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Revisiting the Concepts of Return Period and Risk
for Nonstationary Hydrologic Extreme Events

Jose D. Salas, M.ASCE"; and Jayantha Obeysekera, M.ASCE?

Abstract: Current practice using probabilistic methods applied for designing hydraulic structures generally assume that extreme events are
stationary. However, many studies in the past decades have shown that hydrological records exhibit some type of nonstationarity such as
trends and shifts. Human intervention in river basins (e.g., urbanization), the effect of low-frequency climatic variability (e.g., Pacific Decadal
Oscillation), and climate change due to increased greenhouse gasses in the atmosphere have been suggested to be the leading causes of
changes in the hydrologic cycle of river basins in addition to changes in the magnitude and frequency of extreme floods and extreme
sea levels. To tackle nonstationarity in hydrologic extremes, several approaches have been proposed in the literature such as frequency
analysis, in which the parameters of a given model vary in accordance with time. The aim of this paper is to show that some basic concepts
and methods used in designing flood-related hydraulic structures assuming a stationary world can be extended into a nonstationary frame-
work. In particular, the concepts of return period and risk are formulated by extending the geometric distribution to allow for changing
exceeding probabilities over time. Building on previous developments suggested in the statistical and climate change literature, the writers
present a simple and unified framework to estimate the return period and risk for nonstationary hydrologic events along with examples and
applications so that it can be accessible to a broad audience in the field. The applications demonstrate that the return period and risk estimates
for nonstationary situations can be quite different than those corresponding to stationary conditions. They also suggest that the nonstationary
analysis can be helpful in making an appropriate assessment of the risk of a hydraulic structure during the planned project-life. DOI: 10.1061/

(ASCE)HE.1943-5584.0000820. © 2014 American Society of Civil Engineers.
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Introduction

Statistical methods are routinely applied for analyzing a number of
problems in hydrology and water resources. This is because most,
if not all, hydrological processes such as extreme events have some
degree of randomness. The majority of the literature on probabilis-
tic methods applied for designing hydraulic structures assumes that
extreme hydrologic events are stationary. However, research has
documented that in some places hydrological records exhibit some
type of nonstationarity in the form of increasing or decreasing
trends (e.g., Olsen et al. 1999; Strupzewski et al. 2001; Douglas et al.
2000; Lins and Slack 1999), upward or downward shifts (e.g., Potter
1976; Salas and Boes 1980; McCabe and Wolock 2002; Franks and
Kuczera 2002; Sveinsson et al. 2003; Kiem et al. 2003; Fortin et al.
2004; Akintug and Rasmussen 2005), or a combination of them
(Villarini et al. 2009a). Human intervention is one of the leading
causes of changes in the hydrologic cycle of river basins. For exam-
ple, precipitation and streamflow records may be changing due to the
effect of land-use changes in basins, such as increasing urbanization
(e.g., Konrad and Booth 2002; Villarini et al. 2009b; Hejazi and
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Markus 2009; Vogel et al. 2011), agricultural developments
(e.g., Schilling and Libra 2003; Pielke et al. 2007), and large-scale
deforestation (e.g., Gash and Nobre 1997). These intrusions in the
landscape change hydrologic response characteristics such as the
magnitude and timing of extreme floods.

In addition, it has become apparent that some of the changes that
researchers may be observing in hydrological records may be due
to the effect of natural climatic variability, particularly resulting
from low-frequency components of climate variability such as the
El Nifio Southern Oscillation (ENSO) and decadal and multideca-
dal oscillations such as the Pacific Decadal Oscillation (PDO) and
Atlantic Multidecadal Oscillation (AMO). These large-scale forc-
ings exert in-phase and out-of-phase oscillations in the magnitude
of hydrologic events such as extreme precipitation, extreme floods,
droughts, and extreme sea levels (e.g., Mantua et al. 1997; Jain
and Lall 2000, 2001; Enfield et al. 2001; McCabe and Wolock
2002; Franks and Kuczera 2002; Keim et al. 2003; Park et al.
2010, 2011).

Another reason for increased attention to nonstationarity is the
growing concern on climate change due to increased greenhouse
gases in the atmosphere (IPCC 2007). As a consequence the Earth’s
climate may be changing and in turn causing changes to extreme
precipitation, temperature, and floods in certain parts of the globe.
Whereas the significance of impacts on some aspects of the hydro-
logical cycle such as streamflows remains debatable and inconclu-
sive (e.g., Cohn and Lins 2005; Hirsch and Ryberg 2012), some
hydrologists have declared that “stationarity is dead” (Milly et al.
2008), and suggest that nonstationary probabilistic models need
to be identified and possibly used in some practical cases. Fur-
thermore, warming associated with climate change may be caus-
ing sea-level rising globally and recent projections of sea level
include varying degrees of acceleration in the sea-level rise rate

554 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH 2014

J. Hydrol. Eng. 2014.19:554-568.


http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000820
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000820
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000820
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000820
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000820

Downloaded from ascelibrary.org by UNIV OF IOWA LIBRARIES on 02/17/14. Copyright ASCE. For personal use only; al rights reserved.

(e.g., Bindoff et al. 2007; Rahmstorf 2007; Vermeer and Rahmstorf
2009; Obeysekera et al. 2012; Sallenger et al. 2012). Such increases
in sea levels are expected to increase flooding due to storm surges
in coastal regions and reduce the reliability of flood-protection sys-
tems in coastal watersheds (Obeysekera et al. 2011). Furthermore,
climate change research suggests that the intensity and rainfall as-
sociated with major tropical storms may also increase (Kunkel et al.
2010), potentially leading to increased rainfall-induced flooding in
areas exposed to such storms, although the tropical storm frequency
globally may decrease in the future (Knutson et al. 2010).

To tackle nonstationarity of hydrologic extremes, several ap-
proaches have been proposed in the literature such as frequency-
analysis methods, in which the parameters (or moments such as
the mean and variance) of a given distribution (e.g., the Gumbel)
may vary in accordance with time. They include the following:
(1) probability distribution models imbedded with trend compo-
nents (e.g., Strupczewski et al. 2001; El Adlouni et al. 2007,
Cooley 2013; Katz 2013), (2) stochastic models considering shift-
ing patterns (e.g., Sveinsson et al. 2005), (3) models considering
covariates (e.g., Katz et al. 2002; Griffis and Stedinger 2007
Villarini et al. 2009b, 2010), and (4) probability distributions with
mixed components (e.g., Waylen and Caviedes 1986; Rossi et al.
1984). Multicentury climatic fluctuations have been incorporated
into paleoflood frequency-analysis techniques and the analysis of
wet and dry periods (e.g., Stedinger and Cohn 1986; Frances et al.
1994; Biondi et al. 2008). In addition, some pragmatic approaches
to deal with nonstationarity in flood-frequency analysis have been
suggested, such as adjusting the nonstationary peak discharges and
applying hydrologic models [taking into account the spatially and
temporally varying land-use (Moglen 2003), and adjusting flood
records for the combined effects of urbanization and climatic
change (Gilroy and McCuen 2012)]. Likewise, a flood-frequency
analysis framework that involves a process-based derived flood
frequency and risk estimation considering possible future evolution
of climatic states has been proposed (Sivapalan and Samuel 2009).
Furthermore, similar nonstationary approaches have been proposed
for analyzing extreme sea levels (e.g., Caires et al. 2006; Menendez
and Woodworth 2010; Ruggiero et al. 2010; Park et al. 2011;
Obeysekera et al. 2012).

The aim of this paper is to show that some basic concepts
and methods used in designing flood-related hydraulic structures
(e.g., flood walls and drainage systems) assuming a stationary
world can be extended into a nonstationary framework. In particu-
lar, the concepts of return period and risk are formulated by extend-
ing the geometric distribution to allow for changing exceedance
probabilities over time. As will be documented in the next section,
some of these concepts have been previously suggested, particu-
larly in the statistical and climate change journals. However, per-
haps because of the complex notation and derivations involved,
it appears that insufficient attention has been given in the water-
resources engineering literature. Therefore, the main objective of
this paper is to present a simple and unified framework along with
examples and applications so that it can be accessible to a broader
audience in the field.

Brief Review of Existing Concepts and Methods

The traditional methods for determining the return period and risk
of extreme hydrologic events assume two key conditions, as fol-
lows: (1) extreme events arise from a stationary distribution, and
(2) the occurrences of extreme events are independent or weakly
dependent (Leadbetter 1983.) The existing methods are reviewed
in this section as background information considering the case

P p p p p p
A - 7 S [ N design
! i flood
q q q **°* g g
1 2 3 time t(years)

Fig. 1. Schematic depicting the design flood z,, in addition to constant
values of exceeding (p) and nonexceeding (¢ = 1 — p) probabilities
throughout years 1to¢, i.e., stationary condition

of extreme annual floods. The writers will assume that the annual
floods denoted by the random variable Z have a cumulative distri-
bution function (CDF) denoted by F,(z, 8), where 0 is the param-
eter set. The writers assume that a flood-related hydraulic structure,
such as a flood wall, has been designed based on the existing flood
record and that the design flood is denoted as z;, where T (years) is
the return period of such a design flood. For convenience, the writ-
ers will also use the notation z,, which is the design flood quantile
with nonexceedance probability ¢, or the flood with exceedance
probability p = 1 — q. Fig. 1 shows schematically the design flood
z, and that each year the probability of exceeding the design
flood is p = 1 — ¢. This means that each year the risk that a flood
may exceed z, remains the same, i.e., the stationary condition.

Thus, assuming independence and stationarity it may be shown
that the return period is related to pand gas T = 1/p = 1/(1 — q)
(e.g., Gumbel 1941). Examining the fundamental concepts behind
this definition will be useful for understanding those for nonstation-
ary conditions. In the mentioned flood design problem the value of
T is commonly selected from design manuals and the correspond-
ing design flood z, is determined from frequency analysis of the
underlying flood data, i.e., from the fitted distribution F,(z,0).

Researchers would like to answer the question of the proba-
bility that a flood exceeding the design flood will occur for the
first time in year x. That first time could be in year 1, 2, 3, or
so on, or perhaps it will never occur. The waiting time for an
exceeding flood to occur for the first time is a random variable
that the writers will denote by X. Thus, for a flood (that exceeds
the design flood z,) to occur for the first time in year X = x the
following event must occur:

Year 1 2 3 ... x—1 «x (la)
Event NF NF NF ... NF F (1b)

Probability 1—p 1—p 1—p l—p p (lo)
in which NF =no flood event that exceeds the design flood z,; and
F = flood event that exceeds the design flood z,. Hence, consid-
ering that the yearly floods are independent, the referred event has
probability (1 — p)*~!p or

f)=PX=x)=(1-p)'p. x=12 ... (2)

which is the geometric probability law (Mood et al. 1974).
E(X) = 1/p, i.e., the mean expected time (or the mean number
of years that will take for the first occurrence of a flood exceeding
the design flood) is 1/p, and that is known as the return period T
in engineering practice (e.g., Chow et al. 1988). Furthermore, the
variance var(X) = q/p>.

With the foregoing background the writers can now define
hydrologic risk. The failure of the hydraulic structure designed
for a project life of n years will occur whenever the first arrival
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of a flood exceeding the design flood occurs before or at year n,
i.e., R = P(X <n) = Fx(n), where Fx(x) is the CDF of the geo-
metric distribution

R=Yf0=p> (1-p) =1-(1-py ()
x=1 x=1

The reliability R, of the structure is then 1 — R or
R, =(1—p)" (4)

The reliability is the probability P that no floods exceeding the
design flood Z4 will occur in the n-year period, i.e., P(Y = 0),
where Y is a random variable denoting the number of floods
exceeding the design flood in the n-year period. Likewise, risk
is also defined as the probability that one or more floods (exceeding
the design flood) will occur in the n-year period, i.e., R =
P(Y>0)=1—P(Y =0). Therefore, these probabilities can
be also obtained using the binomial probability law (e.g., Mood
et al. 1974).

The previously mentioned concepts, definitions, and equations
related to return period 7 and hydrologic risk R have been com-
monly utilized in engineering practice, and are available in books
and manuals (e.g., IACWD 1982; Chow et al. 1988; Bras 1990;
Viessman and Lewis 2003). However, because of the growing
awareness that changes in hydrologic extremes have been observed
in many basins, there have been some attempts to apply nonstatio-
narity concepts of extreme-value analysis, particularly for modeling
extreme floods and sea levels (e.g., Coles 2001; El Adlouni et al.
2007; Villarini et al. 2009; Walter and Vogel 2010; Obeysekera et al.
2012; Cooley 2013). With the popularity of the generalized extreme
value (GEV) distribution, some methods incorporate nonstationar-
ity in the analysis by modeling the distributional parameters as a
function of time or another variable, generally known as covariate,
which may or may not be a function of time (Coles 2001). The
covariate could be the changing land-use pattern or a climatic index
such as Southern Oscillation Index (SOI), which may have an in-
fluence on the local extremes. Under nonstationary conditions the
traditional definition of return period will not be applicable and
the methods mentioned previously provide ways of computing
a time-varying exceedance probability. Walter and Vogel (2010)
defined a concept termed recurrence reduction factor and its use
was demonstrated applying the log-normal probability distribution.
Obeysekera and Park (2013) used nonstationarity concepts and the
GEV for modeling sea-level extremes.

Furthermore, because of the concern on climate change during
recent decades (Katz 1993), some key developments for extending
the concepts of return period and risk associated with extreme
events under nonstationary conditions have appeared primarily
in the statistical and climate change literature (e.g., Wigley
1988, 2009; Olsen et al. 1998; Parey et al. 2007; Cooley 2009,
2013). However, they have received insufficient attention in the
water resources literature. Some early work on the topic has been
described by Wigley (1988, 2009), who presented a simple illus-
tration on how nonstationarity may be considered in the traditional
concepts of risk and uncertainty. Olsen et al. (1998) extended the
concepts with a more rigorous mathematical treatment and derived
the probability of the first failure in k years in addition to a risk
formula applicable to nonstationary conditions. Olsen et al.
(1998) has been unnoticed in the water resources literature (e.g., El
Adlouni et al. 2007; Sivapalan and Samuel 2009; Walter and Vogel
2010; Obeysekera et al. 2012; Gilroy and McCuen 2012). Sub-
sequently, Mandelbaum et al. (2007) developed the basis of non-
homogeneous geometric random variables, which paves the way

for extending the concepts of return period and risk for nonstation-
ary conditions. More recently, Cooley (2013) reviewed and com-
pared the return period definitions suggested by Olsen et al. (1998)
and Parey et al. (2007). Thus, current developments in modeling
extreme events considering nonstationarity are sufficient to provide
a rather simple unifying framework for applications in water re-
sources engineering. Such a framework is presented in the next
section.

Return Period and Risk under Nonstationarity

The probability distribution of annual floods is assumed as
F,(z,0,), where the parameter set ¢, varies in accordance with
time. It is also assumed that at an initial year, (e.g., year t = 0),
a flood-related hydraulic structure has been designed (built) based
on the flood quantile z,, which corresponds to an initial return
period Ty = 1/pg = 1/(1 — qy), where and p, and g are the ex-
ceedance and nonexceedance probabilities of z, , respectively. The
assumption that the underlying model has parameters that vary
through time may be viewed as if the flood distribution changes
through the years (Fig. 2). In addition, the writers also assume that
the occurrences of annual floods are independent. Thus, under such
nonstationary condition the writers would like to evaluate the per-
formance of the mentioned hydraulic structure using some basic
metrics such as return period and risk; for this purpose the writers
consider three conditions of nonstationarity, as follows: (1) increas-
ing events, (2) decreasing events, and (3) random shifting events.

Case of Increasing Extreme Events

If extreme hydrologic events increase through time, it means that
the exceedance probability of the floods affecting a flood-related
hydraulic structure (which has a fixed capacity z,,) will also vary
through time, i.e., py, pa, p3, --., P;. The sequence of p will be
also increasing (Fig. 2). The time-varying p can be readily obtained
from the assumed model as p, = 1 — g, = 1 — Fz(z,,. 0,). Define
the random variable X as the time at which a flood exceeding the
design flood will occur for the first time. For example, the prob-
ability that the first flood exceeding the design flood z,, will occur
at time x = 1 is p; and the probability that it will occur at time
x=21is (1= p;)p,. In general, the probability that the first
flood exceeding the design flood z,, will occur at time x is then
given by

f)=P(X =x) = (1= p))(1 =p2)(1 =p3)... (1 = pai)Px
(5a)

x—1

f@=p.JJ0=p)

t=1

time ¢ (years)

Fig. 2. Schematic depicting the design flood z,, in addition to exceed-
ing (p,) and nonexceeding (g, = 1 — p,) probabilities as they vary
through years 1to7 (an illustration of nonstationary floods)
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where x,,,, = time at which p = 1. It is understood that in Egs. (5a)
and (5b) for x =1, f(1) = p;. Egs. (5a) and (5b) are the proba-
bility distribution of the waiting time for the first flood to exceed
the design flood, is a generalization of the geometric distribution
that is applicable to nonstationary conditions, and has parameters
(exceedance probabilities) varying in accordance with time. If the p
values are the same (stationary condition), then the foregoing prob-
ability distribution simplifies to Eq. (2), the well-known geometric
distribution as mentioned previously. A hypothetical example is
included in a subsequent section to help distinguishing the differ-
ence between ¢ and x in Eqgs. (5a) and (5b) and other equations in
this paper.

The CDF of the geometric distribution [Egs. (5a) and (5b)]
becomes

X

X)=i:f( ZP,H 1—p)=1-]J(1=p)

t=1 t=1

Xmax (6)

where Fy(1) = p; and Fx(xp.,) = 1. Mandelbaum et al. (2007)
introduced nonhomogeneous geometric random variables, which
are similar to those in Eq. (6) and provide a convenient recursive
formula for computing f(x)

x=1,2,

f(x)

1—F(x—1) @

Px =
where F(0) = 0.

The writers assumed in Eqgs. (5a), (5b), and (6) that the exceed-
ance probability p increases continuously up to a point at which it
becomes equal to 1. This may occur, for example, when the lower
bound of the underlying distribution F(z) becomes equal to z,,
(as mentioned in the exponential example in a subsequent section
of this paper.) In other cases the p may increase indefinitely,
and in that case x,, in Egs. (5a), (5b), and (6) will be infinity.
Another possible scenario may be the case of an urbanizing catch-
ment in which at year 1 it entered into a period of increasing
floods lasting, for example, 25 years and thereafter, the flood
events become stationary again but with a (limiting) probability of
exceedance p,s. That is, from year 25 on the probabilities p, in
Egs. (5a), (5b), and (6) will be constant and x,,,,, = 0o. This case
may be also viewed as an upward shift, although different than
the random shifting extreme events that are considered in a sub-
sequent section.

The previously mentioned geometric distribution under a non-
stationary framework will enable determining the expected waiting
time (return period) in which the flood exceeding the design flood

24, Will occur for the first time

Xmax Xn\il)(

T=EX)=Y xf( ZXPXH I=p)  (8a)

x=1

T:E(X):l—i—xmzaxﬁ

x=1 t=1

(1=pi) (8b)

where Eq. (8b) is a convenient simplification of Eq. (8a) in accor-
dance with Cooley (2013).

Egs. (8a) and (8b) gives the return period 7 for nonstationary
conditions. This is consistent with the existing definition of return
period for the stationary case. However, unlike the stationary case
in which T is only a function of the exceedance probability p (a
constant value), now in the nonstationary case T is a function of the
time varying exceedance probabilities p,. T is the first moment of

the nonhomogeneous geometric distribution [Eqs. (5a) and (5b) are
a function of parameters (i.e., the time-varying probabilities)].
Eqgs. (8a) and (8)) have been derived relying on the geometric dis-
tribution [Eqs. (5@) and (5b)], which is applicable for nonstationary
conditions. Olsen et al. (1998) derived the return period based on
concepts of the binomial distribution and mentioned the possibility
of using a nonhomogeneous Poisson process. Eq. (9) from Olsen
etal. (1998) gives the probability that a failure first occurs in k years
starting from year ¢ (i.e., the probability varying in accordance with
time) and Eq. (10) of Olsen et al. (1998) gives the return period that
also varies in accordance with . The main difference with the
development in this paper is that the writers’ procedure is based on
the geometric distribution with varying parameters, it is easier to
follow, the notation is simpler, and the derived return period is not
a function of time.

The variance of X may be determined from var(X) =
E(X?)—T?

Xm1x

Zx pr 1—p,) 9)

The coefficient of variation of the waiting time variable X can
then be determined as n(X) = o(X)/T, where o(X) is the standard
deviation of X.

Likewise, the risk of failure of the mentioned hydraulic structure
having design life n may be determined by R =P(X <n) =
Fx(n), such that from Eq. (6)

n

R= ZmHl—m =1-J[(1-p) (10)

t=1

and the reliability becomes

n

RKZH(l_pt) (11)

t=1

The reliability of the structure is also equivalent to the proba-
bility that no floods exceeding the design flood will occur in the
n-year period. For example, for n =2, R, = (1 — p;)(1 — p»).
Eq. (11) then gives R, in general for any value of n. Eq. (10) re-
duces to Eq. (3), the well-known equation of the risk of failure R =
1 — (1 — p)" in the case that the p values are constant (stationary
condition). Another major difference between the derivation re-
ported in this paper with that of Olsen et al. (1998) is that it arises
readily from the CDF of the geometric distribution [Eq. (6)],
whereas the equation of Olsen et al. (1998) was derived from
the CDF of the max(Z,, Z,, ..., Z,).

Case of Decreasing Extreme Events

In some cases, extreme events may exhibit a decreasing trend;
consequently, the exceedance probability p, will also decrease
through time. This may occur, for example, with extreme sea levels.
In some locations, the uplift of the surrounding land due to tectonic
activity may be larger than the global sea-level rise and conse-
quently the relative sea level (measured with respect to a local
datum) may actually decrease in accordance with time. In such
cases, extreme local sea-levels will also decrease. The writers
present some equations that are minor modifications of those men-
tioned previously

x—1

f@)=p [0 =)

t=1

x=1,2,...,00 (12a)
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o) x—1

T=EX)=Y xp.[[(1-p)) (12b)
x=1 =1

Ex?) =S 2, [0 - ) (120

x=1 t=1

In some cases of decreasing extreme events one may conceive
the use of a probability distribution with an upper bound and in
such cases there may be a limiting time x in which the p, reaches
the value of zero. In cases for which extreme events such as low
flows have a decreasing trend (thus increasing the nonexceed-
ance probability g), a future scenario may be that such decreasing
low flows will eventually converge exponentially to a constant
(although it may be conceivable that because of extreme human
activities and climate change the low flows may become zero).
The risk and reliability formulas [Eqs. (10) and (11)] remain
the same.

Case of Shifting Extreme Events

In some situations, natural climate variability may occur in the form
of shifting regimes that may be of random lengths (e.g., Boes and
Salas 1978; Sveinsson et al. 2003; Kiem et al. 2003; Sveinsson et al.
2005; Enfield and Cid-Serrano 2006; Rao 2009; Villarini et al.
2009a; Park et al. 2011). The shifts may be reflected in one or more
parameters of the probability distribution of extremes. For example,
in cases of extreme floods a common situation is when the mean of
the floods shifts randomly over one or more levels (e.g., Sveinsson
et al. 2005). However, if the shifts are of decadal or multidecadal
nature, typical observational records may not have sufficient shifts
to determine the probabilistic characteristics of the duration of
shifts. For example, the AMO, which has been linked to rainfall
regimes (Enfield et al. 2001) and floods (Rao 2009), has only a
few shifts in its observational data set, which begins in the year
1856. Sveinsson et al. (2005) applied a shifting mean model
and the geometric distribution to estimate the shift lengths, and em-
ployed the autocorrelation function of the sample data to estimate
the corresponding parameters. To estimate the return period and
risk using the mentioned shifting mean model, data generation
was employed (Sveinsson et al. 2005). Enfield and Cid-Serrano
(2006) used a 450-year proxy tree-ring data set to study the
AMO shifts and fitted a gamma distribution, which was in turn used
to compute the probability of a future shift given the length of a
current AMO regime. Park et al. (2011) demonstrated the use of
this approach for predicting storm surge extremes assuming that
the extreme value distributions depend on the AMO regime.
One of the major challenges in dealing with shifting extremes is
the estimation and projections of regime shifts.

The writers assume that, in general, the extreme events are
modeled by k regimes and the probabilities of each regime can be
estimated from either the observational records or proxy data.
The nonexceedance probability in any given year can then be
expressed as

k
F,=> olF) (13)
j=1

where o/ = probability of being in regime j at any time; and Fl =
nonexceedance probability (of the underlying variable) correspond-
ing to the distribution associated with regime j, i.e.,ZfZl ol =1.
Once F; and consequently p, are computed, the expressions pro-
vided in the preceding sections can be used to compute 7 = E(X)

and R. Further details of the procedure will be described in the
Applications section.

Examples

The writers provide in this section some examples that may help
understanding and applying the equations for estimating the return
period and risk under nonstationary conditions as described previ-
ously. First, a hypothetical example is included to demonstrate the
computations involved in estimating 7 and R for nonstationary
conditions and compare the results with those for stationary con-
ditions. A more realistic yet simple example using the exponential
distribution is then described next, in which a trend in the scale
parameter is assumed.

Hypothetical Example

This hypothetical example considers the case in which the exceed-
ance probabilities decrease linearly for the first 5 years and then
become constant for the future years (Table 1), i.e., p; = 0.2, de-
creasing linearly to ps = 0.1, then remains at 0.1 for > 5 (Table 1
shows values through ¢t = 15) and x,,,,, = co. Because the p values
decrease in accordance with time one would expect that the
return period would be bigger relative to that of the stationary
case. The probability distribution of the waiting time is deter-
mined from Egs. (5b), third column (Table 1). The fourth column
(Table 1) gives the elements of the summation terms in Eq. (120),
and the return period is determined from Eq. (12b), bottom
(Table 1). It gives a return period equal to 7' = 7.9 years for the
nonstationary condition of decreasing values of p. If the exceed-
ance probability of the year 1 had remained constant through the
years (the stationary case), then the return period would be 7' =
1/0.2 = 5 years [in this case Eq. (2) will apply instead of Egs. (5b)
and T = 1/p instead of Eq. (12b)]. Likewise, one would expect
that the risk of failure will decrease compared to the stationary case.
For example, Table 1 shows that for n =35 years the risk
is about 0.56, whereas the risk for the stationary case is equal to
R=1-0.8 =0.67.

Table 1. Hypothetical Example for Determining the Return Period 7 and
Risk R for Exceedance Probabilities Decreasing for the First 5 Years and
Thereafter Remaining Constant

Exceedance
Time probability P(X = x) Design Risk Reliability
t/x p./px  Eq. (5b) xP(X =x) life n Eq. (10) Eq. (11)
1 0.200 0.2000 0.200 1 0.2 0.8
2 0.175 0.1400 0.280 2 0.34 0.66
3 0.15 0.0990 0.297 3 0.439 0.561
4 0.125 0.0701 0.2805 4 0.509 0.491
5 0.1 0.0491 0.2454 5 0.558 0.442
6 0.1 0.0442 0.2651 6 0.602 0.398
7 0.1 0.0398 0.2783 7 0.642 0.358
8 0.1 0.0358 0.2863 8 0.678 0.322
9 0.1 0.0322 0.2899 9 0.710 0.290
10 0.1 0.0290 0.2899 10 0.739 0.261
15 0.1 0.0171 0.2567 15 0.846 0.154
00 0.1 X=100T=EX)=79 oo 1.0 0.0

Eq. (12b)

Note: For distinguishing ¢ and x in the first two columns in Table 1 in
addition to Eqgs. (5b) and (12b), let x = 4, for which p, = py = 0.125.
The exceedance probabilities for t =1, 2, 3, 4 are p; =02, p, =
0.175, p3 =0.15, and p4 = 0.125. Therefore, Eq. (5b) gives f(4) =
P(X=4)=(1-02)x(1-0.175) x (1 — 0.15) x 0.125 = 0.0701.
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Exponential Distribution

The writers use a time-varying exponential distribution, which may
be represented by the CDF as

Fz(z) = 1 —exp(=Az) (14)

where the scale parameter A\, > 0 is assumed to be a function of
time 7. Considering that at time r = 0 a design has been made
using a return period Ty = 1/py = 1/(1 — qq), the design quantile
74, can be determined from Eq. (14) as py=1-¢y=
exp(—Aoz,,)- Likewise, the time-varying exceedance probability
of the quantile z,, is given by p, = exp(—A,z,,). For illustration,
the writers assume that A\, = max (0, Ay — ar) , where the parameter
a is the rate of change in \,. For ¢t < )\y/a

Pr = exp(—)\ozqa) eXp(al‘Z%) =Po exp(atzqo) (15)

and p, =1 for t > \y/a. Additionally, p, =1 for t = (1/az,,)
In(1/py). Thus, this is a case in which the exceedance probability
p increases continuously as time ¢ increases up to a maximum value
p; = 1. The writers will then apply Eq. (8a), where x. =
(1/az,,)In(1/po) to find the return period T and Eq. (10) to
determine the risk R.

To illustrate the reduction in return period 7' due to nonstatio-
narity, the writers consider Ay = 0.5 and three cases of @ = (0.0001,
0.001, 0.005). For example, for Ty = 20, p, = 0.05, gy = 0.95,
24, = 2005 = 5.99, and a = 0.005, Eq. (15) can be used to deter-
mine p; = 0.0515, p, =0.0531, and so on, and p, =1 for
t =100, i.e., x,, = 100. Those values are then entered into
Eq. (8a) to determine the return period 7 for nonstationary condi-
tions. Fig. 3 shows the variation of the return period 7', identified as
nonstationary 7 (in the y-axis of Fig. 3) as a function of the initial
design return period 7 (stationary 7 in the x-axis of Fig. 3) for the
assumed three cases of rate of change in \,. From this illustrative
example, the reduction in T is significant particularly for larger
values of the rate of change a. For example, if the original design
corresponds to a 100-year return period, the actual return periods
under nonstationary conditions of varying A are 91, 60, and
31 years, respectively, for the three cases considered previously.
The reduction of T is larger for projects with a higher level of
protection. As a consequence, if a project is to have, for example,
a 50-year level of protection under nonstationary conditions over
the life of the facility, the initial design may have to be much larger.
For example, if a = 0.001, the project will need to be designed for
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Fig. 3. (Color) Nonstationary T as a function of the initial design return
period T, (denoted as stationary 7 in the x-axis) for the exponential
distribution with Ay = 0.5 and three cases of trends in A for a =
(0.0001, 0.001, 0.005); the dashed line is the 45° line for comparison
with the three curves to demonstrate the extent of reduction in 7'
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Fig. 4. (Color) Nonstationary risk of failure R of Eq. (10) as a function
of project life n for the exponential distribution with Ay, = 0.5; initial
designs for Ty = 25, 50, and 100 years; trend in A with @ = 0.005; the
dashed and solid lines represent the stationary and nonstationary cases,
respectively

about a 75-year initial return period to ensure a 50-year level of
protection over the life of the project.

The hydrologic risk of failure under nonstationary conditions
can also be illustrated using Eq. (10). Fig. 4 shows the increase
in risk for Ay = 0.5, a = 0.005, and three cases of initial designs,
i.e., Ty = 25, 50, and 100. The dashed-lines in Fig. 4 show the risk
for the stationary condition from Eq. (3), whereas the solid lines
give the risk for the nonstationary conditions using Eq. (10).
For any given value of n the risk under nonstationary conditions is
bigger than that for stationary conditions. The risk increase due to
nonstationarity is larger for a higher initial level of protection
(i.e., higher T)). Moreover, depending on the project life and initial
level of protection, a project life for which the risk of failure is
100% may be much shorter in duration, as shown by the solid lines
approaching 100% much more quickly (Fig. 4). If the risk of failure
is to be maintained as in the stationary case, the project may have
to be designed for a much higher initial level of protection under
nonstationarity.

Applications

The writers include in this section some applications for determin-
ing the return period 7 and hydrologic risk R for nonstationary con-
ditions based on some actual data of extreme floods and extreme
sea-levels that show increasing or decreasing trends and shifting
patterns. The applications are based on the GEV distribution with
time-varying parameters. The GEV has the advantage that future
nonstationarity can be included explicitly by using time-dependent
parameters. The cumulative distribution function of the GEV may
be expressed as in Coles (2001) and Katz (2013)

F(z.0,) = exp{—[l +5<Z;—t‘">}_l/e} (16)

where 6, = {u,, 0,, £} represents the parameter set in which i, and
o, are the time-dependent location and scale parameters, respec-
tively; e is the shape parameter; and [1 + (¢/0,)(z — )] > 0.
When ¢ — 0, Eq. (16) reduces to the Gumbel distribution

F(z.0,) = exp [— exp (—%)] (17)

The nonstationarity in extreme variables, such as extreme sea-
levels and extreme floods, may be modeled by assuming that
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both the location parameter p and scale parameter ¢ are time-
dependent (e.g., El Adlouni et al. 2007; Menendez and
Woodworth 2010). Commonly the location parameter p is as-
sumed to vary in accordance with time but if the upper bound of
the annual maxima may also increase in accordance with time,
then in such cases the scale parameter may have to be modeled
as a function of time. Some examples are p, = pg+ at and
log o, = oy + bt (Ruggiero et al. 2010; Katz 2013). The param-
eters can also be modeled as functions of exogenous variables as
covariates. The shape parameter ¢ is difficult to estimate reliably
and for this reason it is normally modeled as a constant (Coles
2001; Katz 2013). Typically, the length of the underlying data
(e.g., annual floods) may not be long enough to reliably estimate
all the parameters as time-dependent. The computations using
the GEV model with trends were performed with the R-package
extRemes (Guilleland and Katz 2011).

The significance of the trend in the parameters (e.g., trend in
the location parameter ;) may be evaluated using the likelihood
ratio test (Coles 2001), which uses the deviance statistic
D =2{¢(M,)—¢(M,)}, where £(M,) and £(M,) are the log-
likelihood functions of the fitted models M, (e.g., with a linear
trend in the parameter ;) and M, (without a trend in the param-
eter), respectively; and r and s(r > s) are the number of param-
eters in the models considered. The test of the validity of one
model against the other is based on the probability distribution of
D, which is approximately chi-square distributed with r—s
degrees of freedom. For example, consider comparing model
M; = {u,o0,¢€}, i.e., a model with three parameters without trends,
versus model My = { + at, 0, e}, a model with four parameters
with a trend in the location parameter p. Under the null hypothesis
that a = 0, the statistic D is approximately chi-square distributed
with 4 —3 =1 degree of freedom and one must reject model M3
in favor of M, if D > x?__(1), where x3__ (1) is the 1 — a quan-
tile of the chi-square with 1 degree of freedom and « is the sig-
nificance level. As suggested by Katz (2013), one may apply the
Akaike’s information criteria (AIC) to compare among competing
models, where AIC(k) =2[—-£(M;) + k| for a model with k
parameters. For example, kK = 3 for the GEV model with no trend
and k = 4 for the model with a linear trend in z. The model that is
preferred is that having the minimum value of AIC. The test based
on the deviance statistic and the model selection based on AIC
do not give information about the goodness-of-fit, and thus the
performance of the selected model is generally assessed by in-
specting diagnostic plots such as the probability and quantile plots
(Coles 2001).

The design-quantile at time ¢ = 0 based on the GEV may be
obtained from Eq. (16) as
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When ¢ — 0, the corresponding expression for the Gumbel
model is

2g, = o — 0y In[=In(1 — py)] (19)

Likewise, the expression for the time-varying exceedance prob-
ability p, relative to the design quantile z,,, for the case where € 7 0
is obtained from Eq. (16)

pi=1 —exp{—[l +5(Z"°T_t“’>}_l/s} (20)

whereas for ¢ — 0 the expression for p, is obtained from

Eq. (17) as
p,=1—exp [— exp (— o ,u,)] (21)

0y

Increasing Floods

In many urbanizing watersheds, annual flood peaks are increasing
due to continuous land-use changes. In such situations project
designs will need to consider nonstationarity in the probability
distribution of flood peaks. The writers provide the application of
the return period and risk concepts for nonstationary conditions, as
outlined in previous sections, to two drainage basins, as follows:
(1) Aberjona River Basin at Winchester, Massachusetts (Vogel et al.
2011); and (2) Little Sugar Creek at Archdale Drive in Charlotte,
North Carolina (Villarini et al. 2009b) by using the GEV distribu-
tion. Ng and Vogel (2010) describes the land-use changes in the
Aberjona River leading to the increasing flood data, which were
analyzed by Vogel et al. (2011) to investigate the changes in the
return period in the future. Villarini et al. (2009b) describes the non-
stationarity in the probability distribution of annual flood peaks for
the Little Sugar Creek due to rapid urbanization in Charlotte.
Fig. 5 shows the plots of annual flood peaks for both the
Aberjona River and Little Sugar Creek basins. In both cases the
flood magnitude and variability appear to be increasing in accor-
dance with time. For the Aberjona River various combinations of
GEV models with and without trends in the location, scale, and
shape parameters were tested and compared based on deviance and
AIC statistics as described previously. The GEV models with shape
parameter ¢ # 0 were better than GEV with € = 0, i.e., a Gumbel
model. Based on the model-selection criteria described previously,
GEV models that included a trend in the shape parameter were
inferior than those with a constant shape parameter. The writers

Discharge (cumecs/sq.km)

T T T T
1940 1960 1980 2000
b) Year

Fig. 5. (Color) Flood peaks [in both cases the trend lines for the location parameter (solid blue line) and the fitted value without the trend (dashed
black line) are shown]: (a) Aberjona River Basin; (b) Little Sugar Creek Basin
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Table 2. Stationary and Nonstationary GEV and Gumbel Models Fitted to the Annual Flood Data of Aberjona River and Little Sugar Creek

Flood data, Estimated parameters and
basin Fitted model standard errors® Log-likelihood Test statistics®
Aberjona Stationary GEV w=301.8,255 ¢ =170, 22.3 ¢(M5) = —415 D = 8.07 x> = 3.84 p—value = 0.004
River e =0.354, 0.129 AIC(3) = 835.9 AIC(4) = 829.8

Nonstationary GEV Lo =319.4, 254 a = 2.88, 1.02 ¢(My) = —410.9

o =1634,21.2 ¢ =0.304, 0.133

Little Sugar Stationary Gumbel 1= 1.08, 0.05 0 = 0.46, 0.04 ¢(M,) = —67.81 D =25.0 x> = 3.84 p-value = 5.77 x 1077
Creek Nonstationary Gumbel® 1o = 1.118, 0.045 a = 0.012, 0.002 ¢(M3) = —=55.31 AIC(2) = 139.6 AIC(3) = 116.6

o = 0.396, 0.034
Nonstationary Gumbel®

1o = 1.118, 0.046 a = 0.133, 0.002 £(My) = —53.17
oo = —0.943, 0.087 b = 0.008, 0.004

D = 4.28 x> = 3.84 p—value = 0.0386
AIC(4) = 114.3

Standard errors are shown after the parameter values.

2 = chi-square statistic.

“With trend in location parameter only.

4With trends on both location y, = iy + ar and scale In o, = o + bt.

had to choose between a GEV model having trends in both the
location and scale parameters versus a GEV model with a trend in
the location parameter only. For the purpose of illustrating the re-
sults to be obtained for 7 and R for this river, the writers selected
the simpler model because it gave comparable diagnostic plots.
Thus, the details described next refer to results for the GEV model
with a time-varying location parameter y, = p + at and constant
scale and shape parameters. For comparison, results shown in
Table 2 also include the GEV model with constant parameters.
The estimated GEV parameters without trend gave . = 301.8 cfs,
0 = 170 cfs, and € = 0.354, whereas the estimates with trend gave
= (319.4 4+ 2.88 1) cfs, 0 = 163.4 cfs, and e = 0.304. The cor-
responding log-likelihood values are ¢(M3) = —415 and £(M,) =
—410.9, respectively. The likelihood ratio test statistic D for com-
paring the two models with and without trend in y, is 8.07, which is
significant at the 5% level based on the chi-square distribution
with one degree of freedom. In addition, AIC(3)=835.9 and
ACI(4)=829.8, which confirm that the GEV model with a trend
in the location parameter is preferred over the model without a
trend. Fig. 6 shows the residual diagnostic plots (probability and
quantile plots), which justifies selecting a GEV model with trend
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Fig. 6. Residual diagnostic plots for the GEV model with linear trend
in the location parameter for the Aberjona River flood data: (a) residual
probability plot; (b) residual quantile plot (using Gumbel as the refer-
ence distribution)

in the location parameter in addition to constant scale and shape
parameters. Table 2 summarizes the estimated parameters along
with their standard errors and the test statistics.

For the flood data at Little Sugar Creek, various combinations of
GEV models were tested and compared. The results based on the D
test and AIC, as described previously, suggested that the GEV mod-
els with shape parameters € # 0 were no better than GEV models
with € = 0, i.e., the Gumbel model. Gumbel models with trend in
the location or in the scale parameters and trend in both parameters
were tested. Overall, a Gumbel model with trends in both param-
eters gave better results based on the D test and AIC as well as
diagnostic plots. Early periods in the Little Sugar Creek flood
record [Fig. 5(b)] do not show increasing floods; the writers then
assumed that prior to 1945, the location parameter was constant.
Regarding the modeling of the annual flood peaks of Little Sugar
Creek, Villarini et al (2009b) conducted a detailed study by using
the generalized adaptive models for location, scale, and shape
(GAMLSS) parameters, which was quite versatile for modeling
nonstationary processes. A number of relevant issues were exam-
ined such as the relationship between population trends and flood
frequency as well as the effects of trends in annual maximum rain-
fall. Villarini et al. (2009b) also suggested the need of developing
alternative definitions of return period to deal with nonstationary
flood data.

Fig. 5 also shows for the two mentioned basins the time-varying
location parameters. The time-varying exceedance probability p, is
determined from Eq. (20) for Aberjona River and Eq. (21) for Little
Sugar Creek, given the initial design flood quantiles z, corre-
sponding to specified return periods T'y. The return periods 7 for
the nonstationary cases are then computed using Eq. (8a), where
Xmax = 00. Fig. 7 shows the variation of T as a function of T, for
both cases. In computing the return period (and the corresponding
risk) for future conditions, anticipated variation of y, needs to be
assumed. In the case of rapid urbanization development, 1, may
increase up to some given time in the future followed by a constant
value representing the built-out of the basin. Alternatively, one may
assume that y, continues increasing indefinitely at the same pace
(e.g., linear increase) or at a different rate of increase. Planners need
to evaluate such possible future rates of development that may take
place in the basin.

Fig. 7 shows that for both cases the nonstationary return period
T is smaller than the stationary return period T,. For example,
for To = 50 years, T = 40.7 years for Aberjona River and T =
22 years for Little Sugar Creek. The reason for the bigger differ-
ences in the return period for Little Sugar Creek is because the trend
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Fig. 7. (Color) Variation of the nonstationary return period 7 as a function of the initial return period T, (termed stationary T in the x-axis):

(a) Aberjona River Basin; (b) Little Sugar Creek Basin

in the floods is bigger than for Aberjona River. These curves may
be used to make design decisions in case of nonstationary flood
regimes resulting from rapid urbanization or climate change. For
example, in case of the Aberjona River, to ensure a level of pro-
tection equal to 7 = 50 years over the life of a project one may
have to use an initial design that has a level of protection of about
Ty = 65 years [Fig. 7(a)]. In the case of Little Sugar Creek, the
corresponding initial 7, will have to be as high as 435 years to
ensure that 7 = 50 years under nonstationary conditions.

This difference between the two examples is also reflected in the
resulting risk of failure (Fig. 8). Under stationary conditions, the
risk of failure R increases in accordance with project life n (dashed
lines in Fig. 8). However, due to nonstationarity, the risk of failure
over the project life will increase as shown by the solid lines (Fig. 8)
for the three cases of initial design. The R for nonstationary con-
ditions is bigger than the R for stationary. For example, for Little
Sugar Creek with an initial return period 7, = 100 years and de-
sign life n = 50 years, the risks are 39.5 and 88% for stationary and
nonstationary conditions, respectively [Fig. 8(b)]. For the reasons
explained previously, the increase in risk of failure for Little Sugar
Creek is higher compared to that of the Aberjona River, particularly
for projects requiring a higher level of protection [compare the
curves for T, = 25 years versus T, = 100 years (Fig. 8)]. These
risk curves (Fig. 8) may be used for making design decisions for
projects experiencing nonstationary conditions.

Increasing and Decreasing Sea Level Extremes

Design of coastal infrastructure requires the estimation of extreme
sea-level at project locations. Global average sea level has been

rising at the rate of 1.7 mm/year since the middle of the nine-
teenth century (Church and White 2011). Historically, the sea
level extremes have increased along with the increase in mean
sea levels at locations along the coasts. Although the historical
tide-gage data show little or no acceleration (Houston and Dean
2011; Watson 2011), it is expected that the global mean sea level
will be increasing at a faster rate during the 21st century and
beyond (Bindoff et al. 2007; Houston 2012) and as a consequence
sea-level extremes will also change. However, the projections of
the future sea-levels are highly uncertain, which have led coastal
engineering specialists to suggest scenario-based approaches for
mean sea-level increase (NRC 1987; USACE 2011; Obeysekera
and Park 2013).

Sea level at a particular coastal location, the relative sea level
(RSL), is the result of both the global change as well as the vertical
land movement at that location. At some locations, although the
global component is increasing, actual RSL may decrease due to
such reasons as tectonic uplift. However, at locations where land
subsidence is significant, RSL is larger than the global rate.
Because RSL is what is important for the planning and design
of coastal projects, future variations of RSL extremes are impor-
tant and need to consider nonstationarity due to sea-level rise
acceleration.

Obeysekera and Park (2013) demonstrated that the RSL ex-
tremes can be modeled by using a GEV with time-varying param-
eters. A particular case is when only the location parameter i, is a
function of time and the other two parameters are assumed to be
constants. Using the tide-gage data along the coast of the United
States, it was demonstrated that p, can be modeled with a fixed
offset e with respect to the mean sea level. Assuming that the
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Fig. 8. (Color) Nonstationary risk of failure as a function of project life n (assuming initial designs for 7y = 25, 50, and 100 years; the dashed lines
show the risk for the stationary condition, whereas the solid lines show the risk for nonstationary conditions): (a) Aberjona River Basin (assuming the
GEV model); (b) Little Sugar Creek Basin (assuming the Gumbel model)
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variation is quadratic, the future mean relative sea level variations
may be represented as

o =ct+br*+e (22)

where ¢ = time; the coefficient ¢ incorporates the linear contribu-
tions of global sea level rise and the local component; parameter b =
rate of acceleration in sea level trend; and parameter e = offset from
the mean sea level (USACE 2011). Using Eq. (22), the writers dem-
onstrate an application of nonstationary return period and risk con-
cepts for two locations, as follows: (1) Key West, Florida, where
sea levels are increasing; and (2) Adak, Alaska, where the mean
sea-level is decreasing due to uplift. The values of b, the quadratic
coefficient of the global sea-level acceleration, are future sea-level
rise scenario dependent. USACE (2011) in a national guidance
document included three scenarios termed “modified NRC-I, II,
and III,” with b values equal to 2.71 x 107, 7 x 1073, and
11.3 x 107>, respectively. For illustration the writers use in this
paper the NRC-I, i.e., b = 2.71 x 1075,

Fig. 9 shows the mean and annual maxima of RSL for Key West,
which is characterized by increased sea levels, and Adak, where
relative sea level has been declining due to uplift. Fig. 9 also shows
the fitted linear trends for mean sea-level and the time-varying
location parameters p, for each location. Historic data do not
show a quadratic variation in sea level and consequently lacks sig-
nificant acceleration. Therefore, the writers fitted a linear regression
to obtain the offset parameter. However, as explained previously,
future mean sea-level rise rate is expected to accelerate, which
is why a quadratic equation is used for future applications. Sum-
marizing, the GEV parameters used for the RSL extremes are ¢ =
2.32 mm/year, b =2.71 x 1075, ¢ =552 mm, o = 52.56 mm,
and ¢ = 0.199 for the Key West gage, and ¢ = —1.34 mm/year,
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b=271%x1073, ¢ =1,079 mm, o = 111.3 mm, and ¢ = —0.26
for the Adak gage. In both cases diagnostic checks were performed
using the probability and quantile plots (as described previously),
and the results were acceptable. Using these parameters, the non-
stationary return period and the risk were computed using the equa-
tions and methods derived previously.

Fig. 10 shows the comparison of the nonstationary return period
T versus the stationary return period 7 for both cases analyzed.
The reduction of return period 7 as a function of T, [Fig. 10(a)]
is consistent to that of increasing floods and it can be significant.
However, the variation of the return period 7 for Adak is differ-
ent, i.e., the nonstationary 7" is bigger than that for stationary
up to about 40 years and thereafter the nonstationary 7 becomes
smaller. The reason is that for Adak there is a decreasing sea-level
[Fig. 10(b)], but as indicated previously, because of the quadratic
term in Eq. (22), eventually the sea level will increase in accordance
with time and that explains the behavior of T [Fig. 10(b)]. The risk
as a function of the project life n under nonstationary conditions
is compared versus the risk for stationary conditions for the cases
of project designs given by Ty = 25, 50, and 100 years (Fig. 11).
In the case of Key West, where the RSL increases in accordance
with time (and consequently the exceedance probability p, also in-
creases), the nonstationary risk for a given value of 7 is consistently
bigger than that for stationary conditions. The nonstationary risk
may approach to 100% for n less than 80 years [Fig. 11(a)]. How-
ever, in the case of Adak, where the RSL decreases in accordance
with time [Fig. 9(b)], the risk for nonstationary conditions is ac-
tually smaller than the risk for stationary conditions, at least for
values of n of about 80 years, but thereafter the nonstationary risk
becomes bigger [Fig. 11(b)] because of the quadratic term in
Eq. (22), which eventually will make the RSL increase as time in-
creases. The cases described previously illustrate that generally risk
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Fig. 9. (Color) Mean sea level and annual maxima [also shown are the fitted linear regression line for mean sea level and the linear time trend for the
location parameter; the offset parameter e in Eq. (22) is estimated to be the mean difference between these two lines]: (a) Key West, Florida (increase);

(b) Adak, Alaska (decrease)

Non-Stationary T
20
Il

T
20 40 60 80 100
(a) Stationary T

o
~
- -
X
c
O a
7 8-
=
o -
4
=
T T T T T
20 40 60 80 100
(b) Stationary T

Fig. 10. (Color) Reduction in return period 7 as a function of T: (a) Key West extreme RSL; (b) Adak extreme RSL

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH 2014 / 563

J. Hydrol. Eng. 2014.19:554-568.



Downloaded from ascelibrary.org by UNIV OF IOWA LIBRARIES on 02/17/14. Copyright ASCE. For personal use only; al rights reserved.

[=3
o —
- B o
m -
: —
g 87 -7
[
t s o
3 -
£ o
- §
S
4
o - — T0=25 -~ T0=25
[ — T0=50 -- T0=50
o | — To=1oo = T0=10:)
0 20 40 60 80 100
(a) Project Life, n

o
=3
=]
4
- o
g\g ©
©
o
Eg
°
% S — T0=25 - - T0=25
x — T0=50 - - TO0=50
o — T0=100 -~ T0=100
T T T T T T
0 20 40 60 80 100
(b) Project Life, n

Fig. 11. (Color) Increase in risk of failure R as a function of project life n (the dashed lines show the risk for the stationary condition, whereas the solid
lines show the risk for nonstationary conditions): (a) Key West; (b) Adak

of failure for nonstationary conditions exceeds that for stationary
situations, although in cases such as Adak the counteracting effects
of decreasing sea levels due to upward movement of land elevation
is balanced by the accelerating global sea-level rise of the modeled
scenario.

Shifting Floods

Peak flood regimes in some river basins are influenced by multiple
climatic regimes, each of which may last for several years or even
decades. Examples of shifting flood-records may be found in basins
that are influenced by teleconnections to such phenomena as the
ENSO, AMO (Enfield et al. 2001), and PDO (Mantua et al.
1997). In this example, the writers illustrate an application of the
return period and risk concepts to the case of shifting floods asso-
ciated with the St. Johns River Basin near Christmas, Florida. In a
discussion by Rao (2009) on a paper by Griffis and Stedinger
(2007), two distinct regimes were identified for floods in the
St. Johns River that appear to be related to the AMO, which has
long periods of shifting patterns that affect the climate of the
Florida peninsula (Enfield et al. 2001; Trimble et al. 2006). Based
on the work of Rao (2009), the writers identified two periods span-
ning 1944-1969 and 1970-1997 corresponding to warm and cold
periods of the AMO.

With two shifting regimes, i.e., k = 2 in Eq. (13), the flood data
in the St. Johns River are in accordance with a mixed distribution
(e.g., Waylen and Caviedes 1986)

Fy,=a'F,+(1—a"F2 (23)
where F, and F2 = peak flood distributions for climatic regimes 1
and 2, respectively; and o' = probability of floods occurring in
regime 1 in any given year. In some situations, such as ENSO
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in which frequent shifts may occur, the o' can be computed as the
proportion of years in each regime. Although the lengths of the
shifts in the flood observational records are not long enough to pro-
vide a reliable estimate of o' , the writers use a simple method to
estimate the probability of a future extreme flood being in the first
regime. Using the flood data for the period 1944—-1997, and 1970
as the year of the shift from regime 1 to regime 2, o' was computed
as 0.481. Alternatively, one could also use an AMO reconstructed
from tree rings as in Enfield and Cid-Serrano (2006) as well as
resampling to have a much longer data base to condition the pro-
portion of years that floods occur in each regime. For example, the
original AMO-reconstructed indices for a time span of 424 years
showed nine periods of the AMO at the warm state and nine periods
at the cool state with 217 and 189 years falling at those states,
respectively (Enfield and Cid-Serrano 2006). Thus, this data will
give a! = 0.53 (instead of the 0.481 estimate based on the re-
corded flood-record length that exhibits only one shift). For the
sake of illustration, the writers will continue the example using the
value 0.481.

The writers fitted the GEV distribution using the location
parameter as a function of the AMO regime and based on the like-
lihood ratio test it was determined that the Gumbel distribution was
adequate for fitting the frequency distribution of annual floods of
the St. Johns River. The location parameter of the Gumbel distri-
bution has two values, 5,018 and 3,060 cfs, corresponding to the
two AMO regimes [Fig. 12(a)]. The scale parameter is ¢ = 2,094
for both periods (using different scale parameters did not improve
the model with respect to likelihood ratio). Whereas the flood-
shifting regime that is related to the corresponding AMO shifting
regime exhibits a local nonstationary behavior, in the long term it is
assumed that the system is stationary, i.e., the shifting mechanism is
stationary but with a mixed distribution. Therefore, the calculations
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Fig. 12. (Color) (a) Peak floods of the St. Johns River at Christmas, Florida, and the location parameter estimated with a shift in flood regimes from
AMO-warm to AMO-cold regimes; (b) risk of failure as a function of project life n
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of the return period and hydrologic risk as a function of project
life n will be based on the corresponding equations for the sta-
tionary condition except that the underlying model is a mixed
distribution [Fig. 12(b)].

The writers also compared the mixed model above versus a sin-
gle Gumbel model (with 3,894 and 2,308 as the estimated location
and scale parameters, respectively), and based on (1) the likelihood
ratio test statistic (D = 8.3), (2) the chi-square at the 5% signifi-
cance level (3.84), and (3) the p value 0.0039, the mixed Gumbel
model was preferred over the single-Gumbel model. The writers
compared the estimates of the return periods and risks one would
obtain from the single-Gumbel model versus those for the mixed-
Gumbel model using the value of a! = 0.481. For example, the
100-year flood based on the single-Gumbel model becomes the
137-year flood for the mixed-Gumbel model. Likewise, the risks
R obtained for a project life of 50 years are 39 and 31% for
the single-Gumbel and mixed-Gumbel models, respectively. The
diagnostic checks of the fitted mixed-Gumbel model gave accept-
able results.

Further Remarks and Conclusion

Current practice of assuming stationarity in hydrologic extremes
may not be applicable for some future engineering designs. The
nonstationarity in extremes such as floods may be due to human
influences in watersheds such as land-use changes, construction
of dams, and changes in the climatic regime. Recent advances
in addressing nonstationarity of extreme events have allowed the
extension of the concepts of return period and risk into a nonsta-
tionary framework. Even though the writers’ equations for deter-
mining the return period 7 and risk R that are applicable to
nonstationary conditions were developed independently and with-
out noticing and knowledge of previous work (as has occurred with
many other papers published in the water literature as cited in other
sections of this paper), the writers note previous developments by
Olsen et al. (1998) in deriving 7" and R for nonstationary condi-
tions, which are quite similar to those presented in this paper,
but the essence of the derivations are different as explained in some
detail in previous sections of this paper. The writers illustrated and
applied the derived equations of 7 and R using several examples,
including actual cases of increasing floods, increasing and decreas-
ing sea-level extremes, and shifting flood-regimes arising from
documented cases of human intervention in addition to climate
variability and change. The applications demonstrated that the dif-
ferences between the nonstationary return period and risk in addi-
tion to those corresponding to stationary conditions can be quite
significant. They also suggest that a nonstationary analysis can be
useful in making an appropriate assessment of the reliability (risk)
of a hydraulic structure during the planned project-life. The meth-
ods and applications presented in this paper may be helpful to water
resources specialists involved in planning and management of
hydraulic structures at places impacted by anthropogenic effects
and global climate change.

The derivations of 7 and R in this paper assume that the exceed-
ance probability varies in accordance with time (consequently the
parameters of the assumed GEV model also vary in accordance
with time) and their computations (as illustrated in the examples
and case studies) are based on the historical record. However,
researchers must be cautious and recognize the limitations of the
approach to use it with judgment for future applications. Under a
nonstationary world a relevant question is what may be the realistic
projections of the GEV model for the future? For example, consider
the case for which it has been clearly shown that the cause of

increasing floods in a particular basin is urbanization. If after
several years of intense population growth and urbanization (and
consequently increasing floods in accordance with time), urban
dynamics studies indicate that such growth will decrease by half
in the next 20 years and reach a built-out level (stabilized) in the
following 20 years; the projected scenario is clear. A real example
is the case of the Mercer River in Washington (Katz 2013), in which
after intense growth (and increasing floods) for about 20 years the
pattern of annual floods appears to have reached a constant mean
level. However, in many cases such stabilizing pattern may not be
apparent and estimating future projections may not be simple.
Using synthetic time-series of peak discharges (Moglen 2003) and
covariates of population density (e.g., Villarini et al. 2009b) may be
useful. In general, there may be some uncertainty in such projec-
tions and researchers may consider alternative potential growth sce-
narios with estimates of their probability of occurrence. In addition,
in case of increasing floods because of climate variability linked
to a low frequency of oceanic and atmospheric processes, research-
ers may use covariates of climatic indices as in Sivapalan and
Samuel (2009).

The nonstationary approach to return period and risk opens
other opportunities that may be worth exploring. For example,
it has been shown that the extension of the well-known geometric
distribution to include time varying exceedance probabilities has
allowed determining the return period and risk for nonstationary
conditions of extreme events. In the case of stationary events, the
well-known Binomial distribution enables researchers to determine
the probability of y exceedances during the project life n of a hy-
draulic structure (for a project designed based on the return period
T = 1/p.) Itis also the basis for determining the reliability and risk
of failure of a hydraulic structure. In this connection, the question
that arises is whether it is possible to extend the binomial law so
that it is applicable under a nonstationary framework. It would en-
able researchers to calculate the probability that, for example, three
floods will exceed the design flood during the project life n given
that the exceedance probabilities vary in accordance with time.
In addition, the nonstationary applications reported in this paper
have been based on the GEV distribution, which has been conven-
ient because of the well-developed estimation procedures and easy
features (such as expressing the cumulative distribution and quan-
tile functions in explicit form, unlike other distributions such as
those of the Pearson family). Thus, a natural extension would be
applying the nonstationary concepts to other distributions for which
the parameters may vary in accordance with time. The parameters
of the nonstationary GEV distribution have been generally esti-
mated based on the method of maximum likelihood but for
the stationary GEV other methods (such as those based on the
L-moments) may be more efficient, especially for small sample
sizes. Therefore, possible extensions of estimation for nonstation-
ary GEVs may use, for example, L-moments.

The writers’ case studies discussed in this paper have been
limited to maximum annual quantities such as annual extreme
floods. However, the writers anticipate that more examples will
arise from the research reported in this paper and a similar meth-
odology will be applicable to a wide range of examples that include
other processes and variables of interest in water resources (such
as precipitation, wind, temperature, groundwater, and low flows).
In addition, the methods could be extended considering larger data
bases and the concepts of extreme order statistics (e.g., the m larg-
est floods per year), peaks over thresholds (leading to a generalized
Pareto family), Poisson point process, and even seasonality
(e.g., thresholds varying periodically in accordance with time) as
outlined in Coles (2001) and Katz (2010). Although the modeling

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH 2014 / 565

J. Hydrol. Eng. 2014.19:554-568.



Downloaded from ascelibrary.org by UNIV OF IOWA LIBRARIES on 02/17/14. Copyright ASCE. For personal use only; al rights reserved.

process may become somewhat more involved it may lead to
improving the estimates of flood-risk statistics.

Furthermore, based on the GEV family it is possible to deter-
mine the standard errors of parameters under nonstationary condi-
tions. Coles (2001) and Cooley (2013) have suggested the delta
method for determining the uncertainties of the 7T-year quantiles.
However, this method requires the use of the approximate variance-
covariance matrix of the nonstationary model parameters and the
assumption of normality of the maximum likelihood estimators.
Whereas this approach may provide practical estimates of the con-
fidence intervals for the T-year extreme events for nonstationary
models, further work may be needed to develop more rigorous
approaches to consider the asymmetry that is generally associated
with quantile estimators of extreme events. In addition, the inverse
problem (i.e., determining the uncertainty of the nonstationary ex-
ceedance probabilities and how those uncertainties propagate to the
uncertainty of the return period and risk) may be interesting topics
to pursue.
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