

Auxiliar 13

Sistemas y diagramas de fase

Profesor: Salomé Martínez S.

Auxiliares: Rodrigo Altamirano M., Sofía Callejas D., Paolo Martiniello R.

P1) Mezcla entre tanques interconectados

Dos tanques, cada uno con 50 litros de líquido, están conectados entre sí mediante tubos, de modo que el líquido pasa del tanque A al tanque B a razón de 4 litros/minuto, y del tanque B al tanque A a 1 litro/minuto (figura 1). El líquido dentro de cada tanque se mantiene bien revuelto. Por otro lado, entra agua pura al tanque A a razón de 3 litros/minuto, y la solución sale del tanque B a 3 litros/minuto. Si en un principio el tanque A contiene 25 kg de sal y el tanque B no contiene sal (sólo agua), determine la masa de sal en cada tanque en el instante $t \geq 0$. Grafique en el mismo plano las dos cantidades $x_1(t)$ y $x_2(t)$, donde $x_1(t)$ es la masa de sal en el tanque A y $x_2(t)$ es la masa de sal en el tanque B.

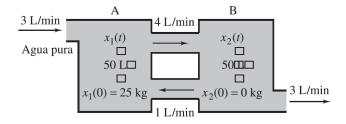


Figura 1

P2) Mezcla con drenado común

Dos tanques, cada uno con 1 litro de líquido, están conectados mediante un tubo a través del cual fluye líquido del tanque A al tanque B a razón de $3-\alpha$ litros/minuto ($0<\alpha<3$). El líquido dentro de cada tanque se mantiene bien revuelto. Al tanque A entra agua pura a razón de 3 litros/minuto. La solución sale del tanque A a α litros/minuto y del tanque B a $3-\alpha$ litros/minuto. Si en un principio el tanque B no tiene sal (sólo agua) y el tanque A contiene 1 kg de sal, determine la masa de sal en cada tanque en el instante t>0. ¿Cómo depende la masa de sal en el tanque A de la elección de α ?

Auxiliar 13

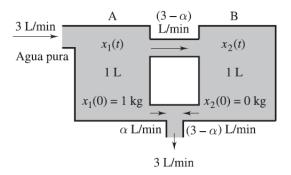


Figura 2

Auxiliar 13