Precipitation, temperature,
sunshine duration, radiation, relative
humidity, wind speed

Precipitation, temperature, radiation,
relative humidity, wind speed

Interpolation of the input
variables within the catchment

Projections combined using Thiessen
polygons and then adjusted to
each elevation zone using lapse
rate for temperature and a similar
relative factor for precipitation

Projections interpolated using
detrended inverse distance weighting

Projections interpolated using inverse
distance weighting and elevation-based
regressions

Calibration or
regionalization method

Calibration using a genetic algorithm
[Seibert, 2000]

Calibration using an iterative search
algorithm [Viviroli et al., 2009b] and
subsequent regionalization
[Viviroli et al., 2009a]

Two-step procedure: first manually,
than coupling WaSiM with the parameter
estimation tool PEST [Doherty, 2005]

Calibration period 1982–1995, except for the Verzasca
(1992–1999)

1994–1997 1993–1998

Evaluation period 2000—2009 (see Figure 3) 2000—2009 (see Figure 3) 2000—2009 (see Figure 3)

Average computing time for
a 30 year simulation of
one catchment

�1 s on a single computer core �4 min on a single computer core �20 min on a 32-core machine

Main advantages Low data requirements, simple struc-
ture allowing for fast calibration
and execution, and facilitating the
assessment of parameters influ-
ence on the simulated discharge

Computationally efficient (due to HRUs
representing soil-land cover combinations),
physical description of evapotranspiration
(Penman-Monteith)

Detailed description of the catchment spatial
heterogeneity allowing for the investigation
of hydrological processes at a comparatively
small scale

Main limitations Coarse representation of the catch-
ment spatial heterogeneity, empiri-
cal parametrization of snow and
ice melt and of evapotranspiration

HRU structure inflexible, comparatively high
data demand when Penman-Monteith is applied,
hydrological processes in small catchments
(<10 km2) not well represented

High data requirements and computation
time, the high spatial disaggregation
makes parameters identification challenging

References for more detailed
information on the models

Lindstr€om et al. [1997] and Seibert and
Vis [2012]

Viviroli et al. [2009b] and Zappa and Gurtz [2003] Schulla [2013]

Other examples of application Teaching [Seibert and Vis, 2012], simu-
lation of design floods [Harlin and
Kung, 1992], hydrological change
detection [Gebrehiwot et al., 2013]

Parameter regionalization and flood estimation in
ungauged catchments [Viviroli et al., 2009a],
operational discharge forecasting
[Zappa et al., 2008; Addor et al., 2011]

Investigation of the effects of land use
changes on flood generation
[Merta et al., 2008] and of the impacts of
climate change on groundwater recharge
[Neukum and Azzam, 2012] and on soil
moisture [R€ossler et al., 2012]
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Emissions Scenarios (SRES) [Nakicenovic and Swart, 2000] and used in the framework of CMIP3. The third
storyline is the Representative Concentration Pathway RCP2.6 [Meinshausen et al., 2011] used for the more
recent CMIP5 [Taylor et al., 2012]. A1B is a midrange emission scenario that was chosen for the ENSEMBLES
simulations. To gain insights into lower and higher emissions pathways without the computational cost of
rerunning the climate models under these scenarios, the CH2011 team used pattern scaling to generate
projections under the climate stabilization scenario RCP2.6 and under the more extreme A2 scenario
[CH2011, 2011; Fischer et al., 2012]. This technique is a statistical emulator relying on the principal assump-
tion that any regional change is related to the global mean temperature signal in a linear way. Pattern scal-
ing was applied to generate both precipitation and temperature projections at the regional scale, using
scaling factors derived from temperature changes at the global scale [see Fischer et al., 2012, equation (12)].
The accuracy of the pattern-scaled projections primarily depends on the validity of the underlying assump-
tion of linear relationship. Tebaldi and Arblaster [2014] concluded that it is broadly valid for CMIP3 and
CMIP5 models and report geographical patterns of change consistent across different emission scenarios.
They also review limitations of the method and emphasize in particular that pattern-scaled projections are
more reliable for temperature than for precipitation, at large than at small spatial scales and are likely less
reliable in presence of feedbacks or when the focus is on extreme events. In this study, in the absence of
systematic GCM-RCM runs under A2 and RCP2.6, we consider the use of pattern-scaled projections as an
adequate way to perform a first assessment of sensitivities in hydrological simulations to greenhouse gas
emission scenarios.

To summarize, the projections under A1B were obtained from GCM-RCM simulations run under this scenario.
In contrast, the projections under A2 and RCP2.6 do not rely on climate model runs under these scenarios,
but were obtained using pattern scaling. Further, while A1B and A2 are nonintervention scenarios, consider-
able efforts are deployed under RCP2.6 to mitigate emissions. It follows that under this scenario, a global
temperature increase by the end of the 21st century higher than 2�C relative to 1850–1900 is considered
unlikely (i.e., 0–33% probability) [IPCC: Climate Change 2013, 2013]. Note that in the CH2011 data set, RCP2.6
is referred to as RCP3PD, these two names corresponding to the same scenario [Meinshausen et al., 2011]. We
opted for RCP2.6, as it is named in the IPCC Fifth Assessment Report [IPCC: Climate Change 2013, 2013].

The CH2011 setup does not allow for the separation of the GCM-RCM uncertainty into climate model uncer-
tainty and natural climate variability. Climate model uncertainty is potentially reducible via a better
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Figure 3. Performance of the three hydrological models under present conditions. Annual cycle observed (black) and simulated by the
three hydrological models for the evaluation period 2000–2009. The Nash-Sutcliffe efficiency [Nash and Sutcliffe, 1970] for each model is
given in brackets following its name.
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understanding of global warming processes and models improvement, whereas natural climate variability
is a stochastic and intrinsic part of the climate system, and is irreducible. Characterizing the future natural
climate variability could for instance be achieved using projections from the same climate model started
from different initial conditions [Deser et al., 2012] or by employing a weather generator constrained by
GCM-RCM projections [Fatichi et al., 2014].

2.4. Hydrological Modeling
Three hydrological models were used to evaluate the sensitivity of discharge projections to model structure,
resolution, and calibration: HBV [Seibert and Vis, 2012], PREVAH [Viviroli et al., 2009b], and WaSiM [Schulla,
2013]. HBV and PREVAH are semidistributed (HBV was applied using 100 m elevation zones and PREVAH
using hydrological response units (HRUs)), whereas WaSiM is run on a 250 3 250 m2 grid. HBV and PREVAH
are based on a similar reservoir structure, while WaSiM uses a more process-oriented approach. HBV and
WaSiM were calibrated, whereas PREVAH parameter values were obtained by regionalization [Viviroli et al.,
2009a]. PREVAH simulations hence represent natural discharge conditions even in catchments with major
reservoirs. The hydrological models are contrasted in more details in Table 2 and their coupling to the gla-
cier model is discussed in section 2.5.

The reservoirs and the dam operations were not explicitly implemented in the hydrological models.
Although their implementation might have enabled a better reproduction of the observed discharge under
current climate, considerable uncertainties exist about the evolution of energy consumption and about the
importance of hydropower production in comparison to other energy sources by the end of the century.
One way to account for these uncertainties would be to formulate scenarios depicting different socioeco-
nomic developments at the Swiss and the international level, possibly in a similar fashion as the SRES emis-
sion scenarios [Nakicenovic and Swart, 2000]. In this study, however, we restrain our attention to the
uncertainties stemming from the future emissions and the models used to produce hydrological projec-
tions, and assume that the simulated discharge corresponds to natural discharge. This assumption is realis-
tic in the Rhone catchment, where the total reservoir volume corresponds to only �2.3% of the annual
discharge, but is less robust in the Vorderrhein catchment, which is more heavily managed (�24.9%). In the
four other catchments, the discharge is not significantly affected.

Initial results indicated that the performance of the hydrological models under present climate was overall
good and that they successfully capture the main features of the annual discharge cycles (Figure 3). Note
that the models performance in the Vorderrhein catchment is slightly impeded by discharge perturbations
induced by hydropower production. Differences between simulated and observed annual cycle over the
reference period (1980–2009) are assumed to be constant in the future. The overall approach relies on the
assumption of time stationarity of the biases in the climate and hydrological simulations, although evi-
dence for nonstationaries exist [Maraun, 2012; Merz et al., 2011]. We hence defined changes in discharge
as the differences between the projected discharge and the discharge simulated using 1980–2009 meteor-
ological observations. We considered the annual cycle as captured by monthly averages and computed
seasonal averages for summer (June, July, and August, referred to as JJA in continuation) and winter
(December, January, and February, DJF). Further, we investigated the earlier occurrence of peak river run-
off in spring to summer, one of the most prominent discharge changes in a warmer climate in snow-
dominated regions. This shift in seasonality is generally attributed to two main factors: the higher propor-
tion of precipitation falling as rain instead of snow, and earlier snowmelt and consecutive glacier melt
[e.g., Barnett et al., 2005]. To consider the combined effect of these two processes using one metric relying
on discharge data, we considered the half-flow date (HFD) introduced by Court [1962], i.e., the date on
which the cumulative discharge since the beginning of the hydrological year (starting on 1 October)
exceeds half of the total annual discharge. This date is often preferred to that of the maximum daily dis-
charge, which can result from a punctual precipitation event. The HFD has been broadly used to investi-
gate the effects of climate change on streamflow timing [e.g., Cort�es et al., 2011; Stewart et al., 2005].
Although Whitfield [2013] recently pointed out that the HFD is not a reliable indicator of the timing of
snowmelt, we use it here from a more general perspective to assess the shift from snow-dominated
regimes (nival) to more precipitation-dominated regimes (pluvial). In other words, we use the HFD as a
regime metric, with a later HFD corresponding to higher elevation and more snow-dominated regimes.
This relation appears clearly from the HFD computed using observed discharge in the six catchments
(Table 1).
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2.5. Modeling of Glacier Retreat
and Contribution to Discharge
Ice melt significantly modifies the
hydrological regime of glacierized
catchments as it acts as a source of
runoff after the disappearance of
the snow cover [Barnett et al.,
2005]. The representation of gla-
ciers in hydrological models is
important to realistically simulate
discharge during the summer
months, and changes therein with
respect to atmospheric warming
[e.g., Horton et al., 2006]. The
hydrological models applied in this
study include modules for glacier
melt but do not describe the more
complex processes of dynamic
changes in glacier thickness and
size over time. Therefore, glacier
melt was simulated in two steps.

Glacier retreat was first modeled under the different climate projections and the resulting extent was pro-
vided as input to the three hydrological models. The contribution of glacier melt to discharge was then
simulated in a second step by the hydrological models, i.e., not by the glacier model itself. Below, we pro-
vide more details and references about the modeling of glacier retreat and of the contribution of glacier
melt to discharge.

The changes in future glacier coverage in the catchments were assessed by combining different glaciologi-
cal models at high spatial resolution. The present glacier ice thickness distribution exerting an important
control on the rate of glacier retreat and volume loss was evaluated. We used a model [Huss and Farinotti,
2012] to invert local ice thickness from glacier surface topography using the principles of ice flow dynamics.
Glacier extent for the year 2010 was obtained from an inventory of all glacierized surfaces [Fischer et al.,
2014]. Surface mass balances and 3-D glacier geometry changes were calculated using a detailed glacier
model [Huss et al., 2010b]. This model was run at daily resolution on a 25 m grid and takes into account
snow accumulation distribution, the influence of radiation on ice melting according to Hock [1999] and cal-
culated glacier retreat based on a mass-conservation approach. The glaciological model was calibrated with
a variety of field data covering the entire 20th century [Huss et al., 2010a]. Annual mass balances from 50
glaciers with detailed results were then extrapolated to every single glacier in the catchment by applying a
multiple regression approach. Thus, glacier-specific transient annual series of the glacier mass budget were
obtained and used to drive the model for every glacier (152 in the Rhone catchment, 105 in the Vorderrhein
catchment). The model was validated over the period 1973–2010 for which the change in glacier extent is
known. The overall change in ice-covered area is captured within 5%, and the retreat rates of the glacier ter-
mini are reproduced in general although some differences for individual sites are evident (Figure 4). Finally,
the glacier model was forced until 2100 with the same climate scenarios as the three hydrological models.
We also applied the same approach to downscale the climate data to individual glaciers. From the transient
model runs, we then extracted glacier ice coverage for 2035, 2060, and 2085 and assumed it to be constant
over each of the 30 year period.

These glacier simulations were used as input for the three hydrological models. Again, the pre-
scribed glacier extent is the same in each case, but the melt and the resulting contribution to dis-
charge were computed separately by each model. HBV relies on a degree-day approach considering
temperature as the only driver of snow and ice melt. In the version used here, two multiplicative
factors were added to the basic formulation of the degree-day approach in order to reflect the influ-
ence of exposure on snow and ice melt and to account for the lower albedo on ice than on snow
[Konz and Seibert, 2010]. Meltwater is transferred to the groundwater reservoirs, the outflow of which
being then routed to the catchment outlet using a triangular weighting function. PREVAH and

Figure 4. Validation of the glacier retreat model for the termini of the largest glaciers in
the Rhone catchment. The model was initialized with the observed glacierized area in
1973 (black line) and run until the year 2010 when glacier extent is known (observed
glacial extent as red line, simulated glacial extent as blue area).
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Figure 5. Projected changes in temperature and precipitation between 1980–2009 and 2070–2099 averaged over the catchments for winter (DJF) and summer (JJA). Estimates from the
deterministic (det.) [Bosshard et al., 2011] and probabilistic (pro.) [Fischer et al., 2012] data sets are shown. For the deterministic data set, the lower and upper bounds of the boxes corre-
spond to the minimum and maximum among the 10 GCM-RCM chains. For the probabilistic data sets, they correspond to the 2.5 and 97.5% quantiles. The thick black bars designate
the median in both cases. The colors correspond to the emission scenarios RCP2.6 (green), A1B (blue), and A2 (orange). The gray shaded areas correspond the natural decadal variability
estimated by bootstrapping precipitation and temperature records (6N).
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WaSiM are principally based on the temperature-index method developed by Hock [1999], which is
an extension of the degree-day method. It involves melt factors for snow and ice, and importantly,
it includes radiation coefficients for snow and ice, and accounts for direct solar radiation. Meltwater
is routed to the underlying catchment using three linear reservoirs with different storage coeffi-
cients, for ice, firn, and snow, respectively.

2.6. ANOVA
We chose the projection variance as an estimate of their uncertainty and used an analysis of variance
(ANOVA) technique to quantify the contribution of the different sources of uncertainty to the final uncer-
tainty. The uncertainty partitioning relied on the following model

DQijkl5l1Ei1Cj1Pk1Hl1Iijkl1eijkl (1)

which expresses the change in discharge (DQijkl) as the mean change (l) modulated by the main effects
of four factors, the emission scenario (Ei, i 5 RCP2.6, A1B, A2), the climate model estimate (Cj, j 5 lower,
medium, upper), the postprocessing (Pk, k 5 deterministic, probabilistic), the hydrological model (Hl,
l 5 HBV, PREVAH, WaSiM), as well as the sum of the significant interactions between these factors (Iijkl)
and the residual error (eijkl). The interaction terms allow accounting for nonadditive effects, i.e., for situa-
tions in which the combined effect of two factors is not the sum of their individual effects. We only con-
sidered first-order interactions, i.e., interactions between two factors, as accounting for and interpreting
higher-order interactions is hard to physically justify. The assessment of the significance of first-order
interactions, and their inclusion or not in the ANOVA model was based on F-tests. The sum of squares of
each element (main effects, interactions, and error term) was divided by the total sum of squares of DQ to
compute the fraction of variance explained by this element [Von Storch and Zwiers, 2001; Bosshard et al.,
2013]. This analysis was performed for each catchment, future period, and for both summer (JJA) and win-
ter (DJF) projections.

2.7. Natural Variability Under Present Climate
To assess the significance of the projected temperature, precipitation, and discharge changes, we compared
them with an estimate of the natural variability obtained by bootstrapping of observations. This estimate
can be seen as noise (N) and was used to normalize the change of discharge (S), transforming it into a unit-
less signal-to-noise ratio (S/N as, e.g., in Hawkins and Sutton [2012]). We followed Bosshard et al. [2011] to

0
5

10
15

Rhone

Jan Jun Dec

−
10

0
0

50
15

0

Jan Jun Dec

0
2

4
6

8
12

Vorderrhein

Jan Jun Dec

−
10

0
0

50
15

0

Jan Jun Dec

0
2

4
6

8
12

Verzasca

Jan Jun Dec

−
10

0
0

50
15

0

Jan Jun Dec

0
1

2
3

4

Emme

Jan Jun Dec

−
10

0
0

50
15

0

Jan Jun Dec

0
1

2
3

4

Thur

Jan Jun Dec

−
10

0
0

50
15

0

Jan Jun Dec

0
1

2
3

4

Venoge

Jan Jun Dec

−
10

0
0

50
15

0

Jan Jun Dec

M
ea

n 
di

sc
ha

rg
e

[m
m

/d
ay

]
R

el
at

iv
e 

ch
an

ge
 in

m
ea

n 
di

sc
ha

rg
e 

[%
]

Figure 6. Projected regime changes for 2070–2099. The mean of the projections is represented by the thick colored line, the likely range (colored area) encompasses two thirds of all 54
model chains, and the minimum and maximum are shown by thin colored lines. The reference discharge (1980–2009) is depicted by a black line in the top row. The bottom row shows
the relative difference between the reference and the projections. In Figures 6, 9, and 11, the catchments are ordered according to their mean elevation, from (left) the highest to (right)
the lowest.
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estimate N and constructed 100 thirty year time series by resampling years with replacement from the
1980–2009 records. This approach relies on the assumption that a baseline distribution can be estimated
from these 30 years and that realizations equally likely under this climate can be created by resampling
from this distribution. Then, 500 pairs of synthetized time series were randomly selected and the differences
between these pairs computed. The standard deviation among these 500 differences was then used as an
estimate of N. In the following, N is considered as the typical difference between two time series in absence
of climate change, i.e., as a result of climate natural variability. Therefore, the standard deviation among the
500 differences of the annual, seasonal, and monthly means was computed, respectively. N was computed
at the seasonal scale (winter and summer) for precipitation and temperature, and at the yearly, seasonal,
and monthly scale for discharge. As periods of 30 years were considered, N reflects the natural variability
over decadal time scales. The years used to construct the 100 time series and the subsequent 500 combina-
tions were identical for the six catchments to account for intersite correlations. The Verzasca is the only
exception, as its discharge record begins shortly before the beginning of hydrological year 1990, the thirty
year time series were synthetized by bootstrapping measurements from the 1990–2009 period.

3. Results

3.1. Changes in the Hydrological Regimes and in Glacier Coverage
For each catchment, the agreement among the model chains of our setting is depicted in Figure 6 for 2070–
2099. The ensemble confirms climate change impacts on discharge already reported in previous studies on
Swiss catchments [Horton et al., 2006; Bundesamt f€ur Umwelt BAFU, 2012; K€oplin et al., 2012; Bosshard et al.,
2013] and in addition reveals strong model agreement for three of these impacts by the end of the century.
First, for all catchments, lower summer (JJA) flows are projected by more than 90% of the model chains, irre-
spective of the emission scenario, climate model, postprocessing, or hydrological model. This is mainly related
to a summer precipitation decrease [K€oplin et al., 2012], as the changes in actual evapotranspiration were found
to play a secondary role [Adam et al., 2009; K€oplin et al., 2013]. Second, more than 85% of the simulations indi-
cate an earlier timing of spring-summer peak discharge, as a consequence of temperature increase. Third, larger
winter (DJF) flows are projected by about two thirds of the runs in three lowest basins, and by more than 80%
of them in the three highest basins. This mainly results from the higher fraction of liquid to solid precipitation
during winter, leading to higher direct runoff. Note that the smaller snow storage causes lower melt peaks, espe-
cially at higher elevations. Winter precipitation might increase and contribute to higher winter discharge, but
this remains uncertain, as the projected changes mostly fall within the estimated range of natural variability
(Figure 5). Note that in contrast, the temperature changes simulated at the regional scale clearly emerge from
noise in both winter and summer, as already reported by Bosshard et al. [2011] and Fischer et al. [2012]. Although
the expected changes in the Swiss plateau (Venoge) and prealpine catchments (Emme, Thur) are comparatively
small in absolute terms, the relative changes are considerable (Figure 6, bottom row). In particular, the discharge
during the low flow period, in summer, is likely to decrease by 25–45% for these three catchments.

Figure 7. Projected evolution of glacierized area, for the lower, medium, and high estimates of the probabilistic climate projections under
the RCP2.6, A1B, and A2 emission scenarios. Note the different scales of the y axes.
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The distributed modeling of glacier retreat
forced by the probabilistic climate scenarios
led to the projections summarized in Figure
7. By the end of the 21st century, and for the
medium climate scenario, the glacierized area
in the Rhone catchment is projected to be
reduced to �45% of its 2010 extent under
RCP2.6, and to �27% under A1B and A2. In
the Vorderrhein catchment, the relative loss is
higher, the glaciers are expected to retreat to
�17% and �7% of their 2010 area, respec-
tively, and only cover a few km2 by the end of
the century. The uncertainty stemming from
the GCM-RCMs is represented by the shaded
areas and is large under each emission sce-
nario. For instance, in the Rhone catchment,
the lower and upper climate estimates (95%
confidence interval) under RCP2.6 lead to a
remaining glacierized area stretching from
26% to 68% of its 2010 value. Note that the
uncertainties related to the formulation and
the parameter values of the glacier model
were not assessed in this paper.

3.2. Uncertainty Decomposition
To quantify the respective contribution of
the four uncertainty sources to the uncer-
tainty captured by our experiment, analyses
of variance (ANOVA) were performed, which
allowed for uncertainty partitioning for each
of the three future periods and for each
catchment. We first assessed the significance
of the main effects and interactions of the
ANOVA model. For each main effect or first-
order interaction, the null hypothesis is that
its coefficients are all null, e.g., that the emis-
sion scenario has no influence on the pro-
jected discharge change (Ei 5 0 for all i in
equation (1)). The hypothesis was evaluated
using F-tests, and their p-values were sum-
marized in Figure 8. We kept all the main

effects and most of the interactions, including the interactions H:E and C:E because they are in most cases
significant for the middle and end of century projections. The interactions P:E and H:P were excluded
because they are not significant in most cases.

The uncertainty stemming from the GCM-RCMs, i.e., the combination of model uncertainty and natu-
ral climate variability, dominates in general (Figure 9). Our setup shows that the relative importance
of this source varies with catchment characteristics. While the projection uncertainty is principally
driven by the GCM-RCMs in the nonglacierized catchments, the hydrological models explain a com-
parable proportion of the variance in the partially galcierized catchments, Rhone and Vorderrhein.
The different hydrological models lead to different projections in these catchments, in particular for
the change in Rhone summer discharge around 2085, with HBV and WaSiM simulating a much larger
(�2.8 mm/d) mean decrease than PREVAH (�0.5 mm/d). For the other catchments, the hydrological
models explain little of the variance, which means that, in these catchments, the differences in
model structure, resolution, and calibration barely influence the discharge projections.

Figure 8. Significance of the ANOVA model elements. The boxplots sum-
marize the p-value of the F-tests for the main effects and first-order inter-
actions for changes in winter (DJF) and summer (JJA) in the six
catchments, i.e., a total of 12 values per boxplot. The four factors are the
emission scenario denoted by E, the climate model C, the postprocessing
P, and the hydrological model H (see equation (1)). First-order interactions
between factor X and factor Y are denoted by X:Y. The orange line indi-
cates p-values of 5%. The factors and interactions considered in the final
ANOVA model have their names in bold.

Water Resources Research 10.1002/2014WR015549

ADDOR ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 7552



The fraction of variance explained by the emission scenarios increases with time, for both seasons and in all
catchments, and so does the significance of the emission scenario factor in the ANOVA model (Figure 8).
This source of uncertainty explains a higher fraction of variance in summer than in winter, but is usually not
the dominant one by the end of the century for the catchments investigated. The difference in complexity
between the two postprocessing methods, and the different sets of climate models they rely on, appear to
have little influence. Finally, the variance explained by the interactions needs to be considered, in particular
in summer.

3.3. Emergence of the Climate Change Signal From Natural Discharge Variability
The annual discharge cycles of the time series constructed by bootstrapping are shown in Figure 10.
Overall, the variability is higher in lower-elevation basins, as illustrated by the higher dispersion of
the 100 constructed time series around the cycle directly derived from observations. When com-
puted for each month, the variability corresponds in average to 7–19% of the discharge on the
same month, with lower values typically reached in higher-elevation catchments. A clear exception
to this relation is the Verzasca, which exhibits a rather high variability given its elevation. This rela-
tionship between elevation and variability translates to the HFD, which presents higher variability at
lower elevation. Its standard deviation ranges from 1.8 days in the Rhone catchment to 8.1 days for
the Venoge, the Verzasca being again an outlier with a value of 11.8 days. As noted earlier, higher-
elevation catchments are associated to a later HFD.

Estimating the natural discharge variability in the six catchments allows for the investigation of the emer-
gence of the climate change signal. It already emerges from noise in certain months of the first future
period (2020–2049) in the alpine catchments (Rhone and Vorderrhein) and irrespectively of the emission
(Figure 11). The impacts become more severe with time and our results indicate that at the end of the cen-
tury, the climate change signal clearly emerges from natural variability for all catchments in summer, even if
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emissions are limited to the lowest level (RCP2.6). The S/N ratios are higher in the higher-elevation
catchments.

3.4. Sensitivity of the Impacts on Discharge to the Emission Scenarios
We explored the influence of the emission scenarios on the hydrological regime by computing the average
discharge change for each emission scenario, catchment, and future period. As expected from the analyses
of variance, the differences between the emission scenarios increase with time (Figure 11). These differen-
ces are negligible for the first future period (2020–2049), the impacts occurring independently of the emis-
sion policy or lack thereof. Differences between the intervention (RCP2.6) and the nonintervention (A1B and
A2) scenarios become clear for the 2045–2074 projections, when impacts increase (not shown). By the end
of the century (2070–2099), a further increase of the climate change impacts is projected, but there is only
little difference between A1B and A2, which is consistent with the similarity of their temperature and precip-
itation projections for the study basins (Figure 5). An important result is that, according to our simulations,
following the intervention scenario would reduce the largest impacts on the regime (in summer and winter)
by the end of the 21st century by about a factor of two.

4. Discussion

4.1. A Large but Inevitably Incomplete Set of Model Chains
This study relies on a large set of model chains, with 3 emission scenarios, 10–20 GCM-RCMs, 2 postprocess-
ing methods, and 3 hydrological models combined factorially and applied to six catchments. We neverthe-
less acknowledge that model sampling is neither complete nor random, which is a general barrier to a full
uncertainty sampling [Knutti et al., 2010]. The models are also equally weighted, in a finite number and
somewhat interdependent (see the discussion on climate models in Masson and Knutti [2011] and the
hydrological model characteristics in Table 2). It thus cannot be excluded that some agreement between
the simulations stems from model similarities, such as a common bias among the climate or hydrological
models, and hence should not be interpreted as low uncertainty. It is debatable whether adding more
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chains would change our characterization of the projection uncertainty, improve our understanding of
future catchment discharge, and provide a stronger support for decision making under uncertainty. Here
we argue that even though sets of model chains are inevitably incomplete, the use of a wide and balanced
set of combinations provides new insights into the influence of the catchment on the uncertainty of the dis-
charge projections, relates to fundamental questions on the relation between model complexity and per-
formance, and helps to find robust features that can better support decision making. These points are
discussed below.

4.2. How Much Do Catchments Determine Uncertainty Partitioning?
The decomposition of variance revealed that the discharge uncertainty is in general dominated by the
uncertainty from the GCM-RCM projections, which is in agreement with previous studies [Wilby and Harris,
2006; Prudhomme and Davies, 2009; Dobler et al., 2012; Bosshard et al., 2013; Huss et al., 2013]. Our setup fur-
ther allows for the investigation of changes in the uncertainty partitioning from catchment to catchment
(Figure 9).

The hydrological models explain a considerable portion of the variance in the Rhone and Vorderrhein
catchments, but their influence is much smaller in the other catchments. In our view, this results from key
characteristics of these two catchments that differentiate them from the others: their nival to glacial regime,
their more complex topography, and the presence of dams. In alpine catchments, a realistic regime repre-
sentation is conditioned by the realistic simulation of accumulation and melt processes of snow, and of ice
in glacierized catchments. These processes are subject to structural uncertainties (they are formulated in
different ways in the hydrological models, see Table 2) and parametric uncertainties (parameter estimation
is performed using different methods, see Table 2, and is challenging as a result of equifinality [Beven, 2006]
and of the highly multidimensional parameter space [Kirchner, 2006]). Overall, the value of parameters regu-
lating snow and ice is poorly constrained when model calibration is performed on the basis of simulated
discharge alone. This can lead to compensation errors, which then contribute to differences in the dis-
charge simulated by the different models. Clearly, structural and parametric uncertainties also influence dis-
charge simulations in lower-elevation catchments, but the potential for compensation errors resulting in
misallocations of water between glacier, snow, and runoff is arguably larger at higher elevation, where stor-
age of water as ice and snow is higher. A better agreement between the models might be achieved by mul-
ticriteria calibration, involving, for instance, the incorporation of glacier mass balance and snow cover
extent retrieved from satellite imagery, as implemented by Parajka and Bl€oschl [2008] and Finger et al.
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[2012]. This would enable snow and ice mass balances to be more realistically simulated, an aspect not eval-
uated by calibration methods based on discharge simulations alone. Another characteristic influencing
uncertainty partitioning is topography. Although the hydrological models are forced by the same climate
projections, the more complex topography in higher-elevation catchments leads to higher errors in the
interpolation of these projections, an operation performed by the hydrological models. Finally, the dis-
charge perturbations induced by hydropower production during the calibration period decrease the identi-
fiability of the hydrological model parameters, as the operational rules were not implemented in this study.
These numerous factors contribute to explain why the uncertainty stemming from the hydrological models
is higher in the alpine catchments.

Catchments also influence the importance of the emission scenario. In winter, it is lower in the Thur,
Emme, and Venoge basins (mainly precipitation driven) than in the higher-elevation basins, Rhone,
Vorderrhein, and Verzasca (more temperature driven). This is consistent with the climate projections
for winter, which are similar under the three emission scenarios for precipitation, but differ for tem-
perature (Figure 5). The difference between low and high-elevation catchments is reduced in
summer, when both precipitation and temperature changes depend strongly on the emission
scenarios.

The influence of the postprocessing method and the set of GCM-RCM chains they rely upon does not
seem to depend on catchment characteristics and is weak in all cases. This reflects the great similarity of
the projections from the deterministic and probabilistic data sets for the study basins (Figure 5). The dif-
ferences in the projected discharges could however be stronger for extremes [Wilby and Harris, 2006;
Dobler et al., 2012] and if other postprocessing methods, such as quantile mapping [Dosio and Paruolo,
2011], were also considered. Also, if a smaller number of GCM-RCMs had been used, the selection of the
climate models might have had a larger effect on the discharge projections. Wilby and Harris [2006], for
instance, used four GCMs and showed that, while three of them lead to rather similar changes in future
low flows, the last one resulted in quite different projections (their Figure 5b). In such a case, including
this last GCM in the analysis or not, can lead to quite different conclusions about the origin of the uncer-
tainty in the discharge projections.

It should be stressed that the validity of the uncertainty partitioning relies in particular on the experimental
design. A critical point here is the assessment of the interactions terms. The two most significant interac-
tions are between the climate model, the postprocessing method (C:P), and the hydrological model (C:H,
Figure 8). The combined effect of these elements on discharge is thus nonadditive. For instance, when the
medium climate estimate and the hydrological model HBV are combined, their effect on the discharge pro-
jection is not only the sum of their respective effects, but rather this sum corrected by an additive interac-
tion term (equation (1)). An important consequence is that, if the uncertainty stemming from the chain
elements (e.g., from the hydrological models) had been computed by varying the models for this element
(e.g., using sequentially HBV, PREVAH, and WaSiM) while keeping the rest of the chain constant (e.g., using
only SRES A1B, medium climate estimate, and the probabilistic postprocessing), a biased estimate of the
uncertainty could result, as significant interactions (e.g., between the climate and the hydrological models)
would not have been sampled. The nonnegligible role played by the interactions hence stresses that the
choice of the setup is key for a reliable assessment of uncertainties in the modeling chain. Note that
although we rely here on a factorial design, a less computing intensive approach based on a fractional fac-
torial design requiring only a subset of the runs could be envisaged for future studies [Wu and Hamada,
2009].

4.3. Which Model Structure and Calibration for Hydrological Impact Studies?
In the nonglacierized catchments, the proportion of the variance explained by the hydrological models is
almost negligible (Figure 9). The three models (HBV, PREVAH, WaSiM) rely on different spatial discretizations
(100 m elevation bands, hydrological response units or 250 3 250 m2 grid), different parameter estimation
procedures (genetic algorithm, regionalization, PEST), different numbers of land cover classes (1, 22, and
25), and different reservoir structures. Yet their projected regimes seem barely sensitive to these differences.
We see three complementary explanations of this outcome.

First, external forcing, i.e., atmospheric projections, can act as the main driver of the simulated discharge,
overwhelming any differences between the hydrological models. Climate projections showing significant
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differences from the climate during the reference period (Figure 5), our results suggest that these differen-
ces can overrule the structural differences among the hydrological models.

Second, our study focused on changes in the mean seasonal discharge over 30 year periods. A model might
perform better at capturing individual events, for instance, the few large flooding events during this period,
but this is averaged out when considering changes of mean discharge. Larger differences between the
models might thus have emerged if other components of the hydrograph had been systematically investi-
gated, for example, low flows [Vel�azquez et al., 2013].

Third, the similarity of the projections delivered by different models raises the question of how much
complexity is needed in hydrological models executed under climate change. This is related to the
much-debated relation between model performance and structure, which can be here formulated as:
which hydrological model elements are necessary to deliver reliable discharge simulations in a chang-
ing climate? The answer arguably depends on the catchment characteristics and on the hydrological
parameter investigated, as there is most likely no model structure that provides reliable projections in
all cases [Savenije, 2009]. Several contributions exist to support the choice of model structure. They rely,
for instance, on model intercomparisons [Smith et al., 2004, 2012], on the Framework for Understanding
Structural Errors (FUSE) [Clark et al., 2008; Staudinger et al., 2011], on differential split sample tests [Seil-
ler et al., 2012], on a model evaluation without calibration method [Vogel and Sankarasubramanian,
2003], or adopt a more process-oriented approach [Herman et al., 2013]. Concerning hydrological model
calibration, Merz et al. [2011] and Coron et al. [2012] highlight the issue of parameter stationarity over
time and discuss the consequence thereof for simulation of hydrological impacts. Others consider the
whole impact modeling chain (Figure 1) to estimate the sensitivity of hydrological projections to the
model structure [Vel�azquez et al., 2013] or to the method chosen to estimate parameters value [Poulin
et al., 2011]. These later studies consider the hydrological model in the context of the cascade of uncer-
tainty and compare its contribution to that of the other elements of the model chain, hence providing
particularly valuable insights for the further development of hydrological modeling in changing
conditions.

4.4. Why Is Natural Discharge Variability Higher in Lower-Elevation Catchments?
The overall negative correlation between catchment elevation and natural discharge variability under pres-
ent conditions (Figure 10) can be explained by a damping by glaciers and the snowpack. According to Lang
[1986], this damping can occur through three main mechanisms. During dry years characterized by lower
than normal precipitation and higher net radiation and sensible heat, glacier balance is usually negative
and the contribution of meltwater to discharge is significant. Conversely, during years with much precipita-
tion, the input to glaciers is usually higher and melt is lower, which corresponds to a positive glacier mass
balance and a smaller contribution to discharge. Glacier melt hence tends to compensate for year-to-year
rainfall anomalies. Another compensating effect stems from the tendency of climatic situations leading to
higher glacial melt to also cause higher evapotranspiration in basins spanning over a wide range of eleva-
tions. Finally, the snowpack can also damp discharge variations, by temporarily containing intense precipita-
tion events and then releasing the water progressively.

The comparatively high discharge variability of the Verzasca given its elevation probably comes from the
location of the basin, on the southern flank of the Alps. Its climate is directly influenced by Mediterranean
airflows and the natural precipitation variability of its region is larger than on the northern side of the Alps
[Fischer et al., 2012]. Further, when comparing the projected changes to the natural variability (Figure 11), it
appears that the changes in regime are more pronounced in the higher-elevation catchments, a result also
reported by Fatichi et al. [2014].

4.5. Can the Identification of Robust Changes Help Adaptation?
We investigated the robustness of the projections by considering robustness as the combination of a strong
agreement between simulations and a projected change exceeding natural variability [Knutti and Sedl�aček,
2012]. These two aspects were investigated separately in sections 3.1 and 3.3, respectively. To conclude this
study, they were combined in Figure 12 for the three regime impacts discussed above: lower summer dis-
charge, higher winter discharge, and change toward more rain-dominated regime. In addition, we also con-
sidered changes in the mean annual volume, which correspond to changes in the water balance integrated
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over 30 years. In the four cases, the robustness of the projections is higher for the higher-elevation catch-
ments, i.e., their mean future change normalized by the natural variability is higher, and more model chains
agree on the sign of the change. We explain this outcome by the robustness of the future climate simula-
tions, which is higher for temperature than for precipitation (Figure 5), resulting into more robust discharge
changes in temperature-driven, higher-elevation catchments. Similarly, as the robustness of the climate
change signal tends to increase with time in the catchments investigated (Figure 5), so does the robustness
of the hydrological projections.

Note however that different robustness patterns emerge. In the lower-elevation catchments, there is a
strong model agreement and high signal-to-noise ratios about lower summer discharge, but the projections
confidence is weaker when it comes to higher winter discharge, as could be expected from the results
shown in Figure 6. Further, note that model agreement on the shift toward more rain-dominated hydrologi-
cal regimes is particularly high and is already complete (100%) in 2035 for the three highest catchments.
Overall, high signal-to-noise ratios are reached for these three first changes. It implies that the projected
changes are unlikely to stem from natural variability alone, but are rather a consequence of anthropogenic
emissions.

According to our ensemble of simulations, the total discharge volume is expected to decrease in the future.
This change is less robust than the other three (Figures 12a–12c versus Figure 12d), yet by 2085 it emerges
from natural discharge variability and is projected by 60–85% of the model chains. Possible causes include

Figure 12. Robustness of the four regime changes. Agreement on the sign of the change among the 54 model chains (x axis) and mean
change computed from the 54 chains normalized by the estimated natural variability (significance, y axis). The symbols refer to the future
periods and the colors refer to the catchments (see legend on the right, where the catchments mean elevation is also indicated). The sym-
bols located closest to the upper right corner of the plots denote the most robust projections. The gray area and the horizontal black line
indicate S/N values below 1 and 2, respectively. The lowest possible degree of agreement (50%) is indicated by the vertical dashed line. A
shift toward more rain-dominated regime is identified by an earlier half-flow date. Note the logarithmic scale of the y axis and the wider
interval on x axis for Figure 12d.
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the expected decrease in summer precipitation and smaller glacier contribution to discharge, and perhaps
the precipitation shift from snow toward rain [Berghuijs et al., 2014]. At this stage, the respective contribu-
tion of these processes is unclear.

Because of the diversity of the model combinations considered, our projections are subject to substantial
uncertainties, as shown by the large spread of the ensemble (Figure 6). Nevertheless, Figure 12 shows that
by the end of the century, robust changes in regime emerge from the noise, that they are supported by a
large agreement among the model runs and that they are valid across the whole range of catchments. We
argue that identifying such features can contribute to support decision making on adaptation strategies.

4.6. Can Our Results and Method Be Generalized?
Our study focused on six catchments, but data sets with hundreds of catchments are becoming more easily
available [Gupta et al., 2014]. They can be combined with climate projections to perform a similar systematic
analysis in a larger number of catchments spanning a wider range of climatic conditions. However, since
uncertainty sampling and decomposition requires a large number of simulations, available computing infra-
structures will often limit the analysis to a selection of catchments. So which catchments to select? A solution
is to reduce the dimensionality of the problem. K€oplin et al. [2012], for instance, run a single hydrological
model under a single emission scenario using 10 GCM-RCMs postprocessed by a single method in 186 meso-
scale Swiss catchments. A cluster analysis then enabled them to reduce these 186 catchments to 7 response
types, from which the catchments used in this study were chosen (Figure 2). We then produced hydrological
projections for this selection of catchments using several emission scenarios, hydrological models and GCM-
RCM postprocessing methods. The similarity of our results for the Emme, Thur, and Venoge catchments is in
agreement with their clustering, as they associated these basins to the same type of response to climate
change. This suggests that our results may be extrapolated to other Swiss watersheds on the basis of their
cluster analysis and advocates for the application of a similar approach to other regions.

5. Conclusions

This study considers and systematically analyses a large number of uncertainty sources when simulating
future hydrological regimes in Swiss catchments. Analyses of variance based on a factorial experimental
design were used to decompose the uncertainty of the projections. This showed that although GCM-RCMs
are usually the main source of uncertainty, the uncertainty stemming from the hydrological models in the
catchments dominated by snow and ice melt is substantial. In contrast, the choice of the hydrological
model is barely significant in the lower-elevation basins. The importance of the emission scenario increased
with time into the future, yet without becoming the major source of uncertainty. The postprocessing of the
climate projections plays the least relevant role in our study.

We assessed the robustness of expected changes in regime already reported in the literature: the decrease
of summer discharge, the increase of winter discharge and shift toward lower-elevation, more rain-driven
regimes. These changes are characterized by a large agreement among the simulations and by projected
changes significantly larger than the natural variability, which was estimated by the bootstrapping of dis-
charge records. Given the wide range of models involved in our setup, we concluded that these changes
are robust despite the uncertainty of the projections, especially in the higher-elevation basins.

We compared the projections under the intervention scenario RCP2.6, implying considerable efforts to
reduce emissions, and under two nonintervention scenarios, SRES A1B and A2. Over the coming decades,
the impacts are projected independently of the scenario and the climate change signal already emerges
from natural discharge variability in the high-elevation basins. By the end of the century, the projected
impacts are more pronounced, the climate change signal emerges in all basins in summer, and there are
clear differences between the intervention and the nonintervention scenarios. Our results indicate with con-
fidence that impacts on discharge can be reduced considerably if a stringent emission policy is adopted.

This study relies on a coordinated modeling experiment, enabling the investigation of projection uncertain-
ties in a systematic and quantitative way, and in several catchments. This hydrological modeling framework
provides new insights into future hydrological regimes, and because it allows for the identification of robust
changes, we argue that it is an important step for the support of decision making based on uncertain
projections.
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