CI5101- Hidrología

Semestre Primavera 2021

Elaborado por Ximena Vargas y Miguel Lagos

Profesor: Pablo Mendoza Profesores Auxiliares: Marcia Paredes y Diego Pinto Ayudantes: Diego Herrera y Mariana Nova

Ejemplo de aplicación de Métodos de estimación de Radiación:

Mediante el método combinado determine la tasa evaporación diaria para las siguientes condiciones:

Elevación estación: 2m

Presión atmosférica: 101.3 kPa

Velocidad del viento: 3 m/s

• Radiación Neta: 200 W/m²

• Temperatura del aire: 25 °C

• Humedad relativa 40%.

Método Radiativo:

El calor latente de vaporización se calcula como:

$$l_v = 2,501 \cdot 10^6 - 2370 \cdot T \left[\frac{J}{kg} \right]$$

$$l_v = 2,501 \cdot 10^6 - 2370 \cdot 25 \left[\frac{J}{kg} \right] = 2441,75 \cdot 10^3 \left[\frac{J}{Kg} \right]$$

La densidad del agua a 25°C es de 997,13 [kg/m 3] (ver Tabla Anexa), de este modo y recordando que 1 J = 1 Ws:

$$E_r = \frac{Rn}{l_v \cdot \rho_w} = \frac{200}{2441,75 \cdot 10^3 \cdot 997,13} \left[\frac{Js^{-1}}{JKg^{-1}Kg \cdot m^{-3}} \right]$$
$$E_r = 8.2 \cdot 10^{-8} \left[\frac{m^3}{s} \right]$$

Calculando la tasa sobre un área de 1 m², y llevando a mm/d

$$E_r = 8.2 \cdot 10^{-8} \cdot 10^3 \cdot 86400 \left[\frac{mm}{d} \right]$$

$$E_r = 7.08 \left[\frac{mm}{d} \right]$$

Método Aerodinámico:

La presión de vapor de saturación a la temperatura del aire está dado por:

$$e_{as} = 611 \cdot exp\left(\frac{17,27 \cdot T}{T + 237.3}\right) = 611 \cdot exp\left(\frac{17,27 \cdot 25}{25 + 237.3}\right) = 3168.8 \ [Pa]$$

Recordando la relación de humedad relativa para la presión de vapor y presión de vapor de saturación:

$$e_a = HR \cdot e_{as} = 0.4 * 3168,8 = 1267,5 [Pa]$$

El factor B está dado por:

$$B = \frac{0.622k^2\rho_a u_2}{P\rho_w \left[ln\left(\frac{Z_2}{Z_0}\right)\right]^2} \left[\frac{m}{Pa \cdot s}\right]$$

La densidad del aire para una atmósfera estándar a 25°C corresponde a 1,18 [kg/m³], y considerando la profundidad z₀ 0,3 [mm] para la lámina de agua, luego:

$$B = \frac{0.622 \cdot 0.4^{2} \cdot 1.18 \cdot 3}{101.3 \cdot 10^{3} \cdot 997.13 \cdot \left[ln \left(\frac{2}{3 \cdot 10^{-4}} \right) \right]^{2} \left[\frac{m}{Pa \cdot s} \right]}$$

$$B = \frac{0.352}{101 \cdot 10^{6} \cdot 77.56} = 4.49 \cdot 10^{-11} \left[\frac{m}{Pa \cdot s} \right]$$

$$B = 3.879 \cdot 10^{-3} \left[\frac{mm}{Pa \cdot d} \right]$$

De esta forma la evaporación aerodinámica estará dada por:

$$E_a = B(e_{as} - e_a)$$

$$E_a = 3,873 \cdot 10^{-3} \cdot (3168,8 - 1267,5) \left[\frac{mm}{d} \right] = 7,38 \left[\frac{mm}{d} \right]$$

Método combinado

La fórmula de la constante psicométrica está dada por:

$$\gamma = \frac{C_p K_h P}{0.622 l_v K_w}$$

El calor específico del aire es 1005 [JKg⁻¹K⁻¹], la razón entre los coeficientes de difusión Kh/Kw=1, luego:

$$\gamma = \frac{1005 \cdot 101, 3 \cdot 10^3}{0,622 \cdot 2441, 75 \cdot 10^3} \left[\frac{JKg^{-1}K^{-1}Pa}{JKg^{-1}} \right]$$

$$\gamma = 67,03 \left[\frac{Pa}{K} \right]^{1}$$

El gradiente de la curva de presión de vapor está dado por:

$$\Delta = \frac{4098e_{as}}{(237,3+T)^2} \left[\frac{Pa}{\circ C} \right]$$

$$\Delta = \frac{4098 \cdot 3168,8}{(237,3+25)^2} \left[\frac{Pa}{\circ C} \right]$$

$$\Delta = 188,7 \left[\frac{Pa}{\circ C} \right]$$

De este modo según el método combinado se tendrá que:

$$E = \frac{\Delta}{\Delta + \gamma} E_r + \frac{\gamma}{\Delta + \gamma} E_a$$

$$\frac{\Delta}{\Delta + \gamma} = \frac{118,7}{118,7 + 67,1} = 0,738$$

$$\frac{\gamma}{\Delta + \gamma} = \frac{67,1}{118,7 + 67,1} = 0,262$$

$$E = 0,738 \cdot 7,08 + 0,262 \cdot 7,38 = 7,16 \left[\frac{mm}{d}\right]$$

Método de Priestley-Taylor

$$E = \alpha \cdot \frac{\Delta}{\Delta + \gamma} E_r$$

$$E = 1.3 \cdot 0.738 \cdot 7.08 = 6.79 \left[\frac{mm}{d} \right]$$

¹ Recordar que por definición el calor específico corresponde a la cantidad de calor necesario que hay que aportar a una sustancia para elevar su temperatura en 1°, en este caso variar en 1°C el calor de un cuerpo equivale a variar 1°K la misma sustancia, de podo que $\gamma = 6.703~Pa/°C$

Tabla 1: Densidad el agua a distintas temperaturas

Temperatura °C	Densidad kg / m ³	Temperatura °C	Densidad kg / m ³	Temperatura °C	Densidad kg / m ³
0 (hielo)	917,00	33	994,76	67	979,34
0	999,82	34	994,43	68	978,78
1	999,89	35	994,08	69	978,21
2	999,94	36	993,73	70	977,63
3	999,98	37	993,37	71	977,05
4	1000,00	38	993,00	72	976,47
5	1000,00	39	992,63	73	975,88
6	999,99	40	992,25	74	975,28
7	999,96	41	991,86	75	974,68
8	999,91	42	991,46	76	974,08
9	999,85	43	991,05	77	973,46
10	999,77	44	990,64	78	972,85
11	999,68	45	990,22	79	972,23
12	999,58	46	989,80	80	971,60
13	999,46	47	989,36	81	970,97
14	999,33	48	988,92	82	970,33
15	999,19	49	988,47	tabla densidad agua	969,69
16	999,03	50	988,02	84	969,04
17	998,86	51	987,56	85	968,39
18	998,68	52	987,09	86	967,73
19	998,49	53	986,62	87	967,07
20	998,29	54	986,14	88	966,41
21	998,08	55	985,65	89	965,74
22	997,86	56	985,16	90	965,06
23	997,62	57	984,66	91	964,38
24	997,38	58	984,16	92	963,70
25	997,13	59	983,64	93	963,01
26	996,86	60	983,13	94	962,31
27	996,59	61	982,60	95	961,62
28	996,31	62	982,07	96	960,91
29	996,02	63	981,54	97	960,20
30	995,71	64	981,00	98	959,49
31	995,41	65	980,45	99	958,78
32	995,09	66	979,90	100	958,05

Tabla 2: Densidad del aire a distintas temperaturas para una atmósfera estándar.

Temperatura°C	Densidad ρ in		
Temperatura C	kg·m−3		
35	1.1455		
30	1.1644		
25	1.1839		
20	1.2041		
15	1.225		
10	1.2466		
+5	1.269		
±0	1.2922		
-5	1.3163		
-10	1.3413		
-15	1.3673		
-20	1.3943		
-25	1.4224		