MA1001-3 Introducción al Cálculo

Profesores: Leonardo Sánchez C.

Auxiliar: Patricio Yañez A y Javier Santidrian

Auxiliar 03 Preparación C1 Cálculo

03 Abril 2023

P1. Axiomas desigualdades y valor absoluto Usando los axiomas de cuerpo de los reales y teoremas de unicidad de los elementos neutros e inversos, demostrar que

$$\forall a, b \in \mathbb{R} - \{0\}, a(b^{-1}) = (a^{-1}b)^{-1}$$

P2. Demostrar $\forall a \in \mathbb{R}$ se cumple

$$2|a| - |a^2| \le 1$$

P3. Axiomas de Orden

Pruebe que si x, y > 0, entonces:

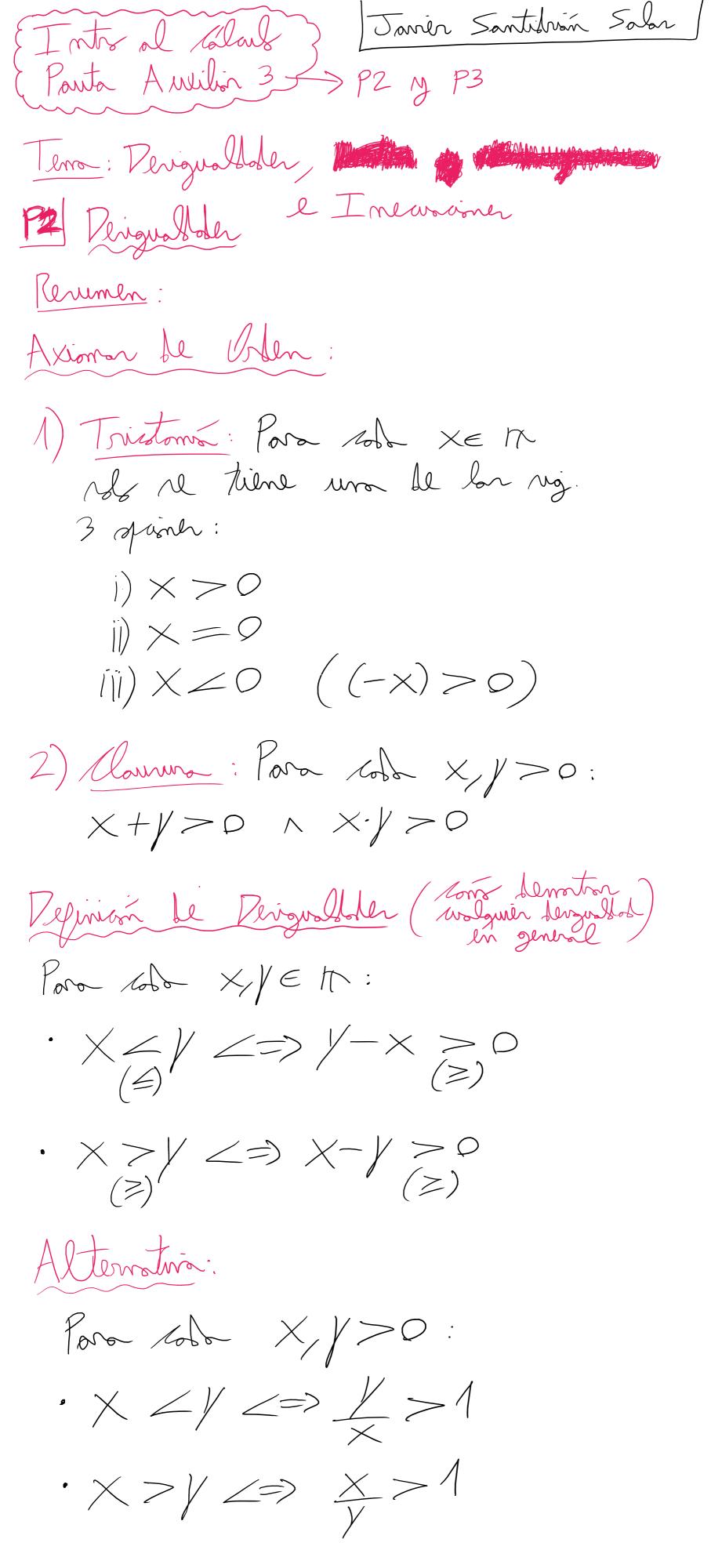
$$(x+y)(x^{-1}+y^{-1}) \ge 4$$

P4. Inecuaciones

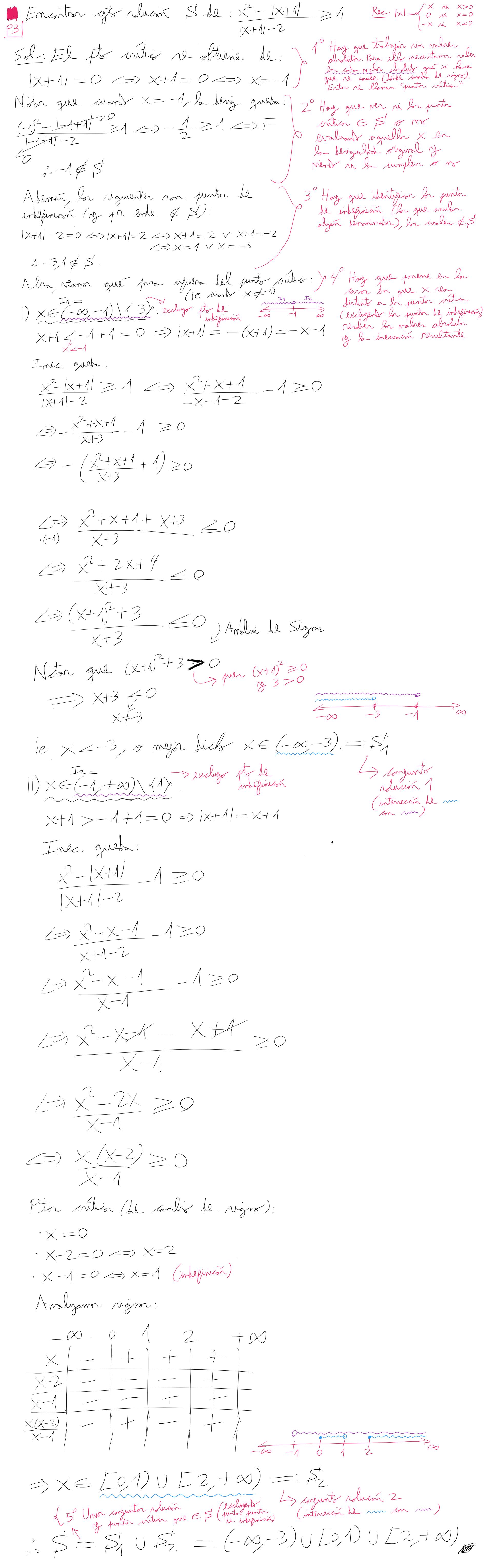
Resuelva la siguiente inecuación:

$$\frac{x^2 - |x+1|}{|x+1| - 2} \ge 1$$

Extra: ¿Qué hacer cuando hay dobles valores absolutos? Estudie la inecuación: $x \ge ||x+1|+|x-1|-|x||-1$



Pauta de corrección Control 1


P1. (a) **(3 pts.)** Usando los axiomas de cuerpo de los números reales y los teoremas de unicidad de los elementos neutros e inversos, demostrar que: $\forall a, b \in \mathbb{R} \setminus \{0\}$ $a(b^{-1}) = (a^{-1}b)^{-1}$

(b) (3 pts.) Demostrar que $\forall a \in \mathbb{R}$ se cumple $2|a| - |a^2| \le 1$.

Solución: PDQ: $1-2|a|+|a^2|\geq 0$ Esto es cierto ya que: $1-2|a|+|a^2|=1-2|a|+|a|^2 \; ; \text{Propiedad de módulo}$ $=(1-|a|)^2$ $\geq 0 \qquad ; \text{Todo cuadrado es } \geq 0$

X/>0. Ejercics $(2) (x+y)(x^1+y^1)-4 \ge 0$ $ppl(x+y)(x^{-1}+y^{-1}) = 4$ SOL: En flets: $(x+1)(x^{-1}+1^{-1})-4$ $= \times (x^{-1} + y^{-1}) + y(x^{-1} + y^{-1}) - 4$ (dut.) $= xx^{-1} + xy^{-1} + yx^{-1} + yy^{-1} - 4$ (dut.) $= 1 + x \sqrt{1 + x^{-1}} + x^{-1} \sqrt{1 + x^{-1}} + x^{-1} \sqrt{1 + x^{-1}}$ (invers.) $= xy^{-1} + x^{-1}y + 1 + 1 - 4$ (conmit. +) $= \times \sqrt{1+x^{1}}/2 \qquad (by)$ $=\frac{\times+\frac{1}{2}}{\times}-2$ (votacon) = X. X + X. Y - 2. XY (niguta y x x x x x y (niguta fora racon comun (multiple) $=\frac{2}{2}+\frac{1}{2}-\frac{2}{2}$ $= \underbrace{x^2 + y^2 - 2xy}$ $= (x-y)^2$ Aadorjand ... $\begin{array}{c} \cdot \\ \cdot \\ \times / > 0 \Rightarrow \times / > 0 \\ \cdot \\ (\times - /)^2 \ge 0 \end{array}$

Extra: i but heer words hog dobler valorer absoluter? Extudie la inewsción: $\times > ||x+1|+|x-1|-|x||-1$ SOL: Seguir el mimo proclimients que anter pero son la valore abelita que estan alentro del vala abiolito grande Paro 1: Identifica junta vilia: · |X+1 = 0 <=> X+1 = 0 <=> X=-1 · |X-1| = 0 (=) X-1= 0 (=) X=1 · | x | = 0 (=) x=0 Paro 2: Ver vi puntor viduo E So no (ie ni numplen l' devigualdal): $\cdot \times = -1 : -1 \ge ||-1+1|+|-1-1|+|-1||-1$ $\angle =)-1 \ge |10|+1-2|+1-1||-1$ (=) $-1 \ge 10 + 2 + 11 - 1$ L=>-1> |3|-1 L=>-1=3-1 4-1-1-2 17 F ; -1 \$ \$ $\cdot \times = 1 : 1 \ge |11+11+11-11-11| -1$ (=) 1 > | |2|+10|-11| -1 L= 12+0-11-1 CA1>111-1 L=) 1 > 1 - 1 <=> 1 > 0 (=)\(\ 301∈ \$ $\cdot x = 0: 0 \ge |10+11+10-11-10|1-1$ LD0211+1-01-1 L=) Q = 121-1 L=) Q = 2-1 L=) Q = 1 (=) F 00 Q E F Paro 3: Excluir puntin le indepinion (no loy an que farama al viguiente fara) Paro 4: Avalgar la x distinta a la juntar viduin d-1,0,1%: $\frac{2}{-\infty}$ -1 0 1 i) $X \in I_1 = (-\infty, -1)$ Agui X <- 1, lugo: $\cdot \times +1 \angle -1 +1 =0 \Rightarrow |x+1| = -(x+1)$ $\cdot \times -1 \angle -1 -1 = -2 \angle 0 \Rightarrow |x-1| = -(x-1)$ ·X <-1 < 0 => |x|=-x La inewarin guela: $\times > ||x+1|+|x-1|-|x||-1$ $\angle =) \times \ge |-(x+1)-(x-1)-(-x)|-1$ (-) x > (-x-X-X+X+x+-1 $\angle \Rightarrow \times \geq |-\times|-1$ $(> \times > - \times -1 < =) 2 \times = -1$ $-\infty \quad -1 \quad -\frac{1}{2} \quad \infty$ $\langle \Rightarrow \rangle \times \geq -4$ x 2-1 =) -x>1>9 $\angle \Rightarrow \times \in [-\frac{1}{2}, +\infty)$ |-x| = -xNo hay interession entre my m 00 F₁ = Ø ii) $X \in I_2 = (-1, 0)$: Agui -1 /x / O lulgo: $\cdot \times +1 > -1 +1 = 0 \implies |x+1| = x+1$ $\cdot \times -1 = 0 -1 = -1 = 0 \Rightarrow |x-1| = -(x-1)$ ·X/0 => 1x1=-x La inewarin guela: $\times > |1 \times + 1| + |x - 1| - |x| - 1$ $\angle =) \times \ge |(x+1) - (x-1) - (-x)| - 1$ (=) X = | X+1 = X+1+x-1-1 $\angle \Rightarrow \times \geq |\times +2|-1$ (3) X = X+2-1 <=> 0 > 1 (=) F => X+2>1>0 =) |X+2 | = X+2 $\hat{o}, \hat{s}_2 = \phi$ (ii) $x \in I_3 = (0,1)$: Agui 0/x/1/luego: $\cdot \times +1 > 0 +1 = 1 > 0 \Rightarrow |x+1| = x+1$ $\cdot \times -1 = 1 - 1 = 0 \Rightarrow |x-1| = -(x-1)$ ·×>0=> |x|=x La inewarin guela: $\times > ||x+1|+|x-1|-|x||-1$ $(=) \times > | \times + 1 - (x-1) - \times | -1$ (=) x = 1-x+21-1 $\angle \Rightarrow \times \geq |-(\times -2)|-1$ $\angle > \times > |x-2|-1$ |-y| = |-1.y|=1-11-111 =1.11/1=11/1 $\angle = \times = -(x-2)-1 \angle = \times = -x+2-1$ (=) 2x>1 × < 1 ⇒ x-2 < -1 = 0 (1) ×≥ 4 $\Rightarrow |x-2| = -(x-2)$ ∠=) X ∈ [€ /+8) $-\infty$ $0\frac{1}{2}$ 1 ∞ 3 = 21 3 = 21iv) $x \in I_4 = (1+\infty)$: Agu X >1 lulgo: $\cdot \times +1 > 1 +1 = 2 > 0 \Rightarrow |x+1| = x+1$ $\cdot \times -1 > 1 - 1 = 0 \Rightarrow |x - 1| = x - 1$ ·×>1>0=>1×1=× La inewson guela: $\times > ||x+1|+|x-1|-|x||-1$ (=) x > | x+1+x-x | -1 ∠⇒ x ≥ |x| -1 L=>X=X-1 L=> 0 Z -1 L=> V $^{\circ}_{\circ}$ $^{5}_{4} = (1, +\infty).$ Paro 5: Univ toba la conjuntor relución junts son la juntor vivien que ES: ラ= カリをリるリをリング $=\phi \cup \phi \cup (1,+\infty) \cup ($ $= [\pm 1, \infty)_{m}$

