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[1] The science of hydrology is on the threshold of major advances, driven by new
hydrologic measurements, new methods for analyzing hydrologic data, and new
approaches to modeling hydrologic systems. Here I suggest several promising directions
forward, including (1) designing new data networks, field observations, and field
experiments, with explicit recognition of the spatial and temporal heterogeneity of
hydrologic processes, (2) replacing linear, additive ‘‘black box’’ models with ‘‘gray box’’
approaches that better capture the nonlinear and non-additive character of hydrologic
systems, (3) developing physically based governing equations for hydrologic behavior at
the catchment or hillslope scale, recognizing that they may look different from the
equations that describe the small-scale physics, (4) developing models that are minimally
parameterized and therefore stand some chance of failing the tests that they are subjected
to, and (5) developing ways to test models more comprehensively and incisively. I
argue that scientific progress will mostly be achieved through the collision of theory and
data, rather than through increasingly elaborate and parameter-rich models that may
succeed as mathematical marionettes, dancing to match the calibration data even if their
underlying premises are unrealistic. Thus advancing the science of hydrology will
require not only developing theories that get the right answers but also testing whether
they get the right answers for the right reasons.
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[2] The day-to-day business of hydrology has largely
been shaped by the need to solve practical problems, such
as predicting floods and droughts, managing water
resources, and designing water supply infrastructure. As a
result, many hydrologists view their objective as developing
practical predictive tools for operational purposes. For many
routine operational purposes one just needs methods that get
the right answers; for example, one might just need methods
that predict stream flows, groundwater levels, or water
quality with sufficient accuracy for the task at hand. From
that operational perspective many contemporary approaches
may be good enough for many practical purposes. However,
to advance the science of hydrology, as opposed to the
operational practice of hydrology (that is, to improve our
understanding of how hydrologic systems work), we need to
know whether we are getting the right answers for the right
reasons. Furthermore, getting the right answers for the right
reasons could be crucial for getting the right answers at all,
if conditions shift beyond our range of prior experience (due
to extreme precipitation events, climate change, or shifts in
land use, for example).
[3] My focus in this commentary will be on advancing

hydrologic science, rather than providing better predictions

for operational purposes, although of course one hopes that
the former may lead to the latter. My objective is to ask how
we can develop better hydrologic measurements, analyses,
and models, in order to more consistently get the right
answers for the right reasons. I am neither the first
commentator on this subject, nor the most luminous [e.g.,
Klemes, 1986, 1988; Grayson et al., 1992; Beven, 2002].
Therefore I will make no particular claim of originality for
the remarks presented here, but can only hope that they are
framed in useful ways.
[4] In my view, advancing the science of hydrology will

require new hydrologic measurements, new methods for
analyzing hydrologic data, and new approaches to modeling
hydrologic systems. These three essential aspects of hydrol-
ogy will all be advanced if we take full advantage of the
linkages between them. Some promising directions forward,
in my view, include (1) designing new data networks, field
observations, and field experiments, explicitly recognizing
the spatiotemporal heterogeneity of hydrologic processes,
(2) developing ‘‘gray box’’ data analysis methods that are
more compatible with the nonlinear, nonadditive character
of hydrologic systems, (3) developing physically based
governing equations for hydrologic behavior at the catch-
ment or hillslope scale, recognizing that they may look
different from the equations that describe the small-scale
physics, (4) developing models that are minimally param-
eterized, and therefore stand some chance of failing the tests
that they are subjected to, (5) developing ways to test
models more comprehensively and incisively, given the
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intrinsic limitations of the available data. I will expand on
each of these in the comments that follow.
[5] Let me begin, as all science begins, with the subject

of data. From the growing volume and sophistication of
hydrological theorizing over the past several decades, one
might lose sight of the fact that the ultimate source of
hydrological information is field observations and measure-
ments. It is worth considering the extent to which current
hydrological understanding is constrained by the kinds of
measurements that have heretofore been available, and how
those constraints can be loosened by new measurement
technologies and new strategies for their deployment.
[6] Our current hydrological measurement networks have

been, with few exceptions, designed for operational pur-
poses rather than scientific ones. In California’s Sierra
Nevada mountains, for example, stream gauges are typically
located downstream of dams, making them nearly useless
for understanding catchment processes. As another
example, most rainfall observations are made where people
live; thus steep terrain is inherently underrepresented, so we
have limited observations documenting how topography
shapes precipitation patterns. Then, of course, there is the
well-known problem that the surface area of a standard
rainfall collector is typically 8 or 10 orders of magnitude
smaller than the catchment that it is intended to represent.
The spatial heterogeneity of rainfall implies that conven-
tional precipitation measurements cannot be spatially
representative; as a result, time series data from many small
catchments contain occasional high-flow events that appear
to have occurred in the absence of rainfall, simply because
convective storm cells have missed the rainfall collector.
Next to precipitation, the dominant term in the water
balance is often evapotranspiration rather than runoff, but
measurements of evapotranspiration rates are very scarce
indeed. One could go on with examples like these.
[7] In the future, these kinds of data constraints should be

alleviated somewhat by new measurement technologies, and
by new hydrologic observatory networks. However, these
new investments in hydrologic measurement infrastructure
are likely to be expensive, and hydrologists will need to
make a convincing case for them. Doing so will entail
documenting what, specifically, hydrologists will be able to
do with these new observations, that they cannot do without
them. A useful template for making such a case is the report
by the Committee on Earth Gravity from Space [1997]. That
report documented, in quantitative terms, how satellite
observations of subtle variations in Earth’s gravitational
field could be used to measure a broad range of geophysical
phenomena, including seasonal changes in soil moisture and
groundwater storage. It also quantified the tradeoffs
between the design parameters of such a satellite system.
The report was noteworthy in that it used simple models to
extrapolate from what was known about the measurement
technologies and the phenomena to be measured, to quan-
titatively demonstrate what could be achieved with a new
measurement system. It was also noteworthy in its relative
lack of the usual platitudes about ‘‘revolutionary new
science’’ or ‘‘groundbreaking advances for the 21st Century’’
or the like. Furthermore, andmost importantly, the report was
unequivocally successful; it launched the GRACE (Gravity
Recovery and Climate Experiment) satellite mission, with
international support totaling over 100 million dollars. One

can hope that in the near future, hydrologists will be able
to make a similarly convincing case for major invest-
ments in new measurement infrastructure. However, for
the moment, many hydrologists recognize that most of
the existing hydrologic data are less than ideal for
scientific purposes.
[8] What is less widely recognized, however, is that these

data are typically analyzed with mathematical tools that may
be inherently ill suited to hydrologic systems. For example,
students studying hydrology often learn a suite of mathe-
matically elegant methods (unit hydrographs, autoregressive
models, and so forth) that assume that hydrologic systems
are linear and additive. However, typical hydrologic sys-
tems are typically nonlinear and nonadditive, often dramat-
ically so.
[9] Stuffing nonlinear, nonadditive systems into linear,

additive black boxes can produce awkward results, no
matter how artfully the mathematics is done. Just as any
curve will be nearly linear over small enough segments,
these approaches can sometimes give good enough answers
as long as the system does not stray too far from the range
of conditions represented by the calibration data. However,
when the system is driven far beyond ‘‘normal’’ conditions
(which is precisely when the answers matter most) these
approaches often become unreliable. They don’t extrapolate
well, because their underlying premises were selected for
mathematical convenience rather than physical realism. We
need data analysis methods that are better informed by
hydrological insight [e.g., Wittenberg, 1999; Young, 2003],
to supersede the linear black box methods that we know
are inconsistent with the fundamental mechanisms underly-
ing many hydrologic processes. Getting the right answers for
the right reasons will require ‘‘gray box’’ data analysis
tools, ones that contain enough hydrological realism to
capture the nonlinear, nonadditive behavior of hydrolog-
ical systems.
[10] Getting the right answers for the right reasons has

also been a rallying cry for those who would reject
empirical approaches entirely, in favor of physically based
mechanistic models of hydrologic systems. Surely, so the
argument goes, if we model hydrologic systems using
physically based governing equations (e.g., Darcy’s law,
Richards’ equation, or the advection-dispersion equation),
and if we get the right answers, then we must be getting the
right answers for the right reasons. Yet when such models
are calibrated to data from one time interval, they often
perform poorly when tested against data from another time
interval with different patterns of rainfall forcing [e.g.,
Seibert, 2003]. Similarly, models that are developed for
one catchment often perform poorly when tested against
data from other catchments. This casts doubt on the models’
ability to predict how catchments will respond as conditions
change.
[11] It is almost axiomatic that we need ‘‘physically

based’’ models in order to make reliable predictions beyond
the range of prior observations. However, the key question
is not whether models of hydrologic systems should be
physically based; instead, the question is how they should
be based on physics. The physical laws governing water
movement at small scales have been understood for deca-
des. What we still don’t understand well enough is how to
apply these physical laws to systems that are complex,
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heterogeneous on all scales, and often poorly characterized
by direct measurement.
[12] To date, most ‘‘physically based’’ models of hydro-

logic systems are based on an implicit upscaling premise.
This premise assumes that the microphysics in the hetero-
geneous subsurface will ‘‘scale up’’ such that the behavior at
the model’s grid scale will be described by the same
governing equations (e.g., Darcy’s law, Richards’ equation),
with state variables (e.g., water flux, volumetric water
content, hydraulic potential) that are averaged, and with
‘‘effective’’ parameters (e.g., saturated conductivity, charac-
teristic curves) that somehow subsume the heterogeneity of
the subsurface. By necessity, these effective parameters are
estimated through model calibration.
[13] Such models are often good mathematical mario-

nettes; they often can dance to the tune of the calibration
data. However, their predictive validity is often in doubt
[Seibert, 2003]. This is because these models are usually
overparameterized, in the sense that many different param-
eter sets will give almost identical fits to the calibration data
(the equifinality problem [Beven and Binley, 1992]), but can
yield dramatically different predictions of how the system
will behave as conditions change. This is not an algorithmic
problem, and it does not have an algorithmic solution.
Instead, this problem arises because the free parameters in
typical catchment models create many (many, many) more
dimensions of flexibility than typical calibration data sets
can constrain. Model parameters for an individual catch-
ment will often vary significantly depending on the partic-
ular time interval that is used for calibration, and many
models cannot accurately represent low-flow and high-flow
behavior with a single set of parameter values [Wagener,
2003]. This violates a basic principle of mathematical
modeling, namely, that the constants should stay constant
while the variables vary.
[14] This implies that there is something structurally

wrong with the models. In my view, we should more
seriously consider the possibility that the implicit upscaling
premise outlined above may be wrong. That is, we should
more carefully explore the hypothesis that the effective
governing equations for such heterogeneous systems at
large scale may be different in form, not just different in
the parameters, from the equations that describe the small-
scale physics.
[15] As an example, recent field observations by Jeff

McDonnell and his collaborators suggest that in humid
catchments, rainfall inputs create a patchwork of mobile
water as individual points on hillslopes reach sufficient
saturation to become highly conductive; these observations
also suggest that storm response is controlled by how this
patchwork merges together into a spatially connected
network as the hillslope wets up (J. J. McDonnell, personal
communication, 2005). It seems unlikely that this hydro-
logic response could be mimicked by applying the conven-
tional governing equations to the hillslope as a whole, even
with considerable flexibility in picking the values of the
‘‘effective’’ parameters. As another example, theoretical
calculations show that downslope advection and dispersion
should produce a distinctive traveltime distribution for
rainfall inputs distributed across a hillslope [Kirchner et
al., 2001]. These calculations agree with observations
[Kirchner et al., 2000], but are markedly different from

what one would obtain by applying the advection-
dispersion equation to any single ‘‘effective’’ flow path
length. These examples imply that the effective governing
equations (at the scale of hillslopes, catchments, or typical
model grid cells) may look different from the point-scale
equations that we all learned in school. As the examples
above suggest, insight into these effective governing equa-
tions can come both from direct field measurements that
span a range of scales, and from theoretical studies that
integrate the point-scale physics across spatial domains.
[16] Whereas the problem of parameter identification has

been emphasized in the hydrologic literature, the more
fundamental (and difficult) problem of structural identifica-
tion has received less attention than it deserves [Butts et al.,
2004]. Likewise, whereas many hydrologists recognize that
overparameterization makes parameter identification
problematic, it is less clearly understood that overparamete-
rization also makes structural identification difficult. Param-
eter tuning makes models more flexible, and thus makes
their behavior less dependent on their structure. This in turn
makes validation exercises less effective for diagnosing
models’ structural problems. By making it easier for models
to get the right answer, overparameterization makes it
harder to tell whether they are getting the right answer for
the right reason.
[17] It is not widely recognized that very little parameter

tuning is still too much. For example, Jakeman and
Hornberger [1993] showed that typical rainfall-runoff
data only contain enough information to constrain simple
hydrological models with up to four free parameters.
Similarly, even with detailed hydrological and geochemical
time series, Hooper et al. [1988] were unable to constrain a
simple six-parameter model. By contrast, many catchment
models have dozens of free parameters. Each additional
parameter represents a whole new dimension of parameter
space, so the overparameterization problem grows rapidly
and nonlinearly with the number of free parameters.
[18] These considerations imply that in order to know

whether we are getting the right answers for the right
reasons, we will need to develop reduced-form models with
very few free parameters. One promising avenue forward
may be the approach outlined by Kirchner et al. [2001],
which seeks a middle path between lumped-parameter and
spatially distributed models. These ‘‘middle path’’ models
attempts to capture the spatially extended character of
hillslopes and catchments directly in their governing equa-
tions, without requiring explicit spatial disaggregation and
the accompanying proliferation of free parameters.
[19] No matter what form the emerging theory will take,

it is the collision of theory and data that forms the core of
scientific advance in any field, including hydrology. The
collision of theory and data will be more scientifically
productive if we can develop models that are more
parametrically efficient (and therefore less immune to being
proven wrong), and if we can develop model testing
regimens that compare models against data more incisively
[Kirchner et al., 1996]. Devising more incisive tests requires
recognizing that we want models to be able to predict
catchment responses to particular types of external forcing,
such as climate change or land use change. We therefore
need to test how well models can make those kinds of
predictions, which is different from testing how nicely a
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mathematical marionette can dance to a tune it has already
heard.
[20] For example, typical split sample tests (in which a

model is calibrated against one time period and tested
against another) are not very revealing, because the two
time series typically represent similar conditions and exhibit
similar behavior. These are weak tests because the model is
being tested against a data set that is functionally equivalent
to the one that it has already been calibrated with. Instead,
we should be making wider use of differential split sample
tests, in which the calibration and validation data sets
represent different conditions and different behaviors. These
are more incisive tests, particularly if the calibration and
validation data sets are different in ways that reflect the
external forcings that are of particular concern, such as
climate change. Differential split sample tests are rare, and
models often fail them, but these failures are often highly
instructive [e.g., Seibert, 2003].
[21] Models are often compared with data by simply

overlaying the model predictions onto the observed time
series data, or by plotting the predictions against the
observed values. Such comparisons often fail to diagnose
serious model deficiencies, either because the forcings of
interest are obscured in the observational data, or because
the model’s fit to the data mostly reflects mechanisms other
than the ones that control how it responds to the forcings of
interest. Such cases call for a synthesis of modeling and data
analysis. In this approach, one first statistically extracts the
relationships of greatest relevance from the observations,
correcting for other confounding factors. One then tests
these relationships directly against the model; for an
example, see Kirchner et al. [1996]. A variant of this
approach uses statistical methods to extract the relationships
of interest from both the observational data and the modeled
time series (correcting for confounding factors in both), and
then compares them against one another.
[22] Chemical and isotopic data provide another powerful

test of whether we are getting the right answers for the right
reasons. Many models can predict the rapid hydrograph
response that is commonly observed in small catchments.
However, small catchments also commonly exhibit strong
damping in passive tracers (implying that storm runoff is
predominantly ‘‘old’’ water), and exhibit strong concentra-
tion-discharge relationships in reactive tracers (implying
that the ‘‘old’’ water that is mobilized during stormflow is
chemically different from the ‘‘old’’ water that constitutes
base flow). These three patterns of behavior provide impor-
tant constraints on hypothesized mechanisms for stormflow
generation [Kirchner, 2003]. Furthermore, because they
characterize many different catchments, these patterns
demand a general explanation: an elegant theory rather than
an elaborate, highly parameterized megamodel.
[23] The full potential of chemical and isotopic data has

not yet been achieved, because chemical measurements are
typically made only weekly or monthly, whereas catchments
often respond hydrologically and chemically on timescales
of minutes to hours. Inferring the hydrochemical behavior
of catchments from weekly or monthly samples is like
trying to understand a symphony when one can hear just
one note every minute or two. In the past, the costs of
sampling and analysis made it difficult to collect high-
frequency chemical and isotopic time series data. Recent

technological advances are now loosening those constraints,
and high-frequency sampling is revealing richly textured
chemical behavior that had previously been hidden
from view [Kirchner et al., 2004]. As more detailed
hydrochemical data sets become available, they will prove
to be instrumental in developing the next generation of
hydrologic theory.
[24] Although much of this commentary has focused on

mathematical modeling and analysis of data, it is worth-
while to return to where this discussion began, and to
emphasize again that all hydrological knowledge ultimately
comes from observations, experiments, and measurements.
These create all the information contained within hydrolog-
ical data, and mathematical tools can at best only clarify
(and at worst, obscure or distort) the information those data
contain. Field observations, in particular, provide direct
insights into processes and thus are crucial to the develop-
ment of better hydrological theories. Manipulation experi-
ments can provide particularly incisive tests of hydrological
theory, because they can create experimental conditions that
differ substantially from historical data, and because
controlled experiments can isolate individual mechanisms,
thus providing a more precisely defined ‘target’ for the
theory to hit. Thus the advancement of hydrological
modeling and analysis ultimately depends on supporting
new experimental work, new field observations, and new
data collection networks [Grayson et al., 1992; Hornberger
and Boyer, 1995].
[25] We need to develop better models and better analysis

tools; we also need to create better data to model and
analyze. Rethinking our theories and how we test them will
bring major benefits in the long run. Striving not simply to
get the right answers, but to get the right answers for the
right reasons, will be both challenging and illuminating.
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