12. Semana 11

P1 Solamente basta demostrar que es conmutativo, utilizando la indicación tenemos que

$$(a*b)*(b*a) = a*(b*b)*a$$
 \por asociatividad
= $a*e*a$
= $a*a$
= e

Por otra parte

$$(b*a)*(a*b) = b*(a*a)*b$$
 \por asociatividad
= $b*e*b$
= $b*b$

Se puede concluir entonces que $(a*b)^{-1} = b*a$, sin embargo, por la propiedad del enunciado, el inverso de cada elemento del grupo es el mismo elemento, es decir $(a*b)^{-1} = a*b$, juntando ambas igualdades se tiene que a*b = b*a, se concluye que (G,*) es grupo abeliano.

P2 Como es grupo todo elemento posee inverso, supongamos que el inverso de a no es b, esto quiere decir que $a*b \neq e$, lo que significa que a*b = a o a*b = b, pero

$$a*b=a$$
 \operando con el inverso de a por la izquierda $a^{-1}*$ $(a^{-1}*a)*b=a^{-1}*a$ \por asociatividad
$$e*b=e$$

$$b=e$$

De manera análoga

$$a*b=b$$
 \operando con el inverso de b por la derecha $b^{-1}*$ $a*(b*b^{-1})=a*(b*b^{-1})$ \por asociatividad
$$a*e=e$$

$$a=e$$

En ambos casos nos lleva a una contradicción, se concluye que $a^{-1} = b$.

P3 (a) Si $(G \times H, \triangle)$ es grupo debemos demostrar asociatividad, existencia de neutro e inverso.

- Asociatividad: Sean
$$(a,b), (c,d), (e,f) \in G \times H$$

$$(a,b) \triangle [(c,d) \triangle (e,f)] = (a,b) \triangle (c*e,d\circ f)$$

$$= (a*(c*e),b\circ (d\circ f))$$

$$= ((a*c)*e,(b\circ d)\circ f)$$
 \por asociatividad de G y H
$$= (a*c,b\circ d) \triangle (e,f)$$

$$= [(a,b) \triangle (c,d)] \triangle (e,f)$$

12 SEMANA 11

- Neutro: El neutro es el par ordenado que contiene los neutros respectivos de cada grupo, en efecto, sean $(a,b), (e_G,e_H) \in G \times H$, se tiene que

$$(a,b) \triangle (e_G, e_H) = (a * e_G, b \circ e_H)$$
$$= (a,b)$$

Por otro lado

$$(e_G, e_H) \triangle (a, b) = (e_G * a, e_H \circ b)$$
$$= (a, b)$$

Se concluye que el neutro es (e_G, e_H) .

- Inverso: Sea $(a,b) \in G \times H$ y sean a^{-1} y b^{-1} los inversos de a y b en G y H respectivamente (existen porque G y H son grupos), tomando el par ordenado $(a^{-1},b^{-1}) \in G \times H$ se tiene que

$$(a,b) \triangle (a^{-1},b^{-1}) = (a*a^{-1},b\circ b^{-1})$$

= (e_G,e_H)

Por otro lado

$$(a^{-1}, b^{-1}) \triangle (a, b) = (a^{-1} * a, b^{-1} \circ b)$$

= (e_G, e_H)

Se concluye que el inverso es (a^{-1}, b^{-1}) .

Con esto se tiene que $(G \times H, \Delta)$ es grupo.

- (b) Para φ
 - Morfismo: Sean $(a,b), (c,d) \in G \times H$ se tiene que

$$\varphi((a,b) \triangle (c,d)) = \varphi(a*c,b \circ d)$$

$$= a*c$$

$$= \varphi(a,b)*\varphi(c,d)$$

- Sobreyectivo: $(\forall y \in G)(\exists x \in G \times H)(\varphi(x) = y)$ En efecto, basta tomar x = (y, h), con esto se tiene que $\varphi(x) = \varphi(y, h) = y$.

Para ψ

- Morfismo: Sean $(a,b), (c,d) \in G \times H$ se tiene que

$$\psi((a,b) \triangle (c,d)) = \psi(a * c, b \circ d)$$
$$= b \circ d$$
$$= \psi(a,b) \circ \psi(c,d)$$

- 12 SEMANA 11
- Sobreyectivo: $(\forall y \in H)(\exists x \in G \times H)(\psi(x) = y)$ En efecto, basta tomar x = (g, y), con esto se tiene que $\psi(x) = \psi(g, y) = y$.
- (c) \Rightarrow Sean $(a^{-1}, e), (b^{-1}, e) \in G \times G$ con e el neutro en G, se tiene que como es morfismo $f((a^{-1}, e) \triangle (b^{-1}, e)) = f(a^{-1}, e) * f(b^{-1}, e)$, pero $f((a^{-1}, e) \triangle (b^{-1}, e)) = f(a^{-1} * b^{-1}, e * e) = (a^{-1} * b^{-1} * e * e)^{-1} = (a^{-1} * b^{-1})^{-1} = (b^{-1})^{-1} * (a^{-1})^{-1} = b * a$, por otro lado, $f(a^{-1}, e) * f(b^{-1}, e) = (a^{-1} * e)^{-1} * (b^{-1} * e)^{-1} = (a^{-1})^{-1} * (b^{-1})^{-1} = a * b$, juntando ambas igualdades se tiene que a * b = b * a.
 - \Leftarrow Sean $(a,b),(c,d)\in G\times G$, se tiene que

$$f((a,b) \triangle (c,d)) = f(a*c,b*d)$$

= $(a*c*b*d)^{-1}$
= $(a*b*c*d)^{-1}$ \por ser grupo abeliano
= $(c*d)^{-1}*(a*b)^{-1}$
= $(a*b)^{-1}*(c*d)^{-1}$ \por ser grupo abeliano
= $f(a,b)*f(c,d)$

- P4 \Rightarrow Tomemos $h^{-1}, g^{-1} \in G$, se tiene que como f es isomorfismo $f(h^{-1} * g^{-1}) = f(h^{-1}) * f(g^{-1}) = (h^{-1})^{-1} * (g^{-1})^{-1} = h * g$, por otro lado, por definición de la función y propiedad de inversos, $f(h^{-1} * g^{-1}) = (h^{-1} * g^{-1})^{-1} = (g^{-1})^{-1} * (h^{-1})^{-1} = g * h$, juntando ambas expresiones se tiene que h * g = g * h.
 - $\leftarrow \text{ Tomemos } h,g \in G, \text{ luego } g*h = (g^{-1})^{-1}*(h^{-1})^{-1} = (h^{-1}*g^{-1})^{-1} = f(h^{-1}*g^{-1}), \text{ por otro lado, } h*g = (h^{-1})^{-1}*(g^{-1})^{-1} = f(h^{-1})*f(g^{-1}), \text{ pero como es grupo abeliano se tiene que } h*g = g*h, \text{ juntando ambas expresiones se tiene que } f(h^{-1})*f(g^{-1}) = f(h^{-1}*g^{-1}), \text{ es decir, es morfismo, falta ver que sea biyectivo.}$
 - Inyectivo: $(\forall g_1.g_2 \in G)(f(g_1) = f(g_2) \Rightarrow g_1 = g_2)$, en efecto, sean $g_1, g_2 \in G$, se tiene que

$$f(g_1) = f(g_2)$$

 $g_1^{-1} = g_2^{-1}$ \tomando inverso (existe porque g_1 y g_2 son biyectivas) ()⁻¹
 $g_1 = g_2$

- Epiyectivo: $(\forall h \in G)(\exists g \in G)(f(g) = h)$, en efecto, sea $h \in G$, basta tomar $g = h^{-1}$ que sabemos que existe porque h es función biyectiva, con esto se tiene que $f(g) = f(h^{-1}) = (h^{-1})^{-1} = h$.

Con lo que se concluve que f es isomorfismo.