

Auxiliar 8

Profesor: Patricio Aceituno

Auxiliares: Fernanda Padró & Edgardo Rosas

- P1. Considere una plataforma circular de radio R, que puede girar alrededor de un eje vertical que pasa por su centro. La plataforma tiene un canal rectangular que la atraviesa en forma diametral. Por el interior del canal se pueden desplazar sin roce dos partículas A y B, de masa m cada una, que se encuentran unidas mediante una barra rígida de largo $\ell = R/2$ y masa despreciable. Inicialmente la partícula A se encuentra en el borde de la plataforma. En un cierto instante (t=0) la plataforma empieza a girar con una aceleración angular constante $(\ddot{\theta}=\alpha)$ en el sentido indicado en la figura y al mismo tiempo se aplica un impulso a la partícula B que la pone instantáneamente en movimiento con rapidez v_0 relativa al canal, la cual se mantiene constante mediante la aplicación de una fuerza $F_0(t)$ de magnitud variable en el tiempo. Respecto del movimiento de las dos partículas, desde el instante inicial en que comienzan a moverse con rapidez v_0 constante relativa al canal hasta el momento en que la partícula B llega al centro de la plataforma determine lo siguiente:
 - (a) Ecuación de la trayectoria $\rho=\rho(\theta)$ de la partícula A, donde ρ es su distancia al centro de la plataforma.
 - (b) Expresión de la fuerza $F_0(t)$.
 - (c) Expresión de la magnitud de la fuerza que la pared ejerce sobre A, en función del tiempo.

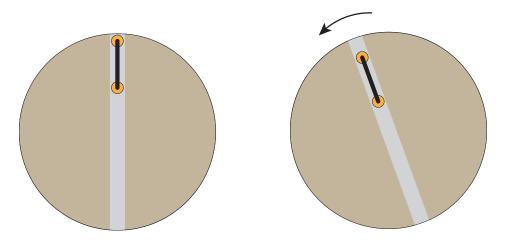


Figure 1: Particulas sobre disco giratorio