Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA1101-10 Introducción al Álgebra 16 de julio de 2023

Auxiliar Examen: Complejos y Polinomios Profesor: Alexander Frank Auxiliar: Gonzalo Ovalle

[Complejos]

P1. Escriba en forma polar los siguientes números complejos:

i)
$$1 + i$$

ii)
$$1 + i\sqrt{3}$$

iii)
$$(1 - i\sqrt{3})(-2\sqrt{3} + 2i)$$
 iv) $(-1 - i)^6$

iv)
$$(-1-i)^6$$

- i) Sea $z \in \mathbb{C}$ tal que $z + \frac{1}{z} = 2cos(\theta)$, con $\theta \in \mathbb{R}$. Demuestre que $\forall n \geq 1, z^n + \frac{1}{z^n} = 2cos(n\theta)$ P2.
 - ii) Sea $z \in \mathbb{C}, p \in \mathbb{R}, n \in \mathbb{N}$. Demuestre que las siguientes expresiones son todas números reales:
 - $z^n + (\overline{z})^n$
 - $\frac{1}{1+z^n} + \frac{1}{1+(\bar{z})^n}$
 - $(1 + pe^{i\frac{\pi}{2}})^n + (1 pe^{i\frac{\pi}{2}})^n$
- i) Encuentre las raíces cúbicas del complejo $z = \frac{1 i\sqrt{3}}{1 + i\sqrt{3}}$ P3.
 - ii) Solucione para x la ecuación $x^4 + x^3 + x^2 + x + 1 = 0$
- **P4.** Sea $w \in \mathbb{C}$ una raíz cubica de la unidad con $w \neq 1$. Pruebe que

$$(1+w)^3 + (1+w^2)^9 + (1+w^3)^6 = 62$$

P5. Sean $z_1, z_2 \in \mathbb{C}$.

- i) Pruebe que $|1 z_2\overline{z_1}|^2 |z_1 z_2|^2 = (1 |z_1|)^2(1 |z_2|)^2$ <u>Indicación</u>: Usar propiedad $a \cdot \overline{a} = |a|^2$ sobre números complejos convenientes.
- ii) Ahora suponga que $|z_1| < 1$ y $|z_2| < 1$. Pruebe que:

$$\frac{|z_1 - z_2|}{|1 - z_2 \overline{z_1}|} < 1$$

P6. Sean $w_0, w_1, \ldots, w_{n-1}$ las raíces n-ésimas de la unidad ordenadas de manera usual (es decir, según argumento de manera creciente).

1

a) Demuestre que:

$$w_0w_1 + w_1w_2 + \ldots + w_{n-2}w_{n-1} + w_{n-1}w_0 = 0$$

b) Pruebe que $\forall k \in \{1, 2, ..., n-1\}$:

$$\sum_{j=0}^{n-1} (w_j)^k = 0$$

c) Sea $z \in \mathbb{C}$ fijo. Pruebe que:

$$\sum_{j=0}^{n-1} (z+w_j)^n = n(z^n+1)$$

[Polinomios]

P1. Sea p un polinomio a coeficientes reales.

Se sabe que este polinomio tiene como raíces a 1+i, 1-i, 3, 6, 2i, 4-i. Encuentre el grado mínimo del polinomio p y encuentre la expresión de este polinomio sabiendo que es mónico.

P2. Sea $p \in \mathbb{C}[x]$.

- i) Demuestre que p es sobreyectivo si y solo si $gr(p) \ge 1$ Indicación: Recuerde el teorema fundamental del álgebra.
- ii) Demuestre que p es inyectivo si y solo si gr(p) = 1Indicación: Ponerse en casos para gr(p).

P3. i) Factorice en \mathbb{R} y en \mathbb{C} el polinomio $p(x) = x^4 + 3x^3 - 12x^2 - 13x - 15$

- ii) Considere el polinomio $p(x) = x^7 + 2x^5 x^4 + x^3 2x^2 1$. Se sabe que i es raiz de p(x) de multiplicidad 2. Encuentre todas las raices y factorice p(x) en $\mathbb{R}[x]$ y $\mathbb{C}[x]$
- iii) Se sabe que el polinomio

$$p(z) = 2z^3 - (5+6i)z^2 + 9iz - 3i + 1$$

admite una raiz real a (es decir, $a \in \mathbb{R}$). Determine todas las raices de p(z)

P4. Sea $p(x) \in \mathbb{R}(x)$ un polinomio mónico con gr(p) = 3. Se sabe que p(x) es divisible por (x-1) y que los restos de sus divisores por (x-2), (x-3) y (x-4) son iguales. Determine p(x), justificando sus pasos, y encuentre todas sus raíces.

P5. Sea P(x) un polinomio tal que $P(x^2 + 1) = x^4 + 4x^2$. Encuentre $P(x^2 - 1)$.

P6. Mediante división de polinomios, factorize los siguientes polinomios:

i)
$$2x^3 - 5x^2 - x - 6$$

ii)
$$4x^4 - 15x^3 + 12x^2 + 4x$$

iii)
$$2x^4 - 4x^3 - 42x^2 - 124x - 80$$

iv)
$$-x^5 + 2x^4 - 10x^3 + 20x^2 - 9x + 18$$

P7. Si $w = e^{i\frac{2\pi}{n}}$, muestre que:

i)
$$1 + 2w + 3w^2 + \dots + nw^{n-1} = \frac{-n}{1-w}$$

ii)
$$(1-w)(1-w^2)...(1-w^{n-1})=n$$

P8. Sean a, b, c números reales positivos.

¿Es posible que los polinomios $p(x) = ax^2 + bx + c$, $q(x) = bx^2 + cx + a$, $r(x) = cx^2 + ax + b$ tengan sus dos raíces reales y distintas, simultáneamente?

- **P9.** Al dividir el polinomio $p(x) = \alpha x^4 x^3 + \beta x^2 + 10x 2\alpha$ por (x 1) el resto es 3 y el cuociente toma valor 21 para x = 2. Calcule α y β .
- **P10.** i) Sea $p(x) = x^2 + x + 1$. Demuestre que las raíces de p(x) son las raíces cúbicas de la unidad, a excepción del 1.

2

ii) Sean a,b,c números naturales. Sea $q(x)=x^{3a}+x^{3b+1}+x^{3c+2}$. Demuestre que el polinomio p divide al polinomio q.