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Abstract

Hydrologic signatures are quantitative metrics or indices that describe statistical

or dynamical properties of hydrologic data series, primarily streamflow. Hydro-

logic signatures were first used in eco-hydrology to assess alterations in flow

regime, and have since seen wide uptake across a variety of hydrological fields.

Their applications include extracting biologically relevant attributes of

streamflow data, monitoring hydrologic change, analyzing runoff generation

processes, defining similarity between watersheds, and calibrating and evaluat-

ing hydrologic models. Hydrologic signatures allow us to extract meaningful

information about watershed processes from streamflow series, and are therefore

seeing increasing use in emerging information-rich areas such as global-scale

hydrologic modeling, machine learning, and large-sample hydrology. This over-

view paper describes the background and development of hydrologic signature

theory, reviews hydrologic signature use across a variety of applications, and dis-

cusses ongoing hydrologic signature research including current challenges.
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1 | INTRODUCTION

1.1 | Discovering the information in streamflow data

Streamflow timeseries show patterns: flood peaks and low flow periods, daily changes and seasonal cycles. These pat-
terns are examples of information in streamflow data. The information might describe how the stream reacts to changes
in weather, or what magnitudes and rates of change of flow are usual for the stream. Streamflow patterns depend on
the physical characteristics of the watershed, telling a story about the path of water from precipitation to streamflow.
Flow patterns in turn affect the stream's environment, informing us about riparian conditions and habitats. This paper
describes how hydrologists use hydrologic signatures to extract this wealth of information from streamflow.

1.2 | What is a hydrologic signature?

Hydrologic signatures are quantitative metrics that describe statistical or dynamic properties of streamflow. They are
also known as hydrologic metrics, hydrologic indices, or diagnostic signatures. Hydrologic signatures range from simple
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statistics such as the mean and quantiles of the timeseries, to complex metrics such as descriptors of recession shapes
that are related to the storage-discharge behavior of the watershed (Figure 1). Hundreds of different hydrologic signa-
tures have been proposed, for example a review of signature choice and redundancy considered 171 signatures
(Olden & Poff, 2003). To organize and describe signatures, several categorizations have been proposed.

An early and well-known categorization groups signatures into five ecologically important features of flow regimes:
magnitude, timing, frequency, duration, and rate of change (Richter, Baumgartner, Powell, & Braun, 1996) (Table 1).
This work built on a previous suggestion to group signatures by flow variability, pattern of the flood regime, and extent
of intermittent conditions (Poff & Ward, 1989). Many subsequent authors use the five categories. Notably, Poff et al.
(1997) use the categories to quantify the natural flow regime of a river, proposing that these components completely
describe the flow characteristics of importance to the aquatic ecosystem. Based on the categories, Richter et al. (1996)
went on to propose five statistical signature types for describing hydrologic alteration caused by human influence.
Those categories were: flow magnitude, magnitude and duration of annual maxima, timing of annual maxima, fre-
quency and duration of high and low flow pulses, and rate and frequency of streamflow change.

Signatures may purely describe the streamflow timeseries (e.g., mean and quantiles of timeseries) or may describe a
watershed process (e.g., recession shapes related to storage-discharge behavior). Some authors define these as different

FIGURE 1 Examples of commonly used hydrologic signatures calculated as metrics of the streamflow timeseries

TABLE 1 Categorization of signatures described by Richter et al. (1996)

Type Signature examples Ecological relevance

1. Magnitude Flow magnitude by year or month Describes wetted area and availability of habitat

2. Timing Seasonal timing of annual maxima and
other annual flow events

Describes whether life-cycle requirements of instream
species are met

3. Frequency Frequency of events such as floods or
droughts

Influences population dynamics by controlling
reproduction or mortality events for instream species

4. Duration Length of time for which a specific flow
condition occurs

Controls life cycle phases; controls accumulated
impact of floods or droughts

5. Rate of change Rate of change of flow magnitude and
stage height

Can strand organisms above the water's edge, and
strand plant roots above the reach of groundwater
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categories, with the former described as flow indices, metrics, or characteristics, and only the latter described as signa-
tures (Wagener, Sivapalan, & McGlynn, 2008; Wagener, Sivapalan, Troch, & Woods, 2007). McMillan (2020) proposed a
categorization that differentiates between statistics- and dynamics-based signatures, and between signatures at different
timescales (Table 2). Statistics-based signatures are calculated at seasonal or longer timescales, require only the flow dis-
tribution and typically relate to storage volumes, while dynamics-based signatures describe shapes or patterns of the
flow series and typically relate to partitioning of water between different flow pathways.

Hydrologic signatures, including the examples in Table 2, often build on earlier ideas. For example, early descrip-
tions were published for the flow duration curve (the cumulative distribution function of flow that shows the percent of
time that flow values are exceeded; Searcy, 1959), baseflow index (proportion of flow that is baseflow; Kunkle, 1962),
and Pardé coefficients for flow variability (ratios of monthly mean discharges to the mean annual discharge;
Pardé, 1933). However, the concept of combining these metrics into a more complete description of the flow regime did
not occur until later.

1.3 | Hydrologic signatures in other fields

Hydrologic signatures originate in the idea that measurable hydrologic patterns can tell us about the underlying system.
We can use accessible measurements to reveal inaccessible or complex processes: for example, using streamflow to
learn about subsurface or overland flow. Other environmental fields use signatures similarly, such as using water level
fluctuations in a wetland to learn about hidden inflows and outflows (Mitsch & Gosselink, 1986), or using ocean surface
patterns to learn about deep currents (Millot, 1999). In tracer studies, isotope ratios in a water sample are called signa-
tures, as they help identify the source of the water in time or space (Klaus & McDonnell, 2013; Sprenger et al., 2019;
Xue et al., 2009). In remote sensing, reflectance ratios between wavelengths are called spectral signatures, as they can
identify surface properties such as snow cover (Dozier, 1989) or water quality (Doxaran, Froidefond, Lavender, &
Castaing, 2002). In geomorphology, signatures of drainage density are even used on Mars to interpret the ancient hydro-
logical cycle (Hynek, Beach, & Hoke, 2010). In all these examples, signatures allow scientists to interpret measurements
and extract information about the environment.

This review focuses on signatures describing streamflow data. However, signatures are applied to other hydrologic
data types. Signatures combining flow and temperature data provide information on alpine snowfall and melt (Horner,
Branger, McMillan, Vannier, & Braud, 2020; Schaefli, 2016). Signatures were used to categorize groundwater dynamics
(Heudorfer, Haaf, Stahl, & Barthel, 2019), and to identify soil moisture dynamics that are less affected by soil heteroge-
neity (Branger & McMillan, 2019). Recent innovations include signatures created for karst hydrology (Hartmann,
Wagener, et al., 2013), glacio-hydrology (He et al., 2018; Mackay et al., 2018), and for total water storage anomalies from
GRACE data (Fang & Shen, 2017). These examples demonstrate the continuing and expanding use of signature
methods in hydrology.

2 | APPLICATIONS OF HYDROLOGIC SIGNATURES

The following sections describe three main types of hydrologic signature applications: ecohydrology, watershed pro-
cesses, and modeling (Figure 2).

TABLE 2 Categories of signatures suggested by McMillan (2020)

Type Description Examples

1. Timeseries visuals Visual interpretations of timeseries data Double peaks in streamflow, diurnal cycles

2. Quantified event dynamics Numerical descriptors of event-scale dynamics Recession shapes, flow generation thresholds

3. Quantified seasonal dynamics Numerical descriptors of dynamics, averaged
over time

Rising limb density, baseflow index

4. Seasonal statistics Statistical descriptors of the flow distribution Runoff ratio, shape of the flow duration curve

5. Mini-model Quantities derived from highly simplified models Storage volumes, regression relationships
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2.1 | Ecohydrology, environmental flows, and hydrologic alteration

An important concept in ecohydrology is that the flow regime of a river controls channel and riparian habitat, and the
suitability of the river to support freshwater species (Gordon, 2004). Flow velocity and its variability close to the stream-
bed affect instream ecosystems via multiple mechanisms. Flows control bed sediments, nutrient levels, availability of
refuges, and frequency of disturbance; and therefore control species dispersal, habitat use, resource acquisition,
predator–prey interactions, and competition (Hart & Finelli, 1999).

Given the need to describe how flow characteristics impact stream ecology, ecohydrology was the first field to create
catalogues of signatures that summarize the flow regime. Two foundational papers use signatures such as annual maxi-
mum flows and numbers of high and low flow events to characterize biologically relevant flow attributes (Poff
et al., 1997; Richter et al., 1996). Their signatures emphasize the flow extremes—floods and low flows—that control
channel shape and species survival.

2.1.1 | Environmental flows to preserve instream habitat

Stream habitat is influenced by multiple aspects of the flow regime. Flow variability, from milliseconds to decades,
affects which species dominate the ecosystem (Biggs, Nikora, & Snelder, 2005). For example, invertebrates may tolerate
variability only above or below certain limits (Konrad, Brasher, & May, 2008). Species may have very specific flow
requirements, such as the endangered yellow-legged frog (Rana boylii) in California that relies on a consistent rate of
river level fall in summer, allowing tadpoles to following the receding water's edge (Bondi, Yarnell, Lind, & Lind, 2013;
Yarnell, Viers, & Mount, 2010). Species requirements can be encoded as signatures, for example by quantifying flow
variability, or frequency and duration of unacceptable flow conditions. To encompass all the flow attributes required to
sustain a healthy ecosystem, water managers use the term “environmental flows” (Acreman, 2016). Methods to assess

FIGURE 2 Summary of the three categories of hydrologic signature applications discussed in this paper (Eco-hydrology, Watershed

Processes, and Modeling), with cross-cutting methodological considerations
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whether a river meets environmental flow requirements are diverse, but typically rely on hydrologic or hydraulic signa-
tures to rate habitat suitability (Tharme, 2003).

To rate habitat suitability, hydrologists search for signatures that explain species abundance, and where ecosystem
theory explains why those flows are needed (Table 3). Other measures such as species presence/absence, diversity, or
size and fitness of individuals may also be used. This method needs measurements of species abundance at large num-
bers of sites. Commonly measured species include periphyton (streambed organisms such as algae), invertebrates, and
fish species. For example, Jowett and Duncan (1990) analyze 130 sites in New Zealand and find that high flow variabil-
ity is negatively correlated with mean water velocity and relative bed stability, and positively correlated with trout habi-
tat. In other species, flow variability reduces abundance, such as in stream salamanders where variability reduces
survival through metamorphosis (Lowe, Swartz, Addis, & Likens, 2019). Clausen and Biggs (1997) find that the “Fre3”
signature, that is, the frequency of floods higher than three times the median flow, predicts periphyton and invertebrate
density because Fre3 flows have sufficient energy to disturb sand and gravel riverbed sediments. Once a relationship
between signatures and species is established, it can be used to predict basin-wide species distribution (Ceola
et al., 2014).

For general environmental flow assessments, not aimed at one particular species, the best choice of signatures is less
clear. Yarnell et al. (2020) propose a method based on “functional flows,” that is, flow features that affect species life-
cycles, such as fall pulse flows, spring recessions, and summer low flows. For each feature, signatures are selected
corresponding to flow magnitude, timing, frequency, duration, and/or rate of change. Online software is available to
calculate these signatures in seasonal, Mediterranean climates (Patterson et al., 2020). Archfield, Kennen, Carlisle, and
Wolock (2014) instead try to overcome subjectivity in signature choice by using their seven “fundamental daily
streamflow statistics” for all rivers, including the moments of the flow series and descriptors of the seasonal cycle. Refer
to Section 3.1 for a wider discussion of rationales behind signature choice.

2.1.2 | Detecting hydrological change

An important motivation for using signatures to quantify environmental flows is to understand how humans have
altered river ecosystems by altering streamflow patterns. Modified flows encourage invasive species, to the detriment of
native species that rely on natural water levels, seasonal flow changes, and floodplain connectivity (Bunn &
Arthington, 2002). Signatures can be compared before and after a hydrologic change, to quantify how disturbances such
as dams, levees, urbanization, afforestation, or drainage change the flow regime (Archer & Newson, 2002; Poff
et al., 1997). The widely used ELOHA framework (Ecological Limits Of Hydrologic Alteration; Poff et al., 2010) uses sig-
natures to classify rivers by flow and geomorphological regime, quantify flow changes from baseline conditions, and
understand the ecological impacts of those changes.

The most disruptive changes for riverine ecosystems are depleted high flows, homogenization of flows, and erratic
flows (for U.S. rivers; Carlisle, Grantham, Eng, & Wolock, 2017) as well as artificially reduced flow that reduces water
velocity, depth, wetted width and therefore habitat and species diversity (Dewson, James, & Death, 2007). Larger
changes in flow magnitude carry a greater risk of ecological change, but exact relationships between flow signatures
and ecological change are place-specific (Poff & Zimmerman, 2010). Most studies analyze changes in flow magnitude
(e.g., flow peaks, average flow, baseflow, and daily variation), whereas changes in flow timing, frequency, duration, and
rate of change are less commonly studied. Evaluating signature changes on a large scale can help to identify the under-
lying causes. Mahe et al. (2013) used signatures to describe decadal changes in the baseflow and flow variability of
African rivers, and investigated the influence of climate, land use, and other anthropogenic changes. As well as past
changes, signatures can help summarize how flows may change in future. By calculating signatures from future flows
predicted by coupled climate and hydrologic models, we can identify changes such as timing of the snowmelt peak or
the duration of summer low flows (Hayhoe et al., 2007). Signatures are valuable to identify causes and impacts of flow
regime changes, in the past and for the future.

2.2 | Watershed processes

While ecohydrology uses signatures to study how flow regime affects instream habitat, hydrologic process research uses
signatures to study how the upstream watershed affects the flow regime. Using watershed attributes (e.g., soil, geology
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and topography) to predict flow signatures enables us to estimate flows and stream habitat in ungauged basins. To this
end, many early signature papers describe relationships between watershed attributes and signature values (Jowett &
Duncan, 1990; Poff & Ward, 1989). It is also useful to reverse the inference and use flow signatures to predict watershed
processes. Examples of process predictions could include whether overland flow occurs, or how connected is water in
the hillslopes and channel. By using intensively studied basins to establish relationships between signatures and pro-
cesses, we can transfer process knowledge to any watershed with a flow gauge (McMillan, 2020). The link between sig-
natures and watershed processes is the basis for several applications described in later sections, such as using
signatures to quantify similarity between watersheds, and evaluating physical realism of hydrologic models.

Sometimes the link between watershed processes and signatures is clear, such as when winter snowfall causes a
spring snowmelt peak, or when karst geology causes high baseflow. McDonnell et al. (2007) argue that both watershed
descriptors and hydrologic signatures should focus on how watersheds function. Currently, this is not the case and
many signatures such as low flow frequencies are only weakly related to watershed function. A useful test of the rela-
tionship is how well signatures can be predicted from watershed attributes. Eng, Grantham, Carlisle, and Wolock (2017)
tested 612 signatures and found that only 40% could be reliably predicted from U.S. watershed attributes. Signatures
describing mean flows and high flows are typically well-predicted, while signatures describing low flows are poorly
predicted (Addor et al., 2018; Eng et al., 2017; Zhang, Vaze, Chiew, Teng, & Li, 2014).

A compelling explanation for differences in signature predictability is that climate descriptors (e.g., aridity, snow
fraction) provide most of the predictive power, while watershed descriptors (e.g., soil type, forest cover, slope) provide
little predictive power (Figure 3; Addor et al., 2018; Merz & Blöschl, 2009). Therefore, signatures that relate closely to
climate characteristics are well predicted. At the seasonal scale, wet or impermeable watersheds transfer climate vari-
ability almost directly into hydrologic variability, explaining why seasonal, high flow signatures are more easily
predicted (Gnann, Howden, & Woods, 2020). However, by focusing on situations where expert knowledge suggests that
hydrology is more important than climate, relationships can be uncovered. For example, watershed drainage pattern
helps to predict flood signatures (Oppel & Schumann, 2020), and information on surface waterbodies helps to predict
baseflow signatures (Beck et al., 2013).

The weak relationship between watershed descriptors and signatures contradicts extensive field evidence that shows
how watershed features control streamflow responses. Therefore, there is great potential to create new watershed
descriptors that better characterize hydrologic behavior and flow signatures (Gnann, McMillan, Woods, &
Howden, 2020). In turn, this would allow for better predictions of the flow regime in ungauged watersheds.

2.2.1 | Defining similarity between watersheds

Analyzing hydrologic similarity enables us to transfer information between similar watersheds. We might use
insights from a similar watershed to design monitoring networks or models in a new watershed, or to estimate the
impacts of land use or climate change (Wagener et al., 2007). Similar watersheds will have similar ecology and can
benefit from similar conservation efforts and environmental flow regulations (Kennard, Pusey, et al., 2010). Similar-
ity measures can also pick out watersheds that behave differently, such as Australia and southern Africa that have
more extreme flows relative to mean flow than on other continents (McMahon, Vogel, Peel, & Pegram, 2007). Often,
a similarity measure is used to define clusters (also called classes) of similar watersheds. Many generic clustering
algorithms are available, such as hierarchical clustering, k-means clustering, or Bayesian mixture modeling (Jain,
Murty, & Flynn, 1999). Using signatures as the similarity measure creates clusters that are hydrologically similar in
terms of flow regimes, instream ecosystem, and watershed processes. Although clustering can be based on physical
watershed attributes instead (topography, land cover, etc.), this produces substantially different groupings (Ali,
Tetzlaff, Soulsby, McDonnell, & Capell, 2012).

Similarity in signatures implies a combination of climate similarity and process similarity. This creates clusters that
are largely geographically compact (climate influence), but with some geographical spread (process influence). For
example, Kennard, Pusey, et al. (2010) use signatures to cluster Australian watersheds. They find compact clusters
influenced by seasonal timing of flow, flood magnitude, and baseflow magnitude, but some outliers such as highly
intermittent streams, which are driven more strongly by process and have a wide geographical distribution (Figure 4).
Climate typically dominates clusters derived directly from signature similarity (Coopersmith, Yaeger, Ye, Cheng, &
Sivapalan, 2012; Sawicz, Wagener, Sivapalan, Troch, & Carrillo, 2011). Therefore, Knoben, Woods, and Freer (2018)
recommend separating climatic and hydrological similarity when deriving clusters.
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An alternative to signature-based clusters is to use climate or watershed descriptors to derive clusters, and look for
similarities in signature values in each cluster. Climate-based clusters such as the Köppen–Geiger classes produce dif-
ferent patterns to signature-based clusters (Jehn, Bestian, Breuer, Kraft, & Houska, 2020). However, climate descriptors
can be targeted towards creating hydrology-relevant clusters, by using descriptors such as aridity that is related to the
water balance (Berghuijs, Sivapalan, Woods, & Savenije, 2014). Instead of looking at signature values within in a clus-
ter, a recent proposal is to use hydrological archetypes. These are graphs of the median annual hydrograph of all

FIGURE 3 Comparison of the influence of catchments attributes (x axis) used to predict hydrological signatures (y axis) with a random

forest method for 671 U.S. watersheds with minimal human influence. Large, brightly colored circles imply strong correlations and high

influence. The signatures are ordered with better predicted signatures at the top. The strongest relationships are between climate attributes

and mean or high flow signatures, with topography, soils, vegetation and geology having low predictive power (Reprinted with permission

from Addor et al. (2018). Copyright 2018 Wiley)
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watersheds in the cluster, with upper and lower percentiles, giving an overview of the hydrological behavior. These
visual representations integrate the information in multiple signatures in an intuitive way (Lane et al., 2018).

An important application of hydrologic similarity is to estimate how vulnerable watersheds are to climate or land
use change. We can already see the impacts of climate change on flow signatures, as watersheds move between clusters
over time as their climate changes (Sawicz et al., 2014). When planning for future impacts, watersheds with similar sig-
nature values are assumed to react similarly to climate changes. We can predict future watershed behavior using space-

FIGURE 4 Flow regime classes for

830 stream gauges in Australia, clustered using

120 hydrologic signatures. The signatures

describe mean and variance in the streamflow

magnitude (average, low, high), frequency (low,

high), duration (low, high), timing and rate of

change. Note that some classes are geographically

compact (e.g., 2) while some are dispersed

(e.g., 12) (Reprinted with permission from

Kennard, Pusey, et al. (2010). Copyright 2010

Wiley)

MCMILLAN 9 of 23



for-time substitution, that is, looking for similar watersheds that already have climates similar to future predictions in
the area of interest (Sivapalan, Yaeger, Harman, Xu, & Troch, 2011).

2.3 | Modeling

As signatures can quantify hydrologic function, it is a natural progression to use signatures in the pursuit of models that
accurately represent hydrologic function. Signatures are used at all stages of the modeling process, from model structure
selection, through calibration and evaluation.

2.3.1 | Calibration

The first uses of signatures for modeling were for calibration. In calibration, parameters are adjusted manually or auto-
matically to optimize model performance. Manual calibration procedures are often complex and link parts of the hydro-
graph to different parameters, for example using baseflow periods to set baseflow parameters (Boyle, Gupta, &
Sorooshian, 2000). Automatic calibration procedures are usually simpler, aiming to optimize a performance measure.
Performance measures are commonly based on the sum of squared errors between observed and modeled flows, such
as the Nash–Sutcliffe efficiency (Nash & Sutcliffe, 1970). However, these performance measures are criticized because
they lack a clear link to hydrologic function, and so it is unclear which parameters should be changed to improve per-
formance. By replacing the sum-of-squared errors measure with a measure composed of one or more signatures, we
can improve the link to watershed function in an automatic calibration procedure.

Drawing on manual calibration expertise, hydrologists have long incorporated flow regime signatures into auto-
matic calibration. Sugawara (1979) used hydrograph volume and recession slope as performance measures, while
Refsgaard and Knudsen (1996) combined flow duration curves and annual maximum flow signatures with NSE and
visual comparison of hydrographs. Hogue, Sorooshian, Gupta, Holz, and Braatz (2000) mimic a complex multi-objective
manual approach in an automatic procedure, and signatures from multiple data sources can complement flow series
during calibration (Hay et al., 2006; Hingray, Schaefli, Mezghani, & Hamdi, 2010). More generally, Gupta, Sorooshian,
and Yapo (1998) argue that multi-objective calibration is necessary given trade-offs between a model's ability to match
different parts of the hydrograph. Building on this, Gupta, Wagener, and Liu (2008) state that given the high dimen-
sionality of the data available for calibration and the model parameter space, this information should not be com-
pressed into a one-dimensional performance measure. Instead, they recommend model calibration against multiple
signatures, each related to specific parameters. Kavetski, Fenicia, Reichert, and Albert (2018) name the approach “sig-
nature-domain calibration,” in contrast to “time-domain calibration.”

The call for model calibration using flow signatures was widely taken up, with several adaptations. Some studies
use signatures to evaluate the modeled flow regime when data are scarce, or when precipitation and flow data are avail-
able for different time periods. These studies choose signatures that summarize the flow regime such as the flow dura-
tion curve (Westerberg et al., 2011) or spectral density of the flow signal (Montanari & Toth, 2007; Winsemius, Schaefli,
Montanari, & Savenije, 2009).

Several studies use signature-based calibration to search for models that achieve “hydrologic consistency,” that is,
that reproduce multiple flow signatures (Martinez & Gupta, 2011; Pechlivanidis, Jackson, McMillan, & Gupta, 2014;
Pokhrel, Yilmaz, & Gupta, 2012; Sahraei, Asadzadeh, & Unduche, 2020; Shafii & Tolson, 2015). The hope is that these
models provide a realistic representation of a range of hydrologic processes. For example, He et al. (2018) use signature-
based calibration to produce stable and realistic model parameters in a glaciated basin, and Shafii, Basu, Craig, Schiff,
and Cappellen (2017) use signatures based on the L'vovich partitioning framework to create models with realistic par-
titioning between quick and slow flow, infiltration, and evapotranspiration. If the selected signatures capture all the
information in the flow signal, they are referred to as “sufficient statistics” (see section 5.3.1 in Kavetski et al., 2018).

The opposing view to sufficiency is that careful selection of signatures enables us to match some parts of the hydro-
graph, while ignoring parts that are less important or have known errors (e.g., timing errors). In this way, the user con-
trols the weighting of different aspects of model performance. Signatures can focus the calibration on just one part of
the hydrograph, such as high flows (Mizukami et al., 2019) or low flows (Pfannerstill, Guse, & Fohrer, 2014). When the
model aim is to predict an ecologically relevant signature, the signature should be included in the calibration, as using
a statistical performance measure may bias signature predictions by up to 25% (Pool, Vis, Knight, & Seibert, 2017). We
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can also calibrate a model using a structured approach, starting with signatures at annual or longer timescales, and pro-
gressing to shorter timescales (Shamir, Imam, Gupta, & Sorooshian, 2005). Note that none of the studies above apply
signature calibration in the way that Gupta et al. (2008) suggested—by matching signatures to individual parameters. A
recent example that does achieve that type of calibration is a manual, signature-based recalibration of the distributed
J2000 model (Horner, 2020). One reason that such studies are rare is that correspondences between parameters and sig-
natures differ between watersheds, complicating transferability of the method (Guse et al., 2017).

When calibrating models against signatures, we often want to account for model uncertainties, to create probabilis-
tic streamflow predictions. Many of the studies described above use approaches similar to the generalized likelihood
uncertainty estimation framework (Beven & Freer, 2001). In this framework, simulations are accepted (and/or
weighted) if the modeled signatures lie within some tolerance of the observed signatures. This approach has been criti-
cized because it does not conform to a strict statistical definition of a likelihood function. More recently, the approxi-
mate Bayesian computation (ABC) technique has been proposed to calculate probabilistic parameter distributions
without the need to compute a likelihood function. This is beneficial for signature-domain calibration, as it would be
difficult to create signature likelihood functions. Kavetski et al. (2018) provide clear guidance on how to apply ABC for
signature-domain calibration, and Fenicia, Kavetski, Reichert, and Albert (2018) investigate practical questions such as
the impacts of number of signatures and length of data series, and the ability of signature-domain calibration to cope
with model deficiencies.

2.3.2 | Evaluation of model structure and parameters

Signatures can be used to design hydrologic model structure, often in a multi-model framework such as FUSE (Clark
et al., 2008) or SUPERFLEX (Fenicia, Kavetski, & Savenije, 2011). These frameworks offer a mix-and-match approach
to build a model from pre-designed components. In some cases, signature values can be directly mapped to model deci-
sions, such that a given signature value implies a given model choice. For example, signatures based on flow, precipita-
tion, and soil moisture data were targeted at specific model decisions in the FUSE framework (McMillan et al., 2014;
McMillan, Clark, Bowden, Duncan, & Woods, 2011), with model tests confirming the data analysis (Clark, McMillan,
Collins, Kavetski, & Woods, 2011).

A model can be chosen from a set of possible structures, by running each one and evaluating its ability to reproduce
multiple signatures (e.g., Gunkel, Shadeed, Hartmann, Wagener, & Lange, 2015). Here, signatures provide an indepen-
dent test of whether the model is physically realistic. Example applications are to evaluate sequentially more complex
SUPERFLEX models (Euser et al., 2013), to investigate why different models succeed in watersheds with different
hydrologic characteristics (Kavetski & Fenicia, 2011), and to compare geology versus topography discretizations in a
distributed model (Fenicia, Kavetski, Savenije, & Pfister, 2016). Testing for realistic signature values helps avoid exces-
sive model complexity where unrealistic parameter values compensate for one another (Hrachowitz et al., 2014), while
retaining the complexity needed to reproduce streamflow dynamics (Farmer, Sivapalan, & Jothityangkoon, 2003;
Jothityangkoon, Sivapalan, & Farmer, 2001). Using signature evaluation to progress from simple, large scale models to
more complex models including finer-grained processes embodies the “downward” approach to model development
proposed by Klemeš (1983).

After a model is built and calibrated, it may still predict inaccurate flows. Analysis of how well the model repro-
duces different signatures can help identify which parts of the model are failing. This draws from previous studies that
identify which model decisions influence which signatures. For example, Coxon, Freer, Wagener, Odoni, and
Clark (2014) show which FUSE model decisions influence water balance and flow duration curve signatures, across a
range of watershed types from flashy to baseflow-driven. The baseflow parameterization was usually the most influen-
tial. In karst systems, model storage constants in fast flow and groundwater reservoirs affect high- and medium-flow
flow duration curve slopes, respectively (Hartmann, Weiler, et al., 2013). Large differences in signature values between
calibration and validation periods provide additional clues if the model struggles to reproduce changing dynamics
(Jayathilake & Smith, 2019). A new use for signatures is to evaluate hydrologic models based on machine learning, such
as long short-term memory (LSTM) networks. Signatures can assess predictive accuracy, and assess whether internal
model components are physically meaningful, by testing whether watersheds that activate similar parts of the LSTM
network have similar signature values (Kratzert et al., 2019).

Given increasing interest in national- to global-scale hydrologic models, signatures are useful to diagnose how
model performance varies, or how model structure needs adaptation, for diverse climates or environments. Global
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signature databases, such as the Global Streamflow Indices and Metadata archive of 30,000 basins, make this possible
(Gudmundsson, Do, Leonard, & Westra, 2018). In their comparison of 12 global hydrologic models, Beck et al. (2017)
use signature-based evaluation to understand how models in different Köppen–Geiger climate regions perform in
predicting water balance, flow magnitude, seasonal timing and flashiness. At national scale, McMillan, Booker, and
Cattoën (2016) use signature-based evaluation to test how model performance varies with watershed area, wetness, and
groundwater influence (Figure 5). Alternatively, signatures can be used to summarize which flow regimes are easy or
difficult for models to simulate. In the United Kingdom, Topmodel and PRMS were preferable for flashy watersheds
(low baseflow index), while the Sacramento model was preferred for groundwater-driven watersheds (high baseflow
index) (Lane et al., 2019). After model structural changes, signatures can show which types of watersheds see an
improvement. For example, de Boer-Euser, McMillan, Hrachowitz, Winsemius, and Savenije (2016) test a new method
to set model soil depth based on co-evolution theory that estimates plant rooting depth, and use signatures to evaluate
its success across wet and dry watersheds.

2.3.3 | Signature regionalization for predictions in ungauged basins

Hydrologic signatures provide a powerful tool for predicting flow in ungauged basins. Previous methods relied on
regionalizing model parameters—estimating parameters for the ungauged basin by transferring parameters from
nearby or physically similar watersheds, or regressing parameter values on watershed attributes. However, these
methods were often unsuccessful (Oudin, Andréassian, Perrin, Michel, & Le Moine, 2008). Instead, signatures can be
used in a three-part method (Figure 6): (a) relate watershed attributes to signatures in gauged basins, using regression
on watershed attributes, (b) use that relationship to estimate (regionalize) signature values for the ungauged basin, and
(c) use the regionalized signatures as a performance metric to calibrate a model for the ungauged basin. This method
works because watershed attributes are more closely related to signatures than model parameters, and because signa-
ture regionalization is independent of the choice of model and model structural error. The method saw significant
development and success during the predictions in ungauged basins (PUB) decade (Hrachowitz et al., 2013; Wagener &
Montanari, 2011).

Steady progress has been made in advancing the signature regionalization method. The choice of signatures is
guided by research into which signatures vary more smoothly across space and are more accurately predicted from
watershed attributes (Addor et al., 2018). The regionalization method has advanced from regression to machine learn-
ing methods such as artificial neural networks (Beck, De Roo, & van Dijk, 2015) or random forests (Prieto, Vine,
Kavetski, García, & Medina, 2019; Zhang, Chiew, Li, & Post, 2018). Many studies stress the importance of including
uncertainty estimation at all stages of the process, from data uncertainty affecting the signature values (Westerberg
et al., 2016), to using a probabilistic regionalization model (Prieto et al., 2019), to retaining an ensemble of models that
adequately predict the regionalized signatures (Yadav, Wagener, & Gupta, 2007).

FIGURE 5 Model bias error when a national model is used to simulate three signatures (baseflow index, rising limb density, flow

volume), using data from 485 watersheds in New Zealand. These graphs are used to test hypotheses about how model performance varies

with watershed area. Bias in all three signatures is lower for large watersheds (Reprinted with permission from McMillan, Booker,

et al. (2016). Copyright 2016 Elsevier)
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The method can be scaled up globally, both for the signature regionalization (Beck et al., 2013, 2015), and the model
calibration (Yang et al., 2019), and is particularly valuable in locations lacking a dense network of streamflow gauges
(Kapangaziwiri, Hughes, & Wagener, 2012; Ndzabandzaba & Hughes, 2017; Visessri & McIntyre, 2016). Where avail-
able, the regionalized signatures can be combined with local, expert knowledge of watershed dynamics (Bulygina,
Ballard, McIntyre, O'Donnell, & Wheater, 2012; Kelleher, McGlynn, & Wagener, 2017) and previously regionalized
signatures, for example, the soil infiltration curve number, or baseflow index predicted from soil types in the United
Kingdom (Almeida, Vine, McIntyre, Wagener, & Buytaert, 2016). Overall, regionalization of signatures is a robust, gen-
eralizable tool for PUB (Zhang, Wagener, Reed, & Bhushan, 2008).

3 | METHODS IN USING HYDROLOGIC SIGNATURES

3.1 | Choosing signatures

So far, we have discussed generalized uses of hydrologic signatures. However, any application must choose which signa-
tures to use. The choice of signatures is important to: (a) ensure individual signature accuracy and robustness;
(b) create a complete and independent set of signatures; and (c) choose signatures relevant to the specific application.
We will discuss each in turn.

Individual signature choice (a) plays a role because there are often multiple signatures that capture a given aspect of
the flow regime. For example, several common signatures quantify the frequency and duration of high flow events,
using different thresholds to define “high flow” based on flow quantiles, or multiples of the mean or median flow.
There are often additional choices in the signature definition, such as the data timestep to use (Westerberg &
McMillan, 2015). To assist signature choice, Shamir, Imam, Morin, Gupta, and Sorooshian (2005) recommend choosing
signatures that are consistent, that is, produce similar values for different time periods, and distinguishable, that is, pro-
duce different values for watersheds with different hydrologic functioning. McMillan, Westerberg, and Branger (2016)
extend these recommendations to five desirable signature properties, including low uncertainty, low sensitivity to mea-
surement design and watershed scale, and ability to discriminate between different hydrologic responses. Schaefli (2016)
adds that signatures used in model evaluation should have the discriminatory power to constrain the range of acceptable
model parameters.

When choosing sets of signatures (b), the signatures should cover all required aspects of the watershed function,
while limiting redundancy or overlap. Previous studies commonly select signatures to cover a range of flow behavior
(Westerberg et al., 2016), range of timescales (Sawicz et al., 2014), or range of watershed functions (Yilmaz, Gupta, &
Wagener, 2008); and may reuse previous sets of signatures (Coxon et al., 2014). A selection of 5–10 signatures to sum-
marize the flow regime is typical (e.g., Euser et al., 2013). Redundancy can be avoided by calculating the correlation
between signature values for a large set of watersheds, and selecting independent signatures with low correlations.

FIGURE 6 Schematic illustration of how

hydrologic signatures are used in regionalization.

Signatures are regionalized to an ungauged basin, and

then those signatures are used to condition a hydrologic

model for the ungauged basin
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Principal component analysis (PCA) is often used to avoid the need for a priori selection of signatures out of a large
potential set. PCA can identify combinations of signatures that explain a high proportion of variability between water-
sheds, while remaining relatively independent (Clausen & Biggs, 2000; Olden & Poff, 2003; Prieto et al., 2019). Avoiding
or accounting for highly correlated signatures improves outcomes when conditioning models on the signature values
(Almeida et al., 2016).

When selecting signatures for an application (c) the choice of signatures can impact the data analysis, modeling, or
calibration outcomes. Preferred signatures may depend on location, and may need to be adapted when transferring
between sites. For example, McMillan and Srinivasan (2015) adapt a signature describing runoff generation thresholds
by adding the antecedent wetness condition as an extra predictor controlling runoff. In modeling, the best signatures to
constrain the model predictions depend on the watershed characteristics (Coxon et al., 2014). Signatures describing the
water balance constrained parameters more strongly in groundwater-dominated watersheds, while signatures describ-
ing timeseries dynamics and the flow duration curve constrained parameters more strongly in rainfall-driven water-
sheds. Choosing signatures that span the range of model function is important for calibration, for example choosing
signatures based on the L'vovich partitioning framework can improve calibration results (Shafii et al., 2017).

3.2 | Scaling

A little-explored aspect of flow signatures is how their interpretation changes with scale, and how signature values
aggregate or change along a river network. For example, when two tributaries meet, how do signature values in the
downstream reach relate to the values in the tributaries? In general, hydrologic function shows complex scaling behav-
ior: dominant processes often change with scale, and emergent behavior at watershed scales is not easily modeled as
the accumulation of smaller-scale behavior (Blöschl, 2001). Signatures have the potential to identify scale-independent
dynamics, for example they have been used to identify soil moisture dynamics that are consistent beyond the small
scale of soil moisture sensors (Branger & McMillan, 2019). In ecology, flow signatures are used to group watersheds into
scale-independent classes according to their dynamics, before developing within-class relationships between flow alter-
ation and ecological responses (Kennard, Pusey, et al., 2010; Poff & Ward, 1989). However, signatures can sometimes
be sensitive to scale, such as modeled future changes in signatures that depend on climate model scale (Maina, Siirila-
Woodburn, & Vahmani, 2020; Mendoza et al., 2016).

There is limited information about whether relationships between flow signatures and watershed processes change
with scale. Most of these relationships are derived from studies in small, experimental watersheds, and may not apply
in large basins. Some signatures become less meaningful at larger scales where flow dynamics represent a mixture of
upstream tributaries. For example, diurnal cycles in flow indicate snowmelt and evapotranspiration processes, but
mixing out-of-phase cycles from different tributaries blurs the signal. Faster water velocities preserve in-phase fluctua-
tions throughout the stream network to produce strong cycles, but slower water velocities in the late summer cause
out-of-phase fluctuations and weaker cycles (Wondzell, Gooseff, & McGlynn, 2007).

Other processes show the same blurring of signature values with scale. At small scales, watershed aspect controls
patterns of snowmelt and therefore creates differences in flow signatures, but these dynamics converge at larger scales
as aspects average out (Comola et al., 2015). Similarly, when using isotopic signatures of water age, mean transit times
tend to converge for larger watersheds that aggregate diverse upstream watersheds (Hrachowitz, Soulsby, Tetzlaff, &
Speed, 2010). For one standard method to determine water age based on seasonal tracer cycles in precipitation and
streamflow, aggregation is a greater concern as mixes of tributary waters of different ages do not return the correct
mean value (Kirchner, 2016). However, using an alternative formulation for age calculation can reduce the aggregation
bias (Danesh-Yazdi, Botter, & Foufoula-Georgiou, 2017).

In some cases, downstream changes in signature values successfully provide information on how processes change
with scale. For example, where diurnal cycles are preserved downstream, cycles with peaks later in the day suggest that
the snowline is higher or further upstream (Lundquist & Cayan, 2002). Instead of blurring at larger scales, some pro-
cesses become more complex as multiple flow sources enter a river. For example, recessions become more nonlinear as
hillslope-scale, watershed-scale and riparian aquifer flows are added downstream (Clark et al., 2009; Harman,
Sivapalan, & Kumar, 2009). Alternatively, the extent of blurring may indicate how model structure should change with
scale, for example as thresholds between antecedent wetness and runoff generation weaken at large scales
(McMillan, 2012). In summary, caution is advised when using signatures to understand processes at very different
scales to those for which the signatures were developed. There remains great scope to use well-instrumented
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watersheds to study how relationships between signatures and processes change with scale, and to use signatures to
more accurately understand upstream processes.

3.3 | Uncertainties

Any signature calculated from hydrologic data is impacted by inherent data uncertainty. Sources of uncertainty in flow
data occur in measurement techniques for individual gaugings, and in using those gaugings to create a stage-discharge
rating curve (Kiang et al., 2018). Signatures using precipitation data are additionally subject to errors in interpolating
that data to the watershed scale. All of the signature applications discussed in this paper—ecology and habitat assess-
ment, process understanding, and modeling—are affected by signature uncertainty. Ignoring uncertainty can lead to
biased model parameters, unreliable predictions, and poor management decisions (McMillan et al., 2017; McMillan,
Westerberg, & Krueger, 2018; Renard, Kavetski, Kuczera, Thyer, & Franks, 2010). Therefore, to improve the reliability
of these applications, uncertainty should be explicitly accounted for in the signature methods (Juston et al., 2012).

A general method for estimating uncertainty in a signature value is by using a Monte Carlo approach
(Westerberg & McMillan, 2015). First identify the dominant sources of uncertainty in the underlying flow and/or rain-
fall data, perhaps by creating a perceptual model of uncertainty (Westerberg, Di Baldassarre, Beven, Coxon, &
Krueger, 2017). Next, estimate the magnitude and distribution of each uncertainty component, using dedicated experi-
ments or information from the literature. Repeatedly draw samples of each measurement (flow and/or precipitation)
including uncertainty, and use the sample to calculate the signature. If there is no uncertainty information for the
watershed, simulated measurement uncertainty (e.g., adding random errors or multiplicative bias to the flow) is a good
alternative. Uncertainty magnitudes can be taken from the literature (e.g., McMillan, Krueger, & Freer, 2012), or from
a watershed with similar gauge type and channel stability where uncertainties are known (e.g., choosing one or more
watersheds from Westerberg et al., 2016 or Coxon et al., 2015, 2020). Using a large number of samples, aggregate the
resulting signature values to find the estimated distribution of the signature: an example is shown in Figure 7, with sig-
nature uncertainties commonly exceeding ±20%. Mean and standard deviation of the signature can be calculated if
needed. This process may in itself suggest methods for reducing the uncertainty. If extreme high flows are most uncer-
tain due to out-of-bank events, then signatures might be adjusted to avoid those values, for example by adjusting the
quantiles used to calculate the flow duration curve slope.

Beyond uncertainty in rainfall and flow data, signature uncertainty can occur due to a short flow record (Kennard,
Mackay, Pusey, Olden, & Marsh, 2010), flow data that is only available at coarse temporal scales (Poff, 1996), and
uncertainty in the precise method used to calculate the signature (Dralle, Karst, Charalampous, Veenstra, &
Thompson, 2017). To estimate the signature uncertainty resulting from these factors, the flow time series can be split
into (possible overlapping) subsamples and the signature calculated for each one to obtain a range or distribution of

FIGURE 7 Relative uncertainty in 11 hydrologic signatures caused

by uncertainty in the stage-discharge rating curve, for a watershed in

New Zealand. The boxplot whiskers extend to the 5 and 95 percentiles,

and the box covers the interquartile range. Signatures are as follows:

BFI, base-flow index; QAC, flow autocorrelation; QCV, overall flow

variability; QHD, high-flow event duration; QHF, high-flow event

frequency; QHV, high-flow variability; QLD, low-flow event duration;

QLF, low-flow event frequency; QLV, low-flow variability; QMEAN,

mean flow; SFDC, slope of the normalized flow duration curve

(Reprinted with permission from Westerberg and McMillan (2015).

Copyright 2015 Copernicus Publications)
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signature values (Schaefli, 2016; Vogel & Fennessey, 1994). A similar approach for data from multiple locations is to
subsample the data in space (Blazkova & Beven, 2009).

Estimates of signature uncertainty should then be incorporated into signature applications. The applications dis-
cussed throughout this paper vary in their development of uncertainty methods. When using signatures to understand
watershed processes, uncertainty has been recognized but not incorporated into our methods. Unquantified data uncer-
tainty contributes to abrupt variations of signatures in space, and makes it harder to relate landscape characteristics
with signature values (Addor et al., 2018). For eco-hydrologic assessment, uncertainty estimation has been incorporated
into methods for detecting hydrologic change. Long streamflow records are needed to overcome natural variability and
detect changes in the number and duration of exceedances of high- and low-flow thresholds: 40-years for high flow and
60-year for low flow (Huh, Dickey, Meador, & Ruhl, 2005). The perceptual model of uncertainty sources is important:
treatment of streamflow errors as random versus non-random can make the difference as to whether deforestation-
induced changes in a flow duration curve over time can be detected (Juston, Jansson, & Gustafsson, 2014).

In modeling, signature uncertainty methods are more fully developed. When signatures are used for model evalua-
tion, a “limits of acceptability” approach is commonly used, where model runs are accepted if they simulate signature
values within estimated uncertainty bounds (Blazkova & Beven, 2009). Model runs can be scored according to the size
of model signature errors compared to the width of the uncertainty bounds (Westerberg, Sikorska-Senoner, Viviroli,
Vis, & Seibert, 2020). In signature regionalization, uncertainty methods are common and were previously discussed in
Section 2.3.3. Accounting for uncertainty avoids over-conditioning the regionalized model and produces more reliable
results (Westerberg et al., 2016). When quantifying signature uncertainty for modeling applications, it is useful to check
for unrealistic signature values. For example, unrealistic runoff ratio values may indicate errors in basin area or precipi-
tation undercatch (Kauffeldt, Halldin, Rodhe, Xu, & Westerberg, 2013). These “disinformative” data periods should be
removed to prevent corruption of the modeling process (Beven & Westerberg, 2011). Given the significant potential for
data errors in large-sample datasets such as from the Global Runoff Data Centre, this signature-based check provides
valuable error identification.

4 | SUMMARY AND CONCLUSIONS

Hydrologic signatures are metrics that extract and summarize the information contained in streamflow. They range
from simple statistics of the flow series, to complex descriptors of flow dynamics that relate to watershed processes. Sig-
natures are commonly categorized according to whether they describe the magnitude, timing, frequency, duration, or
rate of change of flow.

This review described three main areas of application for hydrologic signatures:

1. Ecohydrology, environmental flows and hydrologic alteration. Signatures provide an easy way to summarize the flow
regime of a river. The flow regime controls the suitability of instream habitat for different species, with flow
extremes and flow variability being particularly important. Species requirements can be encoded as signatures that
must lie in defined ranges. The signatures and ranges are determined by establishing relationships between signa-
tures and species abundance across large numbers of sites. Using these relationships, changes in signatures over
time describe how river environments have been altered, and how these changes impact freshwater species.

2. Watershed processes. Signature values are related to upstream watershed processes. By relating signatures to the
occurrence and strength of different processes, we can transfer process knowledge between basins. Conversely, by
relating watershed attributes to signature values via regression relationships, we can estimate flow regimes in
ungauged basins. These regression relationships are strongest between climate-related attributes and signatures of
mean and high flow magnitudes. Similarity in signature values is used to define clusters of hydrologically similar
watersheds, that can share strategies for designing monitoring networks or models, and might react similarly to land
use or climate change.

3. Modeling. Signatures are used as performance measures in calibration, to require models to reproduce components
of flow dynamics that relate to watershed function. Multi-objective calibration against a range of signatures is typi-
cal. These calibration methods incorporate uncertainty by allowing for errors in the signature values. Signatures can
be used to create hydrologic models for ungauged basins, by regionalizing signatures based on their relationship
with watershed attributes, and then using the signatures for calibration. Signatures are used to design and test model
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structure and complexity, which is particularly useful in global models where spatial differences in model structure
may be necessary.

Extending from this wide range of signature applications, there remain multiple unsolved problems and avenues for
development. In modeling, we lack thorough knowledge of the correspondences between model parameters and flow
signatures, with therefore few examples where signature-domain calibration reduces the dimensionality of parameteri-
zation methods. It would be beneficial to design signatures with stronger relationships to watershed processes and
model parameters, as current signatures typically relate to multiple processes. Overall, the ability to share and build on
knowledge of signatures would be enhanced by greater consistency of signature choice between studies. Despite current
limitations, new uses of signatures across different hydrologic data types and for data-rich applications in global model-
ing and machine learning, suggest an expanding role for signatures in hydrology.
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