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A B S T R A C T

There is now widespread awareness of the impact of anthropogenic influences on extreme floods (and droughts)
and thus an increasing need for methods to account for such influences when estimating a frequency distribu-
tion. We introduce a parsimonious approach to nonstationary flood frequency analysis (NFFA) based on a bi-
variate regression equation which describes the relationship between annual maximum floods, x, and an exo-
genous variable which may explain the nonstationary behavior of x. The conditional mean, variance and
skewness of both x and y= ln (x) are derived, and combined with numerous common probability distributions
including the lognormal, generalized extreme value and log Pearson type III models, resulting in a very simple
and general approach to NFFA. Our approach offers several advantages over existing approaches including:
parsimony, ease of use, graphical display, prediction intervals, and opportunities for uncertainty analysis. We
introduce nonstationary probability plots and document how such plots can be used to assess the improved
goodness of fit associated with a NFFA.

1. Introduction

The field of flood frequency analysis (FFA) has a long and rich
history which has led to several manuals of practice available for dif-
ferent continents and countries including the United States (IACWD,
1982; USACE, 1993), the United Kingdom (NERC, 1975; Robson and
Reed, 1999; Stewart et al., 2008), Australia (Ball et al., 2016), and
continental Europe (Madsen et al., 2014) as well as summaries of the
field of FFA in book chapters (Stedinger et al., 1993; Kottegoda and
Rosso, 1997; Stedinger, 2016), books (Rao and Hamed, 2000; Hosking
and Wallis, 2005), and review articles (Greis, 1983; Bobée and
Rasmussen, 1995; Castellarin et al., 2012). Critical to nearly all tradi-
tional approaches to FFA, summarized above, is the assumption of
stationarity, loosely defined as the conditions under which key sum-
mary statistics of streamflows, such as their moments or L-moments, do
not systematically change with time.

Ever since the seminal work by Hurst (1957), hydrologists have
been keenly aware of the complex behavior of streamflow and its re-
lationships with climatic and other watershed conditions. Over the
ensuing years, numerous complex statistical representations were in-
troduced in an effort to reproduce what became known as the “Hurst
phenomenon” (see O'Connell et al. 2016). More recently, interest in the
complexity of streamflow dynamics has grown exponentially due to
improvements in our understanding of the impacts of numerous phy-
sical and social processes on streamflow, including: increasing urban

populations causing major stresses to landscapes as well as water in-
frastructures and water availability (e.g. Vörösmarty et al., 2000),
global warming due to increased greenhouse gas concentrations in the
atmosphere, and a better understanding of the effects of both atmo-
spheric-oceanic processes and anthropogenic factors on the hydro-
logical cycle (e.g. IPCC, 2013). This increased understanding, aware-
ness and interest has led to a tremendous increase in research
associated with the detection, attribution and prediction of hydro-
logical processes such as the new scientific decadal 2013–2022 in-
itiative of IAHS, entitled “Panta Rhei-Everything Flows”, which is
dedicated to research activities on change in hydrology and society
(Montanari et al., 2013). As evidenced from recent review articles and
special journal issues, there are now myriad approaches under devel-
opment for nonstationary flood frequency analysis (NFFA) (e.g. Petrow
and Merz, 2009; Kiang et al., 2011; Salas et al., 2012; Madsen et al.,
2014; Hall et al., 2014; Bayazit, 2015; Salas et al., 2017). For a general
review of the literature on NFFA methods, we refer the reader to the
review articles cited above. After our introductory remarks, we describe
how our particular approach to NFFA differs from previous efforts.

In spite of the tremendous increase in attention given to NFFA, there
is still no consensus on a methodology for performing NFFA. In fact,
there is not even consensus on the need for NFFA, as described below.
Nevertheless, there is some effort by government agencies to update
flood protection design guidelines to account for nonstationarity
(Stedinger and Griffis, 2011; Madsen et al., 2014; Prosdocimi et al.,
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2014) yet the proposed methods are by no means widely accepted nor
tested. Despite tremendous interest in the development of methods of
NFFA, considerable debate continues over whether stationary or non-
stationary methods should be employed in practice (see Serinaldi and
Kilsby, 2015; Luke et al., 2017 and recent discussion by Salas et al.,
2017). Thus, despite the recent interest in the development of NFFA
approaches (Milly et al., 2008; Milly et al., 2015), considerable con-
troversy remains as evidenced in the many papers which properly
question the need for nonstationary approaches (e.g. Cohn and Lins,
2005; Villarini et al., 2009a; Villarini et al., 2011; Lins and Cohn, 2011;
Hirsch and Ryberg, 2012; Matalas, 2012; Montanari and Koutsoyiannis,
2014; Serinaldi and Kilsby, 2015). For example, Villarini et al. (2011)
and Villarini et al. (2009a) summarize numerous studies including their
own analyzes which did not provide statistical evidence of non-
stationarity in flood series, except where major watershed changes
occurred. Even if there were acceptance on an approach to NFFA, many
open questions remain concerning the selection of an appropriate de-
sign event under such conditions (e.g. Stedinger and Griffis, 2011;
Rootzén and Katz, 2013; Obeysekera and Salas, 2014; Salas and
Obeysekera, 2014; Read and Vogel, 2015; Salas et al., 2017). The lack
of consensus results in part from the tremendous uncertainty associated
with our ability to detect, attribute and model past trends, and the even
greater uncertainty associated with our ability to predict future trends
in hydrological processes.

The question of whether to perform a stationary or nonstationary
flood frequency analysis remains an open question and probably should
remain so, as evidenced from the findings of O'Brien and Burn (2014),
Serinaldi and Kilsby (2015) and Luke et al. (2017). In a careful com-
parison of the precision (uncertainty) associated with various estimates
of design flood events using both stationary and nonstationary methods,
Luke et al. (2017) found that stationary methods were nearly always
preferred over nonstationary approaches. Vogel et al. (2013),
Prosdocimi et al. (2014) and Serinaldi and Kilsby (2015) document how
one can quantify the various factors which give rise to uncertainty in
our ability to detect and model trends in hydrologic series. Obeysekera
and Salas (2014), O'Brien and Burn (2014) and Serinaldi and
Kilsby (2015) describe approaches to derive confidence intervals for
design events under nonstationary conditions. Yet even in situations in
which there is physical knowledge of the processes causing the hy-
drologic nonstationarity, there is always considerable additional un-
certainty associated with NFFA so that risk-based approaches to design
event selection are paramount.

Risk-based decision approaches are now well-established for selec-
tion of a design event based on the expected benefits and damages
avoided versus the cost of the investment required (National Research
Council, 2000) and such approaches are now standard practice by U.S.
Federal agencies (see Brekke et al., 2009; Stakhiv, 2011). Importantly,
given the additional uncertainty associated with NFFA, it is even more
important to employ risk based approaches which consider both the
possibility of a stationary and a nonstationary future (Rosner et al.,
2014) as well as a wide range of possible forms of future nonstationarity
(Spence and Brown, 2016). The need for risk-based approaches to the
selection of a design event cannot be overemphasized because such
approaches enable an accounting of most relevant sources of un-
certainty (e.g. Stedinger and Crainiceanu, 2001; Brekke et al., 2009;
Sivapalan and Samuel, 2009; Stakhiv, 2011; Rosner et al., 2014; Spence
and Brown, 2016).

The literature on approaches to NFFA is growing rapidly as evi-
denced by the numerous recent reviews on the subject (Khaliq et al.,
2006; Petrow and Merz, 2009; Madsen et al., 2014; Ehret et al., 2014;
Bayazit, 2015; Salas et al., 2017). Such methods may be extremely
important in urbanizing watersheds because, as shown by
Vogel et al. (2011), the annual maximum flood (AMF) series associated
with rivers in urbanized or urbanizing areas of the U.S. exhibited sig-
nificant increases in magnitude over the past century, a finding con-
sistent with those of others (Konrad, 2003; Moglen and Shivers, 2006;

Villarini et al., 2009b; Prosdocimi et al., 2015), in spite of the fact that
variations in stormwater infrastructure and rainfall climatology can
lead to a wide spectrum of changes in urban watersheds (Smith et al.,
2013). Olsen et al. (1999) found significant increases in flood magni-
tudes in tributaries and the main stem of the northern portions of the
upper Mississippi river basin as well as for portions of the upper Mis-
sissippi river near St. Louis. Mallakpour and Villarini (2015) found
significant increases in the frequency, but not the magnitude, of historic
flood events in the central region of the U.S. Despite considerable un-
certainty over the impact of changes in climate on the behavior of
floods (e.g. Koutsoyiannis et al., 2008; Hirsch and Ryberg, 2012). There
is good evidence that changes in land use, land cover, agricultural
practice and water infrastructure have led to considerable changes in
the behavior of flood series (Villarini et al., 2011).

If an observed flood series is known to exhibit an increasing trend
during some particular historical period, then the magnitude of all
upper quantiles associated with that flood series will also increase over
that period. Under such conditions it would not be appropriate to report
a single value of the 99th percentile (i.e. flood with average return
period of 100 years) or to issue a floodplain delineation map without
denoting the date associated with its creation. In such situations, in
which historical trends in flood series are obvious and/or overt due to
knowledge of changes in historical land use, climate and/or water in-
frastructure, it is imperative to provide updated estimates of design
floods that reflect current conditions. The goal of this study is to de-
velop a suite of approaches to NFFA which are particularly well suited
to updating design events to current conditions.

2. On the value of parsimony: Robustness, resistance and
efficiency

A full appreciation of the methodology introduced here can only be
understood with a knowledge of the concepts of parsimony, robustness,
resistance and efficiency, all of which have been given little attention in
the area of NFFA. Our long history of stationary FFA including a myriad
of probability density functions (pdf) and parameter estimation
methods introduced over 50 years ago, led Kuczera (1986) and others
to introduce the concepts of robustness, resistance and efficiency to
help hydrologists choose a suitable approach. Kuczera (1986) defined a
robust model as “one which the analyst is confident to use as a pre-
dictive tool in the roles assigned to it”. He also introduced the prop-
erties of resistance and efficiency, two properties expected of a robust
model. Kuczera (1986) suggests that a resistant model “must be capable
of estimating extreme events, irrespective of which contending flood
distribution best represents the real world, without disastrous loss of
performance. Performance is indicated by some criterion such as mean
squared error (MSE)”. Others had already sought resistant flood esti-
mators such as in the seminal study by Slack et al. (1975) which found
that in the absence of knowledge about the distribution of floods and
associated economic losses, the normal distribution was preferred over
several more complex and commonly used skewed alternatives.

Identification of a resistant estimator is not sufficient, because a
robust estimator must also perform efficiently in the sense of exhibiting
low MSE when compared to alternative estimators. It has long been
known that efficient (low MSE) estimators tend to also be parsimonious
(Box and Jenkins, 1976). A parsimonious estimator is one that ac-
complishes a desired level of prediction efficiency with as few model
parameters as possible. More recently, Laio et al. (2009) and
Di Baldassarre et al. (2009) argue that all model selection criteria im-
plicitly consider the principle of parsimony which they describe in
terms of the inverse trade-off between the bias and variance of an es-
timator (i.e. more complex estimators tend to exhibit lower bias at the
cost of increased variance).

Still today, even after the concept of parsimony has pervaded the
early literature on FFA, a common assumption of NFFA literature is that
more accurate estimates of flood quantiles result when more complex

J.M. Serago, R.M. Vogel Advances in Water Resources 112 (2018) 1–16

2



and improved estimators are employed. Thus, recent reviews of NFFA
by Khaliq et al. (2006) and others describe myriad complex parametric
and nonparametric NFFA methods, most of which have not been eval-
uated within the context of robustness, and many of which are certainly
not parsimonious, as discussed below. The few studies we could find
which did evaluate the robustness of alternative NFFA estimators in
terms of both their resistance and efficiency, found that the more par-
simonious models tended to perform best (Serinaldi and Kilsby, 2015;
Luke et al., 2017). As expected from our earlier experience on the value
of parsimony in stationary FFA, both Serinaldi and Kilsby (2015) and
Luke et al. (2017) found that in the presence of the uncertainty con-
cerning whether or not a flood series exhibits nonstationarity, the more
parsimonious stationary estimators were generally preferred. However,
O'Brien and Burn (2014) found that regional approaches to NFFA may
be preferred over regional approaches to FFA when significant non-
stationarity is evident within a region.

There are many examples of the fact that parsimonious estimators
often exhibit lower MSE than more complex competing estimators even
when the parsimonious estimator assumes an incorrect pdf. For ex-
ample, Lu and Stedinger (1992) consider quantile estimators for the
generalized extreme value (GEV) distribution and show that for pdfs
with realistic shape parameters, a two parameter GEV with fixed shape
parameter (such as the Gumbel estimator) generally had lower MSE
than the three-parameter GEV estimator, even if the assumed shape
parameter is misrepresented. Similarly, Kuczera (1986) found the par-
simonious two-parameter lognormal (LN2) maximum likelihood esti-
mator to exhibit lower MSE when compared to numerous realistic
three-parameter alternatives.

In summary, there exists extensive evidence of the value of parsi-
mony in stationary FFA and after the two recent studies by
Serinaldi and Kilsby (2015) and Luke et al. (2017), we expect the
principle of parsimony to play an equally important role in NFFA. Si-
milarly, Castellarin et al. (2012) found that relatively simple ap-
proaches to FFA with minimum data requirements were the preferred
choice in many countries and by most of the institutions and agencies in
charge of developing flood risk mitigation plans in Europe. The primary
goal of this study is to introduce a parsimonious approach to NFFA
which only requires estimation of one additional parameter over and
beyond a stationary FFA yet can be applied to any pdf, regardless of the
number of parameters.

3. Distinguishing features of methodology

Two general approaches have been applied to FFA and NFFA,
consisting of the peaks over threshold approach (POT) and the use of
the annual maximum flood (AMF) series approach. We only consider
the AMF approach, though there may be considerable value to testing
the POT approach for NFFA in future studies (i.e. see Khaliq et al.,
2006). See Stedinger et al. (1993, Section 18.6.1) and Stedinger (2016,
Section 76.2.3) and associated references for guidance on when an AMF
analysis is preferred over a POT analysis.

Existing approaches to NFFA summarized in review articles by
Khaliq et al. (2006), Petrow and Merz (2009), Madsen et al. (2014),
Ehret et al., (2014), Bayazit (2015) and Salas et al. (2017) usually in-
volve fitting pdfs whose parameters and/or moments are related to
exogenous variables which are related to drivers of nonstationary be-
havior. A variety of estimation methods have been advanced for esti-
mating the combined nonstationary model consisting of a pdf and one
or more models relating either moments or pdf model parameters to
exogenous variables. To fully understand many of the NFFA methods
advanced in the above cited reviews would require advanced training in
statistics such as those based on generalized maximum likelihood,
generalized linear models, kernel and wavelet density estimation,
quantile regression, and Bayesian approaches, just to name a few. A
secondary goal of this study is to introduce a generalized approach to
NFFA which would not require advanced training in statistics to fully

understand and implement. One could argue that algorithms now exist
in R software (R Core Team 2015) to facilitate implementation of most
of these advanced NFFA approaches (e.g. see GAMLSS software by
Stasinopoulos and Rigby, 2007; extRemes software by Gilleland and
Katz, 2011; and NEVA software by Cheng et al., 2014). However, unlike
the methodology introduced here, a complete understanding of those
methods requires advanced training in statistics and some of these tools
are not useful for distributions other than the generalized extreme value
(GEV) and generalized Pareto pdfs.

Our approach differs from all previous work on NFFA because it
employs a single regression equation, based on an exogenous variable,
from which the conditional mean, conditional variance and conditional
skewness of both series of annual maximum floods (AMF): x and its
logarithms y= ln (x) may be derived to ensure consistency among the
resulting moments and distributional model parameters as well as to
ensure a parsimonious approach. Since only a single regression model is
used to derive the conditional moments, a parsimonious NFFA can be
developed with only one additional model parameter required to con-
vert a stationary FFA into a NFFA, another contribution which sets this
work apart from all previous work on methods for NFFA.

When combining a pdf with models which relate pdf model para-
meters or moments to covariates, it is important to ensure that the re-
sulting NFFA behaves in accord with flood observations, another cri-
tical and distinguishing feature of our approach. Consider an example
using a nonstationary GEV pdf where the location, scale and shape
parameters are given by ξ, α, and κ, respectively (using notation from
Stedinger et al., 1993; and Stedinger 2016). Consider the parsimonious
model proposed by Cheng et al. (2014) and others, in which only the
location parameter is linearly related to time t, so that ξ= a+ bt with
the scale and shape parameters fixed. One can pose such a model and
even show that the linear relationship is in accord with flood ob-
servations, however, such an approach could not make physical sense,
because holding α constant, implies that the variance of the flood series
does not change over time. This results in a coefficient of variation of
the flood series, C, which changes over time - an unlikely result for
flood series and a result inconsistent with many recent studies which
have documented that the assumption of a constant value of C is rea-
sonable at thousands of rivers (i.e. Vogel et al., 2011; Prosdocimi et al.,
2014, and Hecht 2017). Our parsimonious approach based also on a
single model of the flood series versus a covariate, employs conditional
moments and conditional pdf model parameters derived from that
model, which ensure that the resulting NFFA will always be in accord
with the original flood observations.

Another unique aspect of our proposed approach to NFFA involves
the myriad benefits which arise from the combination of a single
(possibly multivariate) regression equation along with its corre-
sponding exogeneous variable(s) and associated conditional moments
derived for use with any pdf, although herein we only apply it to four
commonly used in FFA: generalized extreme value (GEV), lognormal
(LN2), lognormal (LN3) and log Pearson type III (LP3). Those benefits,
summarized in the next section, range from the numerous advantages of
regression methods including: rigorous graphical displays, parsimony,
prediction intervals associated with trend extrapolations, accommoda-
tion of complex multivariate nonlinear relationships, and an ability to
account for missing observations, abrupt changes, the impact of serial
correlation and changes in the coefficient of variation of flood series on
resulting statistical inference associated with the NFFA. We then de-
scribe our parsimonious approach to NFFA which begins by introducing
the theoretical regression framework for NFFA, including a derivation
of the conditional moments of x and y= ln (x). We then combine those
conditional moments with the four pdfs considered: GEV, LN2, LN3,
and LP3 resulting in four different NFFA models. We then apply the
resulting NFFA models to AMF series for two urbanizing basins near
Boston, Massachusetts. Finally, we introduce nonstationary probability
plots and associated goodness-of-fit metrics, documenting how such
procedures can be used to evaluate and possibly improve the practice of
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NFFA.

4. Advantages of regression for nonstationary flood frequency
analysis

Regression offers a generalized multivariate statistical approach for
relating the behavior of flood series to covariate explanatory variables
which can explain a portion of the variability of those floods.
Conditional moments associated with a single bivariate regression
model are derived and combined with a pdf to create a parsimonious
NFFA. Below, we outline a dozen advantages of using regression within
NFFA which, taken together, offer significant advantages over alter-
native approaches.

Ease of application: Ordinary least squares (OLS) regression is a
topic in most introductory statistics courses and is easy to implement in
existing statistical software packages.

Effective graphical communication: Regression is useful for com-
municating results because the goodness-of-fit of trend models can be
conveyed both quantitatively and qualitatively in a single graphical
image.

Parsimonious estimation of conditional moments: Most previous
studies on NFFA develop separate, independent, regression equations
for each moment and/or model parameter, leading to NFFA with sev-
eral additional parameters over stationary FFA. Instead, as we suggest,
one may derive all conditional moments needed for NFFA from a single
regression model resulting in a parsimonious approach.

Accommodation of changes in coefficient of variation of flood
series: A promising extension to our analysis would be through the use
of weighted least squares (WLS) regression for accommodating het-
eroscedastic regression residuals resulting from situations in which the
coefficient of variation of flood series is changing. (see
Strupczewski and Kaczmarek, 2001; and Hecht, 2017).

Accommodation of nonlinear relationships: A wide range of
monotonic non-linear functions can be linearized with ladder-of-powers
transformations (Mosteller and Tukey, 1977; Helsel and Hirsch, 2002),
enabling the application of OLS and WLS linear regression methods for
fitting highly nonlinear relationships.

Analytical prediction Intervals: Both confidence intervals corre-
sponding to the true regression relationship, as well as prediction in-
tervals associated with future predicted floods are easily computed
from analytical relations (e.g. Helsel and Hirsch, 2002).

Multivariate statistical modeling: Multivariate regression can be
used to model the multiple and interacting impacts of various covari-
ates which quantify the impact of climate, land-use and other factors on
flood series (Kwon et al., 2008; Delgado et al., 2010; López and Francés,
2013; Prosdocimi et al., 2014; Prosdocimi et al., 2015; Condon et al.,
2015; Šraj et al., 2016). Hypothesis tests are also available for evalu-
ating various alternative hypotheses.

Model selection and evaluation: Numerous procedures such as cross
validation, random forests, partial least squares, ridge regression, and
best subsets selection methods are available for selection of covariates
in multivariate regression models. In addition, influence statistics are
available for evaluating the influence of outliers on regression coeffi-
cients (Helsel and Hirsch, 2002). Such model selection procedures are
of critical importance to ensure development of parsimonious multi-
variate models.

Step changes or abrupt shifts: Changes in flood series may be either
gradual or abrupt due to either anthropogenic perturbations, such as
reservoir construction, or climatic shifts (McCabe and Wolock, 2002;
Villarini et al., 2009a). To test for hypothesized abrupt step changes in
flood series, binary indicator variables that account for whether a
covariate lies below or above a threshold can be added to a regression
model (Bates et al., 2012).

Handling of missing and historical information: The conditional
regression approach described here, can easily account for intermittent
or missing observations and in addition, offers a parsimonious

alternative to the expected moments algorithm (Cohn et al., 1997;
Lamontagne et al., 2016) for integrating non-instrumental historical
flood records into NFFA if they are believed to represent an unbiased
sample of floods during the historical period. These tasks are accom-
plished by simply accounting for the time of occurrence associated with
each flood and associated covariate observation.

Accounting for persistence in hydrologic series: Given the short
records typically available in hydrology, it is often difficult to distin-
guish trends from short- and long-term persistence (Vogel et al., 1998),
both of which have been documented in AMF series (Villarini et al.,
2009a; Tan and Gan, 2015). Fortunately, Matalas and
Sankarasubramanian (2003) developed analytical formulae to adjust
standard errors of regression model coefficients for numerous common
classes of persistence.

5. Regression model of annual maximum flood series

Our central goal is to combine pdfs, which are widely accepted for
modeling stationary AMF series, with conditional moments derived
from a regression model which can describe the nonstationary behavior
of AMF series. A distinguishing feature of this work is that very careful
attention is given to the structure and theoretical properties of the re-
gression models which all take the form

= = + + + +y f x β β w β w( ) ... ɛ0 1 1 2 2 (1)

where x denotes the AMF series, and y= f(x) is some transformation of
the AMF series, with w1,w2,.. denoting covariate climate, land use and
possibly other variables, β1,β2,.. denoting model coefficients and
ε denoting model error which is assumed to be independent, homo-
scedastic and normally distributed.

A model of the form given in (1), with a logarithm transformation
y= ln (x) was carefully evaluated by Vogel et al. (2011) for AMF series
at thousands of rivers across the U.S. and by Prosdocimi et al. (2014) for
rivers in the United Kingdom. In this initial study, we employ a linear
regression model using a logarithmic transformation of the AMF series x
in (1), leading to an exponential model for x which was shown by
Vogel et al. (2011) to be an excellent representation of AMF series in
the U.S., regardless of whether the series was determined to exhibit a
significant trend.

The basic premise of this work is that a regression of the form given
in (1) can be developed for relating the AMF series to one or more
explanatory variables, each of which would describe some portion of
the (possibly) nonstationary behavior of the series. Another basic pre-
mise of this work is that the single regression model can be used to
derive conditional moments needed to convert the stationary LN2, LN3,
GEV, LP3 and other models into their nonstationary counterparts. In
this section, we describe the initial regression model employed here
along with its theoretical properties and associated conditional mo-
ments. The goal of this study is to introduce a generalized approach to
NFFA based on the integration of a single regression model with various
stationary pdfs, thus, we consider only a bivariate regression model
here; yet we encourage others to extend our work using multivariate
(yet parsimonious) regression models which include covariates known
to be drivers of nonstationary behavior.

To simplify the introduction of our methodology, we consider only a
single explanatory variable, time, selected as a surrogate for all the
possible time-dependent nonstationary influences on the AMF series
considered in two case studies. We recommend that in any future ap-
plication of our methodology, investigators incorporate explanatory
variables which can describe the physical influence of whatever non-
stationary behavior is hypothesized. For example, in the case of the two
urbanizing watersheds considered later, relevant explanatory variables
might be the area of directly connected impervious surfaces and other
metrics which represent the influence of urbanization on the behavior
of flood magnitudes. We recommend development of multivariate
models which include numerous additional covariates because this
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approach has been shown to improve upon our ability to describe future
nonstationary behavior of flood series (Kwon et al., 2008; Delgado
et al., 2010; López and Francés, 2013; Prosdocimi et al., 2014;
Prosdocimi et al., 2015; Condon et al., 2015).

5.1. The regression and its implied conditional and unconditional moments

To introduce our generalized approach to NFFA we employ the bi-
variate regression:y= β0+ β1w+ ε where y= ln (x), with x re-
presenting the AMF series and w represents an explanatory variable,
with other variables as defined in (1). Both Vogel et al. (2011) and
Prosdocimi et al. (2014) found this model, with w equal to time, to be
useful for examining flood trends for rivers in the U.S. and the U.K.,
regardless of whether or not trends exist. Hirsch and Ryberg (2012) also
used this model to evaluate AMF series at 200 long term rivers in the US
with the covariate w equal to carbon dioxide concentrations. We em-
phasize that the form of the regression model in (1) and its simpler form
given below make no assumption regarding the probability distribution
of y. We also note that the results presented in this section for a bi-
variate regression would need to be extended for the multivariate case,
as is advocated elsewhere in this paper and by others.

The bivariate regression model can be rewritten in the form:

= + − +y μ β w μ( ) ɛy w (2)

where y is conditioned upon the explanatory variable w, μy and μw are
the mean of the variables y and w, respectively, β is the regression
coefficient, and ε represents the model error which is assumed to be
independent in time, normally distributed and to have zero mean and
constant variance with

= −σ ρ σ(1 ) yɛ
2 2 2 (3)

where ρ denotes the cross-correlation coefficient between y and w.
Estimates of the single regression coefficient in (2) may be obtained
from:

 ̂
̂̂=β ρ

σ
σ

y

w (4)

with ̂ = ∑ − −

∑ − ∑ −
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= =
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w w y y

w w y y
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1 1
2 , = ∑ =y yn i

n
i

1
1 , and = ∑ =w wn i
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i

1
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Note for this very special case in which we are employing the ex-
planatory variable w= time, which is not a random variable,
Prosdocimi et al. (2014, Appendix A3) derive expressions for its sample
mean and variance. Assuming no missing observations between the first
and last years, sample estimates of the mean and variance of w are
equal to = +w n( 1)/2 and ̂ = +σ n n( 1)/12w

2 .

5.2. Unconditional moments

When performing a stationary analysis the moments of x and
y= ln (x) will not depend on the explanatory variable w so that the
unconditional moments of xand y are defined by their means μx and μy;
their standard deviations σxand σy, and their skewnesses γx and γy.
Suitable sample at-site and/or regional estimators of those moments
will depend on the assumed pdf of x and y, which are given in the
Appendix A.

5.3. Conditional moments of y

Here we use the regression in (2) to derive conditional moments of
both x and y for use in NFFA, without making any assumptions re-
garding the probability distribution of either x or y. Taking the ex-
pectation of (2) leads to an expression for the expected value of y,
conditioned upon w:

= + −μ μ β w μ( )y w y w/ (5)

Similarly, the conditional variance of y is obtained by taking the
variance of (2) which leads to:

= = −σ σ σ ρ(1 )y w y/
2

ɛ
2 2 2 (6)

Note that the conditional variance of y decreases as the explanatory
power of the trend model increases with the limit approaching zero as ρ
approaches unity. Note also that the conditional variance of y reduces
to its original, unconditional variance when the regression in (2) has no
explanatory power, i.e. ρ=0. Note that numerous previous studies
which have employed this same regression model in NFFA did not ac-
count for the fact that the conditional variance of y given in (6) is
generally smaller than its unconditional value (see for example,
Stedinger and Griffis, 2011; Vogel et al., 2011; Prosdocimi et al., 2014
and Luke et al., 2017; just to name a few).

Analogous to the conditional mean and variance of y in (5) and (6),
one can show that the conditional skewness of y is given by:

= −γ γ β γ·y w y w
3 (7)

The conditional skewness is equal to the unconditional skewness
when the skewness of the explanatory variable is equal to zero, which is
the case when time is used as the explanatory variable w, as employed
in this study.

5.4. Conditional moments of x

If one takes the exponential of both sides of the regression for y in
(2) we obtain an expression for x:

= = + − +x y μ β w μexp( ) exp( ( ) ɛ)w w y w (8)

where here the notation xw and yw emphasizes that the values of xw and
yw are conditioned upon the value of the explanatory variable w. Note
that we have not yet made any assumptions regarding the pdf of x, y, xw
or yw given the form of the regression in (2), the conditional values yw
and xw are likely to be well approximated by a normal and lognormal
distribution, respectively, regardless of the original pdf associated with
the variable of interest here, x. This is true, because the only random
variable on the right hand side of (8) are the model errors ε and exp (ε),
which were found to be well approximated by normal and lognormal
distributions, respectively, for thousands of rivers in the U.S. regardless
of whether, or not, the estimated trend model coefficient β was found to
be statistically significant (see results of normality hypothesis tests in
Appendix A2 of Vogel et al. 2011).

Thus, only for the purposes of deriving an approximation to the
conditional moments of x, we use the fact that, xwis likely to be well
approximated by a lognormal distribution with conditional moments in
log space given by μy/w and σy/w in (5) and (6), respectively, regardless
of the true underlying distribution of x. Thus, the conditional moments
of xcan be approximated using the standard expressions which relate
the mean, variance and skewness of x and y= ln (x) for a lognormal
variate, which yields:

⎜ ⎟= ⎛

⎝
+ ⎞

⎠
μ μ

σ
exp

2x w y w
y w
2

(9a)

= + −σ μ σ σexp(2 )(exp( ) 1)x w y w y w y w
2 2 2

(9b)

= = −C
σ
μ

σexp( ) 1x w
x w

x w
y w
2

(9c)

= +γ C C3x w x w x w
3

(9d)

where Cx|w denotes the coefficient of variation of x conditioned on w.
Eq. (9) can be simplified by combining it with (5) and (6) so that
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⎜ ⎟= ⎛

⎝
+ − +

− ⎞

⎠
μ μ β w μ

σ ρ
exp ( )

(1 )
2x w y w

y
2 2

(10a)

= + − + − − −σ μ β w μ σ ρ σ ρexp(2 2 ( ) (1 ))(exp( (1 )) 1)x w y w y y
2 2 2 2 2

(10b)

= − −C σ ρexp( (1 ) 1)x w y
2 2

(10c)

= +γ C C3x w x w x w
3

(10d)

Here we note that both the conditional mean and the conditional
variance of x, depend on the value of the explanatory variable w,
whereas both the conditional coefficient of variation and the condi-
tional coefficient of skewness, are constant (see discussion below). It is
very important to understand the impact of nonstationarity in the
moments of the flood series x on overall flow variability, which can be
explained by contrasting the unconditional coefficient of variation,

=C σ μ/x x x of the flood series given in (6) with its conditional value Cx|w

given in (10c). In general, Cx|w < Cx as long as |ρ| > 0, which will
always be the case for a nonstationary series. This can also be seen for
the case when x follows an LN2 model, where Read and Vogel (2015)
show that the conditional coefficient of variation of x is given by

= + −+C C( 1) 1x w x
ρ

/
2 (1 )2

(11)

Under nonstationary conditions, there is always the question of
whether or not the variability (defined by the coefficient of variation of
x) is changing over time. The LN2 case provides an excellent back-
ground for understanding this issue so often confused in the literature.
For the LN2 case, the unconditional coefficient of variation of the flood
series is given by = −C σexp( ) 1x y

2 , which can be rewritten using (6)

as = − −C σ ρexp( /(1 )) 1x ɛ
2 2 which is only constant if the regression

in (2) exhibits homoscedastic residuals or residuals with constant var-
iance. Thus, one could employ a standard test of homoscedasticity of
the residuals such as the one introduced by Breusch and Pagan (1979)
or White (1980) to evaluate whether or not the coefficient of variation
of the flood series is changing.

Note that if the variance of the residuals σɛ
2 changes over time, then

Cx is no longer constant, and a heteroscedastic regression model is
needed to characterize the conditional coefficient of variation of x, as
recommended by Hecht (2017). One may also employ WLS regression
in the case of heteroscedastic model errors as described by
Strupczewski and Kaczmarek (2001). Interestingly, after looking at
hundreds of rivers across the U.S. using a 5% level modified Breusch-
Pagan (1979) test, Hecht (2017) found few examples of rivers, even in
urbanizing regions, which exhibited values of Cx which appear to
change over time.

6. Probability distributions of annual maximum flood series

Vogel and Wilson (1996) provide a review of the results of local,
regional, continental and global studies which sought to determine a
suitable pdf for modeling series of annual maximum floods. They
summarize the results of studies available as of that date, along with the
results of a survey of pdfs used by various agencies and countries
worldwide. On the basis of those surveys and literature review, com-
bined with their own national evaluation based on L-moment diagrams
for 1490 rivers in the U.S., Vogel and Wilson (1996) recommend the use
of three distributions for modeling AMF series including: GEV, LP3 and
the LN3 distributions. In the most recent summary of FFA methods,
Stedinger (2016) suggests that the GEV and LP3 models are the most
widely accepted. Among all the pdfs considered by the
Interagency Advisory Committee on Water Data (1982, see Appendix
14) the LN2 and LP3 distributions performed best in their comparisons
and were the only two distributions which did not exhibit significant
bias in observed flood frequencies. We note that the LN2 model is a

special case of both the LP3 and LN3 models.
On the bases of these extensive national and global comparisons, we

develop nonstationary versions of the following four pdfs: LN2, LN3,
LP3 and GEV. These choices are also consistent with other recent stu-
dies including: the large-scale pan European evaluation by
Salinas et al. (2014) which recommends the GEV model, England Jr
et al. (2017) which recommends the LP3 model for the U.S. and
Ball et al. (2016) which recommends both the LP3 and GEV models for
the Australian continent. Although use of regional information is gen-
erally preferred over use of at-site methods in both stationary (Hosking
and Wallis, 2005; Ouarda, 2016), and nonstationary (O'Brien and
Burn, 2014) FFA, in this initial study we employ at-site parameter es-
timation methods, which have been proven to be efficient in previous
studies, for each of the pdfs considered. The parsimonious approach
introduced here could be combined with the index flood assumption to
enable extension to regional NFFA.

6.1. Stationary and nonstationary quantile functions

In this section, we describe the stationary and nonstationary quan-
tile functions corresponding to the LN2, LN3, GEV and LP3 distribu-
tions. Since we employ these quantile functions with actual data for two
urbanizing rivers in the following section, we introduce both the sta-
tionary and the nonstationary quantile estimators to clarify how to
implement the procedures introduced here. The challenge here is to
develop nonstationary quantile estimators which account for BOTH the
mean and variance of the AMF series x, being functions of the ex-
planatory variable w. Thus, our estimation methods must be flexible
enough to enable the distributional parameters, such as the lower
bound of the LN3 and GEV distributions, to be functions of w yet be
readily and easily implemented. Our experience indicates that when-
ever a trend in flood series is apparent, there appears to be a noticeable
trend in the corresponding lower bound of its pdf.

6.1.1. Lognormal –LN2
The lognormal distribution is one of the most widely used dis-

tributions in hydrology. Stedinger (1980) provides guidance on the
most efficient estimation methods for the LN2 and LN3 pdfs. If the AMF
series x follows an LN2 distribution, then y= ln (x) follows a normal
distribution. Stedinger (1980) shows that an attractive estimator of the
quantile of a stationary LN2 variate is the maximum likelihood esti-
mator given by:

̂ = +x y z vexp( )p p y (12)

where = ∑ =y yn i
n

i
1

1 and = ∑ −=v y y( )y n i
n

i
1

1
2and zp is the inverse of a

standard normal variable with nonexceedance probability p. Substitu-
tion of estimates of the conditional moments of y in (5) and (6) into the
stationary quantile function of an LN2 variate leads to the nonsta-
tionary LN2 quantile estimator:

 ̂ ̂ ̂̂ ̂ ⎜ ⎟= + = ⎛
⎝

+ − + − ⎞
⎠

x μ z σ y β w w z σ β σexp( ) exp ·( )p w y w p y w i p y w
2 2 2

(13)

where zp is the quantile function for a standard normal variable of
nonexceedance probability p and the estimators w , ̂σw

2 , β , y and ̂σy are
given in (4). Note that for the stationary case  =β 0, in which case (13)
reduces to the well-known stationary LN2 quantile estimator in (12).
Note also that numerous previous studies which have combined the
same regression model used here, with the LN2 pdf did not account for
the reduction in the conditional standard deviation of y as is done here
(see for example, Stedinger and Griffis, 2011; Vogel et al., 2011;
Prosdocimi et al., 2014; and Luke et al., 2017; just to name a few).

6.1.2. Log Pearson type III–LP3
If the AMF series x follows an LP3 distribution, then y= ln (x)
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follows a Pearson type III (P3) distribution (also termed a three-para-
meter Gamma pdf) which can be characterized by its mean μy, standard
deviation σy and skewness γy. The LP3 is an extremely flexible dis-
tribution that can assume a wide range of distributional forms ranging
from an exponential pdf when γy=2 to an LN2 model when γy=0.
Detailed procedures for estimation of the LP3 model under stationary
conditions, based on either at-site gaged data (as is assumed here) or
based on regional skew information, are provided by both England Jr
et al. (2017) and Ball et al. (2016). The nonstationary quantile function
for an LP3 variate is obtained in a very similar fashion to that of the LN2
case. Again, substitution of the conditional moments of y into the sta-
tionary quantile function of an LP variate leads to the nonstationary
LP3 quantile estimator:

 ̂ ̂ ̂̂ ̂ ⎜ ⎟= + = ⎛
⎝

+ − + − ⎞
⎠

x μ k σ y β w w k σ β σexp( ) exp ·( ) ·p w y w p y w i p y w
2 2 2

(14)

where
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which reduces to the stationary LP3 quantile function
̂ = +x y k σexp( )p w p y when  =β 0. Here zp and kpare the inverse of a

standard normal and a three-parameter Gamma variate, respectively,
with nonexceedance probability p. While estimates of zp are widely
available in most any mathematical software package, kp is more dif-
ficult to estimate but may be approximated using the computational
method recommended by Kirby (1972) and given in (14), which is
accurate for values of γy ≤ |9| limits well beyond the skew values
considered in this and most other studies. For the case when the ex-
planatory variable w in the regression does not exhibit skewness, as is
the case here using the variable time, an at-site estimator of conditional
skewness γy|w in (7) may be estimated using the nearly unbiased esti-
mator introduced by Tasker and Stedinger (1986) for the LP3 dis-
tribution:

̂ ̂= ⎛
⎝

+ ⎞
⎠

∑ −
− −

=γ
n

n y y
n n σ

1 6 ·
( )

( 1)·( 2)·y w
i
n

i

y

1
3

3
(15)

Although this initial study only employs at-site estimators, we em-
phasize that at-site estimates of sample skew are highly variable which
is why England Jr et al. (2017) and others recommend computing a
regional skew estimator which weighs estimates of at-site and regional
skews.

6.1.3. Generalized extreme value–GEV
The GEV distribution is a generalization of the Type-I, II, and III

extreme value distributions, also known as the Gumbel, Frechet and
Weibull pdfs, respectively. It may be the most widely used pdf for
modeling annual series of natural hazards and other extremes, perhaps
because it is the asymptotic distribution of the maximum value in an
infinite sample with an extensive extreme value theory to support its
application (Ghil et al., 2011). The AMF series represents the series of
maxima, each drawn from a very large number of discharges measured
in each year. Following the notation from Stedinger et al. (1993) and
Stedinger (2016), the stationary quantile function of a GEV variate is
usually written in terms of the three-parameters of the distribution α, ξ
and κ which characterize its scale, location and shape, respectively. An
estimate of the stationary GEV quantile estimator is given by

̂
̂ ̂̂ ̂= + − −x ξ α

κ
p(1 [ ln( )] )p

κ
(16)

Although the generalized MLEs introduced by Martins and
Stedinger (2000) are likely to be the most attractive parameter esti-
mators for a GEV variate, especially if one has prior information, we
employ method of moments estimators here, which have been shown to
be more efficient than either L-moment or MLE's (see Stedinger, 2016
for discussion and references). Stedinger (2016, Table 76.4) reports
expressions for the mean, standard deviation and skewness of x, de-
noted μx, σx and γx, respectively, as function of the pdf model para-
meters ξ, α and κ. Bhunya et al. (2007) report approximations for es-
timating the parameters ξ, α and κ from GEV samples based on sample
estimates of the moments μx, σx and γx which we denote as x , ̂σx and ̂γx,
respectively; which are reproduced in Appendix A. Substitution of the
method of moment estimators of the stationary GEV parameters given
in (A-1), (A-2) and (A-3) and denoted as ̂ξ , ̂α and ̂κ , into (16) leads to
the stationary GEV quantile estimator. Similarly, a nonstationary GEV
quantile function is obtained by replacing the sample moments μx, σx
and γx with their conditional moments μx|w, σx|w and γx|w given in (10).
After substitution of estimates of those conditional moments into the
method of moment estimators given in Appendix A, one obtains esti-
mates of the conditional parameters denoted ̂ξx w, ̂αx w and ̂κx w, leading
to the nonstationary quantile function:

̂
̂ ̂̂ ̂= + − −( )x ξ

α
κ

p1 [ ln( )]p w x w
x w

x w

κx w

(17)

Again, we emphasize that much more attractive estimators of the
GEV distribution would employ regional information for estimation of
the shape parameter κ for both stationary and nonstationary cases, as is
described in Martins and Stedinger (2000), El Adlouni et al. (2007) and
Stedinger (2016).

6.1.4. Three-parameter lognormal –LN3
If the AMF series x follows an LN3 distribution, then the variable

u= ln (x− tx) follows a normal distribution with mean and standard
deviation equal to μu and σu. The stationary quantile function for an
LN3 variate has a very similar form to the stationary quantile function
for an LN2 variate in (12). Stedinger (1980) documents the most effi-
cient estimators of the LN3 distribution under various conditions of
interest to a hydrologist. We take an analogous approach to the one we
took with the GEV distribution where we employed the method of
moments for both the nonstationary and stationary cases. Here our goal
is to fit both and stationary and nonstationary lognormal model using
the method of moments since both unconditional and conditional es-
timates of those moments have been derived here for the nonstationary
case. A method of moment estimator of the stationary LN3 quantile
estimator was given by Singh et al. (1990) as

̂ ̂̂ ̂= + +x τ μ z σexp( )p x u p u
2 (18)

where
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2
2

2
2/3
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2

with zp defined previously and the sample moments x , ̂σx and ̂γx given in
Appendix A.

Similarly, the nonstationary LN3 quantile estimator is obtained
from:

̂ ̂̂ ̂= + +x τ μ z σexp( )p w x w u w p u w
2

(19)

where
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and zp is the quantile function for a standard normal variable of non-
exceedance probability p and the estimators ̂μx w, ̂σx w and ̂γx w are given
in (A–4a), (A–4b) and (A–4d), respectively. Note that for the stationary
case  =β 0 in (2) in which case the nonstationary LN3 quantile function
in (19) reduces to the stationary LN3 quantile function in (18).

7. Case study–Regression Results

In this initial study, we consider the Aberjona and Neponset rivers,
which drain two urbanizing suburban watersheds near Boston,
Massachusetts. Both have long term U.S. Geological Survey gaging re-
cords. The Aberjona River (USGS Gage 01102500) drains a 24 mi.2.
watershed in which impervious cover increased from 6% to 36% during
the gaging period from 1940 to 2015 (75 years). Fig. 2 in
Allaire et al. (2015) summarizes changes in watershed population and
water withdrawals over this period. The watershed area has no major
flow regulations, impoundments, withdrawals or storm water detention
systems. See Allaire et al. (2015) for further information on the hy-
drologic properties of the Aberjona River. The Neponset River (USGS
Gage 01105000) at Norwood, MA has measured discharge from 1938 to
2015 (77 years). Approximately 16% of the 34.7 mi.2. watershed is
currently impervious. Flow in the Neponset river is regulated by small
mills and reservoirs upstream and is subject to municipal and industrial
diversions. Both the Aberjona and Neponset river watersheds are ob-
vious laboratories to test the application of NFFA methodologies be-
cause of the gradual anthropogenic land cover changes that have oc-
curred over the past century.

Figs. 1 and 2 use open circles to illustrate the relationship between
the natural logarithm of the AMF series y= ln (x) and the explanatory
variable w= time, for the Aberjona River and the Neponset River wa-
tersheds, respectively. Using a 5% significance level we were unable to
reject the null hypothesis of no trend, for either river, based on a t-test
of the regression slope coefficient. Also, shown in each figure is the
fitted regression model along with various other metrics associated with
the model, including the sample size n, the goodness-of-fit metric R2

(which in this case of bivariate regression is simply equal to ̂ρ 2 defined
in (4)), as well as the attained significance level p, associated with the
estimated regression coefficient β . The attained significance level p is

computed from the data, and indicates the probability that one would
obtain a value of β equal to or greater than the value obtained, if the
null hypothesis of no trend (β=0) were correct. In Table 2, for both
rivers, we compare values of β , based on OLS regression with non-
parametric estimates based on the nonparametric Kendall–Theil slope
estimator described by Helsel and Hirsch (2001, Chapter 10). The at-
tained significance levels in Table 2 for the parametric and nonpara-
metric cases are computed using a t-test and the Mann–Kendall trend
test, respectively. We note the near equivalence of the parametric and
nonparametric estimates β and very similar attained significance levels
using both estimators. It is important to consider both nonparametric
and parametric estimates of the regression slope, because this para-
meter plays such a critical role in our subsequent NFFA, and because as
we show below, the regression model residuals are poorly behaved,
which raises questions about our ability to perform statistical inference
on the resulting models.

The extremely low attained significance levels for both rivers
(p< 0.001), summarized in Table 2, indicate that proof for a trend is so
strong that there is very little possibility for evidence this strong, or
stronger, to arise by chance if there were truely no trend. It is equally
important to consider the likelihood that we would reject a trend, if it
really existed, because as Vogel et al. (2013) emphasize, rejecting a
trend when it really exists could have much greater societal con-
sequences than accepting a trend when it does not exist. See Vogel et al.
(2013), Rosner et al. (2014) and Prosdocimi et al. (2014) for a dis-
cussion of the likelihood of type I and II errors within the context of
trend detection and the factors which could lead us to reject a trend
when it really exists, leading to substantial societal consequences.

We emphasize that one should never take the result of an individual
hypothesis test, based on a sample of limited length, too seriously.
Neyman and Pearson (1933) suggest that “no test based upon a theory
of probability can by itself provide any valuable evidence of the truth or
falsehood of a hypothesis. But we may look at the purpose of tests from
another viewpoint. Without hoping to know whether each separate
hypothesis is true or false, we may search for rules to govern our be-
havior with regard to them, in following which we insure that, in the
long run of experience, we shall not often be wrong”. It is in this light
that we interpret the above results.

The fitted regression models in Figs. 1 and 2 represent the model of
the conditional mean ̂ = + −μ y β w w( )y w/ . To highlight the un-
certainty associated with future predictions of y= ln (x), we also il-
lustrate 95% prediction intervals, in Figs. 1 and 2, which are intervals
within which 95% of all flood observations y, are expected to lie (see
Section 9.4.5 in Helsel and Hirsch, 2002, for an analytical formula for

Fig. 1. Natural logarithm y, of annual maximum streamflow x of the
Aberjona River at Winchester, MA, 1940–2014 versus w= time in
years. Solid line is a bivariate linear regression which represents the
conditional mean of y=ln (x) as a function of w, denoted ̂μy w Shaded

region is the estimated 95% prediction interval for future values of
y= ln (x).
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computing prediction intervals). Note that such prediction intervals
widen considerably under extrapolation, highlighting another important
advantage of our approach, because it emphasizes the increasing un-
certainty inherent in extrapolation of trends. Future studies may wish to
derive the variance and/or confidence intervals associated with quantile
estimates based on the various nonstationary pdf models introduced in
this study analogous to the work of Obeysekera and Salas (2014). We
refer the reader to Section 9.4.4 of Helsel and Hirsch (2002) which
provides estimates of the variance and/or confidence intervals associated
with the conditional mean regression estimator ̂μy w/ .

7.1. Regression model evaluations

A necessary condition for any statistical inference to be performed on
a fitted trend model based on ordinary least squares (OLS) regression
requires that model residuals be approximately homoscedastic, normally
distributed and independent in time. Figs. 3 and 4 illustrate diagnostic
plots which summarize the behavior of the regression model residuals for
the regressions corresponding to the Aberjona and Neponset Rivers, re-
spectively. The following subplots are provided for each regression:
Subplot a) illustrates a histogram of the model residuals which should
appear Gaussian with a mean of zero. Subplot b) displays the residuals

̂−y yi i versus wiand should appear to exhibit constant variance. A
Breusch-Pagan (1979) test was performed which enables us to reject the
null hypothesis of homoscedastic residuals (constant variance) at the 5%
significance level for the Aberjona River and fail to reject the null hy-
pothesis of homoscedasticity for the Neponset River. The attained sig-
nificance levels associated with the Breusch–Pagan test were: p=0.031
and p=0.628 for the Aberjona and Neponset River, respectively. A
normal probability plot is illustrated in subplot c) as well as the prob-
ability plot correlation coefficient (PPCC) and its associated attained
significance level p (see Vogel, 1986). Here the attained significance level,
p, is interpreted a bit differently than for other tests. Again, p is computed
from the observations, and indicates the probability of obtaining a value
of PPCC smaller than the computed value, if the null hypothesis of nor-
mality were correct. The attained significance levels were p=0.725 and
p=0.0062 for the Aberjona and Neponset River residuals, respectively,
which implies that the Aberjona probability plot is typical of what
probability plots would look like if the samples were normal, whereas,
very few normal probability plots, for normal samples, would look like
the result obtained for the Neponset river. Thus, we cannot reject the null
hypothesis of normality of the trend model residuals at the 5% level for
the Aberjona River, but we do reject it for the Neponset River. Finally,
subplot d) is a correlogram displaying the lag-k serial correlation

coefficient of the residuals for lags of 1–50, along with 95% confidence
intervals for the case of independence (no serial correlation).

For the Aberjona River, the results in Fig. 3, combined with the
Breusch–Pagan and PPCC normality hypothesis tests reveal that model
residuals appear to exhibit some heteroscedasticity, yet they appear to
be approximately independent and normally distributed. For the Ne-
ponset River, the results in Fig. 4, combined with associated
Breusch–Pagan and PPCC normality hypothesis tests, reveal that model
residuals are approximately homoscedastic and independent, but are
poorly approximated by a normal distribution. Thus, our diagnostic
analysis of model residuals raises questions concerning our ability to
perform statistical inference concerning nonstationary behavior in the
AMF at both sites. For this reason, we included nonparametric estimates
of the regression model slope coefficient and associated attained sig-
nificance levels, for both rivers, in Table 2.

7.2. Stationary and nonstationary probability plots

Probability plots (Helsel and Hirsch, 2002) are a graphical technique
to illustrate the goodness-of-fit of different pdfs to a set of data. The
degree of linearity of the observations in a probability plot corresponding
to a hypothesized distribution is a measure of the goodness-of-fit of that
particular pdf to the observations. Thus, the linearity of the probability
plot, measured using a PPCC provides both a quantitative measure of the
goodness-of-fit of the hypothesized pdf to the observations and can also
be used to perform a hypothesis test for two-parameter distributional
alternatives (Vogel, 1986; Stedinger et al., 1993; Heo et al., 2008),
though hypothesis test results for three-parameter distributional alter-
natives are questionable (Vogel and McMartin, 1991). Until this study,
all procedures for developing probability plots and for computing PPCC
test statistics have assumed stationarity. We introduce a procedure for
constructing nonstationary probability plots and for computing the PPCC
to assess the possible improvement in goodness-of-fit which results when
there is good evidence of nonstationary behavior in the AMF series.

When performing diagnostic evaluations, such as probability plots,
Coles (2001) suggests working with a standardized version of the data,
conditional on the fitted parameter values. Standardization can remove
the trend from the data, effectively resulting in a transformation of the
time-series from nonstationary to stationary. Thus, by standardizing
either the x or y series using their conditional moments introduced
here, one can apply a stationary probability plot to the standardized
series, resulting in a nonstationary probability plot.

The steps used to construct stationary and nonstationary probability
plots are enumerated below:

Fig. 2. Natural logarithm y of annual maximum streamflow x, on the
Neponset River at Norwood, MA, 1938–2014 versus w= time in years.
Solid line is a bivariate linear regression which represents the condi-
tional mean of y=ln (x) as a function of w denoted ̂μy w. Shaded

region is the estimated 95% prediction interval for future values of
y= ln (x).
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1) Standardize the observations of either x for GEV and LN3 cases or
y= ln (x) for the LN2 and LP3 cases using the conditional moments
for x and y given previously:


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̂
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2) Rank the standardized observations Zi in ascending order such that
Z i( ) denotes the ordered values for i=1,…,n. For the stationary
series,  =β 0 and for the nonstationary series,  ≠β 0.

3) Select a suitable plotting position pi from Table 1, corresponding to
the hypothesized distribution considered.

4) Plot the ordered set   =Z Z i n{ , ; 1, ... }p i( )i for the stationary and non-
stationary case using the appropriate plotting position pi from
Table 1 to obtain estimates of the standardized variate Z corre-
sponding to each of the pdfs considered using:

Fig. 3. Diagnostic plots for the Aberjona River regression
residuals which enable evaluation of the assumptions of
independence, homoscedasticity and normality. Subplots
display (a) Histogram of residuals (b) Scatter plot of re-
siduals over time (c) Normal probability plot with corre-
sponding PPCC and attained significance level p, associated
with a PPCC normality test and (d) Correlogram exhibiting
lag-k correlation for first 50 lags along with 95% confidence
intervals under the null hypothesis of no serial correlation.

Fig. 4. Diagnostic plots for the Neponset River regression
residuals which enable evaluation of the assumptions of in-
dependence, homoscedasticity and normality. Subplots dis-
play (a) Histogram of residuals (b) Scatter plot of residuals
over time (c) Normal probability plot with corresponding
PPCC and attained significance level p associated with a
PPCC normality test. and (d) Correlogram exhibiting lag-k
correlation for first 50 lags along with 95% confidence in-
tervals associated under the null hypothesis of no serial
correlation.

J.M. Serago, R.M. Vogel Advances in Water Resources 112 (2018) 1–16

10




̂

̂ ̂
=

⎧

⎨
⎪

⎩
⎪

−
Z

z for LN and LN

for GEV

k for LP

2 3

3

p

p

x μ
σ

p

i

i

pi w x w

x w

i

where ̂x p wi is an estimate of a nonstationary GEV variate given in (17),
z piis the standardized normal quantile used in the LN2 and LN3 quantile
functions in (13) and (18), and k piis the standardized Pearson type III
given in (14).

5) Calculate the PPCC test statistic which is the product moment cor-
relation:
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1

1 ( ), with Z i( )and Zpidefined in
steps 1 and 4, respectively.

7.2.1. Probability plot results
Probability plots corresponding to the standardized variable Z i( ) for

the four distributions under both stationary and nonstationary as-
sumptions, and the corresponding PPCCs, are displayed in Figs. 5 and 6
for the Aberjona and Neponset watersheds, respectively. For the
Aberjona River, the probability plots for the four nonstationary models
are slightly more linear than the corresponding probability plots for the
four stationary cases, as evidenced by their slightly higher PPCC values.
In contrast, for the Neponset River, the probability plots for the four
nonstationary models are slightly less linear, than the corresponding
probability plots for the stationary cases, as evidenced by their slightly
lower PPCC values.

7.3. Discussion of hypothesis test results

There are several important lessons to be learned from the above
analysis. First and foremost, there is considerable physical evidence of
drivers of nonstationarity for these two urbanized watersheds which led
us to hypothesize that significant population growth and associated
increases in impervious cover over the period of streamflow record led
to increases in the AMF series. Importantly, this conjecture is supported
by our fitted trend model and associated diagnostics. The extremely low
values of attained significance levels (p<0.001) associated with the
trend model slope coefficient at both the Aberjona (Fig. 1) and Ne-
ponset (Fig. 2) rivers corresponding to both the parametric t-test and
the nonparametric Mann–Kendall test (Table 2) led to a high level of
confidence that both AMF series exhibited an increasing trend over the
historical period.

Diagnosis of the regression model residuals led us to question our
ability to perform statistical inference concerning trends in both AMF
series because the Aberjona River model residuals exhibited some
heteroscedasticity and the Neponset River model residuals exhibited
some nonnormality. These results lead us to question conclusions de-
rived from statistical inference on both models including hypothesis

tests and prediction intervals. Nevertheless, since the nonparametric
test results support our parametric test results, we remain confident that
both rivers exhibit nonstationary behavior which should be considered
in any subsequent flood frequency analysis.

Our analysis only considers a trend in the mean of y which implies
that the coefficient of variation of x is fixed (thus the mean and stan-
dard deviation of x both exhibit the identical trends). The apparent
heteroscedasticity of the model residuals for the Aberjona River in-
dicates that a more complex model which allows for a time varying
coefficient of variation of x, should be considered. When model re-
siduals exhibit heteroscedasticity, OLS estimates of regression model
parameters are unbiased, but the standard t-test of model parameter
significance can lead to incorrect inferences (Long and Ervin, 2000). To
ensure correct inferences concerning regression model parameters in
the presence of heteroscedasticity of an unknown form, Long and Ervin
(2000) and others have suggested the use of a heteroscedasticity con-
sistent covariance matrix and associated standard errors. While such
approaches enable improved statistical inference in the presence of
heteroscedasticity, they do not provide an approach to model changes
in the coefficient of variation.

Analogous to the regression approach we have introduced to de-
scribe the time variation in y corresponding to a trend in both the mean
and variance of x (holding coefficient of variation constant), it is pos-
sible to introduce a time varying function for the coefficient of variation
of x, and to integrate that function into the quantile function of x to
enable improved estimation of design events. Hecht (2017) summarizes
several attractive approaches for considering time variations in the
coefficient of variation, given an assumed model form, including the
use of weighted least squares regression (Strupczewski and
Kaczmarek, 2001), heteroscedasticity consistent standard errors (Long
and Ervin, 2000) as well as by simply fitting independent regression
models for the mean and standard deviation of x. Our parsimonious
approach to modeling a trend in the mean and variance of x (assuming
constant coefficient of variation), provides a reasonable initial ap-
proach for estimating the nonstationary 100 year flood, however fur-
ther research is needed to develop a parsimonious approach for de-
termining the impact of changes in the mean, variance and coefficient
of variation of x on a design event.

7.4. Comparisons of stationary and nonstationary design events

Of critical interest in practice are estimates of selected quantiles of
the distribution of the AMF series under both stationary and nonsta-
tionary conditions to enable one to update design events to reflect
conditions in a particular year. One simple, yet effective way to un-
derstand the impact of the trend model on resulting design events is to
compute the decadal magnification factor  = =M t β βexp(Δ · ) exp(10 )
(Vogel et al., 2011) corresponding to the nonstationary LN2 model. The
decadal magnification factors for the Neponset and Aberjona rivers are
1.089 and 1.136, respectively. This indicates that al flood quantiles
have increased at the rate of about 9% and 14% per decade, over the
historical period for the Neponset and Aberjona Rivers, respectively.

Table 3 summarizes estimates of the 100-year flood denoted x100
corresponding to each of the four hypothesized pdfs, for both rivers,
along with corresponding estimates of the PPCC statistics, for both the
stationary and nonstationary analyzes. Estimates of the 100 year flood
based on nonstationary conditions are obtained for the most current
year on record wn, so that they reflect the 100 year flood under current
conditions as of 2015. In contrast, estimates of the 100 year flood under
stationary conditions are not updated to current conditions but reflect
average conditions over the observed period of flows.

Numerous conclusions can be drawn from Table 3, combined with
our previous trend model diagnostics. If one ignores any possibility of
nonstationarity, using a traditional (stationary) PPCC lognormal hy-
pothesis test we were unable to reject the LN2 hypothesis for the AMF

Table 1
Plotting position formulas used to construct probability plots and to estimate PPCC test
statistics. Selections based on suggestions by Stedinger et al. (1993) and others.

Position name Formula, pi pdf

Blom −
+

i
n

0.375
0.25

LN2, LN3, LP3

Gringorten −
+

i
n

0.44
0.12

GEV
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series at both rivers at the 5% level. A nonstationary analysis led to
uniform improvements in the goodness-of-fit (as evidenced by increases
in PPCC values) for all four models considered for the Aberjona River.
In contrast, for the Neponset River, the nonstationary analysis did not
result in an improvement in goodness-of-fit over a stationary analysis,
though that may be due, in part, to the occurrence of an unusually large
flood of record in the middle of the period of record (see Fig. 2). This is
because when there is a positive trend in the flow series, the nonsta-
tionary quantile function will produce the largest design floods at the
end of the historical period. Table 3 documents the considerable in-
creases in estimates of the 100-year flood which result from using NFFA
to update design events to reflect current 2015 conditions. For both
rivers, engineers would be advised to consider the nonstationary esti-
mates of x100 as an improvement over the stationary estimates, because
there is both good statistical evidence and plausible physical drivers for
the increases in AMF series. Physical evidence is provided by the con-
siderable increases in urbanization that have occurred in both basins.
Statistical evidence is provided by the extremely low attained sig-
nificance levels associated with the nonparametric Mann–Kendall trend
test results in Table 2. Interestingly, the design flood estimates in 2015
corresponding to the nonstationary LN2, LN3 and GEV models are
nearly equal, at both rivers. It is only the design flood corresponding to
the LP3 nonstationary model which differs from the other nonstationary
models. To enable rigorous comparisons among the precision of these
alternative design flood estimates, studies of the type performed by
Obeysekera and Salas (2014), Serinaldi and Kilsby (2015) and
Luke et al. (2017) are needed to compare the uncertainty associated
with such stationary and nonstationary design flood estimates. Given
the relatively short series of observations available corresponding to
potential nonstationary hydrologic conditions, there will always be

considerable uncertainty as to whether or not a stationary or nonsta-
tionary analysis is warranted. That fact further highlights the need to
include both the stationary and nonstationary results in any decision
oriented analysis as recommended and documented by
Rosner et al. (2014).

8. Conclusions

Despite widespread awareness of the impact of anthropogenic in-
fluences on extreme floods (and droughts) there remains considerable
controversy and debate concerning the development of a generalized,
sensible, and practical methodology for NFFA to enable updating of
design events to reflect current or future hydrologic conditions. The
lack of consensus results in part from the tremendous uncertainty as-
sociated with our ability to detect, attribute and model past trends, and
the even greater uncertainty associated with our ability to predict fu-
ture trends in hydrological processes. Nevertheless, risk-based decision
making (RBDM) approaches have been used for decades, and are now a
well-established methodology for the determination of appropriate le-
vels of investment based on the expected damages avoided versus the
cost of the infrastructure required (National Research Council, 2000;
USACE, 2000; Tung, 2005). Incorporation of nonstationarity into such
RBDM analysis only increases the level of uncertainty associated with
such analysis, but does not change our overall approach to selection of a
suitable design event (see Rosner et al., 2014, for an example).

Our brief review and discussion of the state-of-the-art of NFFA re-
vealed a wide range of modeling approaches including extremely so-
phisticated statistical methods, with little attention given to the concept
of parsimony. We reviewed historical literature which documents the
tremendous value of parsimonious models for stationary FFA and we

Fig. 5. Standardized probability plots for the Aberjona River.
The line represents a theoretical one-to-one relationship. The
points represent corresponding fits for the four hypothesized
pdfs. Ordered standardized observations are plotted on the
vertical axis against standardized quantile estimates. PPCC
values are quantitative measures of the goodness of fit of the
hypothesized distribution corresponding to the stationary
(PPCCs) and nonstationary (PPCCns) cases.

J.M. Serago, R.M. Vogel Advances in Water Resources 112 (2018) 1–16

12



have good reason to suspect similar value to parsimony in NFFA. Our
primary goal was to introduce a generalized, sensible, parsimonious
and practical approach to NFFA to enable the determination of a flood
quantile when hydrologic change is an obvious concern. Our

nonstationary analysis differs from most previous approaches because it
only requires one additional parameter (trend model slope) over and
beyond a stationary analysis. Our approach is based on derived con-
ditional moments of a single trend regression which accounts for pos-
sible changes to the first three conditional moments of streamflow with
only the addition of a single additional model parameter.

We have outlined how integration of a single bivariate regression
into NFFA offers several advantages over existing approaches including:
parsimony, ease of use, graphical display, prediction intervals, accom-
modating missing and/or historical information, accounting for abrupt
shifts, accounting for persistence, extensions to multivariate trend
models and opportunities for uncertainty analysis. We have also in-
troduced nonstationary probability plots and associated goodness-of-fit
statistics to quantitatively assess the improved goodness of fit asso-
ciated with a NFFA over a stationary analysis.

Many packages written in R software (R Core Team, 2015) facilitate

Fig. 6. Standardized probability plots for the Neponset
River. The line represents a theoretical one-to-one relation-
ship. The points represent corresponding fits for the four
hypothesized pdfs. Ordered standardized observations are
plotted on the vertical axis against standardized quantile
estimates. PPCC values are quantitative measures of the
goodness of fit of the hypothesized distribution corre-
sponding to the stationary (PPCCs) and nonstationary
(PPCCns) cases.

Table 2
Values of the estimated regression model slope coefficient using parametric (OLS) and
non-parametric (Kendall-Theil) estimation methods for both rivers. Attained significance
levels for the parametric and nonparametric cases are obtained using a t-test and the
Mann–Kendall trend test, respectively.

Aberjona Neponset

β p β p

OLS 0.0128 0.00002 0.0085 0.000084
Kendall–Theil 0.0116 0.00014 0.0088 0.000036

Table 3
Estimates of the 100 year streamflow quantile x100, in cubic-feet per second for the Aberjona River at Winchester and Neponset River at Norwood estimated using the stationary and
nonstationary approaches. The estimates of x100 based on the nonstationary analysis are updated to current conditions at the end of the flow record in 2015. Critical PPCC values for the
LN2 at the 5% level are 0.9841 and 0.9845 for the Aberjona and Neponset, respectively.

Aberjona Neponset

x100 PPCC x100 PPCC

Stationary Nonstationary Stationary Nonstationary Stationary Nonstationary Stationary Nonstationary

LN2 1580 2180 0.9887 0.9952 1200 1500 0.9888 0.9749
LN3 1560 2180 0.9726 0.9952 1320 1500 0.9913 0.9749
LP3 1900 2550 0.9932 0.9945 1430 1770 0.9957 0.9915
GEV 1570 2170 0.9827 0.9890 1320 1520 0.9895 0.9566
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the application of, advanced NFFA approaches (e.g. see GAMLSS soft-
ware by Stasinopoulos and Rigby 2007; extRemes software by Gilleland
and Katz, 2011; and NEVA software by Cheng et al., 2014), however,
unlike the methodology introduced here, a complete understanding of
those methods requires advanced training in statistics. Furthermore,
unlike our methodology which could be extended to any pdf, some of
the above referenced software tools are not useful for distributions
other than the generalized extreme value (GEV) and generalized Pareto
pdfs.

Our parsimonious approach to nonstationary flood frequency ana-
lysis (NFFA) is based on a single bivariate regression equation which
describes the relationship between annual maximum floods, x, and an
exogenous variable which can explain the nonstationary behavior of x.
In this initial study, we only consider a single explanatory variable,
time, selected as a surrogate for all the possible time-dependent non-
stationary influences on the AMF series considered in two case studies.
We recommend development of multivariate models which include
numerous additional covariates because this approach has been shown
to improve upon our ability to describe future nonstationary behavior
of flood series (Kwon et al., 2008; Delgado et al., 2010; López and
Francés, 2013; Prosdocimi et al., 2014, 2015; Condon et al., 2015; Šraj
et al., 2016).

Using a single bivariate regression model, the conditional mean,
variance and skewness of both x and y= ln (x) are derived, and com-
bined with numerous common probability distributions including the
lognormal, generalized extreme value and log Pearson type III models,
resulting in a very simple and parsimonious yet very general approach
to NFFA. Numerous natural extensions to our initial bivariate regression

analysis are possible including: consideration of other probabilistic
models, derivation of conditional moments for multivariate regression,
derivation of confidence intervals for nonstationary quantile estimators,
and application to drought and low flow frequency analysis. Perhaps
the most promising extension to our initial work would be to develop
regional estimates of the conditional skew and possibly the conditional
coefficient of variation to enable improvements in the precision of re-
sulting nonstationary quantile estimators.
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Appendix A

Stationary and nonstationary method of moment estimators of parameters of a GEV variate

Stationary GEV case
Bhunya et al. (2007) report the following approximations for computing method of moment estimates of the location, scale and shape parameters

ξ, α and κ, respectively, of a stationary GEV variate x from sample estimates of the mean, standard deviation and skewness, denoted x , ̂σx and ̂γx,
respectively:

̂ ̂ ̂ ̂ ̂
̂ ̂= ⎧

⎨⎩

+ − + − ≤ ≤
− − − − ≤

κ
γ γ γ γ

γ γ
0.0087· 0.0582· 0.32· 0.2778 0.7 1.15

0.31158·[1 exp[ 0.4556( 0.97134)]] 1.15
x x x x

x x

3 2

(A-1)

̂ ̂ ̂ ̂̂̂ = − − + + − ≤ ≤α σ κ κ κ κ( 0.1429 0.7631 1.0145 0.7795) 0.5 0.5x
3 2 (A-2)
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σ

κ κ
κ κ κ κ κ

0.514075 0.44901 0.01 0.5
19.357 13.749 4.484 0.5212 0.04427 0.5 0.01x

1.33199

4 3 2 (A-3)

Substitution of sample estimates of the unconditional moments x , ̂σx and ̂γx = ∑ =x xn i
n

i
1

1 , ̂ = ∑ −− =σ x x( )x n i
n

i
2 1

1 1
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∑ −

− −
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( )

( 1)·( 2)·
i
n

i

x

1
3

3 into (A-
1), (A-2) and (A-3), yields method of moments estimates of the stationary GEV model parameters.

Nonstationary GEV case: When sample estimates of the conditional moments ̂μx w, ̂σx w and ̂γx w, defined below, are substituted into (A-1), (A-2) and

(A-3), in place of the unconditional moment estimators x , ̂σx and ̂γx, estimates of the conditional GEV model parameters result which we term ̂ ̂ξ α,x w x w

and ̂κx w. Thus, sample estimates of the conditional moments of x may be obtained by replacing true values with sample estimators in (10) leading to:

 ̂ ̂̂ ⎜ ⎟= ⎛

⎝
+ − +
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μ y β w w

σ ρ
exp ( )

(1 )
2x w

y
2 2

(A-4a)

̂ ̂ ̂ ̂= + − + − −σ y β w w σ σ ρexp(2 2 ( ) )(exp( (1 )) 1)x w y
2

ɛ
2 2 2 (A-4b)

 ̂ ̂= − −C σ ρexp( (1 )) 1x w y
2 2

(A-4c)

 ̂ = +γ C C3x w x w x w
3

(A-4d)

where the estimators ̂y w σ, , ,y and ̂ρ , are given in (4). Note that since both conditional moment estimators ̂μx w and ̂σx w
2 are functions of the explanatory

variable w, the conditional GEVmodel parameters ̂αx w and ̂ξx wwill also be functions of the explanatory variable w. Since the conditional skew estimator ̂γx w
does not depend on w, for the case considered here, the resulting conditional GEV shape parameter ̂κx w will not depend on w. Substitution of the resulting
expressions for the conditional GEV model parameters ̂αx w, ̂ξx w, and ̂γx w into the quantile function in (17) leads to the nonstationary GEV quantile function.
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