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YOLO [You Only Look Once]

Unlike Faster R-CNN, YOLO is a one-stage model performing region proposal and
classification in a single step.

https://arxiv.org/pdf/1506.02640.pdf
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YOLO [You Only Look Once]

Predicted Boxes
Each grid cell predicts B bounding boxes and confidence scores for those boxes under one-
stage fashion.




YOLO [You Only Look Once]

Predicted Classes

Each grid cell also predicts C conditional
class probabilities, Pr(Class |Object).
These probabilities are conditioned on
the grid cell containing an object -
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YOLO [You Only Look Once]

e Coordinates of a box are relatives to the whole image, varying in [0,1].

e |f the center of an object falls into a grid cell, that grid cell is responsible for detecting
that object.

(0, 0}

relative coordinates

X = (220-149) / 149 = (.48
y = (190-149) / 149 = 0.28
w =224 /448 = 0.50
h=143 /448 = 0.32
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Only one cell is responsible !
for an object. |




YOLO [You Only Look Once]
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YOLO [You Only Look Once}

2
channels

classifiers as
regressors

______ > 1 k-1

oby

1 if object appears in celli and jth
bounding box predictor in celliis
“responsible” for that prediction ; 0
otherwise

#regressors = B x 5 + K for each of the SxS cells
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feature map with D channels
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C = IoU(gt. pred) * Pr(ngj)

predictor [that one with the highest loU with ground-truth]

YOLO predicts multiple bounding boxes per grid cell. At training time we only want one bounding |
predictor to be responsible for each object. We assign one predictor to be “responsible” for predictir

object based on which prediction has the highest current IOU with the ground truth.




YOLO [You Only Look Once}

YOLO Loss

52 B this term penalizes bad localization of
oby . 12 . 2
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2
this term penalizes the bounding box with 4+ ;\mnrl:'l E : E : ]lﬂhl ( ny ) H h, — fhl:'
inaccurate height and width. The square =0 i
root reflects that small deviations in large I=
boxes matter less than in small boxes

+ E : § : Il”"tl ( “1 )2 this term tries to make the confidence score equal
-t — to the IOU between the object and the prediction
1= _‘jl =

when there is one object
s2 B

noobj 4\ 2
this tries to make confidence score close to 0 when T '}'mmh_i Z Z 1 ij (ci B Ci)

there is no object in the cell 1=0j=0
p/ g2
oby - 2
+3 17 3 (pile) - pile)) "

1= c Eclasses

This is a simple classification loss

https://hackernoon.com/understanding-yolo-f5a74bbc7967



YOLO [You Only Look Once}

YOLO Model

BACKBONE '

Head: regressor de (SxSx(B*5+C)) 1st - 5th 6th - 10th 11th - 30th
Box #1 Box #2 Class Probabilities

Umero de clases, e.g. 20 en Pascal VOC

output = 7x/x30

https://hackernoon.com/understanding-yolo-f5a74bbc7967



YOLO [You Only Look Once]

Real-Time Detectors Tran mAP FPS
100Hz DPM [ 1] 2007 16,0 100
30Hz DPM [ 1] 2007  26.1 30
Fast YOLO 200742012 527 155
YOLO 200742012 634 45
Less Than Real-Time

Fastest DPM [ 1] 2007 304 15
R-CNN Minus R [20] 2007 535 6
Fast R-CNN [ 14] 200742012 700 0S5
Faster R-CNN VGG-16[ %] 200742012 732 7
Faster R-CNN ZF [ 2] 2007+2012 62.1 18
YOLO VGG-16 200742012 664 21

Table 1: Real-Time Systems on PASCAL VOC 2007, Compar-
ing the performance and speed of fast detectors. Fast YOLO 15
the fastest detector on record for PASCAL VOC detection and 18
still twice as accurate as any other real-ime detector. YOLO 1s
10 mAP more accurate than the fast version while still well above
real-time in speed.



YOLO [You Only Look Once]

YOLO 9000 (Yolo-v2)
An Improved version of YOLO (anchors
are included)

https://arxiv.org/pdf/1612.08242.pdf




YOLOV2 [You Only Look Once]

Improvements

e Batch normalization

e A higher resolution classifier (224 — 448, S = 13)

e Anchors for bounding boxes

e Number of anchors Is estimated by clustering on training data.



YOLOV2 [You Only Look Once]

Anchors

Faster-RCNN: tx,ty are not limited, and the center of a predicted box can fall anywhere in the
Image producing instability.
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YOLOV2 [You Only Look Once]

Anchors

YOLOvV2: x,y are constrained to fall within the corresponding cell

sigma is the sigmoid function varying between 0 and 1

X

tw

th




YOLOV2 [You Only Look Once]

Detection Frameworks Train mAP FPS
Fast R-CNN [5] 2007+2012 70.0 0.5
Faster R-CNN VGG-16[15] 200742012  73.2 7
Faster R-CNN ResNet|[ 6] 200742012 76.4 5
YOLO [14] 200742012 634 45
SSD300[!11] 200742012 743 46
SSD300[!1] 200742012 76.8 19
YOLOv2 2588 x 288 200742012  69.0 o1
YOLOv2 352 x 352 200742012 73,7 al
YOLOv2 416 x 416 2007+2012  76.8 67
YOLOv2 480 x 480 200742012 778 59
YOLOv2 544 x 544 2007+2012  78.6 40

Table 3: Detection frameworks on PascarL VOC 2007.
YOLOv2 is faster and more accurate than prior detection meth-
ods. It can also run at different resolutions for an easy tradeoff

between speed and accuracy. Each YOLOv2 entry is actually the
same trained model with the same weights, just evaluated at a daf-

ferent size. All timing information is on a Geforce GTX Titan X

(original, not Pascal model).



YOLOV2 [You Only Look Once]

Fast R-CNN [5]

train

= =

39.919.4[4.1 20.035.8

10 100

21.329.530.1

S M L

7.3 32.152.0

Fast R-CNN]| ] train 20.5

Faster R-CNNJ[ | 5] trainval 219 427 - |- - - |- - -1 - - -
ION [ 1] train 23.6 43.223.6/6.424.1 38.3|123.232.7 33.5/10.1 37.753.6
Faster R-CNNJ[ 1 0]| trainval 242 45.3235|7.726.437.1(123.834.034.6/12.038.554.4
SSD300 [11] trainval3Sk| 23.2 41.223.4|5.323.239.6|22.533.235.319.6 37.656.5
SSDSI12[11] trainval35k| 26.8 46.527.8/9.0 28.941.9|124.8 37.5 39.8/14.043.559.0
YOLOv2[11] trainval3s5k| 21.6 44.019.2/5.022.435.5|120.731.633.3/198 365544

Table 5: Results on COCO test-dev2015. Table adapted from [ 1]



COCO

info@cocodataset.org

People Dataset- Tasks- Evaluate-

News

We are pleased to announce the LVIS 2021 Challenge and Workshop to be held at ICCV.
Please note that there will not be a COCO 2021 Challenge, instead, we encourage people to
participate in the LVIS 2021 Challenge.

We have partnered with the team behind the open-source tool FiftyOne to make it easier to
download, visualize, and evaluate COCO

FiftyOne is an open-source tool facilitating visualization and access to COCO data resources
and serves as an evaluation tool for model analysis on COCO.

What is COCO? Collaborators Sponsors
F k H i ‘k Tsung-Yi Lin Google Brain
—— CVDF
Genevieve Patterson MSR, Trash TV e
COCO is a large-scale object detection, Matteo R. Ronchi Caltech
segmentation, and captioning dataset. : R B .
COCO has several features: Yin Cui Google B MlcrOSOft
Michael Maire TTI-Chicago
& Object segmentation Serge Belongie Comnell Tech
« Recognition in context Lubomir Bourdev WaveOne, Inc. fﬂCEbOOk
& Superpixel stuff segmentation Ross Girshick EAIR
330K images (>200K labeled
v o g { ) ) James Hays Georgia Tech M h A
o 1.5 million object instances _ _ |g |
V‘ 80 object categories Pietro Perona Caltech
«F 91 stuff categories Deva Ramanan CHU
& 5 captions per image Larry Zitnick FAIR
o 250,000 people with keypoints Piotr Dolldr FAIR

https://cocodataset.org

Dataset examples

Vilhs,




Input Backbone Dense Prediction Sparse Prediction

Input: { Image, Patches, Image Pyramid, ... }

Backbone: { VGG16 [57], ResNet-50 7|, ResNeXt-101 |2/ ], Darknet53 (¢ 7], ... }
Neck: { FPN 44|, PANet [19], Bi-FPN [77], ... }

Head:
Dense Prediction: { RPN [« ,YOLO .02 ¢°[,SSD "7, RetinaNet <[, FCOS = ,...}

Sparse Prediction: { Faster R-CNN <, R-FCN " ,...}

https://arxiv.org/pdf/2004.10934.pdf



https://arxiv.org/pdf/2004.10934.pdf

A convnet [single-scale]

high resolution ; »  high semantic
low semantic low resolution

feature map
; 28 y N N 5= .
L - | predictor

prediction head processes a single-scale feature map




Feature Pyramid Network

» predict
= predict

https://arxiv.org/pdf/1612.03144.pdf



Feature Pyramid Network

bottom-up top-down
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https://arxiv.org/pdf/1612.03144.pdf



Feature Pyramid Network

We note that the parameters of the heads are shared
SO S— across all feature pyramid levels; we have also evaluated the
: P alternative without sharing parameters and observed similar
accuracy. The good performance of sharing parameters in-

grsesensntsrsanes : dicates that all levels of our pyramid share similar semantic
<% » PS5 levels. This advantage 1s analogous to that of using a fea-

S : turized image pyramid, where a common head classifier can
be applied to features computed at any image scale.
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https://arxiv.org/pdf/1612.03144.pdf



Feature Pyramid Network

class+box _ ,’
subnets ;- class

o subnet
class+box | > 58 Ta>l e T

subnets

1

o

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Because all Tevels of the pyramid use shared classi-
fiers/regressors as in a traditional featurized image pyramid,
we fix the feature dimension (numbers of channels, denoted
as d) in all the feature maps. We set d = 256 in this pa-
per and thus all extra convolutional layers have 256-channel
outputs. There are no non-linearities in these extra layers,
which we have empirically found to have minor impacts.

https://arxiv.org/pdf/1612.03144.pdf



Feature Pyramid Network

—————————————————————————————————
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(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

anchors on a specific level. Instead, we assign anchors of
a single scale to each level. Formally, we define the an-
For region proposal (RPN) ———__ | chors to have areas of {322,642, 1282, 2562, 5122} pixels
on { P, P3, Py, Ps, Pg} respectively." As in [29] we also
use anchors of multiple aspect ratios {1:2, 1:1, 2:1} at each
level. So 1n total there are 15 anchors over the pyramad.

https://arxiv.org/pdf/1612.03144.pdf



Feature Pyramid Network

—————————————————————————————————

class+box |
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(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

We view our feature pyramid as if it were produced from
an image pyramid. Thus we can adapt the assignment strat-
egy of region-based detectors [ | 5, | | ] in the case when they
For classifier (Fast R-CNN) ———___|are run on image pyramids. Formally, we assign an Rol of

width w and height & (on the input image to the network) to
the level P of our feature pyramid by:

k = |ko + logo(Vwh/224) |. (1)

https://arxiv.org/pdf/1612.03144.pdf




Focal Loss

Person
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https://arxiv.org/pdf/1708.02002.pdf



Focal Loss

100000 easy : 100 hard examples

Cross Entropy

| — Crn;ss Entropy
4k
Loss = 2.3
il
g
2L
1 Loss = 0.1
0 i i i i e —
0.0 0.2 04 06 0.8 1.0

probability of ground truth class

Loss: centrado en ejemplos faciles
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Focal Loss

0
CE(p) = — log(p.) —=0
= 0,
4 FL(p) = —(1 — p)” log(m) —y =1
—..-..Ir - 2
3 o
s
O
2
well-classified
examples
1k K—H
0 | . i
0 0.2 0.4 0.6 0.8 1

probability of ground truth class



Focal Loss

* a-balanced Cross entropy
CE(p) = —a log(p)

* a-balanced Focal Loss
FL(p1) = —ae(1 — p)7 log(m)

* y: focus more on hard examples
* o offset class imbalance of number of examples



RetinaNet

One-stage object detector combining FPN + Focal Loss
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RetinaNet

One-stage object detector combining FPN + Focal Loss

Anchors: We use translation-invariant anchor boxes simi-
lar to those 1in the RPN vanant in [20]. The anchors have
areas of 32° to 512° on pyramid levels P; to P;, respec-
tively. As in [20], at each pyramid level we use anchors at
three aspect ratios {1:2, 1:1, 2:1}. For denser scale cover-

L
R /E-iw Hed age than in [20], at each level we add anchors of sizes {2",
21/3 22/31 of the original set of 3 aspect ratio anchors. This

10T 28 /8 . - u 0
W /L—lE et st o 1 b sttt improve AP in our setting. In total there are A = 9 anchors

(5T

per level and across levels they cover the scale range 32 -
813 pixels with respect to the network’s input image.

A0l 0S4

HaW is | Backbone ; Feature Pyramid



RetinaNet

backbone AP APy APrs APg APy AP;
Two-stage methods
Faster R-CNN+++ [16] ResNet-101-C4 349 55.7 374 15.6 38.7 509
Faster R-CNN w FPN [20] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [34] 34.7 555 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [32] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 398 52.1

One-stage methods

YOLOwv2 [27] DarkNet-19 [27] 21.6 44.0 19.2 5.0 224 35.5
S5D513 [22, 9] ResNet-101-SSD 312 504 333 10.2 345 49.8
DSSD513 [Y] ResNet-101-DSSD 33.2 53.3 352 13.0 354 51.1
RetinaNet (ours) ResNet-101-FPN 39.1 59.1 423 21.8 427 50.2
RetinaNet (ours) ResNeXt-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2

Table 2. Object detection single-model results (bounding box AP), vs. state-of-the-art on COCO test-dev. We show results for our
RetinaNet-101-800 model, trained with scale jitter and for 1.5 longer than the same model from Table le. Our model achieves top results,
outperforming both one-stage and two-stage models. For a detailed breakdown of speed versus accuracy see Table e and Figure 2.



Path Aggregation Network (PAN)

Path Aggregation Network for Instance Segmentation

https://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Path_Aggregation _Network CVPR_2018_ paper.pdf



https://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Path_Aggregation_Network_CVPR_2018_paper.pdf

Path Aggregation Network

bh bb ob bh bb bh

| AP®®  APPL APSZ | AP APYS  APY

Champion 2015 [23] | 374 59.0 402 | 183 41.7 529
Champion 2016 [27] | 41.6 623 456 | 240 439 552

Our Team 2017 5.0 70.5 558 | 32.6 539 o648
Table 7. Box AP of COCO Object Detection Challenge 1n different

years on test-dev.

Path Aggregation Network for Instance Segmentation

https://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Path_Aggregation _Network CVPR_2018_ paper.pdf



https://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Path_Aggregation_Network_CVPR_2018_paper.pdf

YOLOS8

@l What's New in YOLOv8 | Model Deep Dive . ~»
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YOLO: A Brief History

YOLO (You Only Look Once), a popular object detection and image segmentation model, was developed by Joseph Redmon and Ali

Farhadi at the University of Washington. Launched in 2015, YOLO quickly gained popularity for its high speed and accuracy.
« YOLOVZ, released in 2016, improved the original model by incorporating batch normalization, anchor boxes, and dimension
clusters.

« YOLOvV3, launched in 2018, further enhanced the model's performance using a more efficient backbone network, multiple

anchors and spatial pyramid pooling.

« YOLOv4 was released in 2020, introducing innovations like Mosaic data augmentation, a new anchor-free detection head, and a

new loss function.

o« YOLOVS further improved the model's performance and added new features such as hyperparameter optimization, integrated

experiment tracking and automatic export to popular export formats.
« YOLOvVE was open-sourced by Meituan in 2022 and is in use in many of the company's autonomous delivery robots.
« YOLOvV7 added additional tasks such as pose estimation on the COCO keypoints dataset.

« YOLOVS is the latest version of YOLO by Ultralytics. As a cutting-edge, state-of-the-art (SOTA) model, YOLOvS8 builds on the
success of previous versions, introducing new features and improvements for enhanced performance, flexibility, and efficiency.
YOLOvS8 supports a full range of vision Al tasks, including detection, segmentation, pose estimation, tracking, and classification.

This versatility allows users to leverage YOLOv8's capabilities across diverse applications and domains.

https://docs.ultralytics.com/
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