

MA1101 - Introducción al Álgebra

Profesores: Juan Pedro Ross y Flavio Guiñez.

Auxiliares: Félix Brokering, Matías Carvajal, Carolina Chiu y Pedro Cortés.

RP Semana 10

P1. Sean $A, B \neq C$ conjuntos finitos. Calcule $|(A \cup C) \times (B \cup C)|$ en términos del cardinal de $A, B \neq C \neq C$ sus intersecciones

P2. Sea $A = \{1, \dots 100\}$. Para cada $i \in A$, calcule la cantidad de subconjuntos de A que tienen tamaño 20 y cuyo mayor número es i.

P3. Sea $\Omega = \{1, \dots, 1000\}$. Considere los conjuntos

 $A = \{ n \in \Omega \mid n \text{ es múltiplo de 2} \},$

 $B = \{ n \in \Omega \mid n \text{ es múltiplo de } 3 \},$

 $C = \{n \in \Omega \mid n \text{ es múltiplo de 5}\}.$

Calcule $|A \cup B \cup C|$.

P4. Muestre que

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

y utilice esta propiedad para demostrar que, dado $p \in \mathbb{R}$:

$$\sum_{k=1}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = np$$

P5. Demuestre sin usar inducción que

$$\sum_{i=0}^{n-1} \sum_{j=1}^{n} \binom{n-1}{i} \binom{n}{j} = 2^{n-1} (2^n - 1)$$