

Clasificación

Framework y Evaluación

Felipe Bravo (Basado en una versión previa de Bárbara Poblete)

Proceso de Clasificación

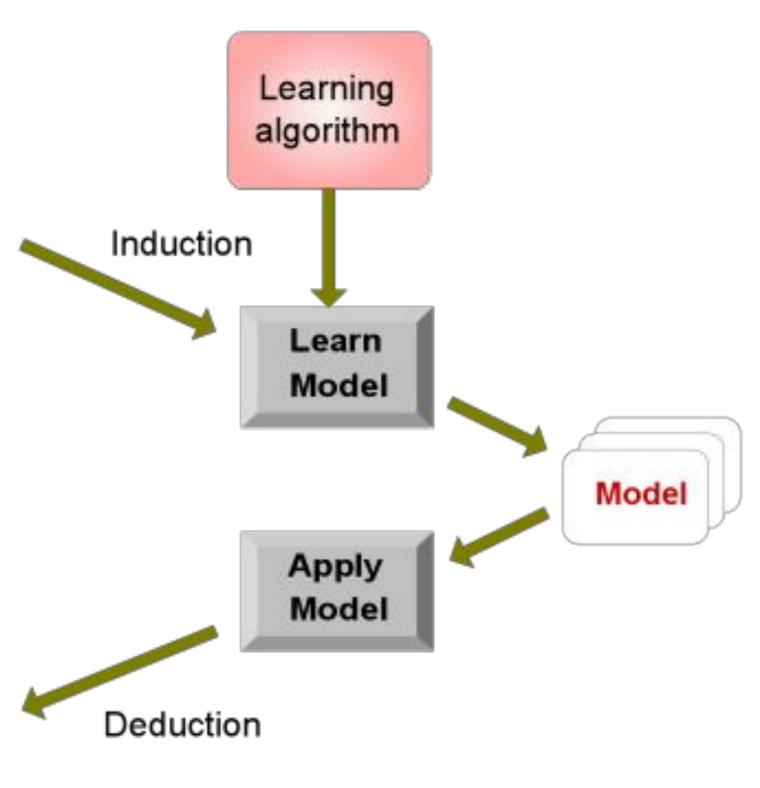
- 1. Datos de entrenamiento etiquetados
- 2. Entrenar un algoritmo de clasificación.
- 3. Evaluar en un dataset de validación.
- 4. Poner el modelo de clasificación en producción.

Proceso de Clasificación

Training Set

Tid	Attrib1 Attrib2 Attri		Attrib3	Class		
11	No	Small	55K	?		
12	Yes	Medium	80K	?		
13	Yes	Large	110K	?		
14	No	Small	95K	7		
15	No	Large	67K	?		

Test Set



Tarea de mapear set x a una clase y

En **machine learning**, a la clasificación se le considera como un enfoque de **aprendizaje supervisado**, pues requiere datos etiquetados.

Machine learning vs Data Mining

- Cuando hacemos clasificación en Machine Learning queremos automatizar una tarea (e.g., reconocer rostros en imágenes).
- Cuando hacemos clasificación en Data Mining queremos encontrar un patrón en los datos (i.e., queremos entender cómo se relaciona x con y por medio de un modelo predictivo).

¿Cómo saber si un modelo es bueno o no?

- Lo más importante es la capacidad predictiva del modelo.
- Pero hacer predicciones correctas sobre los datos de entrenamiento no es suficiente para determinar la capacidad predictiva.
- □ El modelo construido debe **generalizar**, es decir, debe ser capaz de realizar predicciones correctas en datos distintos a los datos de entrenamiento.
- Otros factores importantes: interpretabilidad, eficiencia.

¿Cómo saber si un modelo es bueno?

- Resumimos la capacidad predictiva de un modelo mediante métricas de desempeño (performance metrics).
- 2. Las métricas se calculan **contrastando** los valores predichos versus los valores reales de la variable objetivo.
- Este se hace con datos no usados durante entrenamiento.
- Diseñamos experimentos en que comparamos las métricas de desempeño para varios modelos distintos y nos quedamos con el mejor.

Performance Metrics (métricas de desempeño)

 Basadas en contar datos correcta e incorrectamente clasificados

Accuracy (Exactitud)

$$Accuracy = \frac{Number of correct predictions}{Total number of predictions}.$$

• Error rate (Tasa de error) $Error rate = \frac{Number of wrong predictions}{Total number of predictions}$

Matriz de Confusión

	Clase predicha				
		clase = +	clase = -		
Clase real	clase = +	a	b		
	clase = -	С	d		

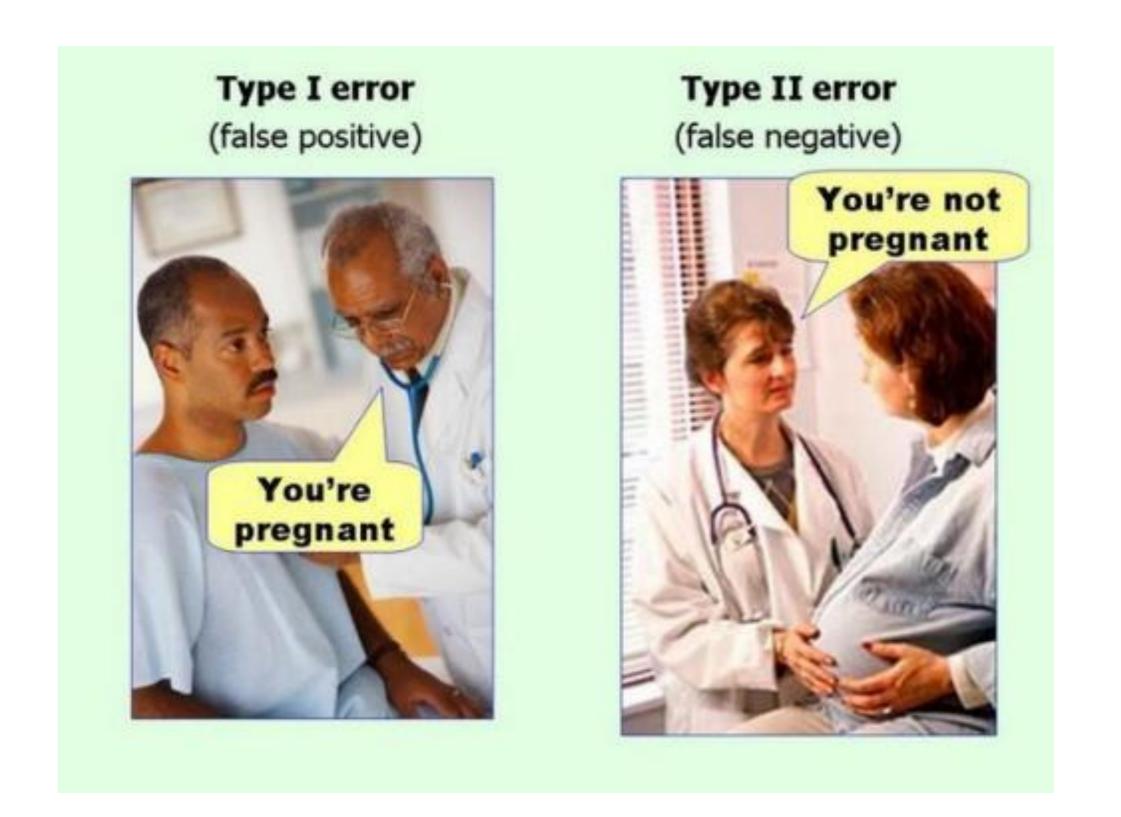
Accuracy (Exactitud)

	Clase predicha			
		clase = +	clase = -	
Clase real	clase = +	a (TP)	b (FN)	
	clase = -	c (FP)	d (TN)	

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Error Rate = 1 - Accuracy

Falsos Positivos y Falsos Negativos



Limitaciones del Accuracy

- ☐ Consideren un problema de 2-clases
- ☐ Num. de ejemplos de la Clase 0 = 9990
- Num. de ejemplos de la Clase 1 = 10
- Accuracy de un clasificador que clasifica todo como Clase 0 = 9990/10000

Accuracy no es una buena métrica cuando tenemos clases desbalancedas.

Precision y Recall

En un problema de clasificación binaria tenemos que escoger cual es la clase positiva. Podemos pensar que clasificar algo como "positivo" es equivalente a "seleccionarlo".

- Precision: % de los casos "seleccionados" que son correctos = TP/(TP + FP)
- Recall: % of de los casos "positivos" que son "seleccionados" = TP/(TP+FN)
- Existe un trade-off entre **Precision** y **Recall**.

F-measure

 La F-measure combina Precision y Recall mediante un promedio armónico ponderado:

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- La media armónica es conservadora y tiende a estar más cerca del mínimo.
- Generalmente usamos la F1 measure
 - i.e., con $\beta = 1$ (o $\alpha = \frac{1}{2}$): $F = \frac{2PR}{(P+R)}$

Ejercicio: reincidencia de cáncer

Considere 286 mujeres: 201 no tienen reincidencia de cáncer después de 5 años y 85 sí tienen. Compare los modelos:

M1: "todas reinciden" vs.

— M2: "ninguna reincide"

 Hacer matrices de confusión, calcular accuracy, precision, recall y F1.

Ejercicio: reincidencia de cáncer

Considere 286 mujeres: 201 no tienen reincidencia de cáncer después de 5 años y 85 sí tienen. Compare los modelos:

M1: Todas reinciden

M1	+	-
+	85	0
-	201	0

M2: Ninguna reincide

M2	+	-
+	0	85
-	0	201

Accuracy: 85/286= 0.3

Precision: 85/286= 0.3

Recall: 1

F1: 2*0.3/(0.3+1)=0.46

Accuracy: 201/286 = 0.7

Precision: 0/0 = undef

Recall: 0/85=0

F1: undef

Matriz de Costo

A veces yo se cuales errores son más costosos y cuales aciertos son más valiosos.

	Clase predicha				
	C(i j)	clase = +	clase = -		
Clase real	clase = +	C(+ +)	C(- +)		
	clase = -	C(+ -)	C(- -)		

C(i|j): Costo de clasificar un objeto como clase j dado que es clase i

Calculando el costo de la clasificación

A mayor costo peor el modelo.

Matrix Costo	Clase predicha				
Clase real	C(i j)	+	-		
	+	-1	100		
	-	1	0		

Modelo M1	Clase predicha				
		+	-		
Clase real	+	150	40		
	-	60	250		

Accuracy(M1) =
$$0.8$$

C(M1) = $-1*150+100*40+1*60+0*250 = 3910$

Modelo M2	Clase predicha				
		+	-		
Clase real	+	250	45		
	-	5	200		

Accuracy(M2) =
$$0.9$$

C(M2) = $-1*250+100*45+1*5+0*200 = 4255$

Clasificación Multi-clase

Cuando tenemos k etiquetas, la matriz de confusión es una matriz de k X k.

Docs in test set	Assigned UK	Assigned poultry	Assigned wheat	Assigned coffee	Assigned interest	Assigned trade
True UK	95	1	13	0	1	0
True poultry	0	1	0	0	0	0
True wheat	10	90	0	1	0	0
True coffee	0	0	0	34	3	7
True interest	-	1	2	13	26	5
True trade	0	0	2	14	5	10

15.2.4

Métricas de desempeño por clase

Recall: Fracción de ejemplos de la clase *i* correctamente clasificado.

$$\frac{c_{ii}}{\sum_{j} c_{ij}}$$

Precision: Fracción de ejemplos asignados a la clase *i* que realmente son de la clase i.

$$\frac{c_{ii}}{\sum_{j} c_{ji}}$$

Accuracy: (1 - error rate)

Fracción total de ejemplos correctamente clasificados.

$$\frac{\sum_{i} c_{ii}}{\sum_{j} \sum_{i} c_{ij}}$$

Micro- vs. Macro-Averaging

- Si tenemos más de una clase, ¿cómo combinamos múltiples métricas de desempeño en un solo valor?
- Macroaveraging: computar métrica para cada clase y luego promediar.
- Microaveraging: crear matriz de confusión binaria para cada clase, combinar las matrices y luego evaluar.

Micro- vs. Macro-Averaging: Ejemplo clasificación de Spam

		urgent	gold labels normal	spam	
				Spain	8
	urgent	8	10	1	$\mathbf{precisionu} = \frac{0}{8+10+1}$
system output	normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
	spam	3	30	200	$\mathbf{precisions} = \frac{200}{3+30+20}$
		recallu =	recalln=	recalls =	
		8	60	200	

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of classes (c_1, c_2) , how many documents from c_1 were (in)correctly assigned to c_2

Fuente: https://web.stanford.edu/~jurafsky/slp3/4.pdf

Micro- vs. Macro-Averaging: Ejemplo clasificación de Spam

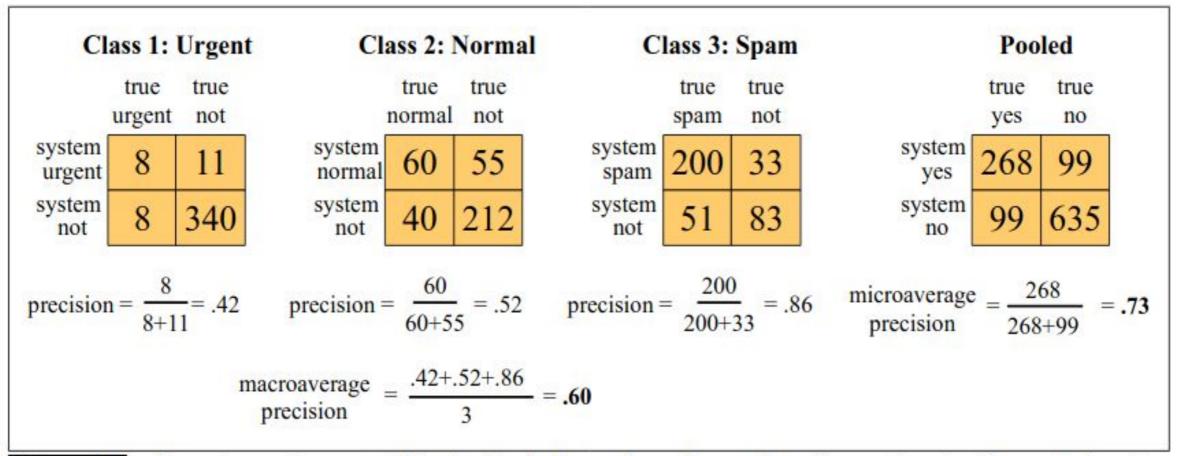


Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contingency table and the microaveraged and macroaveraged precision.

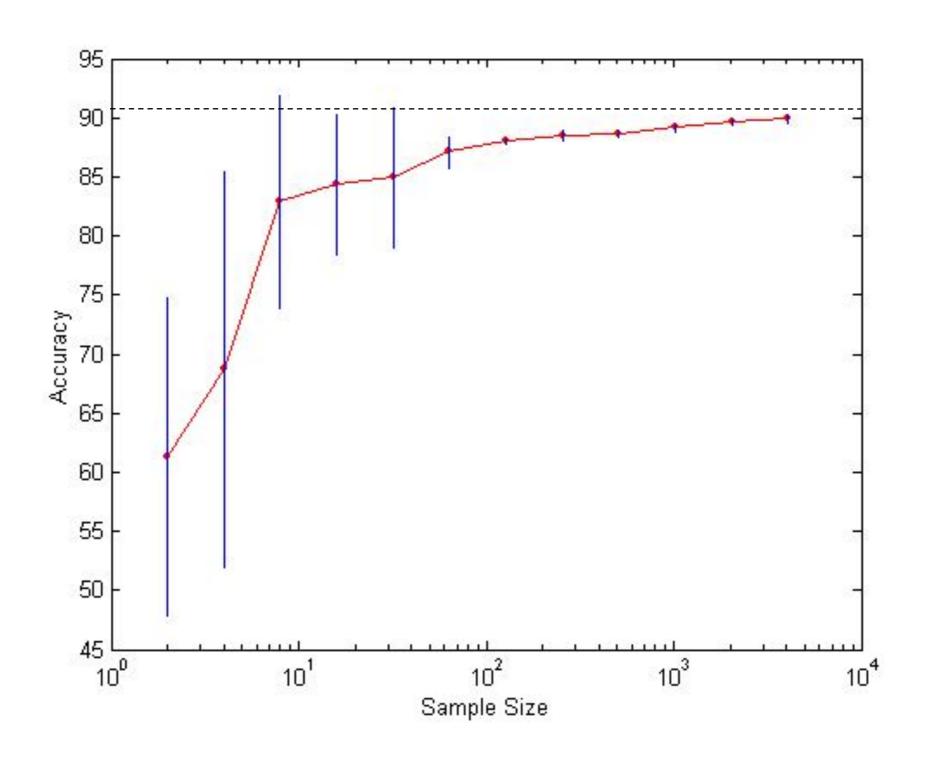
- Los micro-promedios son dominados por las clases más frecuentes.
- Los macro-promedios pueden sobre-representar a clases minoritarias.

23

Evaluación del desempeño del modelo

- El desempeño de un modelo puede depender de factores diferentes al algoritmo de aprendizaje
 - Distribución de las clases
 - Costo de clasificaciones erróneas
 - Tamaño de los datos de entrenamiento y test

Curva de aprendizaje



Métodos para evaluar el desempeño de un modelo

La idea es estimar la capacidad de generalización de modelo, evaluándolo en datos distintos a los de entrenamiento.

- 1) Holdout
- 2) Random subsampling (subsampleo aleatorio)
- 3) Cross validation (validación cruzada)

Holdout

- Particionamos los datos etiquetados en una partición de training y otra de testing.
 - Usualmente usamos 2/3 para entrenamiento y 1/3 para evaluación.
- Limitaciones:
 - ☐ La evaluación puede variar mucho según las particiones escogidas.
 - Training muy pequeño => modelo sesgado.
 - ☐ Testing muy pequeño => accuracy poco confiable.

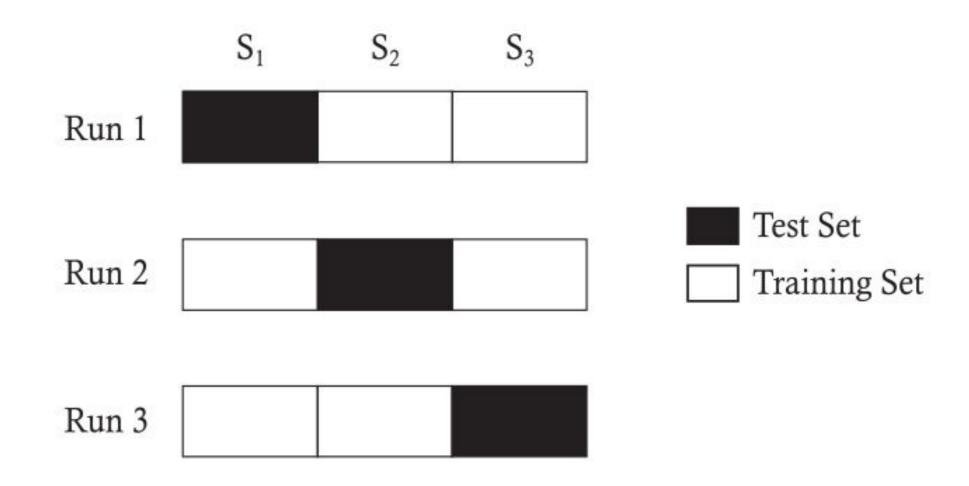
Random Subsampling

- Se repite el método holdout varias veces sobre varias particiones de training y testing.
- Permite obtener una distribución de los errores o medidas de desempeño.
- Limitaciones:
 - Puede que algunos datos nunca se usen para entrenar.
 - Puede que algunos datos nunca se usen para evaluar.

Validación cruzada (cross-validation)

- Se particiona el dataset en en k conjuntos disjuntos o folds (manteniendo distribución de las clases en cada fold).
- ☐ Para cada partición i:
 - Juntar todas las k-1 particiones restantes y entrenar el modelo sobre esos datos.
 - Evaluar el modelo en la partición i.
- □ El error total se calcula sumando los errores hechos en cada fold de testing.
- Estamos entrenando el modelo k veces.
- ☐ Variante: leave-one-out (k=n)

Ejemplo: 3-fold cross-validation

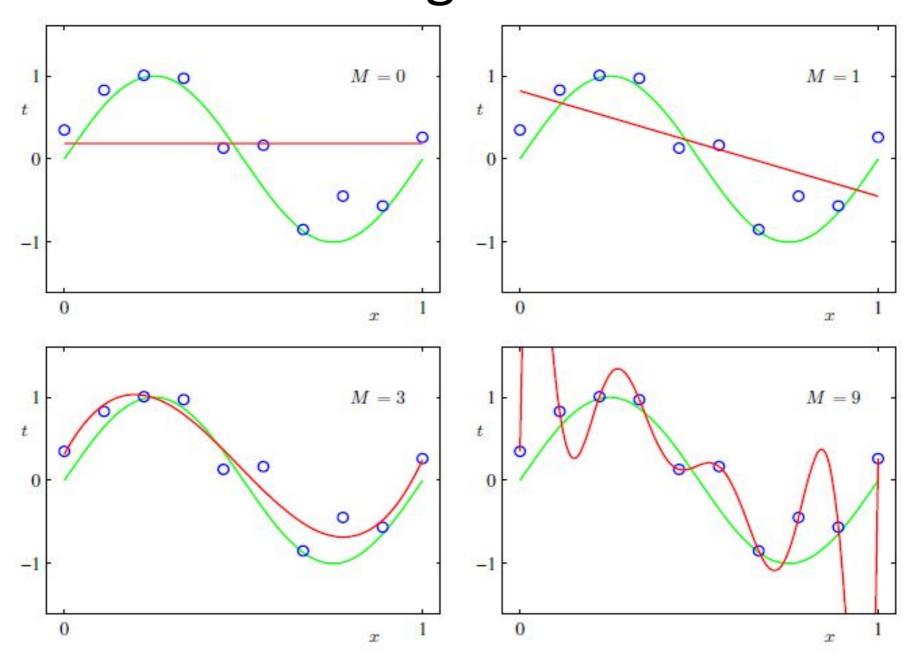


Problemas prácticos en la clasificación

• Errores de entrenamiento (malos resultados sobre los datos de entrenamiento): esto ocurre cuando el clasificador no tiene capacidad de aprender el patrón.

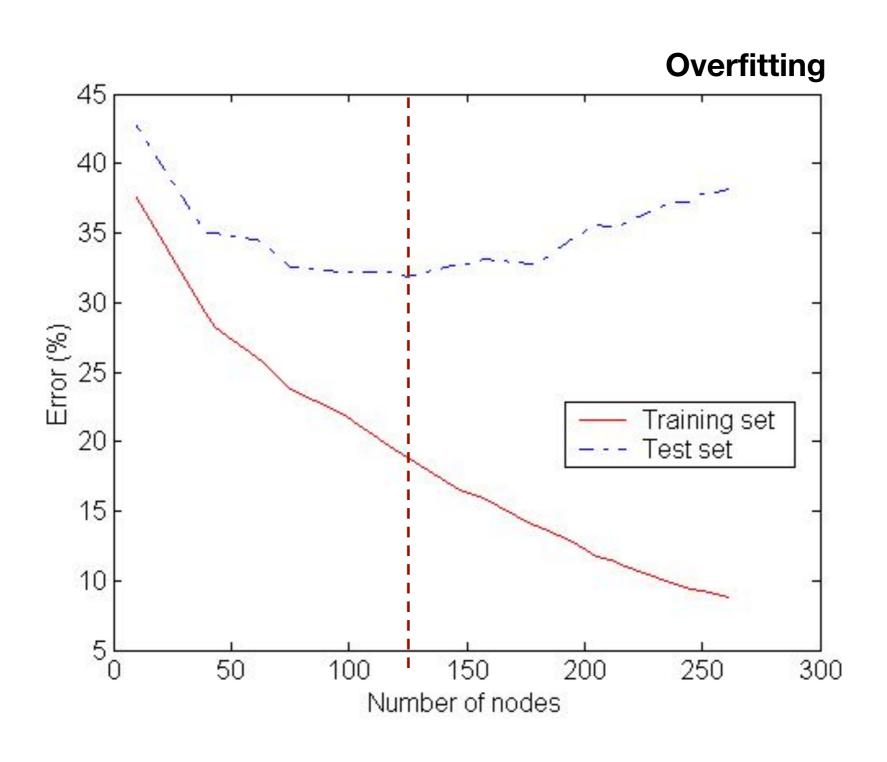
 Errores de generalización (malos resultados sobre datos nuevos): esto ocurre cuando el modelo se hace demasiado específico a los datos de entrenamiento.

Overfitting y Underfitting usando polinomios para un problema de regresión

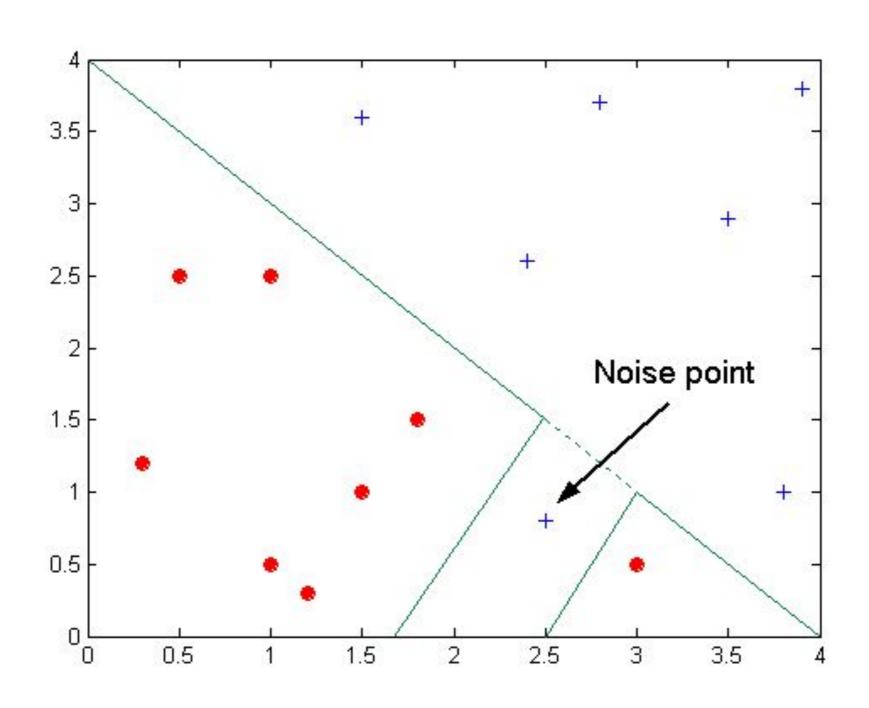


M es el orden del polinomio.

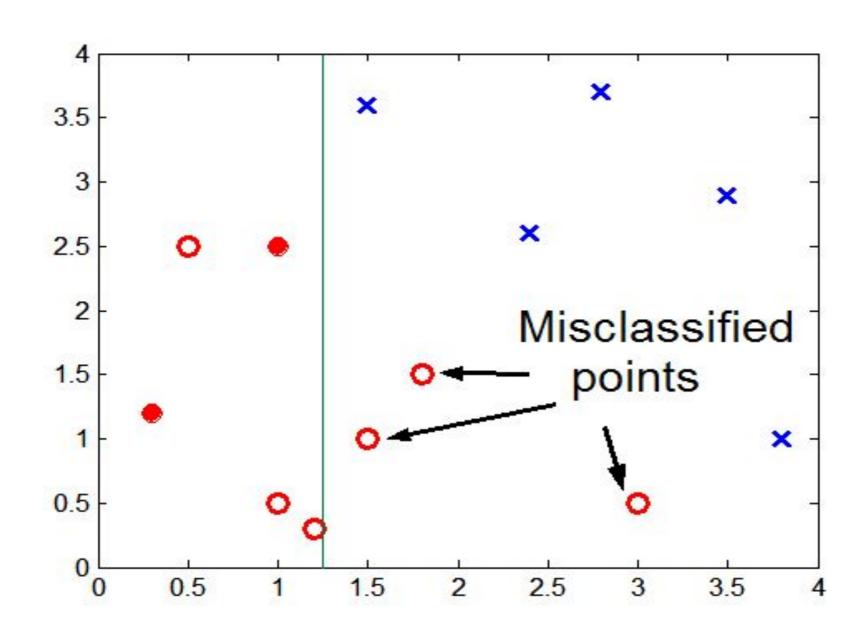
Underfitting y Overfitting



Overfitting por ruido



Overfitting por ejemplos insuficientes



Notas sobre el Overfitting

- El overfitting es un reflejo de un modelo más complejo que lo necesario.
- El error de entrenamiento no es un indicador confiable de cómo se desempeñaría el modelo sobre datos nuevos.

Curva ROC Receiver Operating Characteristic Curve

 De manera similar que el trade-off entre Precision y Recall también existe un tradeoff entre la tasa de verdaderos positivos y la tasa de falsos positivos.

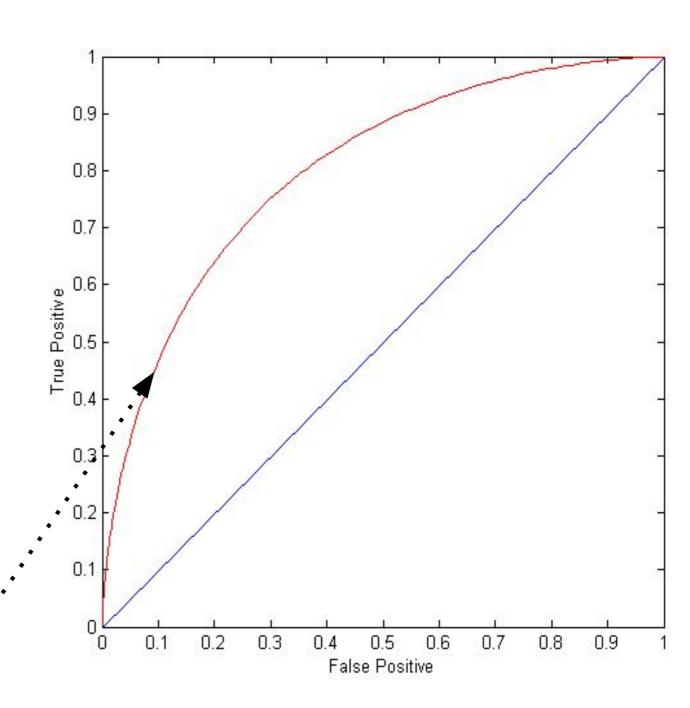
TP Rate: TP / (TP +FN)

FP Rate: FP / (FP + TN)

• La curva ROC se construye graficando TP Rate vs FP Rate para varios umbrales de clasificación de un clasificador probabilístico (ej: regresión logística, naive Bayes).

Curva ROC Receiver Operating Characteristic Curve

- Entre mayor sea el área bajo la curva mejor es el modelo.
- El área bajo la curva ROC se conoce como AUC y es una métrica ampliamente usada.
- Un tutorial recomendado:
 https://towardsdatascience.com/underst
 anding-auc-roc-curve-68b2303cc9c5



Ejemplo: Curva ROC sobre predicciones probabilísticas

			pred	icted		
actual	Pr(class = yes)	$\lambda > 0.9$	$\lambda > 0.7$	$\lambda > 0.3$	$\lambda > 0.2$	$\lambda > 0.0$
yes	0.9	no	yes	yes	yes	yes
no	0.7	no	no	yes	yes	yes
yes	0.3	no	no	no	yes	yes
no	0.2	no	no	no	no	yes
TN		2	2	1	1	0
FN		2	1	1	0	0
FP		0	0	1	1	2
TP		0	1	1	2	2
TP Rate		0.0	0.5	0.5	1.0	1.0
FP Rate		0.0	0.0	0.5	0.5	1.0
Precision		NaN	1.0	0.5	0.66	0.5
Recall		0	0.5	0.5	1.0	1.0

Table 5: Performance metrics for different threshold values.

Ejemplo: Curva ROC sobre predicciones probabilísticas

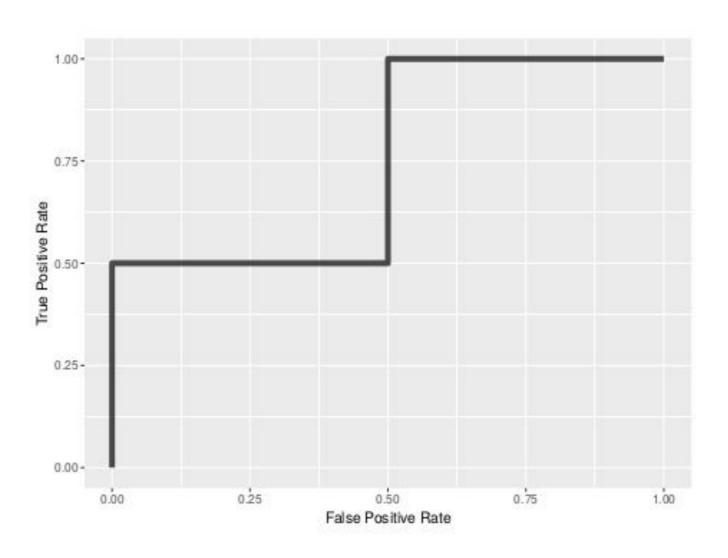


Figure 1: ROC curve.

www.dcc.uchile.cl

