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Preface

The goal of this text is to present an introduction to a sampling of ideas and methods
from the subject of nonlinear dispersive equations. This subject has been of great
interest and has rapidly developed in the last few years. Here we will try to expose
some aspects of the recent developments.

The presentation is intended to be self-contained, but we will assume that the
reader has knowledge of the material usually taught in courses of theory of one
complex variable and integration theory.

This text is the product of lecture notes used for mini-courses and graduate courses
taught by the authors. The first version of the lecture notes was written by Gustavo
Ponce with Wilfredo Urbina from the Universidad Central de Venezuela and de-
signed to teach a mini-course at the Venezuelan School of Mathematics in Mérida,
Venezuela, in 1990. A second version of those notes was presented by Gustavo Ponce
at the Colombian School of Mathematics in Cali, Colombia in 1991. These notes
comprise a part of the materials covered in the first six chapters of the present text.
Most of the original notes were used to teach various graduate courses at IMPA and
UNICAMP by Felipe Linares. During these lectures the previous versions were com-
plemented with some new materials presented here. These notes were also used by
Hebe Biagioni and Marcia Scialom from UNICAMP in their seminars and graduate
courses. The idea to write the present text arose from the need for a more complete
treatment of these topics for graduate students.

Before going any further we would first like to give a notion of what a dispersive
type of partial differential equation is. We will do this in the one-dimensional frame.
We consider a linear partial differential equation

F (∂x , ∂t ) u(x, t) = 0, (1)

where F is a polynomial in the partial derivatives. We look for plane wave solutions
of the form u(x, t) = Aei(kx−ωt) where A, k, and ω are constants representing the
amplitude, the wavenumber, and the frequency, respectively. Hence u will be a
solution if and only if

F (ik,−iω) = 0. (2)

v
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This equation is called the dispersion relation. This relation characterizes the plane
wave motion. In several models we can write ω as a real function of k, namely,

ω = ω(k).

The phase and group velocities of the waves are defined by

cp(k) = ω

k
and cg = dω

dk
.

The waves are called dispersive if the group velocity cg = ω′(k) is not constant, i.e.,
ω′′(k) �= 0. In the physical context this means that when time evolves, the different
waves disperse in the medium, with the result that a single hump breaks into wave-
trains.

To present the material we have chosen to study two very well-known models in
the class of nonlinear dispersive equations: the Korteweg–de Vries equation

∂tν + ∂3
x ν + ν∂xν = 0, (3)

where ν is a real-valued function and the nonlinear Schrödinger equation

i∂tu +Δu = f (u, ū), (4)

where u is a complex-valued function.
Before commenting on the theory presented in this text regarding these equations

we would like to say a few words concerning the physical models described by these
equations in the context of water waves.

The first model (3) goes back to the discovery of Scott Russell in 1835 of what
he called a traveling wave. This equation describes the propagation of waves in
shallow water and was proposed by Diederik Johannes Korteweg and Gustav deVries
in 1895 [KdV]. In the one-dimensional context, the (cubic) nonlinear Schrödinger
equation (4) with f (u, u) = |u|2u models the propagation of wave packets in the
theory of water waves.

We also have to mention that there is a very well-known strong relationship be-
tween these two equations and the theory of completely integrable systems, or Soliton
theory.

In many cases, we present the details of simple proof, which may not be that of the
strongest result. We give several examples to illustrate the theory. At the end of every
chapter we complement the theory described either with a set of exercises or with a
section with comments on open problems, extensions, and recent developments.

The first three chapters attempt to review several topics in Fourier analysis and
partial differential equations. These are the elementary tools needed to develop the
theory in the rest of the notes.

The properties of solutions to the linear problem associated to the Schrödinger
equation are discussed in Chapter 4. Then the initial value problem associated to (4)
and properties of its solutions are studied in Chaps. 5 and 6. Chapters 7 and 8 are
devoted to the study of the initial value problem for the generalized Korteweg–de
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Vries equation. A survey of results concerning several nonlinear dispersive equa-
tions that generalize (3) and (4) as Davey–Stewartson systems, Ishimori equations,
Kadomtsev–Petviashvili equations, Benjamin–Ono equations, and Zakharov sys-
tems is presented in Chapter 9. In the last chapter we present the most recent result
regarding local well-posedness for the nonlinear Schrödinger equation.

We shall point out that by no means our presentation is completely exhaustive.
We refer the reader to the lecture notes by Cazenave [Cz1], [Cz2] and the books by
Sulem and Sulem [SS2], Bourgain [Bo2], and Tao [To7]. In these works many topics
not covered in these notes are studied in detail.
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Chapter 1
The Fourier Transform

In this chapter, we shall study some basic properties of the Fourier transform. Sec-
tion 1.1 is concerned with its definition and properties in L1(Rn). The case L2(Rn)
is considered in Section 1.2. The space of tempered distributions is briefly consid-
ered in Section 1.3. Finally, Sections 1.4 and 1.5 give an introduction to the study of
oscillatory integrals in one dimension and some applications, respectively.

1.1 The Fourier Transform in L1(Rn)

Definition 1.1. The Fourier transform of a function f ∈ L1(Rn), denoted by ̂f , is
defined as:

̂f (ξ ) =
∫

Rn

f (x)e−2πi(x·ξ )dx, for ξ ∈ R
n, (1.1)

where (x · ξ ) = x1ξ1 + · · · + xnξn.
We list some basic properties of the Fourier transform in L1(Rn).

Theorem 1.1. Let f ∈ L1(Rn). Then:

1. f �→ ̂f defines a linear transformation from L1(Rn) to L∞(Rn) with

‖̂f ‖∞ ≤ ‖f ‖1. (1.2)

2. ̂f is continuous.
3. ̂f (ξ ) → 0 as |ξ | → ∞ (Riemann–Lebesgue).
4. If τhf (x) = f (x − h) denotes the translation by h ∈ R

n, then

(̂τhf )(ξ ) = e−2πi(h·ξ )
̂f (ξ ), (1.3)

and

̂(e−2πi(x·h)f )(ξ ) = (τ−h
̂f )(ξ ). (1.4)

© Springer-Verlag New York 2015 1
F. Linares, G. Ponce, Introduction to Nonlinear Dispersive Equations,
Universitext, DOI 10.1007/978-1-4939-2181-2_1



2 1 The Fourier Transform

5. If δaf (x) = f (ax) denotes a dilation by a > 0, then

(̂δaf )(ξ ) = a−n
̂f (a−1ξ ). (1.5)

6. Let g ∈ L1(Rn) and f ∗ g be the convolution of f and g. Then,

(̂f ∗ g)(ξ ) = ̂f (ξ )̂g(ξ ). (1.6)

7. Let g ∈ L1(Rn). Then,
∫

Rn

̂f (y)g(y)dy =
∫

Rn

f (y )̂g(y)dy. (1.7)

Notice that the equality in (1.2) holds for f ≥ 0, i.e., ̂f (0) = ‖̂f ‖∞ = ‖f ‖1.

Proof. It is left as an exercise. �

Next, we give some examples to illustrate the properties stated in Theorem 1.1.

Example 1.1 Let n = 1 and f (x) = χ(a,b)(x) (the characteristic function of the
interval (a, b)). Then,

̂f (ξ ) =
b
∫

a

e−2πixξ dx

= −e−2πibξ − e−2πiaξ

2πiξ

= −e−πi(a+b)ξ sin (π (a − b)ξ )

πξ
.

Notice that ̂f /∈ L1(R) and that ̂f (ξ ) has an analytic extension ̂f (ξ+iη) to the whole
plane ξ + iη ∈ C. In particular, if (a, b) = ( − k, k) , k ∈ Z

+, then we have

χ̂(−k,k)(ξ ) = sin (2πkξ )

πξ
.

Example 1.2 Let n = 1 and for k ∈ Z
+ define

gk(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

k + 1 + x, if x ∈ (−k − 1,−k + 1]

2, if x ∈ (−k + 1, k − 1)

k + 1 − x, if x ∈ [k − 1, k + 1)

0, if x /∈ (−k − 1, k + 1),

i.e., gk(x) = χ(−1,1) ∗ χ(−k,k)(x). The identity (1.6) and the previous example show
that

ĝk(ξ ) = sin (2πξ ) sin (2πkξ )

(πξ )2
.

Notice that ĝk ∈ L1(R) and has an analytic extension to the whole plane C.
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Example 1.3 Let n ≥ 1 and f (x) = e−4π2t |x|2 with t > 0. Then, changing
variables x → x/

√
t and using (1.5), we can restrict ourselves to the case t = 1.

From Fubini’s theorem we write:

∫

Rn

e−4π2|x|2e−2πi(x·ξ ) dx =
n
∏

j=1

∞
∫

−∞
e

(−4π2x2
j−2πiξj xj ) dxj

=
n
∏

j=1

∞
∫

−∞
e

(−4π2x2
j−2πiξj xj+ξ2

j /4)
e
−ξ2

j /4 dxj

=
n
∏

j=1

e
−ξ2

j /4

∞
∫

−∞
e−(2πxj+iξj /2)2

dxj

= 2−nπ−n/2e−|ξ |2/4,

where in the last equality, we have employed the following identities from complex
integration and calculus:

∞
∫

−∞
e−(2πx+iξ/2)2

dx =
∞
∫

−∞
e−(2πx)2

dx =
∞
∫

−∞
e−x2 dx

2π
= 1

2
√
π
.

Hence,

̂e−4π2t |x|2 (ξ ) = e−|ξ |2/4t

(4πt)n/2
. (1.8)

Observe that taking t = 1/4π and changing variables t → 1/16π2t we get:

̂e−π |x|2 (ξ ) = e−π |ξ |2 and
̂e−|x|2/4t

(4πt)n/2
(ξ ) = e−4π2t |ξ |2 ,

respectively.

Example 1.4 Let n ≥ 1 and f (x) = e−2π |x|. Then,

f̂ (ξ ) = Γ [ (n+1)
2 ]

π (n+1)/2

1

(1 + |ξ |2)(n+1)/2
,

where Γ (·) denotes the Gamma function. See Exercise 1.1 (i).

Example 1.5 Let n = 1 and f (x) = 1

π

1

1 + x2
. Using complex integration one

obtains the identity:

∞
∫

−∞

cos (ax)

x2 + b2
dx = π

b
e−ab, a, b > 0.
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Hence,

1

π

̂1

1 + x2
(ξ ) = 1

π

∞
∫

−∞

e−2πixξ

1 + x2
dx

= 1

π

∞
∫

−∞

cos (2π |ξ |x)

1 + x2
dx = e−2π |ξ |.

One of the most important features of the Fourier transform is its relationship with
differentiation. This is described in the following results.

Proposition 1.1. Suppose xk f ∈ L1(Rn), where xk denotes the kth coordinate
of x. Then, ̂f is differentiable with respect to ξk and

∂ ̂f

∂ξk
(ξ ) = ̂( − 2πixkf (x))(ξ ). (1.9)

In other words, the Fourier transform of the product xkf (x) is equal to a multiple
of the partial derivative of ̂f (ξ ) with respect to the kth variable.

To consider the converse result, we need to introduce a definition.

Definition 1.2. Let 1 ≤ p < ∞. A function f ∈ Lp(Rn) is differentiable in
Lp(Rn) with respect to the kth variable, if there exists g ∈ Lp(Rn) such that

∫

Rn

∣

∣

∣

∣

f (x + hek) − f (x)

h
− g(x)

∣

∣

∣

∣

p

dx → 0 as h → 0,

where ek has kth coordinate equals 1 and 0 in the others. If such a function g exists
(in this case it is unique), it is called the partial derivative of f with respect to the
kth variable in the Lp-norm.

Theorem 1.2. Let f ∈ L1(Rn) and g be its partial derivative with respect to the
kth variable in the L1-norm. Then, ĝ(ξ ) = 2πiξk ̂f (ξ ).

Proof. Properties (1.2) and (1.4) in Theorem 1.1 allow us to write

∣

∣ĝ(ξ ) − ̂f (ξ )
(1 − e−2πih(ξ ·ek ))

h

∣

∣,

then take h → 0 to obtain the result. �

From the previous theorems it is easy to obtain the formulae:

P (D)̂f (ξ ) = (P (−2πix)f (x))∧(ξ ),

̂(P (D)f )(ξ ) = P (2πiξ )̂f (ξ ),
(1.10)

where P is a polynomial in n variables and P (D) denotes the differential operator
associated to P .
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Now we turn our attention to the following question: Given the Fourier transform
̂f of a function in L1(Rn), how can one recover f ?

Examples 1.3–1.5 suggest the use of the formula

f (x) =
∫

Rn

̂f (ξ )e2πi(x·ξ )dξ.

Unfortunately, ̂f (ξ ) may be nonintegrable (see Example 1.1). To avoid this problem,
one needs to use the so called method of summability (Abel and Gauss) similar to
those used in the study of Fourier series. Combining the ideas behind the Gauss
summation method and the identities (1.4), (1.7), (1.8), we obtain the following
equalities:

f (x) = lim
t→0

e−|·|2/4t

(4πt)n/2
∗ f (x) = lim

t→0

∫

Rn

e−|x−y|2/4t

(4πt)n/2
f (y)dy

= lim
t→0

∫

Rn

τx
e−|y|2/4t

(4πt)n/2
f (y)dy

= lim
t→0

∫

Rn

̂(e2πi(x·ξ )e−4π2t |ξ |2 )(y)f (y)dy

= lim
t→0

∫

Rn

e2πi(x·ξ )e−4π2t |ξ |2
̂f (ξ )dξ ,

where the limit is taken in the L1-norm.
Thus, if f and ̂f are both integrable, the Lebesgue dominated convergence

theorem guarantees the point-wise equality. Also, if f ∈ L1(Rn) is continuous at
the point x0 , we get:

f (x0) = lim
t→0

e−|·|2/4t

(4πt)n/2
∗ f (x0) = lim

t→0

∫

Rn

e2πi(x0·ξ )e−4π2t |ξ |2
̂f (ξ )dξ.

Collecting this information, we get the following result.

Proposition 1.2. Let f ∈ L1(Rn). Then,

f (x) = lim
t→0

∫

Rn

e2πi(x·ξ )e−4π2t |ξ |2
̂f (ξ )dξ ,

where the limit is taken in the L1-norm. Moreover, if f is continuous at the point
x0 , then the following point-wise equality holds:

f (x0) = lim
t→0

∫

Rn

e2πi(x0·ξ )e−4π2t |ξ |2
̂f (ξ )dξ.
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Let f , ̂f ∈ L1(Rn). Then,

f (x) =
∫

Rn

e2πi(x·ξ )
̂f (ξ )dξ , almost everywhere x ∈ R

n.

From this result and Theorem 1.1 we can conclude that

∧ : L1(Rn) −→ C∞(Rn)

is a linear, one-to-one (Exercise 1.6 (i)), bounded map. However, it is not surjective
(Exercise 1.6 (iii)).

1.2 The Fourier Transform in L2(Rn)

To define the Fourier transform in L2(Rn), we shall first consider that L1(Rn) ∩
L2(Rn) is a dense subset of L1(Rn) and L2(Rn).

Theorem 1.3 (Plancherel). Let f ∈ L1(Rn) ∩ L2(Rn). Then, ̂f ∈ L2(Rn) and

‖̂f ‖2 = ‖f ‖2. (1.11)

Proof. Let g(x) = −x. Using Young’s inequality (1.39), (1.6), and Exercise 1.7
(ii), it follows that

f ∗ g ∈ L1(Rn) ∩ C∞(Rn) and (̂f ∗ g)(ξ ) = ̂f (ξ ) ĝ(ξ ).

Since ĝ = (̂f ) , we find that (̂f ∗ g) = |̂f |2 ≥ 0. Hence, (̂f ∗ g) ∈ L1(Rn) (see
Exercise 1.7 (iii)). Proposition 1.2 shows that

(f ∗ g)(0) =
∫

Rn

(̂f ∗ g)(ξ ) dξ ,

and

‖̂f ‖2
2 =
∫

Rn

(̂f ∗ g)(ξ ) dξ = (f ∗ g)(0)

=
∫

Rn

f (x)g(0 − x) dx =
∫

Rn

f (x)f̄ (x) dx = ‖f ‖2
2.

�

This result shows that the Fourier transform defines a linear bounded operator from
L1(Rn) ∩ L2(Rn) to L2(Rn). Indeed, this operator is an isometry. Thus, there is
a unique bounded extension F defined in all L2(Rn). F is called the Fourier
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transform in L2(Rn). We shall use the notation ̂f = F(f ) for f ∈ L2(Rn).
In general, the definition ̂f is realized as a limit in L2 of the sequence {̂hj },
where {hj } denotes any sequence in L1(Rn) ∩ L2(Rn) that converges to f in
the L2-norm. It is convenient to take hj equals f for |x| ≤ j and to have hj

vanishing for |x| > j . Then,

̂hj (ξ ) =
∫

|x|<j

f (x)e−2πi(x·ξ ) dx =
∫

Rn

hj (x)e−2πi(x·ξ ) dx

and so,
̂hj (ξ ) → ̂f (ξ ) in L2, as j → ∞.

Example 1.6 Let n = 1 and f (x) = 1

π

x

1 + x2
. Observe that f ∈ L2(R) \ L1(R).

Differentiating the identity in the Example 1.5 with respect to a and taking b = 1
we get:

∫ ∞

−∞
x sin (ax)

1 + x2
dx = πe−a , a > 0,

which combined with the previous remark gives:

̂f (ξ ) = −i sgn(ξ )e−2π |ξ |.

A surjective isometry defines a “unitary operator.” Theorem 1.3 affirms that F is
an isometry. Let us see that F is also surjective.

Theorem 1.4. The Fourier transform defines a unitary operator in L2(Rn).

Proof. From the identity (1.11) it follows that F is an isometry. In particular, its
image is a closed subspace of L2(Rn). Assume that this is a proper subspace of L2.
Then, there exists g �= 0 such that

∫

Rn

̂f (y)g(y)dy = 0, for any f ∈ L2(Rn).

Using formula (1.7; Theorem 1.7), which obviously extends to f , g ∈ L2(Rn), we
have that

∫

Rn

f (y )̂g(y)dy =
∫

Rn

̂f (y)g(y)dy = 0, for any f ∈ L2.

Therefore, ĝ(ξ ) = 0 almost everywhere, which contradicts

‖g‖2 = ‖ĝ‖2 �= 0.

�

Theorem 1.5. The inverse of the Fourier transform F−1 can be defined by the
formula
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F−1f (x) = Ff (−x), for any f ∈ L2(Rn). (1.12)

Proof. F−1
̂f = f̃ is the limit in the L2-norm of the sequence

fj (x) =
∫

|ξ |<j

̂f (ξ )e2πi(ξ ·x)dξ.

First, we consider the case where f ∈ L1(Rn)∩L2(Rn). It suffices to verify that this
agrees with F∗

̂f , where F∗ is the adjoint operator of F (we recall the fact that
for a unitary operator the adjoint and the inverse are equal). This can be checked as
follows:

f̃ (x) =
∫

Rn

̂f (ξ )e2πi(ξ ·x)dξ = lim
j→∞ fj (x) in L2(Rn),

and

(g, f̃ ) =
∫

Rn

g(x)
(

∫

Rn

̂f (ξ ) e2πi(ξ ·x) dξ
)

dx

=
∫

Rn

(

∫

Rn

g(x)e−2πi(x·ξ )dx
)

̂f (ξ )dξ = (Fg, ̂f )

for any g ∈ L1(Rn) ∩ L2(Rn). Hence f̃ = f.

The general case follows by combining the above result and an argument involving
a justification of passing to the limit. �

1.3 Tempered Distributions

From the definitions of the Fourier transform on L1(Rn) and on L2(Rn) , there is a
natural extension to L1(Rn) + L2(Rn). It is not hard to see that L1(Rn) + L2(Rn)
contains the spaces Lp(Rn) for 1 ≤ p ≤ 2. On the other hand, as we shall prove,
any function in Lp(Rn) for p > 2 has a Fourier transform in the distribution
sense. However, they may not be function, they are tempered distributions. Before
studying them, it is convenient to see how far Definition 1.1 can be carried out.

Example 1.7 Let n ≥ 1 and f (x) = δ0, the delta function, i.e., the measure of mass
one concentrated at the origin. Using (1.1) one finds that

̂δ0(ξ ) =
∫

Rn

δ0(x) e−2πi(x·ξ )dx ≡ 1.

In fact, Definition 1.1 tells us that if μ is a bounded measure, then μ̂(ξ ) represents
a function in L∞(Rn).
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Suppose that given f (x) ≡ 1 we want to find ̂f (ξ ). In this case, Definition
1.1 cannot be used directly. It is necessary to introduce the notion of tempered
distribution. For this purpose, we first need the following family of seminorms.

For each (ν,β) ∈ (Z+)2n we denote the seminorm ||| · |||(ν,β) defined as:

|||f |||(ν,β) = ‖xν∂β
x f ‖∞.

Now we can define the Schwartz space S(Rn), the space of the C∞-functions
decaying at infinity, i.e.,

S(Rn) = {ϕ ∈ C∞(Rn) : |||ϕ|||(ν,β) < ∞ for any ν,β ∈ (Z+)n}.
Thus, C∞

0 (Rn) � S(Rn) (consider f (x) as in Example 1.3).
The topology in S(Rn) is given by the family of seminorms ||| · |||(ν,β), (ν,β) ∈

(Z+)2n.

Definition 1.3. Let {ϕj } ⊂ S(Rn). Then, ϕj → 0 as j → ∞, if for any
(ν,β) ∈ (Z+)2n one has that

|||ϕj |||(ν,β) −→ 0 as j → ∞.

The relationship between the Fourier transform and the function space S(Rn) is
described in the formulae (1.10). More precisely, we have the following result (see
Exercise 1.13).

Theorem 1.6. The map ϕ �→ ϕ̂ is an isomorphism from S(Rn) into itself.
Thus, S(Rn) appears naturally associated to the Fourier transform. By duality, we

can define the tempered distributions S ′(Rn).

Definition 1.4. We say that ψ : S(Rn) �→ C defines a tempered distribution, i.e.,
Ψ ∈ S ′(Rn) if:

1. Ψ is linear.
2. Ψ is continuous, i.e., if for any {ϕj } ⊆ S(Rn) such that ϕj → 0 as j → ∞,

then the numerical sequence Ψ (ϕj ) → 0 as j → ∞.

It is easy to check that any bounded function f defines a tempered distribution Ψf ,
where

Ψf (ϕ) =
∫

Rn

f (x)ϕ(x)dx, for any ϕ ∈ S(Rn). (1.13)

In fact, this identity allows us to see that any locally integrable function with poly-
nomial growth at infinity defines a tempered distribution. In particular, we have the
Lp(Rn) spaces with 1 ≤ p ≤ ∞. The following example gives us a tempered
distribution outside these function spaces.

Example 1.8 In S ′(R), define the principal value function of 1/x, denoted by

p.v.
1

x
, by the expression
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p.v.
1

x
(ϕ) = lim

ε↓0

∫

ε<|x|<1/ε

ϕ(x)

x
dx,

for any ϕ ∈ S(R). Since 1/x is an odd function,

p.v.
1

x
(ϕ) =

∫

|x|<1

ϕ(x) − ϕ(0)

x
dx +

∫

|x|>1

ϕ(x)

x
dx. (1.14)

Therefore,

∣

∣p.v.
1

x
(ϕ)
∣

∣ ≤ 2‖ϕ′‖∞ + 2‖xϕ‖∞, (1.15)

and consequently, p.v. 1
x
∈ S ′(R).

Now, given a Ψ ∈ S ′(Rn), its Fourier transform can be defined in the following
natural form.

Definition 1.5. Given Ψ ∈ S ′(Rn), its Fourier transform ̂Ψ ∈ S ′(Rn) is defined
as:

̂Ψ (ϕ) = Ψ (ϕ̂), for any ϕ ∈ S(Rn). (1.16)

Observe that for f ∈ L1(Rn) and ϕ ∈ S(Rn), (1.7), (1.13), and (1.16) tell us
that

̂Ψf (ϕ) = Ψf (ϕ̂) =
∫

Rn

f (x)ϕ̂(x)dx =
∫

Rn

̂f (x)ϕ(x)dx = Ψ
̂f (ϕ).

Therefore, for f ∈ L1(Rn)+L2(Rn) one has that ̂Ψf = Ψ
̂f . Thus, Definition 1.5

is consistent with the theory of the Fourier transform developed in Sects. 1.1 and 1.2.

Example 1.9 Let f (x) ≡ 1 ∈ L∞(Rn) ⊂ S ′(Rn). Using the previous notation, for
any ϕ ∈ S(Rn) it follows that

̂Ψ1(ϕ) = Ψ1(ϕ̂) =
∫

Rn

1 ϕ̂(x)dx = ϕ(0) =
∫

Rn

δ0(x) ϕ(x)dx = δ0(ϕ).

Hence ̂1 = δ0. We recall that in Example 1.7 we already saw that ̂δ0 = 1.
Next we compute the Fourier transform of the tempered distribution in Exam-

ple 1.8.

Example 1.10 Combining Definition 1.5, Fubini’s theorem, and the Lebesgue
dominated convergence theorem we have that for any ϕ ∈ S(R),

̂

p.v.
1

x
(ϕ) = p.v.

1

x
(ϕ̂) = lim

ε↓0

∫

ε<|x|<1/ε

ϕ̂(x)

x
dx

= lim
ε↓0

∫

ε<|x|<1/ε

1

x

(

∞
∫

−∞
ϕ(y)e−2πixy dy

)

dx
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= lim
ε↓0

∞
∫

−∞
ϕ(y)
(

∫

ε<|x|<1/ε

e−2πixy

x
dx
)

dy

=
∞
∫

−∞
ϕ(y)
(

lim
ε↓0

∫

ε<|x|<1/ε

e−2πixy

x
dx
)

dy

= −iπ

∞
∫

−∞
sgn(y) ϕ(y)dy,

where a change of variables and complex integration have been used to conclude that

lim
ε↓0

∫

ε<|x|<1/ε

e−2πixy

x
dx = −2i

∞
∫

0

sin (2πxy)

x
dx = −2i sgn(y)

∞
∫

0

sin (x)

x
dx

=−iπ sgn(y).

This yields the identity:

̂

p.v.
1

x
(ξ ) = − iπ sgn(ξ ).

The topology in S ′(Rn) can be described in the following form.

Definition 1.6. Let {Ψj } ⊂ S ′(Rn). Then, Ψj → 0 as j → ∞ in S ′(Rn), if for
any ϕ ∈ S(Rn) it follows that Ψj (ϕ) −→ 0 as j → ∞.

As a consequence of the Definitions 1.4, 1.6, we get the next extension of
Theorem 1.6, whose proof we leave as an exercise.

Theorem 1.7. The map F : Ψ �→ ̂Ψ is an isomorphism from S ′(Rn) into itself.
Combining the above results with an extension of Example 1.3 (see Exercise 1.2),

we can justify the following computation related with the fundamental solution of
the time-dependent Schrödinger equation.

Example 1.11 ̂e−4π2it |x|2 = lim
ε→0+

̂e−4π2(ε+it)|x|2 in S ′(Rn).

From Exercise 1.2, it follows that

̂(e−4π2(ε+it)|x|2 )(ξ ) = e−|ξ |2/4(ε+it)

[4π (ε + it)]n/2
.

Taking the limit ε → 0+, we obtain:

̂(e−4π2it |x|2 )(ξ ) = ei|ξ |2/4t

(4πit)n/2
. (1.17)
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As an application of these ideas, we introduce the Hilbert transform.

Definition 1.7. For ϕ ∈ S(R), we define its Hilbert transform H(ϕ) by

H(ϕ)(y) = 1

π
p.v.

1

x
(ϕ(y − ·)) = 1

π
p.v.

1

x
∗ ϕ(y).

From (1.14) and (1.15) it is clear that H(ϕ)(y) is defined for any y ∈ R and it is
bounded by g(y) = a|y| + b, with a, b > 0 depending on ϕ. In particular, we have
that H(ϕ) ∈ S ′(R). Let us compute its Fourier transform.

Example 1.12 From Example 1.10 and the identity

H(ϕ)(y) = lim
ε→0

( 1

π

1

x
χ{ε<|x|<1/ε} ∗ ϕ

)

(y) in S ′(R)

it follows that

lim
ε→0

̂( 1

π

1

x
χ{ε<|x|<1/ε} ∗ ϕ

)

(ξ ) = −i sgn(ξ ) ϕ̂(ξ ).

This implies that

Ĥ(ϕ)(ξ ) = −i sgn(ξ ) ϕ̂(ξ ), for any ϕ ∈ S(R). (1.18)

The identity (1.18) allows us to extend the Hilbert transform as an isometry in L2(R).
It is not hard to see that

‖H(ϕ)‖2 = ‖ϕ‖2 and H(H(ϕ)) = −ϕ.

Other properties of the Hilbert transform are deduced in the exercises in Chaps. 1
and 2.

In Definition 1.7, we have implicitly utilized the following result, which is
employed again in the applications at the end of this chapter.

Proposition 1.3. Let ϕ ∈ S(Rn) and Ψ ∈ S ′(Rn). Define

Ψ ∗ ϕ(x) = Ψ (ϕ(x − ·)). (1.19)

Then,
Ψ ∗ ϕ ∈ C∞(Rn) ∩ S ′(Rn)

and

Ψ̂ ∗ ϕ = ̂Ψ ϕ̂, (1.20)

where ̂Ψ ϕ̂ ∈ S ′(Rn) is defined as ̂Ψ ϕ̂(φ) = ̂Ψ (ϕ̂φ) for any φ ∈ S(Rn).

Proof. It is left as an exercise. �
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1.4 Oscillatory Integrals in One Dimension

In many problems and applications the following question arises:
What is the asymptotic behavior of I (λ) when λ → ∞, where

I (λ) =
b
∫

a

eiλφ(x)f (x)dx, (1.21)

and φ is a smooth real-valued function, called the “phase function,” and f is a
smooth complex-valued function?

We shall see that this asymptotic behavior is determined by the points x̄ , where
the derivative of φ vanishes, i.e., φ′(x̄) = 0.

Proposition 1.4. Let f ∈ C∞
0 ([a, b]) and φ′(x) �= 0 for any x ∈ [a, b]. Then

I (λ) =
b
∫

a

eiλφ(x)f (x)dx = O(λ−k), as λ → ∞ (1.22)

for any k ∈ Z
+.

Proof. Define the differential operator

L(f ) = 1

iλφ′
df

dx
,

which satisfies

Lt (f ) = − d

dx

(

f

iλφ′

)

and Lk(eiλφ) = eiλφ ,

where Lt denotes the adjoint of L. Using integration by parts it follows that

b
∫

a

eiλφf dx =
b
∫

a

Lk(eiλφ)f dx

= (−1)k
b
∫

a

eiλφ(Lt )kf dx = O(λ−k), as λ → ∞.

�

Proposition 1.5. Let k ∈ Z
+ and |φ(k)(x)| ≥ 1 for any x ∈ [a, b] with φ′(x)

monotonic in the case k = 1. Then,

∣

∣

∣

b
∫

a

eiλφ(x) dx
∣

∣

∣ ≤ ckλ
−1/k , (1.23)
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where the constant ck is independent of a, b.

Proof. For k = 1, we have that
b
∫

a

eiλφdx =
b
∫

a

L(eiλφ)dx = 1

iλφ′ e
iλφ
∣

∣

∣

b

a

−
b
∫

a

eiλφ
1

iλ

d

dx

( 1

φ′
)

dx.

Clearly, the first term on the right-hand side is bounded by 2λ−1. On the other hand,
the hypothesis of monotonicity on φ′ guarantees that

∣

∣

∣

b
∫

a

eiλφ
1

iλ

d

dx

( 1

φ′
)

dx
∣

∣

∣ ≤ 1

λ

b
∫

a

∣

∣

∣

d

dx

( 1

φ′
)∣

∣

∣ dx

= 1

λ

∣

∣

∣

1

φ′(b)
− 1

φ′(a)

∣

∣

∣ ≤ 2

λ
.

This yields the proof of the case k = 1.
For the proof of the case k ≥ 2, induction in k is used. Assuming the result

for k, we shall prove it for k + 1. By hypothesis, |φ(k+1)(x)| ≥ 1. Let x0 ∈ [a, b]
be such that

|φ(k)(x0)| = min
a≤x≤b

|φ(k)(x)|.

If φ(k)(x0) = 0, outside the interval (x0 − δ, x0 + δ), one has that |φ(k)(x)| ≥ δ,
with φ′ monotonic if k = 1. Splitting the domain of integration and applying the
hypothesis we obtain that

∣

∣

∣

x0−δ
∫

a

eiλφ(x) dx
∣

∣

∣+
∣

∣

∣

b
∫

x0+δ

eiλφ(x) dx
∣

∣

∣ ≤ ck(λδ)−1/k.

A simple computation shows that

∣

∣

∣

x0+δ
∫

x0−δ

eiλφ(x) dx
∣

∣

∣ ≤ 2δ.

Thus,
∣

∣

∣

b
∫

a

eiλφ(x) dx
∣

∣

∣ ≤ ck(λδ)−1/k + 2δ.

If φ(k)(x0) �= 0, then x0 = a or b and a similar argument provides the same
bound. Finally, taking δ = λ−1/(k+1) we complete the proof. �

Corollary 1.1 (van der Corput). Under the hypotheses of Proposition 1.5,

∣

∣

∣

b
∫

a

eiλφ(x)f (x) dx
∣

∣

∣ ≤ ckλ
−1/k
(‖f ‖∞ + ‖f ′‖1

)

(1.24)
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with ck independent of a, b.

Proof. Define

G(x) =
x
∫

a

eiλφ(y) dy.

By (1.23) one has that
|G(x)| ≤ ckλ

−1/k.

Now using integration by parts we obtain:

∣

∣

∣

b
∫

a

eiλφf dx
∣

∣

∣ =
∣

∣

∣

b
∫

a

G′f dx
∣

∣

∣ ≤
∣

∣

∣ (Gf )
∣

∣

∣

b

a

+
∣

∣

∣

b
∫

a

Gf ′ dx
∣

∣

∣

≤ ckλ
−1/k
(‖f ‖∞ + ‖f ′‖1

)

.

�

Next, we shall study an application of these results.

Proposition 1.6. Let β ∈ [0, 1/2] and Iβ(x) be the oscillatory integral

Iβ(x) =
∞
∫

−∞
ei(xη+η3) |η|βdη. (1.25)

Then, Iβ ∈ L∞(R).

Proof. First, we fix ϕ0 ∈ C∞(R) such that

ϕ0(η) =
{

1, if |η| > 2

0, if |η| < 1.

Observe that (1−ϕ0)(η)eiη
3 |η|β ∈ L1(R), therefore its Fourier transform belongs to

L∞(R). Thus, it suffices to consider

Ĩβ(x) =
∞
∫

−∞
ei(xη+η3) |η|βϕ0(η)dη.

For x ≥ −3, the phase function φx(η) = xη + η3, in the support of ϕ0, satisfies

|φ′
x(η)| = |x + 3η2| ≥ (|x| + |η|2).

In this case, integration by parts leads to the desired result.
For x < −3, we consider the functions (ϕ1,ϕ2) ∈ C∞

0 × C∞ such that
ϕ1(η) + ϕ2(η) = 1 with
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suppϕ1 ⊂ A =
{

η : |x + 3η2| ≤ |x|
2

}

,

and

ϕ2 = 0 in B =
{

η : |x + 3η2| < |x|
3

}

,

and we split the integral Ĩβ(x) in two pieces,

|Ĩβ(x)| ≤ |Ĩ 1
β (x)| + |Ĩ 2

β (x)|,
where

Ĩ
j

β (x) =
∞
∫

−∞
ei(xη+η3) |η|βϕ0(η)ϕj (η)dη, for j = 1, 2.

When ϕ2(η) �= 0, the triangle inequality shows that

|φ′
x(η)| = |x + 3η2| ≥ 3

13
(|x| + |η|2).

Integration by parts leads to

|Ĩ 2
β (x)| =

∣

∣

∣

∞
∫

−∞

|η|β
φ′
x(η)

ϕ0(η)ϕ2(η)
d

dη
ei(xη+η3) dη

∣

∣

∣ ≤ 100.

Now, if η ∈ A, we have that

|x|
2

≤ 3η2 ≤ 3
|x|
2

and
∣

∣

∣

d2φx

dη2
(η)
∣

∣

∣ = 6|η| ≥ |x|1/2.

Thus (1.24) (van der Corput) and the form of ϕ0, ϕ1 guarantee the existence of a
constant c independent of x < −3 such that

|Ĩ 1
β (x)| =

∣

∣

∣

∞
∫

−∞
ei(xη+η3) |η|βϕ0(η)ϕ1(η) dη

∣

∣

∣ ≤ c |x|−1/4|x|β/2.

�

1.5 Applications

Consider the initial value problem (IVP) for the linear Schrödinger equation:
{

∂tu = iΔu,

u(x, 0) = u0(x),
(1.26)
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x ∈ R
n, t ∈ R. Taking the Fourier transform with respect to the space variable x

in (1.26) we obtain:
⎧

⎨

⎩

̂∂tu(ξ , t) = ∂t û(ξ , t) = ̂iΔu(ξ , t) = −4π2i|ξ |2̂u(ξ , t)

û(ξ , 0) = û0(ξ ).

The solution of this family of ordinary differential equations (ODE), with parameter
ξ , can be written as:

û(ξ , t) = e−4π2it |ξ |2 û0(ξ ).

By Proposition 1.3 it follows that

u(x, t) = (e−4π2it |ξ |2 û0(ξ ))∨ = (e−4π2it |ξ |2 )∨ ∗ u0(x)

= ei|·|2/4t

(4πit)n/2 ∗ u0(x) = eitΔu0(x),
(1.27)

where we have introduced the notation eitΔ which is justified in Chapter 4.
Next, we consider the IVP associated to the linearized Korteweg–de Vries (KdV)

equation:
{

∂tv + ∂3
xv = 0,

v(x, 0) = v0(x)
(1.28)

for t , x ∈ R. The previous argument shows that

v(x, t) = St ∗ v0(x) = (e8π3itξ3
v̂0)

∨ = V (t)v0(x), (1.29)

where the kernel St (x) is defined by the oscillatory integral:

St (x) =
∞
∫

−∞
e2πixξ e8π3itξ3

dξ. (1.30)

After changing variables,

St (x) = 1
3
√

3t
Ai

(

x
3
√

3t

)

, (1.31)

where Ai(·) denotes the Airy function:

Ai(x) = 1

2π

∞
∫

−∞
ei(ξx+ξ3/3)dξ. (1.32)

By combining Proposition 1.6 (with β = 0) and a new change of variable we find
that

‖St‖∞ ≤ c|t |−1/3. (1.33)
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Moreover, if β ∈ [0, 1/2], then

‖Dβ
x St‖∞ ≤ c|t |−(β+1)/3. (1.34)

Hence, using Exercise 1.6 it follows that

‖Dβ
x V (t)v0‖∞ = ‖Dβ

x St ∗ v0‖∞ ≤ c|t |−(β+1)/3‖v0‖1, (1.35)

where D
β
x = Dβ = (−Δ)β/2 denotes the homogeneous fractional derivative of

order β, i.e.,

Dβf (x) = [(2π |ξ |)β ̂f (ξ )]∨(x). (1.36)

Notice that the derivative of the phase function in (1.32) φ(ξ ) = ξx + ξ 3/3 does not
vanish for x > 0, i.e., |φ′(ξ )| = |x + ξ 2| ≥ |x|, so using Proposition 1.4 one sees
that Ai(x) has fast decay for x > 0. In fact, one has (see [Ho2] or [SSS]) that

|Ai(x)| ≤ 1

(1 + x−)1/4
e−cx

3/2
+ , (1.37)

and

|Ai ′(x)| ≤ (1 + x−)1/4e−cx
3/2
+ , (1.38)

where x+ = max{x; 0} and x− = max{−x; 0}.
Hence, (1.34) with β = 1/2 can be seen as an interpolation between (1.37) and

(1.38) and the scaling.

Remark 1.1. The relevant references used in this chapter are the books [SW], [S2],
[S3], [Sa], [Du], and [Rd].

1.6 Exercises

1.1 (i) Let n ≥ 1 and f (x) = e−2π |x|. Show that

f̂ (ξ ) = Γ [(n+ 1)/2]

π (n+1)/2

1

(1 + |ξ |2)(n+1)/2
.

Hint: From the formula of Example 1.5 with a = β and b = 1 one sees
that

e−β = 2

π

∞
∫

0

cos (βx)

1 + x2
dx,

which, combined with the equality:

1

1 + x2
=

∞
∫

0

e−(1+x2)ρ dρ, yields e−β =
∞
∫

0

e−ρ

√
ρ
e−β2/4ρ dρ.

Use this identity to obtain the desired result.
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(ii) Let n = 1 and f (x) = 1

π

1

(1 + x2)2 . Show that

f̂ (ξ ) = 1

2
e−2π |ξ |(2π |ξ | + 1).

Hint: Differentiate the identity in Example 1.5.
1.2 (i) Prove the following extension in S ′(Rn) of formula (1.8):

̂(e−a|x|2 )(ξ ) = (π
a

)n/2
e−π2|ξ |2/a , Re a ≥ 0, a �= 0,

where
√
a is defined as the branch with Re a > 0.

Hint: Use an analytic continuation argument.
(ii) Show that if a = 1 + it , then

∥

∥

∥

∥

(π

a

)n/2
e−π2|x|2/a

∥

∥

∥p ∼ cp (1 + t)n( 1
p
− 1

2 ), 1 ≤ p ≤ ∞, t > 0,

and

‖e−πa|ξ |2‖q ∼ cq , 1 ≤ q ≤ ∞,

where f (t) ∼ g(t), for f , g ≥ 0, means that there exists c > 1 such that

c−1 f (t) ≤ g(t) ≤ c f (t), ∀t > 0.

1.3 Prove Young’s inequality: Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and g ∈ L1(Rn).
Then, f ∗ g ∈ Lp(Rn) with

‖f ∗ g‖p ≤ ‖f ‖p‖g‖1. (1.39)

1.4 Prove the Minkowski integral inequality. If 1 ≤ p ≤ ∞, then
⎛

⎝

∫

Rn

∣

∣

∣

∫

Rn

f (x, y) dx
∣

∣

∣

p

dy

⎞

⎠

1/p

≤
∫

Rn

⎛

⎝

∫

Rn

∣

∣

∣f (x, y)
∣

∣

∣

p

dy

⎞

⎠

1/p

dx. (1.40)

Observe that the proof of the cases p = 1,∞ is immediate.
1.5 Let f ∈ Lp((0,∞)), 1 < p < ∞, f ≥ 0:

(i) Prove Hardy’s inequality:

∞
∫

0

⎛

⎝

1

x

x
∫

0

f (s) ds

⎞

⎠

p

dx ≤
(

p

p − 1

)p
∞
∫

0

(f (x))p dx. (1.41)

(ii) Prove that equality in (1.41) holds if and only if f = 0, a.e., and that the
constant cp = p/(p − 1) is optimal in (1.41).

(iii) Prove that (1.41) fails for p = 1 and p = ∞.
Hint: Assuming f ∈ C0((0,∞)) define
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F (x) = 1

x

∞
∫

0

f (s) ds, so x F ′ = f − F.

Use integration by parts and the Hölder inequality to obtain (1.41).
1.6 Consider the Fourier transform ̂ as a map from L1(Rn) into L∞(Rn).

(i) Prove that ̂ is injective.

(ii) Prove that the image of ̂ , i.e., L̂1(Rn), is an algebra with respect to
the point-wise multiplication of functions.

(iii) Prove that L̂1(Rn) � C∞(Rn), where C∞(Rn) denotes the space of
continuous functions vanishing at infinity.
Hint: From Example 1.2 we have that ‖gk‖∞ = 2 and

lim
k↑∞ ‖ĝk‖1 = ∞.

Apply the open mapping theorem to get the desired result.
1.7 (i) Prove the following generalization of (1.6) in Theorem 1.1:

If f ∈ L1(Rn) and g ∈ Lp(Rn), 1 ≤ p ≤ 2, then (̂f ∗ g)(ξ ) =
̂f (ξ ) ĝ(ξ ).

(ii) If f ∈ Lp(Rn), g ∈ Lp′
(Rn) , with 1/p + 1/p′ = 1, 1 < p < ∞,

then f ∗ g ∈ C∞(Rn). What can you affirm if p = 1,∞?
(iii) If f ∈ L1(Rn), with f continuous at the point 0 and ̂f ≥ 0, then

̂f ∈ L1(Rn).
Hint: Use Proposition 1.2 and Fatou’s lemma.

1.8 Show that ∞
∫

0

sin2 x

x2
dx = π

2
and

∞
∫

0

sin3 x

x3
dx = 3π

8
.

Hint: Combine the identities (1.7), (1.11), and Example 1.1.
1.9 For a given f ∈ L2(Rn) prove that the following statements are equivalent:

(i) g ∈ L2(Rn) is the partial derivative of f ∈ L2(Rn) with respect to the
kth variable according to Definition 1.2.

(ii) There exists g ∈ L2(Rn) such that
∫

Rn

f (x)∂xkφ(x) dx = −
∫

Rn

g(x)φ(x) dx (1.42)

for any φ ∈ C∞
0 (Rn). In general, if (1.42) holds for two distributions

f , g, then one says that g is the kth partial derivative of f in the
distribution sense.

(iii) There exists {fj } ⊂ C∞
0 (Rn) such that

‖fj − f ‖2 → 0 as j → ∞,

and {∂xkfj } is a Cauchy sequence in L2(Rn).
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(iv) ξk ̂f (ξ ) ∈ L2(Rn).
(v)

sup
h>0

∫

Rn

∣

∣

∣

∣

f (x + hek) − f (x)

h

∣

∣

∣

∣

2

dx < ∞.

For p �= 2 , which of the above statements are still equivalent?
1.10 (Paley–Wiener theorem) Prove that if f ∈ C∞

0 (Rn) with support in {x ∈ R
n :

|x| ≤ M} , then ̂f (ξ ) can be extended analytically to C
n. Moreover, if

k ∈ Z
+ one has that

|̂f (ξ + iη)| ≤ ck
e2πM|η|

(1 + |(ξ + iη)|)k for any ξ + iη ∈ C
n. (1.43)

Prove the converse, i.e., if F (ξ + iη) is an analytic function in C
n satisfying

(1.43), then F is the Fourier transform of some f ∈ C∞
0 (Rn) with support in

{x ∈ R
n : |x| ≤ M} .

1.11 Show that if f ∈ L1(Rn), f �≡ 0, with compact support, then for any ε > 0,
f̂ /∈ L1(eε|x|dx).

1.12 Prove that given k ∈ Z
+ and aα ∈ R

k , with α = (α1, . . . ,αn) ∈ N
n,

|α| = α1 + · · · + αn ≤ k, there exists f ∈ C∞
0 (Rn) such that

∫

Rn

xαf (x) dx = aα.

Hint: Use Exercise 1.10.
1.13 (i) Prove that if f , g ∈ S, then f ∗ g ∈ S.

(ii) Prove that the Fourier transform is an isomorphism from S into itself.
(iii) Using the results in Section 1.3, find explicitly Ψ =̂|x|2 ∈ S ′(Rn).
(iv) Prove Proposition 1.3.

1.14 In this problem we shall prove that

̂1

|x|α (ξ ) = cn,α
1

|ξ |n−α
for α ∈ (0, n)

as a tempered distribution, i.e., ∀ϕ ∈ S(Rn)
∫

1

|x|α ϕ̂(x) dx = cn,α

∫

1

|ξ |n−α
ϕ(ξ ) dξ , (1.44)

where cn,α = πα−n/2 Γ (n/2 − α/2)/Γ (α/2).
(i) Combining the Parseval identity and Example 1.3 show that for δ > 0

∫

e−πδ|x|2 ϕ̂(x) dx = δ−n/2
∫

e−π |x|2/δ ϕ(x) dx. (1.45)

(ii) Prove the formula

∞
∫

0

e−πδ|x|2δβ−1 dδ = cβ

|x|2β for any β > 0. (1.46)
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(iii) Multiply both sides of (1.45) by δ
n−α

2 −1, integrate on δ, use Fubini’s
theorem and (1.46) to get (1.44).

1.15 Prove the following identities, where H denotes the Hilbert transform:
(i) H(fg) = H(f )g + fH(g) + H(H(f )H(g)).

(ii) H(χ(−1,1))(x) = 1

π
log

∣

∣

∣

∣

x + 1

x − 1

∣

∣

∣

∣

.

(iii) H
(

a

x2 + a2

)

= x

x2 + a2
, a > 0.

1.16 Prove that if ϕ ∈ S(R), then H(ϕ) ∈ L1(R) if and only if ϕ̂(0) = 0.

1.17 Consider the function fa(x) = x

a − x2
.

(i) If a ≥ 0 prove that the principal value function of fa(x),

p.v.
x

a − x2
(ϕ) = lim

ε↓0

∫

ε<|a−x2|<1/ε

x

a − x2
ϕ(x) dx,

with ϕ ∈ S(R) defines a tempered distribution. Moreover, prove that if

̂fa(ξ ) = lim
ε↓0

∫

ε<|a−x2|<1/ε

e−2πi(x·ξ ) x

a − x2
dx,

then

‖̂fa‖∞ ≤ M , (1.47)

where the constant M is independent of a.
Hint: Observe that if a = 0, fa(x) is just a multiple of the kernel 1/x of
the Hilbert transform H. If a > 0, then fa(x) can be written as sum of
translations of the kernel of the Hilbert transform H. Since the Hilbert
transform satisfies a similar result, (1.47) follows in both cases. (See
Example 1.10).

(ii) Show that (1.47) is also satisfied if a < 0.
Hint: Use Example 1.6.

1.18 Consider the IVP associated to the wave equation
⎧

⎪

⎨

⎪

⎩

∂2
t w −Δw = 0,

w(x, 0) = f (x),

∂tw(x, 0) = g(x),

(1.48)

x ∈ R
n, t ∈ R. Prove that



1.6 Exercises 23

(i) If f , g ∈ C∞
0 (Rn) are real-valued functions, then using the notation in

(1.29), the solution can be described by the following expression:

w(x, t) = U ′(t)f + U (t)g = cos (Dt)f + sin (Dt)

D
g, (1.49)

with ̂Dh(ξ ) = 2π |ξ |̂h(ξ ) (see (1.36)).
(ii) If f , g are supported in {x ∈ R

3 : |x| ≤ M}, show that w(·, t) is
supported in {x ∈ R

3 : |x| ≤ M + t}.
(iii) Assuming n = 3 and f ≡ 0, prove that

w(x, t) = 1

4πt

∫

{|y|=t}
g(x + y) dSy.

Hint: Derive and apply the following identity:
∫

{|x|=t}
e2πiξ ·x dSx = 4πt

sin (2π |ξ |t)
2π |ξ | .

If g ∈ C∞
0 (R3) is supported in {x ∈ R

3 : |x| ≤ M}, where is the support
of w(·, t)?

(iv) Assuming n = 3 and g ≡ 0, prove that

w(x, t) = 1

4πt2

∫

{|y|=t}
[f (x + y) + ∇f (x + y) · y] dSy. (1.50)

(v) If E(t) = ∫
Rn

((∂tw)2 + |∇xw|2)(x, t)dx, then prove that for any t ∈ R ,

E(t) = E0 =
∫

Rn

(g2 + |∇xf |2)(x) dx.

Hint: Use integration by parts and the equation.
(vi) (Brodsky [Br]) Show that

lim
t→∞

∫

Rn

(∂tw)2(x, t) dx = E0

2
.

Hint: Use the Riemann–Lebesgue lemma (Theorem 1.1(3)).

1.19 Consider the IVP (1.28) with initial data v0 ∈ C∞
0 (R). Prove that for any t �= 0

v(·, t) does not have compact support.



Chapter 2
Interpolation of Operators: A Multiplier
Theorem

In this chapter, we shall first study two basic results in interpolation of opera-
tors in Lp spaces, the Riesz–Thorin theorem and the Marcinkiewicz interpolation
theorem (diagonal case). As a consequence of the former we shall prove the Hardy–
Littlewood–Sobolev theorem for Riesz potentials. In this regard, we need to introduce
one of the fundamental tools in harmonic analysis, the Hardy–Littlewood maximal
function. In Section 2.4, we shall prove the Mihlin multiplier theorem.

The results deduced in this chapter are used frequently in these notes. In particular,
in Chapter 4 the proof of Theorem 4.2 is based on the Riesz–Thorin theorem and the
Hardy–Littlewood–Sobolev theorem.

2.1 The Riesz–Thorin Convexity Theorem

Let (X, A,μ) be a measurable space (i.e., X is a set, A denotes a σ -algebra of subsets
of X, and μ is a measure defined on A). Lp = Lp(X, A,μ), 1 ≤ p < ∞ denotes
the space of complex-valued functions f that are μ-measurable such that

‖f ‖p =
⎛

⎝

∫

X

|f (x)|p dμ

⎞

⎠

1/p

< ∞.

Functions inLp(X, A,μ) are defined almost everywhere with respect toμ. Similarly,
we have L∞(X, A,μ) the space of functions f that are μ-measurable, complex
valued and essentially μ-bounded, with ‖f ‖∞ the essential supremum of f . The
Riesz–Thorin convexity theorem can be obtained as a consequence of a version of
the Hadamard three circles theorem, a result of the Phragmen–Lindelöf theorem,
known as the three lines theorem.

Lemma 2.1. Let F be a continuous and bounded function defined on

S = {z = x + iy : 0 ≤ x ≤ 1}
which is also analytic in the interior of S. If for each y ∈ R,

|F (iy)| ≤ M0 and |F (1 + iy)| ≤ M1,

© Springer-Verlag New York 2015 25
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then for any z = x + iy ∈ S

|F (x + iy)| ≤ M1−x
0 Mx

1 .

In other words, the function φ(x) = log kx is convex, where kx = sup {|F (x + iy)| :
y ∈ R} for x ∈ [0, 1].

Proof. Without loss of generality one can assume that M0, M1 > 0. Moreover,
considering the functionF (z)/M1−z

0 Mz
1, the proof reduces to the caseM0 = M1 = 1.

Thus, we have that

|F (iy)| ≤ 1 and |F (1 + iy)| ≤ 1 for any y ∈ R,

and we want to show that |F (z)| ≤ 1 for any z ∈ S. If

lim|y|→∞F (x + iy) = 0 uniformly on 0 ≤ x ≤ 1,

the result follows from the maximum principle. In this case, there exists y0 > 0 such
that |F (x + iy)| ≤ 1 for |y| ≥ y0 and |F (z)| ≤ 1 in the boundary of the rectangle
with corners

iy0, 1 + iy0,−iy0, 1 − iy0.

The maximum principle guarantees the same estimate in the interior of the rectangle.
In the general case, we consider the function:

Fn(z) = F (z)e(z2−1)/n, n ∈ Z
+.

Since

|Fn(z)| = |F (x + iy)|e−y2/n e(x2−1)/n

≤ |F (x + iy)|e−y2/n → 0 as |y| → ∞,

uniformly on 0 ≤ x ≤ 1, with |Fn(iy)| ≤ 1 and |Fn(1 + iy)| ≤ 1, the previous
argument proves that |Fn(z)| ≤ 1 for any n ∈ Z

+. Letting n → ∞, we obtain the
desired estimate. �

Let T be a linear operator from Lp(X) to Lq(Y ). If T is continuous or bounded,
i.e.,

|||T ||| = sup
f �=0

‖Tf ‖q
‖f ‖p < ∞, (2.1)

we call the number |||T ||| the norm of the operator T .

Theorem 2.1 (Riesz–Thorin). Let p0 �= p1, q0 �= q1. Let T be a bounded linear
operator from Lp0 (X, A,μ) to Lq0 (Y , B, ν) with norm M0 and from Lp1 (X, A,μ) to
Lq1 (Y , B, ν) with norm M1. Then, T is bounded from Lpθ (X, A,μ) in Lqθ (Y , B, ν)
with norm Mθ such that

Mθ ≤ M1−θ
0 Mθ

1 ,
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with

1

pθ

= 1 − θ

p0
+ θ

p1
,

1

qθ
= 1 − θ

q0
+ θ

q1
, θ ∈ (0, 1). (2.2)

Proof. (Thorin). Combining the notation

〈h, g〉 =
∫

Y

h(y)g(y) dν(y)

and a duality argument it follows that

‖h‖q = sup {|〈h, g〉| : ‖g‖q ′ = 1}
and

Mpq ≡ sup{|〈Tf , g〉| : ‖f ‖p = ‖g‖q ′ = 1},
where 1/p + 1/p′ = 1/q + 1/q ′ = 1. Since p < ∞ and q ′ < ∞, we can assume
that f , g are simple functions with compact support. Thus,

f (x) =
∑

j

ajχAj
(x) and g(y) =

∑

k

bkχBk
(y).

For 0 ≤ Re z ≤ 1, we define

1

p(z)
= 1 − z

p0
+ z

p1
,

1

q ′(z)
= 1 − z

q ′0
+ z

q ′1
,

ϕ(z) = ϕ(x, z) =
∑

j

|aj |pθ /p(z)eiarg(aj )χAj
(x),

and
ψ(z) = ψ(y, z) =

∑

k

|bk|q ′θ /q ′(z)eiarg(bk )χBk
(y).

Thus, ϕ(z) ∈ Lpj , ψ(z) ∈ L
q ′j , and T ϕ(z) ∈ Lqj , j = 0, 1. Also, ϕ′(z) ∈

Lpj , ψ ′(z) ∈ L
q ′j , and (T ϕ)′(z) ∈ Lqj , j = 0, 1 for 0 < Re z < 1. Therefore, the

function
F (z) = 〈T ϕ(z),ψ(z)〉

is bounded and continuous on 0 ≤ Re z ≤ 1 and analytic in the interior. Moreover,

‖ϕ(it)‖p0 = ‖|f |pθ /p0‖p0 = ‖f ‖pθ /p0
pθ

= 1

and
‖ϕ(1 + it)‖p1 = ‖|f |pθ /p1‖p1 = ‖f ‖pθ /p1

pθ
= 1.

Similarly, ‖ψ(it)‖q ′0 = ‖ψ(1 + it)‖q ′1 = 1.
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From the hypotheses it follows that

|F (it)| ≤ ‖T ϕ(it)‖q0 ‖ψ(it)‖q ′0 ≤ M0

and
|F (1 + it)| ≤ ‖T ϕ(1 + it)‖q1 ‖ψ(1 + it)‖q ′1 ≤ M1.

Since ϕ(θ ) = f , ψ(θ ) = g, and F (θ ) = 〈Tf , g〉, by the three lines theorem we
obtain |〈Tf , g〉| ≤ M1−θ

0 Mθ
1 . This completes the proof. �

Definition 2.1. An operator T is said to be sublinear if T (f + g) is determined by
the values of Tf , T g, and

|T (f + g)| ≤ |Tf | + |T g|.
We shall say that a linear or sublinear operator T is of (strong) type (p, q) with
constant Mpq if ‖Tf ‖q ≤ Mpq‖f ‖p for any f ∈ Lp.

With this definition we can rephrase the statement of the Riesz–Thorin theorem.
Let p0 �= p1, q0 �= q1, and T be a linear operator of type (p0, q0) with norm M0

and of type (p1, q1) with norm M1. Then T is of type (p, q) with

1

p
= 1 − θ

p0
+ θ

p1
,

1

q
= 1 − θ

q0
+ θ

q1
, θ ∈ (0, 1),

with norm
M ≤ M1−θ

0 Mθ
1 .

2.1.1 Applications

Next we use the Riesz–Thorin theorem to establish some properties of the Fourier
transform and the convolution operator. We fix X = Y = R

n and μ = ν = dx the
Lebesgue measure.

Theorem 2.2 (Young’s inequality). Let f ∈ Lp(Rn) and g ∈ Lq(Rn), 1 ≤ p, q ≤
∞ with

1

p
+ 1

q
≥ 1. Then f ∗ g ∈ Lr (Rn), where

1

r
= 1

p
+ 1

q
− 1. Moreover,

‖f ∗ g‖r ≤ ‖f ‖p‖g‖q . (2.3)

Proof. For g ∈ Lq(Rn), we define the operator

Tf (x) =
∫

Rn

f (x − y)g(y)dy = (f ∗ g)(x).

The Minkowski integral inequality shows

‖Tf ‖q ≤ ‖g‖q‖f ‖1.
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On the other hand, using Hölder’s inequality one sees that

‖Tf ‖∞ ≤ ‖g‖q‖f ‖q ′ .
Thus, T is of type (1, q) and (q ′,∞) with norm bounded by ‖g‖q . Hence,
Theorem 2.1 (Riesz–Thorin) guarantees that T is of type (p, r), where

1

p
= (1 − θ )

1
+ θ

q ′
= 1 − θ

q

and
1

r
= (1 − θ )

q
+ 0 = 1

q
+
(

1 − θ

q

)

− 1 = 1

q
+ 1

p
− 1,

with norm less than ‖g‖q . �

Theorem 2.3 (Hausdorff–Young’s inequality). Let f ∈ Lp(Rn), 1 ≤ p ≤ 2.
Then ̂f ∈ Lp′

(Rn) with 1
p
+ 1

p′ = 1 and

‖̂f ‖p′ ≤ ‖f ‖p. (2.4)

Proof. From (1.2) and (1.11) it follows that the Fourier transform is of type (1,∞)
and (2, 2) with norm 1. Hence, Theorem 2.1 tells us that it is also of type (p, q) with

1

p
= (1 − θ )

1
+ θ

2
= 1 − θ

2
and

1

q
= 0 + θ

2
= 1 − 1

p
= 1

p′

with norm M ≤ 1(1−θ ) 1θ = 1. �

This estimate is the best possible when p = 1 or 2. This is not the case for
1 < p < 2. Beckner [B] found the best constant for the Hausdorff–Young inequality.
He showed that if f ∈ Lp(Rn), 1 ≤ p ≤ 2, then

‖̂f ‖p′ ≤ (Ap)n‖f ‖p, where Ap =
(

p1/p

p′1/p′

)1/2

.

2.2 Marcinkiewicz Interpolation Theorem (Diagonal Case)

Let (X, A,μ) be a measurable space.

Definition 2.2. For a measurable function f : X → C, we define its distribution
function as:

m(λ, f ) = μ({x ∈ X : |f (x)| > λ}) = μ(Eλ
f ).

Thus, m(λ, f ) as a function of λ ∈ [0,∞] is well defined and takes values in [0,∞).
Moreover, it is nonincreasing and continuous from the right.
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Proposition 2.1. For any measurable function f : X → C and for any λ ≥ 0 it
follows that

1. (Tchebychev)

m(λ, f ) ≤ λ−p

∫

Eλ
f

|f (x)|p dμ(x) ≤ λ−p‖f ‖pp.

2. If 1 ≤ p < ∞,

‖f ‖pp = −
∞
∫

0

λp dm(λ, f ) = p

∞
∫

0

λp−1m(λ, f ) dλ.

If p = ∞,
‖f ‖∞ = inf {λ : m(λ, f ) = 0}.

3. m(λ, f + g) ≤ m(λ/2, f ) +m(λ/2, g).

Proof. It is left as an exercise. �

Definition 2.3. For 1 ≤ p < ∞, we denote by Lp∗(X, A,μ) (weak Lp-spaces) the
space of all measurable functions f : X → C such that

‖f ‖∗p = sup
λ>0

λ(m(λ, f ))1/p < ∞.

Observe that L∞∗ = L∞.

Proposition 2.2. If 1 ≤ p < ∞, then

1. Lp(Rn) /⊆Lp∗(Rn).
2. ‖f + g‖∗p ≤ 2(‖f ‖∗p + ‖g‖∗p).

Proof. It is left as an exercise. �

Therefore, Lp∗(X, A,μ) is a quasinormed vector space

‖f + g‖ ≤ k(‖f ‖ + ‖g‖)

with k = 2, i.e., it only satisfies a quasitriangular inequality. The spaces Lp and Lp∗
are particular cases of the Lorentz spaces Lp,q (see [BeL]).

Definition 2.4. Let (Xj , Aj ,μj ), j = 1, 2, be two measurable spaces. Let M(X2)
be the space of complex-valued, measurable functions defined on X2. A linear or
sublinear operator T : Lp(X1) → M(X2) with 1 ≤ p < ∞ is said to be of weak
type (p, q) if there exists a constant c > 0 such that for any f ∈ Lp(X1)

‖Tf ‖∗q ≤ c‖f ‖p.
If q = ∞, type (p,∞) and weak type (p,∞) agree. Tchebychev’s inequality shows
that if T is of type (p, q), then it is of weak type (p, q).
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In the rest of this chapter, we shall consider Xj = R
n, j = 1, 2.

Theorem 2.4 (Marcinkiewicz). Let 1 < r ≤ ∞ and

T : L1(Rn) + Lr (Rn) → M(Rn)

be a sublinear operator (see Definition 2.1). If T is of weak type (1, 1) and of weak
type (r , r), then T is of (strong) type (p,p) for any p ∈ (1, r).

Proof. First we consider the case r = ∞. Changing the operator T by ‖T ‖−1T one
can assume that

‖Tf ‖∞ ≤ ‖f ‖∞.

Given f ∈ L1(Rn) + Lr (Rn), for each λ ∈ R
+ we define

f λ
1 (x) =

{

f (x), if |f (x)| ≥ λ/2

0, if |f (x)| < λ/2

and f λ
2 (x) = f (x) − f λ

1 (x). Therefore,

|Tf (x)| ≤ |Tf λ
1 (x)| + λ/2,

and
{x ∈ R

n : |Tf (x)| > λ} ⊆ {x ∈ R
n : |Tf λ

1 (x)| > λ/2}.
Since T is of weak type (1, 1), it follows that

|{x ∈ R
n : |Tf λ

1 (x)| > λ/2}| ≤ c

(

λ

2

)−1 ∫

Rn

|f λ
1 (x)| dx

= 2cλ−1
∫

|f |>λ/2

|f (x)| dx,

where | · | denotes the Lebesgue measure. Combining this estimate, part (2) of
Proposition 2.1, and a change in the order of integration, one has:

∫

Rn

|Tf (x)|p dx = p

∞
∫

0

λp−1|{x ∈ R
n : |Tf (x)| > λ}| dλ

≤ p

∞
∫

0

λp−1

⎛

⎜

⎝2cλ−1
∫

|f |>λ/2

|f (x)| dx
⎞

⎟

⎠ dλ

= 2cp

∞
∫

0

λp−2

⎛

⎜

⎝

∫

|f |>λ/2

|f (x)| dx
⎞

⎟

⎠ dλ

= 2cp
∫

Rn

⎛

⎝

2|f (x)|
∫

0

λp−2 dλ

⎞

⎠ |f (x)| dx = 2pcp

p − 1
‖f ‖pp,
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which yields the result for the case r = ∞.
In the case r < ∞, we have

m(λ, Tf ) = |{x ∈ R
n : |Tf (x)| > λ}|

≤ m(λ/2, Tf λ
1 ) +m(λ/2, Tf λ

2 )

≤ c1

(

λ

2

)−1 ∫

Rn

|f λ
1 (x)| dx + crr

(

λ

2

)−r ∫

Rn

|f λ
2 (x)|r dx

= 2c1λ
−1

∫

|f |≥λ/2

|f (x)| dx + (2cr )
rλ−r

∫

|f |<λ/2

|f (x)|r dx.

As in the proof of the case r = ∞ , we have that

∞
∫

0

λp−2

⎛

⎜

⎝

∫

|f |≥λ/2

|f (x)| dx
⎞

⎟

⎠ dλ = 2p−1

p − 1
‖f ‖pp.

A similar argument shows that

∞
∫

0

λp−1−r

⎛

⎜

⎝

∫

|f |<λ/2

|f (x)|r dx
⎞

⎟

⎠ dλ = 2p−r

r − p
‖f ‖pp.

Combining these inequalities and part (2) of Proposition 2.1, we find that

‖Tf ‖p ≤ cp‖f ‖p, with cp = 2 p
√
p

(

c1

p − 1
+ crr

r − p

)1/p

.

�

2.2.1 Applications

We shall use the Marcinkiewicz interpolation theorem to study some basic properties
of the Hardy–Littlewood maximal function. First, we introduce some notation.

We denote by L1
loc(Rn) the spaces of functions f : R

n → C such that
∫

K
|f |dx <

∞ for any compact K ⊆ R
n. The volume of the unit ball in R

n will be denoted by
ωn and Br (x) = {y ∈ R

n : ‖x − y‖ < r} is the ball of center x and radius r .

Definition 2.5. For a given f ∈ L1
loc(Rn), we define Mf (x), the Hardy–Littlewood

maximal function associated to f , as:

Mf (x) = sup
r>0

1

|Br (x)|
∫

Br (x)

|f (y)| dy = sup
r>0

1

ωn

∫

B1(0)

|f (x − ry)| dy

= sup
r>0

(

|f | ∗ 1

|Br (0)|χBr (0)

)

(x).
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Proposition 2.3.

1. M defines a sublinear operator, i.e.,

|M(f + g)(x)| ≤ |Mf (x)| + |Mg(x)|, x ∈ R
n.

2. If f ∈ L∞(Rn), then

‖Mf ‖∞ ≤ ‖f ‖∞. (2.5)

Proof. It is left as an exercise. �

Part (2) of Proposition 2.3 tells us that M is of type (∞,∞). Next, we show that
M is of weak type (1, 1). For this purpose, we need the following result.

Lemma 2.2 (Vitali’s covering lemma). Let E ⊆ R
n be a measurable set such that

E ⊆ ∪αBrα (xα) with the family of open balls {Brα (xα)}α satisfying sup
α

rα = c0 < ∞.

Then there exists a subfamily {Brj (xj )}j disjoint and numerable such that

|E| ≤ 5n

∞
∑

j=1

|Brj (xj )|.

Proof. Choose Br1 (x1) such that r1 ≥ c0/2. For j ≥ 2, take Brj (xj ) such that

Brj (xj ) ∩
j−1
⋃

k=1
Brk (xk) = ∅ and

rj >
1

2
sup {rα : Brα (xα) ∩ Brk (xk) = ∅ for k = 1, . . . , j − 1}.

It is clear that the Brj (xj ) are disjoint. If
∑ |Brj (xj )| = ∞, we have completed the

proof. In the case
∑ |Brj (xj )| < ∞ (hence, lim

j→∞ rj = 0), it will suffice to show that

Brα (xα) ⊆ ∪
j
B5rj (xj ), for any α.

If Brα (xα) = Brj (xj ) for some j , there is nothing to prove. Thus, we assume that
Brα (xα) �= Brj (xj ) for any j . Define jα as the smallest j such that rj < rα/2. By the
construction ofBrj (xj ), there exists j ∈ {1, . . . , jα−1} such thatBrα (xα)∩Brj (xj ) �=
∅. Denoting by j∗ this index it follows that Brα (xα) ⊆ B5rj∗ (xj∗ ) since rj∗ ≥ rα/2.�

Theorem 2.5 (Hardy–Littlewood). Let 1 < p ≤ ∞. Then M is a sublinear
operator of type (p,p), i.e., there exists cp such that

‖Mf ‖p ≤ cp‖f ‖p, for any f ∈ Lp(Rn). (2.6)

Proof. We first show that M is of weak type (1, 1), that is, there exists a constant c1

such that for any f ∈ L1(Rn)

sup
λ>0

λ m(λ, Mf ) ≤ c1‖f ‖1. (2.7)
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Once (2.7) has been established, a combination of (2.5), (2.7), and the Marcinkiewicz
theorem yields (2.6).

To obtain (2.7), we define Eλ
f = {x ∈ R

n : Mf (x) > λ} for any λ > 0. Thus, if
x ∈ Eλ

f , then there exists Brx (x) such that

∫

Brx (x)

|f (y)|dy > λ|Brx (x)|.

Clearly, we have that
Eλ

f ⊆ ∪
x∈Eλ

f

Brx (x),

then the Vitali covering lemma guarantees the existence of a countable, disjoint
subfamily {Brxj

(xj )}
j∈Z+ such that

|Eλ
f | ≤ 5n

∞
∑

j=1

|Brxj
(xj )| ≤ 5nλ−1

∞
∑

j=1

∫

Brxj
(xj )

|f (y)| dy ≤ 5nλ−1‖f ‖1,

which implies (2.7). �

Next, we extend the estimates (2.6) and (2.7) to a large class of kernels.

Proposition 2.4. Let ϕ ∈ L1(Rn) be a radial, positive, and nonincreasing function
of r = ‖x‖ ∈ [0,∞). Then

sup
t>0

|ϕt ∗ f (x)| = sup
t>0

∣

∣

∣

∫

Rn

ϕ(t−1(x − y))

tn
f (y) dy

∣

∣

∣ ≤ ‖ϕ‖1Mf (x). (2.8)

Proof. First, we assume that, in addition to the hypotheses, ϕ is a simple function

ϕ(x) =
∑

k

akχBrk
(0)(x), with ak > 0.

Hence,

ϕ ∗ f (x) =
∑

k

ak|Brk (0)| 1

|Brk (0)|χBrk
(0) ∗ f (x) ≤ ‖ϕ‖1Mf (x).

(observe that ‖ϕ‖1 =∑k ak|Brk (0)|).
In the general case, we approximate ϕ by an increasing sequence of simple func-

tions satisfying the hypotheses. Since dilations of ϕ satisfy the same hypotheses and
preserve the L1-norm, they verify (2.8). Finally, passing to the limit we obtain the
desired result. �
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Next, we shall apply these results to deduce some continuity properties of the
Riesz potentials. We recall that a fundamental solution of the Laplacian Δ is given
by the following formula describing the Newtonian potential

Uf (x) = cn

∫

Rn

f (y)

|x − y|n−2
dy for n ≥ 3.

The Riesz potentials generalize this expression.

Definition 2.6. Let 0 < α < n. The Riesz potential of order α, denoted by Iα , is
defined as:

Iαf (x) = cα,n

∫

Rn

f (y)

|x − y|n−α
dy = kα ∗ f (x), (2.9)

where cα,n = π−n/22−α Γ (n/2 − α/2)/Γ (α/2).
Since the Riesz potentials are defined as integral operators, it is natural to study

their continuity properties in Lp(Rn).

Theorem 2.6 (Hardy–Littlewood–Sobolev). Let 0 < α < n, 1 ≤ p < q < ∞,

with
1

q
= 1

p
− α

n
.

1. If f ∈ Lp(Rn), then the integral (2.9) is absolutely convergent almost every
x ∈ R

n.
2. If p > 1, then Iα is of type (p,q), i.e.,

‖Iα(f )‖q ≤ cp,α,n‖f ‖p. (2.10)

Proof. We split the kernel

kα(x) = cα,n

|x|n−α
= k0

α(x) + k∞α (x)

as

k0
α(x) =

{

kα(x) if |x| ≤ ε,

0 if |x| > ε

and k∞α (x) = kα(x) − k0
α(x), where ε is a positive constant to be determined. Thus,

|Iαf (x)| ≤ |k0
α ∗ f (x)| + |k∞α ∗ f (x)| = I + II. (2.11)

The integral I represents the convolution of a function k0
α ∈ L1(Rn) withf ∈ Lp(Rn).

The integral II is the convolution of a function f ∈ Lp(Rn) with k∞α ∈ Lp′
(Rn).

Therefore, both integrals converge absolutely.
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Also, using that

∫

|y|<ε

dy

|y|n−α
= cn

ε
∫

0

rn−1

rn−α
dr = cα,n εα ,

together with (2.8) in Proposition 2.4 we infer that

I ≤ εα
(

1

εα
χ{|y/ε|<1}(y)

1

|y|n−α
∗ |f |

)

(x) ≤ cα,n εαMf (x). (2.12)

On the other hand, Hölder’s inequality implies that

II ≤ cα,n ‖f ‖p

⎛

⎜

⎝

∫

|y|≥ε

1

|y|(n−α)p′ dy

⎞

⎟

⎠

1/p′

= cα,n ‖f ‖p
(∫ ∞

ε

rn−1

r (n−α)p′ dr

)1/p′

(2.13)

= cα,n εn/p
′−n+α‖f ‖p.

Next, we minimize the sum of the bounds in (2.12) and (2.13). Hence, we fix ε = ε(x)
such that

cεαMf (x) = cεn/p
′−n+α‖f ‖p,

using n/p′ − n = −n/p. This is equivalent to

cMf (x) = cε−n/p‖f ‖p. (2.14)

Combining (2.11)–(2.14) we can write

|Iαf (x)| ≤ c (‖f ‖p (Mf (x))−1)αp/n Mf (x)

= c ‖f ‖αp/np (Mf (x))1−αp/n (2.15)

= c ‖f ‖θp (Mf (x))1−θ , θ = αp/n ∈ (0, 1).

Finally, taking the Lq-norm in (2.15) and using (2.6) we conclude:

‖Iαf ‖q ≤ c‖f ‖θp‖(Mf )1−θ‖q = c‖f ‖θp‖Mf ‖1−θ
(1−θ )q ≤ c‖f ‖p,

since (1 − θ )q = (1 − αp/n)q = p, i.e., 1/q = 1/p − α/n. This completes the
proof. �
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2.3 The Stein Interpolation Theorem

So far we have discussed interpolation theorems for fixed linear or sublinear opera-
tors. We now have to cover the following situation: Suppose we have linear operators
varying together with the indicesp and q smoothly. Is it possible to extend the Riesz–
Thorin theorem to this case? The answer is affirmative and we shall describe this
extension next.

Let S be the strip defined in Lemma 2.1 and z = x + iy ∈ S. Suppose that for
each z ∈ S there corresponds a linear operator Tz defined on the space of simple
functions in L1(X, A,μ) into measurable functions on Y in such a way that (Tzf )g
is integrable on Y provided f is a simple function in L1(X, A,μ) and g is a simple
function in L1(Y , B, ν).

Definition 2.7. The family of operators {Tz}z∈S is called admissible if the mapping

z �→
∫

Y

(Tzf )gdν

is analytic in the interior of S, continuous on S and there exists a constant a < π

such that

e−a|y| log
∣

∣

∣

∫

Y

(Tzf )gdν
∣

∣

∣

is uniformly bounded above in the strip S.

Theorem 2.7 (Stein). Suppose {Tz}, z∈S, is an admissible family of linear opera-
tors satisfying

‖Tiyf ‖q0 ≤ M0(y) ‖f ‖p0 and ‖T1+iyf ‖q1 ≤ M1(y) ‖f ‖p1 , y ∈ R
n,

for all simple functions f in L1(X, A,μ), where 1 ≤ pj , qj ≤ ∞, Mj (y), j = 0, 1,
are independent of f and satisfy

sup
−∞<y<∞

e−b|y| log Mj (y) < ∞

for some b < π . Then, if 0 ≤ t ≤ 1, there exists a constant Mt such that

‖Ttf ‖qt ≤ Mt ‖f ‖pt

for all simple functions f , provided

1

pt

= (1 − t)

p0
+ t

p1
and

1

qt
= (1 − t)

q0
+ t

q1
.

Proof. For the proof of this theorem, we refer the reader to [SW]. �
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2.4 A Multiplier Theorem

Let m(·) be a bounded measurable function in R
n. Define the operator

Tm f (x) = (m(·)̂f (·))∨(x), f ∈ L1(Rn) ∩ L2(Rn). (2.16)

Notice that if m̂(x) = K(x), then, formally, Tm f (x) = K ∗ f (x). However, K ∈
S ′(Rn), i.e., a temperate distribution so K ∗ f is not necessarily defined.

As we have seen in (1.27), (1.29), and (1.49), solutions of the linear evolution
equation can be written in this form.

Definition 2.8. An m(·) is said to be an Lp-multiplier if

‖Tm f ‖p ≤ cp ‖f ‖p, for all f ∈ L2(Rn) ∩ Lp(Rn). (2.17)

In this case, Tm(·) can be extended to Lp(Rn). The smallest constant c∗p in (2.17) is
the operator norm of Tm in Lp(Rn), i.e., |||Tm||| (see 2.1). Notice that if p = 2, one
has c∗2 = ‖m‖∞. Also, by duality, if m(·) is an Lp-multiplier, 1 < p < ∞, then m(·)
is an Lp′

-multiplier with 1
p
+ 1

p′ = 1, and c∗p′ = c∗p.

Theorem 2.8 (Mihlin–Hörmander). Let m ∈ Ck(Rn \ {0}), k ∈ Z+, k > n/2. If
for |α| ≤ k

sup
R>0

R−n+|α|
∫

R<|ξ |<2R

|∂α
ξ m(ξ )|2 dξ = Aα < ∞, (2.18)

then m(·) is an Lp-multiplier for any p ∈ (1,∞). Moreover, Tm is of weak type (1,1),
i.e., for λ > 0

λ |{x ∈ R
n : |Tm f (x)| > λ}| ≤ c‖f ‖1 for allf ∈ L1(Rn), (2.19)

where |A| denotes the Lebesgue measure of the set A.
Notice that if m ∈ Ck(Rn \ {0}), k ∈ Z

+, k > n/2 with

sup
x �=0

sup
|α|≤k

|x||α||∂α
x m(x)| = Bα < ∞ for |α| ≤ k, (2.20)

then (2.18) holds. Condition (2.20) is due to Mihlin, the weaker assumptions in (2.18)
is due to Hörmander.

Combining a duality argument and the Marcinkiewicz interpolation theorem, it
suffices to establish (2.19) to obtain Theorem 2.8. This is done in Appendix A.

2.5 Exercises

2.1 Prove the continuity part of Theorem 2.1 (Riesz–Thorin) in the cases p0 = p1

and q0 = q1.
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2.2 Prove Proposition 2.1.
2.3 Prove Proposition 2.2.
2.4 Prove Proposition 2.3.
2.5 (i) Prove that the Fourier transform defines a continuous operator from

Lp(Rn) to Lq(Rn) only if 1/p + 1/q = 1 with q ≥ p.
(ii) Prove that for 1 ≤ p < 2

L̂p(Rn) � Lq(Rn).

Hint: Use Exercise 1.2(ii) and the open mapping theorem.
2.6 (i) Prove the Lebesgue differentiation theorem: If f ∈ L1

loc(Rn), then for
almost every x ∈ R

n

lim
r→0

1

|Br (x)|
∫

Br (x)

f (y) dy = f (x). (2.21)

Hint: Without loss of generality take f ∈ L1(Rn). Define O(f , x) the
oscillation of f at x as

O(f , x) =
∣

∣

∣ lim sup
r→0

1

|Br (x)|
∫

Br (x)

f (y) dy − lim inf
r→0

1

|Br (x)|
∫

Br (x)

f (y) dy
∣

∣

∣.

Prove that (2.21) is equivalent to O(f , x) = 0. Use that

lim
r→0

1

|Br (0)|χBr (0) ∗ f = f in L1(Rn);

therefore, there exists a sequence {rj } such that

lim
j→0

1

|Brj (0)|χBrj
(0) ∗ f (x) = f (x) almost everywhere x ∈ R

n.

Combine (2.7), the inequalityO(f , x)≤2Mf (x), and a density argument
to obtain the result.

(ii) Let f ∈ L1
loc(Rn) and Qj be a sequence of closed cubes in R

n such that

Q1 ⊇ Q2 ⊇ . . . , |Q1| < ∞ and |Qj | = 2n |Qj+1|. If x ∈
∞
⋂

j=1
Qj prove

that

lim
j→∞

1

|Qj |
∫

Qj

f (y) dy = f (x). (2.22)

Hint: Define

M∗f (x) = sup
Q cube
x∈Q

1

|Q|
∫

Q

|f (y)| dy. (2.23)
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Show that there exist cn, dn > 0 such that

dn Mf (x) ≤ M∗f (x) ≤ cn Mf (x),

and reapply the argument in (i).
2.7 Assuming to be true the case n = 1 of the Hardy–Littlewood–Sobolev inequal-

ity (2.10) prove the general case n ≥ 2.
Hint: Combine the Hölder,Young, and Minkowski inequalities with the identity

∫

Rn−1

dy1 · · · dyn−1

|x − y|n = cn

|xn − yn| .

2.8 Prove that the Hilbert transform (see Definition 1.7) is of type (p, q) if and only
if 1 < p = q < ∞.
Hint: (a) The identity (1.18) provides the result for the case p = 2. Use the
formula deduced in Exercise 1.15 part (i) with f = g to prove the result in the
case p = 4. Apply the Riesz–Thorin interpolation theorem to extend the result
to 2 < p < 4. Reapply this argument to obtain the proof for p > 2. Finally,
use duality to complete the proof.
(b) Otherwise use Theorem 2.8.
(c) Use (1.5) and part (ii) of Exercise 1.15.

2.9 Prove that the Riesz potential of order α, Iα , α ∈ (0, n) defines a bounded
operator from Lp(Rn) to Lq(Rn) only if 1 < p < q < ∞, with 1/q =
1/p − α/n.
Hint: Prove the formula δa−1Iαδa = a−αIα , where δaf (x) = f (ax). Show
that the value of the norms of δaf (x) and δa−1Iαδa f give the relation 1/q =
1/p − α/n. To see that the inequality does not hold for the extremal cases
p = 1 and q = n/(n − α), use an approximation of the identity instead of f
(case p = 1). For the case q = n/α, use duality.

2.10 Prove that the multipliers

mj (ξ ) = iξj

|ξ | , j = 1, . . . , n, (the j-Riesz transform)

and

my(ξ ) = |ξ |iy , y ∈ R,

are Lp-multipliers with 1 < p < ∞.
Hint: Use condition (2.20).

2.11 Let s > 0 and ρ ∈ (0, s):

(i) Prove that for any p ∈ (1,∞)

‖Dρf ‖p ≤ c ‖f ‖1−ρ/s
p ‖Dsf ‖ρ/sp f ∈ S(Rn). (2.24)

(ii) More general, prove that for any p, q, r ∈ (1,∞)

‖Dρf ‖p ≤ c ‖f ‖1−ρ/s
r ‖Dsf ‖ρ/sq , f ∈ S(Rn), (2.25)
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with

1

p
=
(

1 − ρ

s

) 1

r
+
(ρ

s

) 1

q
. (2.26)

(iii) Prove that the estimates (2.24) and (2.25) still hold with Λ = (1−Δ)1/2

instead of D, and that in both cases the proof for p = q = r = 2 is
immediate. Prove that r = ∞ is allowed in (2.25).

Hint: For (ii) fix f ∈ S(Rn), use that

‖Dρf ‖p = sup
‖g‖p′=1

∣

∣

∫

Rn

Dρf (y)g(y)dy
∣

∣

and define

Fk(z) = e(z2−1)/k
∫

Rn

Dszf (y)Ψ (y, z) dy, for z = x + iy with 0 ≤ x ≤ 1,

where

ψ(y, z) = |g(y)|p′/q(z) g(y)

|g(y)| and
1

q(z)
= 1 − z

r ′
+ z

q ′

with
1

p
+ 1

p′ =
1

r
+ 1

r ′
= 1

q
+ 1

q ′
= 1. Verify that Fk(·) satisfies the hypotheses

of Lemma 2.1 using Theorem 2.8 (see Exercise 2.10). Let k tend to infinity to
get the result.

2.12 [Pi] Pitt’s Theorem affirms: if 1 < p ≤ q < ∞,

0 ≤ α < n

(

1 − 1

p

)

, 0 ≤ γ <
n

q
, α − γ = n

(

1 − 1

q
− 1

p

)

,

then there exists c > 0 such that

‖̂f |x|−γ ‖q ≤ c ‖f |x|α‖p (2.27)

with:

(i) Prove (2.27) in the case α = 0 and q ≥ 2.
(ii) Prove (2.27) in the case γ = 0 and p ≤ 2.

2.13 For the initial value problem associated to the heat equation:
{

∂tu = Δu,

u(x, 0) = f (x),

x ∈ R
n, t > 0, prove that the solution u(x, t) = etΔf (x) satisfies the following

inequalities:
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(i)

‖Ds
x u(·, t)‖p ≤ cs t

−( n
2r + s

2 ) ‖f ‖q , (2.28)

for s ≥ 0 and
1

p
= 1

q
− 1

r
.

(ii)

⎛

⎝

∞
∫

0

‖Dρ
x u(·, t)‖σp dt

⎞

⎠

1/σ

≤ c ‖f ‖q (2.29)

with ρ ∈ [0, 2) and

0 <
1

σ
= n

2

(

1

q
− 1

p

)

+ ρ

2
≤ 1

q
, (see [G1]).

Hint: For (i) use Example 1.3 to deduce that

u(x, t) = Kt ∗ f (x) = e−|·|2/4t

(4πt)n/2
∗ f (x).

Obtain the identity ‖Ds
xKt‖∞ = cst

−(n/2+s/2) for s > 0 and combine it with
Young’s inequality to obtain (2.28).

For (ii) define (Ωf )(t) = ‖Dρ
x e

tΔf ‖p. Then by (2.28) ,(Ωf )(t) ≤
c t−1/σ ‖f ‖q , t ∈ (0,∞). Hence, the sublinear operator Ω is bounded from
Lq(Rn) into Lσ∗((0,∞)), (i.e., Lσ -weak). Use Marcinkiewicz interpolation
theorem to get (2.29).

2.14 Consider the initial value problem (IVP) associated to the wave equation:
⎧

⎪

⎨

⎪

⎩

∂2
t w −Δw = 0,

w(x, 0) = f (x),

∂tw(x, 0) = g(x),

x ∈ R
n, t ∈ R, prove that

(i) If n = 1, then

w(x, t) = f (x + t) + f (x − t)

2
+ 1

2

x+t
∫

x−t

g(s) ds.

Hint: Use the formula deduced in Exercise 1.18(i) or the change of variables
ζ = x + t , η = x − t .
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(ii) If n = 3, f = 0 and g is a radial function (g(‖x‖)), then

w(x, t) = w(‖x‖, t) = 1

2‖x‖

‖x‖+t
∫

| ‖x‖−t |
ρg(ρ) dρ.

Hint: Deduce the formula for the Laplacian of radial functions, use the change
of variables

v(ρ, t) = ρ w(ρ, t) = ‖x‖w(‖x‖, t)

and part (i) of this exercise.
(iii) Under the same hypotheses of part (ii) use the Hardy–Littlewood maximal
function to show that

⎛

⎝

∞
∫

−∞
‖w(·, t)‖2

∞ dt

⎞

⎠

1/2

≤ c ‖g‖2. (2.30)

In [KlM], it was established that (2.30) does not hold for nonradial functions g.
2.15 Let m1, m2 be two Lp-multipliers. Prove

(i) Tm1 ◦ Tm2 = Tm1·m2 .
(ii) (Tm1 )∗ = Tm1 .

2.16 (i) Prove that if n = 3, then for any t �= 0

mt (ξ ) = cos (2π |ξ |t), Tmt
f (x) = (mt (·)̂f (·))∨(x) (2.31)

is not an Lp-multiplier for p �= 2.
(ii) Prove that if n = 3, then (see 3.38)

‖Tmt
f ‖∞ ≤ ct−1 ‖∇f ‖1,2, for any t �= 0.

(iii) Prove that if n = 1, then mt (ξ ) = cos (2π |ξ |t) for each t ∈ R is an
Lp-multiplier for 1 ≤ p ≤ ∞.
(Part (i) holds in any dimension n ≥ 2. See [Lp]).
Hint: Notice that Tmt

f (x) = (mt (·) ̂f )∨(x) is the solution u(x, t) of the
IVP

⎧

⎪

⎨

⎪

⎩

∂2
t u −Δu = 0,

u(x, 0) = f (x),

∂tu(x, 0) = 0,

(2.32)

x ∈ R
3, t > 0. So the formula (1.50) in Exercise 1.18(iv) applies.

Take f (x) = h(|x|)/|x| = h(r)/r , with h(·) supported in the annulus
{x ∈ R

3 : ε ≤ |x| ≤ 2ε}. Check that u(x, t) = (h(r + t)+ h(r − t))/2r ,
and derive the desired result.



Chapter 3
An Introduction to Sobolev Spaces and
Pseudo-Differential Operators

In this chapter, we give a brief introduction to the classical Sobolev spaces Hs(Rn).
Sobolev spaces measure the differentiability (or regularity) of functions in L2(Rn)
and they are a fundamental tool in the study of partial differential equations. We also
list some basic facts of the theory of pseudo-differential operators without proof.
This is useful to study smoothness properties of solutions of dispersive equations.

3.1 Basics

We begin by defining Sobolev spaces.

Definition 3.1. Let s ∈ R. We define the Sobolev space of order s, denoted by
Hs(Rn), as:

Hs(Rn)={f ∈ S ′(Rn) : Λsf (x)= ((1+|ξ |2)s/2
̂f (ξ ))∨(x) ∈ L2(Rn)

}

, (3.1)

with norm ‖·‖s,2 defined as:

‖ f ‖s,2 = ‖Λsf ‖2. (3.2)

Example 3.1 Let n = 1 and f (x) = χ[−1,1](x). From Example 1.1, we have that
̂f (ξ ) = sin (2πξ )/(πξ ). Thus, f ∈ Hs(R) if s < 1/2 .

Example 3.2 Let n = 1 and g(x) = χ[−1,1] ∗ χ[−1,1](x). In Example 1.2, we saw
that

ĝ(ξ ) = sin2 (2π ξ )

(π ξ )2
.

Thus, g ∈ Hs(R) whenever s < 3/2.

Example 3.3 Let n ≥ 1 and h(x) = e−2π |x|. From Example 1.4, it follows that

̂h(ξ ) = Γ [(n+ 1)/2]

π (n+1)/2

1

(1 + |ξ |2)(n+1)/2
. (3.3)
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Using polar coordinates, it is easy to see that h ∈ Hs(Rn) if s < n/2 + 1. Notice
that in this case s depends on the dimension.

Example 3.4 Let n ≥ 1 and f (x) = δ0(x). From Example 1.9, we have
̂δ0(ξ ) = 1. Thus, δ0 ∈ Hs(Rn) if s < −n/2.

From the definition of Sobolev spaces, we deduce the following properties.

Proposition 3.1.

1. If s < s ′, then Hs′ (Rn) /⊆Hs(Rn).
2. Hs(Rn) is a Hilbert space with respect to the inner product 〈·, ·〉s defined as

follows:

If f, g ∈ Hs(Rn), then 〈f, g〉s =
∫

Rn

Λsf (ξ )Λsg(ξ ) dξ.

We can see, via the Fourier transform, that Hs(Rn) is equal to:

L2(Rn; (1 + |ξ |2)s dξ ).

3. For any s ∈ R, the Schwartz space S(Rn) is dense in Hs(Rn).
4. If s1 ≤ s ≤ s2, with s = θs1 + (1 − θ )s2, 0 ≤ θ ≤ 1, then

‖ f ‖s,2 ≤ ‖ f ‖θs1,2‖ f ‖1−θ
s2,2 .

Proof. It is left as an exercise. �

To understand the relationship between the spaces Hs(Rn) and the differentia-
bility of functions in L2(Rn), we recall Definition 1.2 in the case p = 2.

Definition 3.2. A function f is differentiable in L2(Rn) with respect to the kth
variable, if there exists g ∈ L2(Rn) such that

∫

Rn

∣

∣

f (x + h ek) − f (x)

h
− g(x)

∣

∣

2
dx → 0 when h → 0,

where ek has kth coordinate equal to 1 and 0 in the others.
Equivalently (see Exercise 1.9) ξk ̂f (ξ ) ∈ L2(Rn), or

∫

Rn

f (x)∂xkφ(x) dx = −
∫

Rn

g(x)φ(x) dx

for every φ ∈ C∞
0 (Rn) (C∞

0 (Rn) being the space of functions infinitely
differentiable with compact support).

Example 3.5 Let n = 1 and f (x) = χ(−1,1)(x), then f ′ = δ−1 − δ1, where δx
represents the measure of mass 1 concentrated in x , therefore f ′ /∈ L2(R).
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Example 3.6 Let n = 1 and g be as in Example 3.2. Then,

dg

dx
(x) = χ(−2,0) − χ(0,2) , and so

dg

dx
∈ L2(R).

With this definition, for k ∈ Z
+ we can give a description of the space Hk(Rn)

without using the Fourier transform.

Theorem 3.1. If k is a positive integer, then Hk(Rn) coincides with the space
of functions f ∈ L2(Rn) whose derivatives (in the distribution sense, see (1.42))
∂α
x f belong to L2(Rn) for every α ∈ (Z+)n with |α| = α1 + · · · + αn ≤ k.

In this case, the norms ‖ f ‖k,2 and
∑

|α|≤k

‖∂α
x f‖2 are equivalent.

Proof. The proof follows by combining the formula ̂∂α
x f (ξ ) = (2πiξ )α ̂f (ξ ) (see

(1.10)) and the inequalities:

|ξβ | ≤ (1 + |ξ |2)k/2 ≤
∑

|α|≤k

|ξα|, β ∈ (Z+)n, |β| ≤ k. �

Theorem 3.1 allows us to define in a natural manner Hk(Ω), the Sobolev space of
order k ∈ Z

+ in any subset Ω (open) of R
n. Given f ∈ L2(Ω), we say that ∂α

x f ,
α ∈ (Z+)n is the αth partial derivative (in the distribution sense) of f , if for every
φ ∈ C∞

0 (Ω)
∫

Ω

f ∂α
x φ dx = (− 1)|α|

∫

Ω

∂α
x f φ dx.

Then,

Hk(Ω) = {f ∈ L2(Ω) : ∂α
x f (in the distribution sense) ∈ L2(Ω), |α| ≤ k}

with the norm

‖ f ‖Hk (Ω) ≡
(
∑

|α|≤k

∫

Ω

|∂α
x f (x)|2 dx

)1/2

.

Example 3.7 For n = 1, b > 0, and f (x) = |x|, one has that f ∈ H 1(( − b, b))
and f /∈ H 2((− b, b)).

The next result allows us to relate “weak derivatives” with derivatives in the
classical sense.

Theorem 3.2 (Embedding). If s > n/2 + k, then Hs(Rn) is continuously em-
bedded in Ck∞(Rn), the space of functions with k continuous derivatives vanishing
at infinity. In other words, if f ∈ Hs(Rn), s > n/2 + k, then (after a possible
modification of f in a set of measure zero) f ∈ Ck∞(Rn) and

‖ f ‖Ck ≤ cs ‖ f ‖s,2. (3.4)
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Proof. Case k = 0: We first show that if f ∈ Hs(Rn), then ̂f ∈ L1(Rn) with

‖̂f‖1 ≤ cs‖ f ‖s,2, if s > n/2. (3.5)

Using the Cauchy–Schwarz inequality, we deduce:
∫

Rn

|̂f (ξ )|dξ =
∫

Rn

|̂f (ξ )|(1 + |ξ |2)s/2 dξ

(1 + |ξ |2)s/2

≤ ‖Λsf‖2

⎛

⎝

∫

Rn

dξ

(1 + |ξ |2)s

⎞

⎠

1/2

≤ cs‖f ‖s,2

if s > n/2. Combining (3.5), Proposition 1.2, and Theorem 1.1, we conclude that

‖f ‖∞ = ‖(̂f )∨‖∞ ≤ ‖̂f ‖1 ≤ cs‖f ‖s,2.

Case k ≥ 1: Using the same argument, we have that if f ∈ Hs(Rn) with
s > n/2 + k, then for α ∈ (Z+)n, |α| ≤ k, it follows that ̂∂α

x f ∈ L1(Rn) and

‖∂α
x f ‖∞ ≤ ‖̂∂α

x f ‖1 = ‖(2πiξ )α ̂f ‖1 ≤ cs‖f ‖s,2.

�

Corollary 3.1. If s = n/2+ k+ θ , with θ ∈ (0, 1), then Hs(Rn) is continuously
embedded in Ck+θ (Rn), the space of Ck functions with partial derivatives of order
k Hölder continuous with index θ .

Proof. We only prove the case k = 0, since the proof of the general case follows
the same argument. From the formula of inversion of the Fourier transform and the
Cauchy–Schwarz inequality we have:

|f (x + y) − f (x)| =
∣

∣

∣

∫

Rn

e2πi(x·ξ )
̂f (ξ )(e2πi(y·ξ ) − 1) dξ

∣

∣

∣

≤
(

∫

Rn

(1 + |ξ |2)n/2+θ |̂f (ξ )|2 dξ
)1/2(∫

Rn

|e2πi(y·ξ ) − 1|2
(1 + |ξ |2)n/2+θ

dξ
)1/2

.

But
∫

Rn

|e2πi(y·ξ ) − 1|2
(1 + |ξ |2)n/2+θ

dξ

≤ c

∫

|ξ |≤|y|−1
|y|2|ξ |2 dξ

(1 + |ξ |2)n/2+θ
+ 4
∫

|ξ |≥|y|−1

dξ

(1 + |ξ |2)n/2+θ
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≤ c|y|2
|y|−1
∫

0

rn+1

(1 + r)n+2θ
dr + 4

∞
∫

|y|−1

rn−1

(1 + r)n+2θ
dr ≤ c |y|2θ .

If |y| < 1, we conclude that |f (x + y) − f (x)| ≤ c |y|θ . This finishes the proof.�

Theorem 3.3. If s ∈ (0, n/2), then Hs(Rn) is continuously embedded in Lp(Rn)
with p = 2n/(n − 2s), i.e., s = n(1/2 − 1/p). Moreover, for f ∈ Hs(Rn),
s ∈ (0, n/2),

‖ f ‖p ≤ cn,s ‖Dsf‖2 ≤ c‖ f ‖s,2, (3.6)

where
Dlf = ( −Δ)l/2f = ((2π |ξ |)l ̂f )∨.

Proof. The last inequality in (3.6) is immediate, so we just need to show the first
one. We define

Dsf = g or f = D−s g = cn,s

( 1

|ξ |s ĝ
)∨

= cn,s

|x|n−s
∗ g, (3.7)

where we have used the result of Exercise 1.14. Thus, by the Hardy–Littlewood–
Sobolev estimate (2.10) it follows that

‖ f ‖p = ‖D−s g‖p = ‖ cn,s

|x|n−s
∗ g‖p ≤ cn,s ‖g‖2 = c‖Dsf‖2. (3.8)

�

We notice from Theorems 3.2 and 3.3, and Corollary 3.1 that the local regularity in
Hs, s > 0, increases with the parameter s.

Examples 3.1 and 3.3 show that the functions in Hs(Rn) with s < n/2 or
s < n/2 + 1, respectively, are not necessarily continuous nor C1. Moreover, let
f ∈ L2(Rn) with

̂f (ξ ) = 1

(1 + |ξ |)n log (2 + |ξ |)
(which is radial, decreasing, and positive). A simple computation shows that f ∈
H

n
2 (Rn), but ̂f /∈ L1(Rn) and so f /∈ L∞(Rn), since f (0) = ∫ ̂f (ξ )dξ = ∞ (see

also Exercise 3.11(iii)).
To complete the embedding results of the spaces Hs(Rn), s > 0, it remains to

consider the case s = n/2 (since for s = k + n/2, k ∈ Z
+, the result follows from

this one). So, we define the space of functions of the bounded mean oscillation or
BMO, introduced by John and Nirenberg [JN].

Definition 3.3. For f : R
n → C with f ∈ L1

loc(Rn), we say that f ∈ BMO(Rn)
(f has bounded mean oscillation (BMO)) if

‖ f ‖BMO = sup
x∈Rn

r>0

1

|Br (x)|
∫

Br (x)
|f (y) − fBr (x)| dy < ∞, (3.9)
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where

fBr (x) = 1

|Br (x)|
∫

Br (x)
f (y)dy.

Notice that ‖·‖BMO is a semi-norm since it vanishes for constant functions.
BMO(Rn) is a vector space with L∞(Rn) � BMO(Rn) since ‖f ‖BMO ≤ 2‖f ‖∞

and log |x| ∈ BMO(Rn).

Theorem 3.4. Hn/2(Rn) is continuously embedded in BMO(Rn). More precisely,
there exists c = c(n) > 0 such that

‖f ‖BMO ≤ c ‖Dn/2f ‖2.

Proof. Without loss of generality, we assume f real valued. Consider x ∈ R
n and

r > 0.
Let φr ∈ C∞

0 (Rn) such that suppφr ⊆ {x | |x| ≤ 2
r
} with 0 ≤ φr (x) ≤ 1 and

φr (x) ≡ 1 if |x| < 1/r , and define

f (x) = fl + fh = (̂f φr)
∨ + (̂f (1 − φr ))

∨.

We observe that

‖f ‖BMO ≤ ‖fl‖BMO + ‖fh‖BMO

and fl ∈ Hs(Rn) for any s > 0; therefore,

fl,Br (x) = 1

|Br (x)|
∫

Br (x)
fl(y) dy = fl(x0)

for some x0 ∈ Br (x), and so for any y ∈ Br (x)

|fl(y) − fl,Br (x)| ≤ 2r ‖∇fl‖∞.

Using this estimate we get:

1

|Br (x)|
∫

Br (x)

∣

∣

∣fl(y) − fl,Br (x)

∣

∣

∣dy ≤ 1

|Br (x)|1/2

(

∫

Br (x)
|fl(y) − fl,Br (x)|2 dy

)1/2

≤ 2r ‖∇fl‖∞ ≤ 2r ‖̂∇fl‖1

≤ 2r
∫

|ξ |≤1/2r
|ξ |1−n/2|ξ |n/2|̂f (ξ )| dξ

≤ 2r
(

∫

|ξ |≤1/2r
|ξ |2−n dξ

)1/2

‖Dn/2f‖2 ≤ c‖Dn/2f‖2.

Also,

1

|Br (x)|
∫

Br (x)
|fh(y) − fh,Br (x)|dy ≤ 2

|Br (x)|1/2
‖fh‖2
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≤ 2

|Br (x)|1/2

(

∫

|ξ |≥1/2r
|̂f (ξ )|2 dξ

)1/2

= cn

rn/2

(

∫

|ξ |≥1/2r
rn|ξ |n|̂f (ξ )|2 dξ

)1/2

≤ ‖Dn/2f‖2,

which yields the desired result. �

We have shown that Hs(Rn) with s > n/2 is a Hilbert space whose elements
are continuous functions. From the point of view of nonlinear analysis, the next
property is essential.

Theorem 3.5. If s > n/2, then Hs(Rn) is an algebra with respect to the product
of functions. That is, if f, g ∈ Hs(Rn), then fg ∈ Hs(Rn) with

‖fg‖s,2 ≤ cs‖f ‖s,2‖g‖s,2. (3.10)

Proof. From the triangle inequality, we have that for every ξ , η ∈ R
n:

(1 + |ξ |2)s/2 ≤ 2s[(1 + |ξ − η|2)s/2 + (1 + |η|2)s/2].

Using this we deduce that

|Λs(fg)| = |(1 + |ξ |2)s/2
̂(fg)(ξ )|

= (1 + |ξ |2)s/2
∣

∣

∣

∫

Rn

̂f (ξ − η)̂g(η) dη
∣

∣

∣

≤ 2s

∫

Rn

[

(1 + |ξ − η|2)s/2 |̂f (ξ−η)̂g(η)|

+ (1 + |η|2)s/2 |̂f (ξ − η)̂g(η)|
]

dη

≤ 2s(|̂Λsf | ∗ |̂g| + |̂f| ∗ |̂Λsg|).
Thus, taking the L2-norm and using (1.39) it follows that

‖ fg‖s,2 = ‖Λs(fg)‖2 ≤ c(‖Λsf ‖2‖ĝ‖1 + ‖̂f ‖1‖Λsg‖2). (3.11)

Finally, (3.5) assures one that if r > n/2, then

‖ fg‖s,2 ≤ cs(‖f ‖s,2‖ĝ‖1 + ‖̂f ‖1‖g‖s,2)

≤ cs(‖f ‖s,2‖g‖r ,2 + ‖f ‖r ,2‖g‖s,2).
(3.12)

Choosing r = s, we obtain (3.10). �

The inequality (3.12) is not sharp as the following scaling argument shows. Let
λ > 0 and

f (x) = f1(λx), g(x) = g1(λx), f1, g1 ∈ S(Rn).
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Then, as λ ↑ ∞ the right-hand side of (3.12) grows as λs+r, meanwhile the left-hand
side grows as λs . This will not be the case if we replace ‖·‖r ,2 in (3.12) with the
‖·‖∞-norm to get that

‖ fg‖s,2 ≤ cs(‖f ‖s,2 ‖g‖∞ + ‖f ‖∞ ‖g‖s,2) (3.13)

which in particular shows that for any s > 0, Hs(Rn) ∩L∞(Rn) is an algebra under
the point-wise product.

For s ∈ Z
+, the inequality (3.13) follows by combining the Leibniz rule for the

product of functions and the Gagliardo–Nirenberg inequality:

‖∂α
x f‖p ≤ c

∑

|β|=m

‖∂β
x f‖θq ‖ f ‖1−θ

r (3.14)

with |α| = j , c = c(j ,m,p, q, r), 1/p − j/n = θ (1/q − m/n) + (1 − θ )1/r,
θ ∈ [j/m, 1]. For the proof of this inequality, we refer the reader to the reference
[Fm].

For the general case s > 0, where the usual point-wise Leibniz rule is not available,
the inequality (3.13) still holds (see [KPo]). The inequality (3.13) has several exten-
sions, for instance: Let s ∈ (0, 1), r ∈ [1,∞), 1 < pj , qj ≤ ∞, 1/r = 1/pj + 1/qj ,
j = 1, 2. Then,

‖Φs(fg)‖r ≤ c(‖Φs(f )‖p1‖g‖q1 + ‖f ‖p2‖Φs(g)‖q2),

with Φs = Λs or Ds, (for the proof of this estimate and further generalizations
[KPV4], [MPTT], and [GaO]). The extension to the case r = pj = qj = ∞,
j = 1, 2 was given in [BoLi].

In many applications, the following commutator estimate is often used:

∑

|α|=s

‖[∂α
x ; g] f‖2 ≡

∑

|α|=s

‖∂α
x (gf ) − g∂α

x f‖2

≤ cn,s

(

‖∇g‖∞
∑

|β|=s−1

‖∂β
x f‖2 + ‖ f ‖∞

∑

|β|=s

‖∂β
x g‖2

)

,
(3.15)

(see [Kl2]). Similarly, for s ≥ 1 one has

‖[Λs ; g] f‖2 ≤ c (‖∇g‖∞‖Λs−1f‖2 + ‖ f ‖∞ ‖Λsg‖2), (3.16)

(see [KPo]).
There are “equivalent” manners to define fractional derivatives without relying

on the Fourier transform. For instance:

Definition 3.4 (Stein [S1]). For b ∈ (0, 1) and an appropriate f define

Dbf (x) =
(

∫ |f (x) − f (y)|2
|x − y|n+2b

dy
)1/2

. (3.17)
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Theorem 3.6 (Stein [S1]). Let b ∈ (0, 1) and 2n
(n+2b) ≤ p < ∞. Then f , Dbf ∈

Lp(Rn) if and only if f , Dbf ∈ Lp(Rn).
Moreover,

‖ f ‖p + ‖Dbf‖p ∼ ‖ f ‖p + ‖Dbf‖p.
The case p = 2 was previously considered in [AS].

For other “equivalent” definitions of fractional derivatives see [Str1].
Finally, to complete our study of Sobolev spaces we introduce the localized

Sobolev spaces.

Definition 3.5. Given f : R
n → R, we say that f ∈ Hs

loc(Rn) if for every ϕ ∈
C∞

0 (Rn) we have ϕ f ∈ Hs(Rn). In other words, for any Ω ⊆ R
n open bounded

f |Ω coincides with an element of Hs(Rn).
This means that f has the sufficient regularity, but may not have enough decay

to be in Hs(Rn).

Example 3.8 Let n = 1, f (x) = x, and g(x) = |x|, then f ∈ Hs
loc(R) for every

s ≥ 0 and g ∈ Hs
loc(R) for every s < 3/2.

3.2 Pseudo-Differential Operators

We recall some results from the theory of pseudo-differential operators that we need
to describe the local smoothing effect for linear elliptic systems.

The class Sm = Sm
1,0 of classical symbols of order m ∈ R is defined by

Sm = {p(x, ξ ) ∈ C∞(Rn × R
n) : |p|(j )

Sm < ∞, j ∈ N}, (3.18)

where

|p|(j )
Sm =sup {‖〈ξ〉−m+|α|∂α

ξ ∂
β
x p(·, ·)‖L∞(Rn×Rn) : |α + β| ≤ j} (3.19)

and 〈ξ〉 = (1 + |ξ |2)1/2.
The pseudo-differential operator Ψp associated to the symbol p ∈ Sm is defined

by

Ψpf (x) =
∫

Rn

e2π ix·ξ p(x, ξ )f̂ (ξ ) dξ , f ∈ S(Rn). (3.20)

Example 3.9 A partial differential operator

P =
∑

|α|≤N

aα(x)∂α
x ,

with aα ∈ S(Rn) is a pseudo-differential operator P = Ψp with symbol

p(x, ξ ) =
∑

|α|≤N

aα(x)(2π iξ )α ∈ SN.
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Example 3.10 The fractional differentiation operator defined in (3.1) as Λρ = Ψ〈ξ〉ρ
is also a pseudo-differential operator with symbol in Sρ , ρ ∈ R.

The collection of symbol classes Sm, m ∈ R, is in some cases closed under
composition, adjointness, division, and square root operations. This is not the case
for polynomials in ξ , and sometimes this closure allows one to construct approximate
inverses and square roots of pseudo-differential operators.

Next, we list some properties of pseudo-differential operators whose proofs can
be found for instance in [Kg].

Theorem 3.7 (Sobolev boundedness). Let m ∈ R, p ∈ Sm, and s ∈ R. Then, Ψp

extends to a bounded linear operator from Hm+s(Rn) to Hs(Rn). Moreover, there
exist j = j (n;m; s) ∈ N and c = c(n;m; s) such that

‖Ψpf‖Hs ≤ c |p|(j )
Sm ‖f‖Hm+s . (3.21)

Theorem 3.8 (Symbolic calculus). Let m1, m2 ∈ R, p1 ∈ Sm1 , p2 ∈ Sm2 . Then,
there exist p3 ∈ Sm1+m2−1, p4 ∈ Sm1+m2−2, and p5 ∈ Sm1−1 such that

Ψp1Ψp2 = Ψp1p2 + Ψp3 ,

Ψp1Ψp2 − Ψp2Ψp1 = Ψ−i{p1,p2} + Ψp4 ,

(Ψp1 )∗ = Ψp̄1 + Ψp5 ,

(3.22)

where {p1,p2} denotes the Poisson bracket, i.e.,

{p1,p2} =
n
∑

j=1

(∂ξj p1 ∂xj p2 − ∂xj p1 ∂ξj p2), (3.23)

and such that for any j ∈ N there exist j ′ ∈ N and c1 = c1(n;m1; m2; j ), c2 =
c2(n;m1; j ) such that

|p3|(j )
Sm1+m2−1 + |p4|(j )

Sm1+m2−2 ≤ c1 |p1|(j ′)Sm1 |p2|(j ′)Sm2

|p5|(j ′)Sm1−1 ≤ c2 |p1|(j ′)Sm1 .

Remark 3.1.

(i) (3.22) tell us that the “principal symbol” of the commutator [ψp1 ;ψp2 ] is given
by the formula in (3.23).

(ii) It is useful for our purpose to consider the class of symbols Sm,N = S
m,N
1,0

defined as p(x, ξ ) ∈ CN (Rn × R
n) such that

|p|(N )
Sm < ∞, with |p|(N )

Sm defined in (3.19). (3.24)

For N sufficiently large the results in Theorem 3.7 extend to the class Sm,N .
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3.3 The Bicharacteristic Flow

In this section, we introduce the notion of bicharacteristic flow. This plays a key role
in the study of linear variable coefficients Schrödinger equations and in the well-
posedness of the initial value problem (IVP) associated to the quasilinear case as we
can see in the next and the last chapters.

Let L = ∂xj ajk(x)∂xk be an elliptic self-adjoint operator, that is, (ajk(x))jk is a
n× n matrix of functions ajk ∈ C∞

b , real, symmetric, and positive definite, i.e.,
∃ ν > 0 such that ∀ x, ξ ∈ R

n,

ν−1‖ξ‖2 ≤
n
∑

j ,k=1

ajk(x)ξj ξk ≤ ν‖ξ‖2. (3.25)

Let h2 be the principal symbol of L, i.e.,

h2(x, ξ ) = −
n
∑

j ,k=1

ajk(x)ξj ξk. (3.26)

The bicharacteristic flow is the flow of the Hamiltonian vector field:

Hh2 =
n
∑

j=1

[∂ξj h2 · ∂xj − ∂xj h2 · ∂ξj] (3.27)

and is denoted by (X(s; x0, ξ0),Ξ (s; x0, ξ0)), i.e.,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d

ds
Xj (s; x0, ξ0) = −2

n
∑

k=1
ajk(X(s; x0, ξ0))Ξk(s; x0, ξ0),

d

ds
Ξj (s; x0, ξ0) =

n
∑

k,l=1
∂xj alk(X(s; x0, ξ0))Ξk(s; x0, ξ0)Ξl(s; x0, ξ0)

(3.28)

for j = 1, . . . , n, with

(X(0; x0, ξ0),Ξ (0; x0, ξ0)) = (x0, ξ0). (3.29)

The bicharacteristic flow exists in the time interval s ∈ ( − δ, δ) with δ = δ(x0, ξ0),
and δ(·) depending continuously on (x0, ξ0).

The bicharacteristic flow preserves h2, i.e.,

d

ds
h2(X(s; x0, ξ0),Ξ (s; x0, ξ0)) = 0,

so the ellipticity hypothesis (3.25) gives

ν−2‖ξ0‖2 ≤ ‖Ξ (s; x0, ξ0)‖2 ≤ ν2‖ξ0‖2, (3.30)

and hence δ = ∞.
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In the case of constant coefficients, h2(x, ξ ) = −|ξ |2, the bicharacteristic flow is
given by (X, Ξ )(ξ , x0, ξ0) = (x0 − 2sξ0, ξ0).

For general symbol h(x, ξ ), the bicharacteristic flow is defined as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

dX

ds
= ∂ξ h(X,Ξ )

d Ξ

ds
= −∂x h(X,Ξ ).

(3.31)

In applications, the notion of the bicharacteristic flow

t �→ (X(t ; x0, ξ0), Σ(t ; x0, ξ0)) (3.32)

being nontrapping arises naturally.

Definition 3.6. A point (x0, ξ0) ∈ R
n×R

n\{0} is nontrapped forward (respectively,
backward) by the bicharacteristic flow if

‖X(t ; x0, ξ0)‖ → ∞ as t → ∞ (resp, t → −∞). (3.33)

If each point (x0, ξ0) ∈ R
n×R

n−{0} is nontrapped forward, then the bicharacteristic
flow is said to be nontrapping.

In particular, if one assumes that the “metric” (ajk(x)) in (3.26) possesses an
“asymptotic flat property,” for example,

|∂α
x (ajk(x) − δjk)| ≤ cα

|x|1+ε(α)
, ε(α) > 0, 0 ≤ |α| ≤ m = m(n), (3.34)

then it suffices to have that for each (x0, ξ0) ∈ R
n × R

n \ {0} and for each μ > 0
there exists t̂ = t̂(μ; x0, ξ0) > 0 such that

‖X(t̂ ; x0, ξ0)‖ ≥ μ

to guarantee that the bicharacteristic flow is nontrapping.
The next result shows that the Hamiltonian vector field is differentiation along

the bicharacteristics.

Lemma 3.1. Let φ ∈ C∞(Rn × R
n). Then,

(Hh2φ)(x, ξ ) = ∂s[φ(X(s; x, ξ ),Ξ (s; x, ξ ))]|s=0 = {h2,φ}. (3.35)

Notice that−i{h2,φ} is the principal symbol of the commutator [ψh2 ,ψφ] (see 3.22).

Proof. By the chain rule,

∂s[φ(X(s; x, ξ ),Ξ (s; x, ξ ))] = (∇xφ)(X(s; x, ξ ),Ξ (s; x, ξ )) · ∂sX(s; x, ξ )

+ (∇ξφ)(X(s; x, ξ ),Ξ (s; x, ξ )) · ∂sΞ (s; x, ξ )

= (∇xφ · ∇ξh2)(X(s; x, ξ ),Ξ (s; x, ξ ))

− (∇ξφ · ∇xh2)(X(s; x, ξ ),Ξ (s; x, ξ )).

Setting s = 0, the lemma follows. �
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3.4 Exercises

3.1 Prove that for any k ∈ Z
+ and any θ ∈ (0, 1)

χ(−1,1)
k times∗ · · · ∗ χ(−1,1)(x) ∈ C

k−1,θ
0 (R)\Ck(R).

3.2 Prove Proposition 3.1.
3.3 Let fn : R

n → R with fn(x) = e−2π |x|.

(i) Prove that f1 ∗ f1(x) = e−2π |x|

2π
(1 + 2π |x|).

Hint: Use an explicit computation or Exercise 1.1(ii).
(ii) Show that f1 ∗ f1(x) ∈ C2(R), but is not in C3(R) .
(iii) Prove that fn ∗ fn ∈ Cn+1∞ (Rn).
(iv) More general, prove that if g ∈ Hs1 (Rn) and h ∈ Hs2 (Rn), then

g ∗ h ∈ C[s1+s2]∞ (Rn) (where [ · ] denotes the greatest integer function.)

3.4 Let φ(x) = e−|x|, x ∈ R:
(i) Prove that

φ(x) − φ′′(x) = 2δ, (3.36)

(a) in the distribution sense, i.e., ∀ϕ ∈ C∞
0 (R),

∫

φ(x)(ϕ(x) − ϕ′′(x)) dx = 2ϕ(0),

(b) by taking the Fourier transform in (3.36).

(ii) Prove that given g ∈ L2(R) (or Hs(R)) the equation:

(

1 − d2

dx2

)

f = g

has solution f = 1
2 e−|·| ∗ g ∈ H 2(R) (or Hs+2(R)).

3.5 Show that if k ∈ Z
+ and p ∈ [1,∞), then

Fk,p(Rn) = L
p

k (Rn) ∩ L∞(Rn)

is a Banach algebra with respect to point-wise product of functions. Moreover,
if f , g ∈ Fk,p, then

‖fg‖k,p ≤ ck(‖ f ‖k,p||g||∞ + ‖f‖∞‖g‖k,p). (3.37)

Notation:

L
p

k (Rn) = {f : R
n → C :∂αf (distribution sense) ∈ Lp, |α| ≤ k},

whose norm is defined as:

‖ f ‖k,p =
∑

|α|≤k

‖∂αf‖p.
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Observe that when p = 2 one has L
p

k (Rn) = Hk(Rn).
More generally, we define

Lp
s (Rn) = (1 −Δ)−s/2Lp(Rn) for s ∈ R, with ‖ f ‖s,p = ‖(1 −Δ)s/2f‖p.

(3.38)

Hint: From Leibniz formula and Hölder’s inequality it follows that (assume
n = 1 to simplify)

‖(fg)(k)‖p ≤
k
∑

j=0

cj‖f (k−j )‖pj1
‖g(j )‖pj2

, with
1

p
= 1

pj1

+ 1

pj2

.

Combine the Gagliardo–Nirenberg inequality (3.14):

‖h(k−j )‖pj
≤ c‖h(k)‖θp‖h‖1−θ

∞ , θ = θ (n, k, j ,pj ),

with Young’s inequality (if 1/p + 1/p′ = 1 with p > 1, then ab ≤
ap/p + bp

′
/p′ ) to get the desired result (3.37).

3.6 Extend the result of Theorem 3.3 to the spaces L
p
s (Rn), i.e., if f ∈ L

p
s (Rn),

0 < s < n/p, then f ∈ Lr (Rn) with s = n
(

1
p
− 1

q

)

, and

‖ f ‖r ≤ cn,s ‖Dsf‖p ≤ cn,s ‖ f ‖s,p. (3.39)

3.7 (i) Prove that if 1 < p < ∞ and b ∈ (0, 1), then

‖Λbf‖p ∼ ‖ f ‖p + ‖Dbf‖p.
Hint: Use Theorem 2.8.

(ii) Given any s ∈ R find fs ∈ Hs(R) such that fs /∈ Hs′ (R) for any s ′ > s.
Hint:

(a) Notice that it suffices to find f0.
(b) Show that if g ∈ L2(R) and g /∈ Lp(R) for any p > 2, then one can

take f0 = g.
(c) Use (b) to find f0.

3.8 Show that if f ∈ Hs(Rn), s > n/2, with‖f‖n/2,2 ≤ 1, then

‖ f ‖∞ ≤ c [1 + log (1 + ‖ f ‖s,2)]1/2

with c = c(s, n), see [BGa].
3.9 Prove the following inequalities:

(i) If s > n/2, then

‖ f ‖∞ ≤ cn,s‖ f ‖1−n/2s
2 ‖Dsf‖n/2s

2 .
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(ii) If s > n/p, 1 < p < ∞, then

‖ f ‖∞ ≤ cn,s,p‖ f ‖1−n/ps
p ‖Dsf‖n/psp .

(iii) Prove Gagliardo–Nirenberg inequality (3.14) for p even integer, m = 2,
j = 2, and q, r ∈ (1,∞) such that 1/q + 1/r = 2/p.

(iv) Combine Exercises 2.10 and 2.11, and Theorem 2.6 to prove the
Gagliardo–Nirenberg inequality in the general case.

3.10 ([AS]). Using Definition 3.4:

(i) Prove that for b ∈ (0, 1)

‖Dbf‖2 = cn ‖Dbf‖2. (3.40)

(ii) Prove that

Db(fg)(x) ≤ ‖ f ‖∞Dbg(x) + |g(x)|Dbf (x) (3.41)

and

‖Db(fg)‖2 ≤ ‖fDbg‖2 + ‖gDbf‖2. (3.42)

(iii) Let F ∈ C1
b (R : R), F (0) = 0. Show that

‖Db(F (f ))‖2 ≤ ‖F ′‖∞‖Dbf‖2.

Hint: Apply part (i).
3.11 (i) Let f ∈ Lp(R), 1 < p < ∞, be such that f (x+0 ), f (x−0 ) exist and

f (x+0 ) �= f (x−0 ) for some x0. Prove that f /∈ L
p

1/p(R).
(ii) Let ϕ ∈ C∞

0 (R) with ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| > 2. Let
a, b ∈ (0, 1). Prove that |x|aϕ(x) ∈ Hb(R) if and only if b < a + 1/2.

(iii) Let α ∈ (0, 1/2). Prove that

| log |x||α χ{|x|≤1/10} + 10

9
(1 − |x|)χ{1/10≤|x|≤1} ∈ H 1(R2) − L∞(R2).

3.12 (Sobolev’s inequality for radial functions) Let f : R
n → R, n ≥ 3, be a radial

function, i.e., f (x) = f (y) if |x| = |y|. Show that f satisfies

|f (x)| ≤ cn |x|(2−n)/2 ‖∇f‖2.

3.13 (Hardy’s inequalities (see Exercise 1.5))

(i) Let 1 ≤ p < ∞. If f ∈ L
p

1 (Rn), then

∥

∥

∥

|f (·)|
|x|
∥

∥

∥

p

≤ p

n− p
‖∇f‖p. (3.43)
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(ii) Let 1 ≤ p < ∞, q < n, and q ∈ [0,p]. If f ∈ L
p

1 (Rn), then

∫

Rn

|f (x)|p
|x|q dx ≤

( p

n− q

)q

‖ f ‖p−q
p ‖∇f‖qp. (3.44)

Hint: Assume that f ∈ C∞
0 (Rn). For (i), write ‖| · |−1f ‖pp in spherical coor-

dinates, use integration by parts in the radial variable and Hölder inequality
to get the result. For (ii), assume p > q, and apply (3.43) to |x|−1 g(x) with
g(x) = |f (x)|p/q .

3.14 Prove Heisenberg’s inequality. If f ∈ H 1(Rn) ∩ L2(|x|2 dx), then

‖ f ‖2
2 ≤

2

n
‖xjf‖2‖∂xj f‖2 = 4π

n
‖xjf‖2‖ξj ̂f ‖2 ≤ 2

n
‖xf‖2‖∇f‖2. (3.45)

Hint: Use the density of S(Rn) and integration by parts to obtain the identity

‖ f ‖2
2 = −1

n

∫

xj∂xj (|f (x)|2) dx.

3.15 Denote u = u(x, t) , the solution of the IVP associated to the inviscid Burgers’
equation:

{

∂tu + u∂xu = 0,

u(x, 0) = u0(x) ∈ C∞
0 (R),

(3.46)

t , x ∈ R. Prove that for every T > 0 ,

u ∈ C∞(R × [ − T , T ]) or u /∈ C1(R × [ − T , T ]).

Hint: Combine the commutator estimate (3.16) and integration by parts to obtain
the energy estimate

d

dt
‖u(t)‖k,2 ≤ ck‖∂xu(t)‖∞‖u(t)‖k,2 for all k ∈ Z

+. (3.47)

3.16 Let P (x, ∂x) = ∑

|α|≤m1

aα(x)∂α
x and Q(x, ∂x) = ∑

|α|≤m2

bα(x)∂α
x be two differential

operators. Check the properties stated in Theorem 3.8 for P and Q.

3.17 (i) If Λ = (1 − Δ)1/2 and y ∈ R, show that the symbol p = p(ξ ) of Λi y ,
p(ξ ) = (1 + |ξ |2)iy/2 ∈ S0, and

|p|j
S0 ≤ cn (1 + |y|)j .

(ii) Show that if p = p(x, ξ ) ∈ S0 = S0
1,0, then ep(x,ξ ) ∈ S0 = S0

1,0.

3.18 Prove that the bicharacteristic flow in (3.28) (X(s; x0, ξ0), Ξk(s; x0, ξ0)) satisfies
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(i) X(s; x0, ρ ξ0) = X(ρ s; x0, ξ0),
(ii) Ξk(s; x0, ρ ξ0) = ρ Ξk(ρ s; x0, ξ0).

Hint: Use the homogeneity of h2(x, ξ ) = −ajk(x) ξj ξk .

3.19 Prove that if Ψp is a pseudo-differential operator with symbol p ∈ S0, then for
any b ∈ R,

‖Ψpf‖L2(〈x〉b dx) ≤ ck,n ‖ f ‖L2(〈x〉b dx), (3.48)

where

||g||L2(〈x〉b dx) =
(

∫

|g(x)|2〈x〉b dx
)1/2

and

〈x〉 = (1 + |x|2)1/2. (3.49)

Hint:

(i) Follow an argument similar to that given in the proof of Theorem 2.1 to
show that it suffices to establish (3.48) for b = 4k, k ∈ Z.

(ii) Consider the case b = −4k, k ∈ Z
+, and show that (3.48) is equivalent

to
∥

∥

∥

1

〈x〉2k
Ψp (〈x〉2kg)

∥

∥

∥

2
≤ c ‖g‖2. (3.50)

(iii) Obtain (3.50) by combining integration by parts, Theorems 3.7 and 3.8.
(iv) Finally, prove the case b = 4k, k ∈ Z

+, by duality.

3.20 Let a, b > 0. Assume that Λaf = (1 − Δ/4π2)a/2f ∈ L2(R2) (i.e., f ∈
Ha(Rn)) and 〈x〉bf ∈ L2(Rn) (see 3.49). Prove that for any θ ∈ (0, 1),

||Λ(1−θ )a(〈x〉θbf )||2 ≤ ca,b,n ||〈x〉bf ||θ2||Λaf ||1−θ
2 .

Hint: Combine the three lines theorem, Exercises 3.17 part (i) and (3.19).



Chapter 4
The Linear Schrödinger Equation

In this chapter, we study the smoothing properties of solutions of the initial value
problem:

{

∂tu = iΔu + F (x, t),

u(x, 0) = u0(x),
(4.1)

x ∈ R
n, t ∈ R. These properties are fundamental tools in the next chapters. In Sec-

tion 4.1, we present some general basic results concerning the initial value problem
(4.3). The global smoothing properties of solutions of (4.3) described by estimates of
the type Lq(R : Lp(Rn)) are discussed in Section 4.2. In Section 4.3, we derive the
local smoothing arising from estimates of type L2

loc(R : H 1/2
loc (Rn)). We end the chap-

ter with some remarks and comments regarding the issues discussed in the previous
sections.

4.1 Basic Results

We begin by recalling the notation (see (1.27))

eitΔu0 = e−|x|2/4it

(4πit)n/2
∗ u0 =

(

e−4π2it |ξ |2 û0
)∨

. (4.2)

The identity (4.2) describes the solution u(x, t) of the linear homogeneous initial
value problem (IVP)

{

∂tu = iΔu,

u(x, 0) = u0(x).
(4.3)

x ∈ R
n, t ∈ R. In the following examples, we illustrate some of the properties

exhibited by solutions of IVP (4.3).

© Springer-Verlag New York 2015 63
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64 4 The Linear Schrödinger Equation

Example 4.1 Consider the Gaussian function u0(x) = e−π |x|2. Using Examples 1.3,
1.11, and Exercise 1.2 we find that the solution of the IVP (4.3) is given by

u(x, t) =
(

e−4π2it |ξ |2 û0(ξ )
)

∨

= (e−(1+4πit)π |ξ |2)∨

= 1

(1 + 4πit)n/2
exp

( −π |x|2
1 + 4πit

)

= (1 + 4πit)−n/2 exp

(

− π |x|2
1 + 16π2t2

)

exp

(

4π2it |x|2
1 + 16π2t2

)

. (4.4)

Notice that when t ! 1 and |x| < t , the absolute value of the solution is bounded
below by cn t

−n/2 and the solution oscillates for |x| > t1/2. Furthermore, if |x| > t

the absolute value of the solution decays exponentially. Moreover,

C t−n/2χ{|x|<t} (x) ≤ |u(x, t)| ≤ c t−n/2, (4.5)

which is the expected behavior of the solution in order to have its L2(Rn)-norm
independent of t .

Example 4.2 We can write the solution of the IVP (4.3) as

u(x, t) =
(

e−4π2it |ξ |2 û0

)∨
(x) =

∫

Rn

ei|x−y|2/4t

(4πit)n/2
u0(y) dy

= ei|x|2/4t

(4πit)n/2

∫

Rn

e−2ix·y/4t ei|y|
2/4t u0(y) dy

= ei|x|2/4t

(4πit)n/2
̂

(

ei|·|2/4t u0
)

( x

4πt

)

.

(4.6)

Thus, if ct = (4πit)n/2,

ct e
−i|x|2/4t u(x, t) = ̂

(

ei|·|2/4t u0
)

( x

4πt

)

. (4.7)

Notice that if u0 ∈ C0(Rn) from (4.7) we deduce that for any t ∈ R \ {0} and any
ε > 0, u(·, t) /∈ L1(eε|x|dx). In particular, if t �= 0, u(x, t) has an analytic extension
to C

n (see Exercise 4.5).

Example 4.3 This example describes the propagation of oscillatory pulses. Now
we take u0(x) = eix·x0e−π |x|2, x0 ∈ R

n. From Examples 1.3 and 1.4 we have û0(ξ ) =
e−π |ξ−x0/2π |2. Thus, using Example 4.1 we obtain

u(x, t) = (e−4π2it(|ξ−x0/2π |2+2(ξ−x0/2π )·x0/2π+|x0|2/4π2) e−π |ξ−x0/2π |2)∨

= (τ
x0/2π (e−4π2it(|ξ |2+2ξ ·x0/2π+|x0|2/4π2) e−π |ξ |2 )

)∨
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= (τ
x0/2π (e−i2tξ ·x0 e−it |x0|2 e−(1+4πit)π |ξ |2 )

)∨
(4.8)

= eix0·xτ2x0 t
( e−it |x0|2 e−(1+4πit)π |ξ |2 )∨

= eix0·x e−it |x0|2 (1 + 4πit)−n/2 e
−π |x−2tx0 |2

(1+4πit) ,

where τ is the translation operator (see (1.4)). In other words, the solution of the IVP
(4.3) with data u0(x) = eix0·x e−π |x|2 is given by

u(x, t) = eix· x0 e−i|x0|2t u(x − 2t x0, t), (4.9)

where u denotes the solution of the IVP (4.3) given in Example 4.1.
In the next proposition, we list several invariance properties of solutions of the

equation in (4.3).

Proposition 4.1. If u = u(x, t) is a solution of the equation in (4.3), then

u1(x, t) = eiθu(x, t), θ ∈ R fixed,

u2(x, t) = u(x − x0, t − t0), with x0 ∈ R
n, t0 ∈ R fixed,

u3(x, t) = u(Ax, t), withA any orthogonal matrix n× n,

u4(x, t) = u(x − 2x0 t , t) e
i(x·x0−|x0|2t), with x0 ∈ R

n fixed,

u5(x, t) = λn/2u(λx, λ2t), λ > 0,

u6(x, t) = 1

(α + ωt)n/2
exp
[ iω|x|2

4(α + ωt)

]

u

(

x

α + ωt
,
γ + θt

α + ωt

)

, α θ − ω γ = 1,

u7(x, t) = u(x,−t),

also satisfy the equation in (4.3).
In (4.2), we have used an exponential formula to describe the solution of the IVP

(4.3). To justify this formula, we state next some properties of the family of operators
{eitΔ}∞t=−∞.

Proposition 4.2.

1. For all t ∈ R, eitΔ : L2(Rn) �→ L2(Rn) is an isometry, which implies

‖eitΔf‖2 = ‖f‖2.

2. eitΔeit
′Δ = ei(t+t ′)Δ with (eitΔ)−1 = e−itΔ = (eitΔ)∗.

3. ei0Δ = 1.

4. Fixing f ∈ L2(Rn), the function Φf : R �→ L2(Rn), where Φf (t) = eitΔf is a
continuous function, i.e., it describes a curve in L2(Rn).

Proof. The proof is left as an exercise. �
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In general, a family of operators {Tt }∞t=−∞ defined on a Hilbert space H which
satisfies properties (1)–(4) in Proposition 4.2 is called a unitary group of operators.

Example 4.4 Let Lt : L2(R) �→ L2(R) be the one parameter family of translation
operators Lt (u0)(x) = u0(x + t). It is easy to see that {Lt }∞t=−∞ is a unitary group of
operators, which describes the solution u(x, t) = Lt (u0)(x) of the problem

{

∂tu = ∂xu,

u(x, 0) = u0(x),

t , x ∈ R.
The next result of M. H. Stone, characterizes the unitary group of operators.

Theorem 4.1 (M. H. Stone). The family of operators {Tt }∞t=−∞ defined on the
Hilbert spaceH is a unitary group of operators if and only if there exists a self-adjoint
operator A (not necessarily bounded) on H such that

Tt = eitA (4.10)

in the following sense: Consider D(A) the domain of the operator A, which is a
dense subspace of H ; if f ∈ D(A), then we have

lim
t→0

Ttf − f

t
= iAf. (4.11)

In other words, if f ∈ D(A), then the curve Φf defined in Proposition 4.2 (4) is
differentiable at t = 0 with derivative iAf.

For a proof of this theorem, we refer the reader to [Yo].
The operator A in Theorem 4.1 is called the infinitesimal generator of the unitary

group. In (4.2), the operator A is the Laplacian Δ with D(A) = H 2(Rn). In Example
4.4, we have A = −i d

dx
and in this case, formula (4.10) can be interpreted as a

generalized Taylor series.
Now we establish the properties of the group {eitΔ}∞t=−∞ in the Lp(Rn) spaces.

Lemma 4.1. If t �= 0, 1/p + 1/p′ = 1 and p′ ∈ [1, 2], then eitΔ : Lp′
(Rn) �→

Lp(Rn) is continuous and
∥

∥eitΔf
∥

∥

p
≤ c|t |−n/2(1/p′−1/p)‖f‖p′ . (4.12)

Proof. From Proposition 4.2 it follows that

eitΔ : L2(Rn) �→ L2(Rn)

is an isometry, that is,
‖eitΔf‖2 = ‖f‖2.

Using Young’s inequality (1.39), we have

‖eitΔf‖∞ =
∥

∥

∥

ei|·|2/4t

√
(4πit)n

∗ f

∥

∥

∥∞
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≤
∥

∥

∥

ei|·|2/4t

√
(4πit)n

∥

∥

∥∞
‖f‖1 ≤ c|t |−n/2‖f‖1. (4.13)

A combination of these inequalities with the Riesz–Thorin theorem (Theorem 2.1)
lead to

eitΔ : Lp′
(Rn) �→ Lp(Rn) with

1

p
+ 1

p′ = 1,

and
‖eitΔf‖p ≤ (c|t |−n/2)1−θ‖f‖p′ = c|t |−n/2(1/p′−1/p)‖f‖p′ ,

where

1

p
= θ

2
and 1 − θ = 1 − 2

p
= 1

p′ −
1

p
, θ ∈ [0, 1].

Thus, the lemma follows. �

This result indicate that if f ∈ L2(Rn) decreases fast enough when |x| → ∞ such
that f ∈ L1(Rn), eitΔf , t �= 0, is bounded (and so more regular than f ). In general,
decay on the initial data f is translated into smoothing property of the solution eitΔf

(see Exercise 4.4).
Note that eitΔ with t �= 0 is not a bounded operator from Lp(Rn) in Lp(Rn) if

p �= 2, i.e., m(ξ ) = e−4π2it |ξ |2 is not an Lp multiplier for p �= 2 (see Definition 2.8).
In fact, if it were bounded for p �= 2 it would be bounded also for p′ by duality.
Then, without loss of generality, we can assume p > 2. Using (4.12), we would
have that for all f ∈ Lp′

(Rn) ∩ Lp(Rn) ⊆ L2(Rn),

‖f‖p = ‖eitΔe−itΔf‖p ≤ c0‖e−itΔf‖p ≤ c0 c(t)‖f‖p′ ,

which is a contradiction.
Next proposition help us to understand the regularizing effects present in the group

{eitΔ}∞t=−∞.

Proposition 4.3.

1. Given t0 �= 0 and p > 2, there exists f ∈ L2(Rn) such that eit0Δf /∈ Lp(Rn).

2. Let s ′ > s > 0 and f ∈ Hs(Rn) such that f /∈ Hs′ (Rn). Then, for all t ∈ R,
eitΔf ∈ Hs(Rn) and eitΔf /∈ Hs′ (Rn).

Proof. To show (1), it is enough to choose g ∈ L2(Rn) such that g /∈ Lp(Rn) and
take f = e−it0 Δg.
The statement (2) follows from the fact that {eitΔ}∞t=−∞ is a unitary group in Hs(Rn)
for all s ∈ R since

‖eitΔf‖s,2 = ‖Λs(eitΔf )‖2 = ‖eitΔ(Λsf )‖2 = ‖Λsf‖2 = ‖f ‖s,2.

Therefore, if eitΔf ∈ Hs0 (Rn), then f = e−itΔ(eitΔ)f ∈ Hs0 (Rn). �
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4.2 Global Smoothing Effects

The next theorem describes the global smoothing property of the group {eitΔ}∞t=−∞.

Theorem 4.2. The group {eitΔ}∞t=−∞ satisfies:

⎛

⎝

∞
∫

−∞
‖eitΔf ‖qp dt

⎞

⎠

1/q

≤ c ‖f ‖2, (4.14)

⎛

⎝

∞
∫

−∞

∥

∥

∥

∞
∫

−∞
ei(t−t ′)Δg(·, t ′) dt ′

∥

∥

∥

q

p
dt

⎞

⎠

1/q

≤ c

⎛

⎝

∞
∫

−∞
‖g(·, t)‖q ′p′ dt

⎞

⎠

1/q ′

, (4.15)

∥

∥

∥

∞
∫

−∞
eitΔg(·, t) dt

∥

∥

∥

2
≤ c

⎛

⎝

∞
∫

−∞
‖g(·, t)‖q ′p′ dt

⎞

⎠

1/q ′

, (4.16)

and
⎛

⎝

∞
∫

−∞

∥

∥

∥

t
∫

0

ei(t−t ′)Δg(·, t ′) dt ′
∥

∥

∥

q

p
dt

⎞

⎠

1/q

≤ c

⎛

⎝

∞
∫

−∞
‖g(·, t)‖q ′p′ dt

⎞

⎠

1/q ′

, (4.17)

with

2 ≤ p < 2n
n−2 if n ≥ 3

2 ≤ p < ∞ if n = 2

2 ≤ p ≤ ∞ if n = 1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

and
2

q
= n

2
− n

p
, (4.18)

where c = c(p, n) is a constant depending only on p and n.
From here on, we always use the notation

1

p
+ 1

p′ =
1

q
+ 1

q ′
= 1.

Proof. First, we shall prove that (4.14), (4.15), and (4.16) are equivalent.
Fubini’s theorem gives us that

∞
∫

−∞

∫

Rn

(eitΔf )(x)g(x, t)dxdt =
∫

Rn

f (x)

⎛

⎝

∞
∫

−∞
eitΔg(x, t) dt

⎞

⎠ dx.

Therefore, using duality,
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(

∞
∫

−∞
‖h(·,t)‖qp dt

)1/q

= sup

⎧

⎪

⎨

⎪

⎩

∣

∣

∣

∞
∫

−∞

∫

Rn

h(x, t)w(x, t) dxdt
∣

∣

∣ :

⎛

⎝

∞
∫

−∞
‖w(·, t)‖q ′p′ dt

⎞

⎠

1/q ′

= 1

⎫

⎪

⎬

⎪

⎭

it follows that (4.14) and (4.16) are equivalent. An argument due to P. Tomas implies
that

∥

∥

∥

∞
∫

−∞
eitΔg(·, t) dt

∥

∥

∥

2

2
=
∫

Rn

⎛

⎝

∞
∫

−∞
eitΔg(·, t) dt

⎞

⎠

⎛

⎝

∞
∫

−∞
eit

′Δg(·, t ′)dt ′
⎞

⎠ dx

=
∫

Rn

∞
∫

−∞
g(x, t)

⎛

⎝

∞
∫

−∞
ei(t−t ′)Δg(·, t ′) dt ′

⎞

⎠ dt dx. (4.19)

From these identities we obtain (applying again an argument of duality and Hölder’s
inequality) the equivalence between (4.15) and (4.16).

Next we shall establish (4.15). Minkowski’s inequality (1.40) and Lemma 4.1
give

∥

∥

∥

∞
∫

−∞
ei(t−t ′)Δg(·, t ′) dt ′

∥

∥

∥

p
≤

∞
∫

−∞
‖ei(t−t ′)Δg(·, t ′)‖p dt ′

≤ c

∞
∫

−∞

1
|t−t ′|α ‖g(·, t ′)‖p′ dt ′

(4.20)

with α = (n/2)
(

1/p′ − 1/p
)

. Inequality (4.20) and Theorem 2.6 (Hardy–
Littlewood–Sobolev) imply

(

∞
∫

−∞

∥

∥

∥

∞
∫

−∞
ei(t−t ′)Δg(·, t ′) dt ′

∥

∥

∥

q

p
dt
)1/q

≤ c

∥

∥

∥

∞
∫

−∞

1

|t − t ′|α ‖g(·, t ′)‖p′ dt ′
∥

∥

∥

q
≤ c

⎛

⎝

∞
∫

−∞
‖g(·, t)‖q ′p′ dt

⎞

⎠

1/q ′

with 1/q ′ = 1/q + (1 − α) and 0 < 1 − α < 1, that is, n/2 = 2/q + n/p , where
⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 ≤ p <
2n

n− 2
if n ≥ 3,

2 ≤ p < ∞ if n = 2,

2 ≤ p ≤ ∞ if n = 1.
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Finally, we turn to the proof of (4.17). This is a consequence of (4.15) and the
following result due to Christ-Kiselev [CrK].

Lemma 4.2. Let

Tf (t) =
∞
∫

−∞
K(t , s) f (s) ds (4.21)

be a bounded map from Lr (R) to Ll(R) with 1 < r < l < ∞. Then the map

T̃ f (t) =
∫

s<t

K(t , s) f (s) ds (4.22)

also maps Lr (R) into Ll(R).
For the proof of this lemma, see Appendix B. �

In particular, this theorem tells us that if f ∈ L2(Rn), then eitΔf ∈ Lp(Rn), for
any fixed p ∈ (2, p(n)) for almost all time t ∈ R, with p(n) depending on the
dimension. In particular, if n = 1, p(1) = ∞, and q = 4, then for f ∈ L2(R) we
have

⎛

⎝

∞
∫

−∞
‖eit∂2

x f ‖4
∞ dt

⎞

⎠

1/4

≤ c ‖f ‖2,

which implies that eit∂
2
x f ∈ L∞(R) for almost every t . Indeed, in this case, one has

that for almost every t ∈ R, eit∂
2
x f is continuous in R (see Exercise 4.9). Note that

this fact does not contradict Proposition 4.3.

Corollary 4.1. Let (p0, q0), (p1, q1) ∈ R
2 satisfying the condition (4.18) in

Theorem 4.2. Then, for all T > 0 we have

⎛

⎝

T
∫

0

∥

∥

∥

t
∫

0

ei(t−t ′)Δg(·, t ′) dt ′
∥

∥

∥

q1

p1

dt

⎞

⎠

1/q1

≤ c

⎛

⎝

T
∫

0

‖g(·, t)‖q ′0
p′

0
dt

⎞

⎠

1/q ′0

,

with c = c(n,p0,p1).

Proof. By hypothesis, the points (1/p0, 1/q0) and (1/p1, 1/q1) are in the segment of
the line connecting P = (1/2, 0) with Q = (1/p(n), n/4−n/2 p(n)). So p(n) = ∞
if n = 1, 2, and p(n) = 2n/(n − 2) if n ≥ 3. Therefore, without loss of generality
we can assume p0 ∈ [2,p1). An application of the inequalities (4.16) and (4.17) in
Theorem 4.2 provides the following estimates:

⎛

⎝

T
∫

0

∥

∥

∥

t
∫

0

ei(t−t ′)Δg(·, t ′) dt ′
∥

∥

∥

q1

p1

dt

⎞

⎠

1/q1

≤ c

⎛

⎝

T
∫

0

‖g(·, t)‖q ′1
p′

1
dt

⎞

⎠

1/q ′1

,

and
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sup
[0,T ]

∥

∥

∥

t
∫

0

ei(t−t ′)Δg(·, t ′) dt ′
∥

∥

∥

2
= sup

[0,T ]

∥

∥

∥e
itΔ

t
∫

0

e−it ′Δg(·, t ′) dt ′
∥

∥

∥

2

= sup
[0,T ]

∥

∥

∥

t
∫

0

e−it ′Δg(·, t ′) dt ′
∥

∥

∥

2
≤ c

⎛

⎝

T
∫

0

‖g(·, t)‖q ′1
p′1

dt

⎞

⎠

1/q ′1

.

These estimates and Hölder’s inequality lead to

⎛

⎝

T
∫

0

∥

∥

∥

t
∫

0

ei(t−t ′)Δg(·, t ′) dt ′
∥

∥

∥

q0

p0

dt

⎞

⎠

1/q0

≤ c

⎛

⎝

T
∫

0

‖g(·, t)‖q ′1
p′

1
dt

⎞

⎠

1/q ′1

.

To finish the proof, an argument of duality allows us to write the inequality

⎛

⎝

T
∫

0

∥

∥

∥

t
∫

0

ei(t−t ′)Δg(·, t ′) dt ′
∥

∥

∥

q1

p1

dt

⎞

⎠

1/q1

≤ c

⎛

⎝

T
∫

0

‖g(·, t)‖q ′0
p′

0
dt

⎞

⎠

1/q ′0

.

This yields the result. �

4.3 Local Smoothing Effects

In this section, we study the local smoothing effects of the group {eitΔ}∞t=−∞ .

Theorem 4.3. If n = 1, then

sup
x

∞
∫

−∞
|D1/2

x eitΔf (x)|2 dt ≤ c‖f ‖2
2. (4.23)

If n ≥ 2 , then for all j ∈ {1, . . . , n}

sup
xj

∫

Rn

|D1/2
xj

eitΔf (x)|2dx1 · · · dxj−1dxj+1 · · · dxn dt ≤ c‖f ‖2
2, (4.24)

where D
1/2
xj g(x, t) = ((2π |ξj |)1/2ĝ(ξ , t))∨(x, t) denotes the homogeneous fractional

derivative of order 1/2 in the variable xj .

Proof. We begin considering the case n = 1. So,

D1/2
x eitΔf = c

(|ξ |1/2e−4π2it |ξ |2
̂f (ξ )
)∨

= c
(|ξ |1/2e−4π2it |ξ |2

̂f+(ξ ))∨ + c(|ξ |1/2e−4π2it |ξ |2
̂f−(ξ )

)∨
,
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where ̂f±(ξ ) = χR± ̂f (ξ ). Thus, it is enough to show (4.23) with f+ replacing f . A
combination of the change of variables 2πξ 2 = r , Plancherel’s theorem (1.11) and
the inverse change of variables ξ = +√

r/2π produce the following identities:

∞
∫

−∞
|D1/2

x eitΔf+|2(x) dt = c

∞
∫

−∞

∣

∣

∣

∞
∫

−∞
|ξ |1/2e2πixξ e−4π2itξ2

̂f+(ξ ) dξ
∣

∣

∣

2
dt

= c

∞
∫

−∞

∣

∣

∣

∞
∫

0

r1/4e−2πitreix
√

2πr
̂f+
(√

r

2π

)

dr

r1/2

∣

∣

∣

2
dt

= c

∞
∫

0

∣

∣

∣e
ix
√

2πr
̂f+
(√

r

2π

)

1

r1/4

∣

∣

∣

2
dr = c

∞
∫

−∞
|̂f+(ξ )|2 dξ = c ‖f+‖2

2,

which gives (4.23). Moreover, when ̂f has support in [0,∞) or (−∞, 0], inequality
(4.23) becomes an equality.

To obtain (4.24), we fix j = 1 to simplify the notation. We then define ̂f±(ξ ) =
χR± (ξ1)̂f (ξ ). Without the loss of generality , we prove (4.24) with f+ replacing f .

Denote x̄ = (x2, . . . , xn) and ξ̄ = (ξ2, . . . , ξn). The change of variables

(ξ1, ξ2, . . . , ξn) = (ξ1, ξ̄ )
Φ→ (2π (ξ 2

1 + · · · + ξ 2
n ), ξ̄ ) = (r , ξ̄ ),

dξ1dξ̄ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂r

∂ξ1

∂r

∂ξ2
· · · ∂r

∂ξn

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

drdξ̄ = 1

4π |ξ1| dr dξ̄ ,

Plancherel’s identity (1.11) and the change of variables Φ−1 yield

‖D1/2
x1

eitΔf+‖2
L2
x̄ t

= c

∥

∥

∥

∫

Rn

e2πx·ξ |ξ1|1/2e−4π2it |ξ |2
̂f+(ξ )dξ

∥

∥

∥

2

L2
x̄ t

= c

∥

∥

∥

∫

Rn

e2πi(x̄·ξ̄+rt) 1

|ξ1|1/2
e2πx1

√

|r−2π |ξ̄ |2 |
2π ̂f+(r , ξ̄ ) drdξ̄

∥

∥

∥

L2
x̄ t

= c

∫

Rn

1

|ξ1| |
̂f+(r , ξ̄ )|2 drdξ̄ = c ‖̂f+‖2

L2
ξ

= c ‖f+‖2
L2
x
,

which leads to (4.24). �
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Corollary 4.2.
⎛

⎜

⎝

∞
∫

−∞

∫

{|x|≤R}
|D1/2

x eitΔf |2(x) dx dt

⎞

⎟

⎠

1/2

≤ c R1/2 ‖f ‖2, (4.25)

where D
1/2
x v(x, t) = ((2π |ξ |)1/2̂v(ξ , t))∨.

Notice that from this result and the translation invariance property of the solution
one gets

sup
x0∈Rn, R>0

⎛

⎝

1

R

∞
∫

−∞

∫

BR (x0)

|D1/2
x eitΔf (x)|2 dxdt

⎞

⎠

1/2

≤ c‖f ‖2.

Proof. If n = 1, inequality (4.25) follows from (4.23).
Consider the case n ≥ 2. Defining Dj = {ξ ∈ R

n : |ξj | > 1√
2n
|ξ |}, with

j = 1, . . . , n. It is easy to see that
n∪

j=1
Dj = R

n − {0}. Let {φj }nj=1 be a partition

of unity subordinate to the covering {Dj }nj=1 (the φj can be defined in the sphere
S
n−1 and extended such that they are homogeneous of order zero). Using linearity it

suffices to show that
∞
∫

−∞

∫

{|x|≤R}
|eitΔf (x)|2 dx dt ≤ c R‖D−1/2

x f ‖2
2 = cR‖|ξ |−1/2

̂f ‖2
2.

From (4.24), we obtain for all j = 1, . . . , n,

∞
∫

−∞

∫

{|x|≤R}
|eitΔg(x)|2 dx dt ≤ c R‖D−1/2

xj
g‖2

2.

Therefore, using the notation ̂fj = ̂f φj , j = 1, . . . , n, it follows that

∞
∫

−∞

∫

{|x|≤R}
|eitΔf |2(x) dxdt ≤ c

n
∑

j=1

∞
∫

−∞

∫

{|x|≤R}
|eitΔfj |2(x) dxdt

≤ c R

n
∑

j=1

∥

∥D−1/2
xj

fj

∥

∥

2
2 = c R

n
∑

j=1

∥

∥|ξj |−1/2
̂fj

∥

∥

2
2

= c R

n
∑

j=1

∥

∥|ξj |−1/2
̂f φj

∥

∥

2
2 ≤ c R

∥

∥|ξ |−1/2
̂f
∥

∥

2
2

= c R ‖D−1/2
x f ‖2

2.

�
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From Corollary 4.2 and the group properties, we deduce that if f ∈ L2(Rn), then
eitΔf ∈ L2

loc(R : H 1/2
loc (Rn)) and thus eitΔf ∈ H

1/2
loc (Rn) for almost every t ∈ R.

On the other hand, from (4.23) (case n = 1) using duality we have

∥

∥

∥D
1/2
x

∞
∫

−∞
eitΔF (·, t) dt

∥

∥

∥

2
≤ c

∞
∫

−∞

∥

∥F (x, ·)∥∥2 dx. (4.26)

Similarly, from (4.24) we obtain the corresponding inequality for the case n ≥ 2.
For solutions of the inhomogeneous problem:

{

∂tu = iΔu + F (x, t),

u(x, 0) = 0,
(4.27)

x ∈ R
n, t ∈ R, we observe that the gain of derivatives doubles that obtained in the

homogeneous case.

Theorem 4.4. If u(x, t) is the solution of problem (4.27), then, when n = 1 it
satisfies

sup
x

⎛

⎝

∞
∫

−∞
|∂xu(x, t)|2 dt

⎞

⎠

1/2

≤ c

∞
∫

−∞

⎛

⎝

∞
∫

−∞
|F (x, t)|2dt

⎞

⎠

1/2

dx, (4.28)

and in the case n ≥ 2

sup
xj

⎛

⎝

∫

Rn

|∂xj u(x, t)|2dμjdt

⎞

⎠

1/2

≤c

∞
∫

−∞

⎛

⎝

∫

Rn

|F (x, t)|2dμjdt

⎞

⎠

1/2

dxj , (4.29)

where dμj = dx1 · · · dxj−1 dxj+1 · · · dxn. Therefore in the case n ≥ 2 we have that

sup
α

⎛

⎝

∫

Qα

∞
∫

−∞
|∂xu(x, t)|2 dt dx

⎞

⎠

1/2

≤c
∑

α

⎛

⎝

∫

Qα

∞
∫

−∞
|F (x, t)|2dt dx

⎞

⎠

1/2

, (4.30)

where {Qα}α∈Zn denotes a family of disjoint unit cubes with sides parallel to the axes
and covering R

n.

Proof. We only sketch the proof in the case n = 1. Using Exercise 4.16 in this
chapter, we deduce that

∂xu(x, t) =
∞
∫

−∞

∫

Rn

2πiξ

4π2i|ξ |2+2πiτ
(e2πiτ t−e−4π2i|ξ |2t )e2πix·ξ

̂F (ξ , τ )dξdτ

=
∞
∫

−∞

∫

Rn

2πiξ e2πiτ t

4π2i|ξ |2 + 2πiτ
e2πix·ξ

̂F (ξ , τ ) dξdτ (4.31)
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−
∞
∫

−∞

∫

Rn

2πiξ e−4π2i|ξ |2t

4π2i|ξ |2 + 2πiτ
e2πix·ξ

̂F (ξ , τ ) dξdτ

= ∂xu1(x, t) + ∂xu2(x, t),

where ̂F (ξ , η) represents the Fourier transform with respect to the variables x, t .
Since the numerator in the first integrand vanishes on the zeros of its denominator,
the integrals in the second equality are understood in the principal value sense. From
Exercise 1.17, we have that

(

p.v.
2πiξ

4π2i|ξ |2 + 2πiτ

)∨(ξ )

= K(x, τ ) ∈ L∞(R2).

Plancherel’s identity (1.11),Young’s and Minkowski’s inequalities, (1.39) and (1.40),
respectively, imply that for all x ∈ R,

⎛

⎝

∞
∫

−∞
|∂xu1(x, t)|2 dt

⎞

⎠

1/2

= c

∥

∥

∥

∞
∫

−∞
e2πiτ t

∞
∫

−∞
K(x − y, τ )̂F (t)(y, τ ) dydτ

∥

∥

∥

2(t)

= c

∥

∥

∥

∞
∫

−∞
K(x − y, τ )̂F (t)(y, τ ) dy

∥

∥

∥

2(τ )

≤ c

∞
∫

−∞

∥

∥̂F (t)(y, ·)∥∥2(τ ) dy ≤ c

∞
∫

−∞

∥

∥F (y, ·)∥∥2(t) dy,

which proves

sup
x

⎛

⎝

∞
∫

−∞
|∂xu1(x, t)|2 dt

⎞

⎠

1/2

≤ c

∞
∫

−∞

⎛

⎝

∞
∫

−∞
|F (x, t)|2 dt

⎞

⎠

1/2

dx.

On the other hand, we have that

∂xu2(x, t) = D1/2
x eitΔG(x),

where

̂G(ξ ) = c

∞
∫

−∞

sgn(ξ ) |ξ |1/2
̂F (ξ , τ )

4π2i|ξ |2 + 2πiτ
dτ.

A simple computation and (1.18) shows that

(

p.v.
1

4π2i|ξ |2 + 2πiτ

)∨(τ )

=
∞
∫

−∞

e−2πiτ t

4π2i|ξ |2 + 2πiτ
dτ = c sgn(t) e−4π2i|ξ |2t .
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Therefore, using (4.23), (4.26), and Plancherel’s identity (1.11), we infer that

sup
x

⎛

⎝

∞
∫

−∞
|∂xu2(x, t)|2 dt

⎞

⎠

1/2

≤ c

∥

∥

∥

∞
∫

−∞

sgn(ξ ) |ξ |1/2
̂F (ξ , τ )

4π2i|ξ |2 + 2πiτ
dτ

∥

∥

∥

2(ξ )

= c

∥

∥

∥

∞
∫

−∞
e−4π2i|ξ |2t sgn(ξ ) |ξ |1/2

̂F (x)(ξ , t) sgn(t) dt
∥

∥

∥

2(ξ )

= c

∥

∥

∥

⎛

⎝

∞
∫

−∞
eitΔD1/2

x HF (·, t) sgn(t) dt

⎞

⎠

∨
∥

∥

∥

2(ξ )

= c

∥

∥

∥D
1/2
x

∞
∫

−∞
eitΔHF (·, t) sgn(t) dt

∥

∥

∥

2

≤ c

∞
∫

−∞

⎛

⎝

∞
∫

−∞
|F (x, t)|2 dt

⎞

⎠

1/2

dx,

where H denotes the Hilbert transform (see Definition 1.7). This leads to the result.�

4.4 Comments

The first result concerning smoothing effects for the particular group {eitΔ}∞t=−∞ or
for general group of unitary operators was obtained by Kato in [K1]. In this work
on theory of operators, Kato introduced the notion of A-regular and A-super regular
operators.

Let A be a self-adjoint operator (not necessarily bounded) defined on a Hilbert
space H such that the resolvent of A, R(λ) = (λI − A)−1, exists for all λ ∈ C with
Imλ �= 0 and let L be an operator of closed graph with domain D(L) dense in H .

Definition 4.1. We say that the operator L is A-regular (respectively, A-super
regular) if for all x ∈ D(L∗) and for all λ ∈ C with Im λ �= 0,

| Im < R(λ)L∗x,L∗x > | ≤ c π‖x‖2

(respectively, |〈R(λ)L∗x,L∗x〉| ≤ cπ‖x‖2), where the constant c is independent of
x and λ.

The following theorems establish the relationship between the notion of A-regular
operator and the type of results described in this chapter .
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Theorem 4.5 ([K1]). The operator L is A-regular if and only if for all x ∈ H

∞
∫

−∞
‖LeitAx‖ dt ≤ c‖x‖.

In particular, eitAx ∈ D(L) for almost every t ∈ R.

Theorem 4.6 ([KY]). Let L = Lh be an operator of multiplication by h with
h ∈ Ln(Rn) and n ≥ 3. Then, Lh is Δ-super regular.

Theorem 4.7 ([KY] see also [BKl]). Let L̃ be the operator

(1 + |x|2)−1/2Λ1/2 = (1 + |x|2)−1/2(1 −Δ)1/4

with domain C∞
0 (Rn) and n ≥ 3. Then, the closure of L̃ is Δ-super regular.

Combining Theorems 4.5 and 4.6, we have that if f ∈ L2(Rn) with n ≥ 3, then
eitΔf ∈ D(Lh) for almost every t ∈ R. When h /∈ L∞(Rn), then D(Lh) is a set
of first category in L2(Rn). These results neither imply nor are consequence of the
estimate (4.14) in Theorem 4.2.

Later on, Strichartz [Str3], motivated by the work of Segal [Se], studied special
properties of the Fourier transform. He proved that

⎛

⎝

∞
∫

−∞

∫

Rn

|eitΔf |2(n+2)/n dx dt

⎞

⎠

n/2(n+2)

≤ c‖f ‖2. (4.32)

In his proof, he employed previous results of Tomas [Tm] and Stein [S2] regard-
ing restriction theorems (and extension) of the Fourier transform. More precisely,
Strichartz used the fact that

eitΔf (x) =
∫

Rn

e2πix·ξ e−4π2it |ξ |2
̂f (ξ ) dξ

=
∫

Rn+1

e2πi<(x,t);(ξ ,τ )>g(ξ , τ ) dσ (ξ , τ ) = ̂gdσ ,

where g is a measure supported on the hypersurface Mσ ⊂ R
n+1, where the symbol

σ (ξ , η) = η + 2π |ξ |2 vanishes, i.e.,

Mσ = {(ξ , τ ) ∈ R
n × R : σ (ξ , τ ) = 0} (4.33)

(in this case, σ (ξ , η) = η + 2π |ξ |2), with density ̂f (ξ ) and dσ (ξ̃ ) = dξ .
Similarly,

êitΔf (ξ , τ ) =
∞
∫

−∞
e−2πitτ e−4π2it |ξ |2

̂f (ξ ) dt = ̂f (ξ ) δ(τ + 2π |ξ |2),
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where ̂on the left-hand side denotes the Fourier transform with respect to both
variables: space x and time t . In other words, the Fourier transform in the variables
(x, t) of the solution eitΔf (x) is a distribution with support on the parabola τ =
−2π |ξ |2. Thus, inequality (4.14) can be seen as a result on the extension of the
Fourier transform of measures with support on this parabola. Similarly, we can see
(4.16) as a result of restriction because using the Fubini theorem and the Plancherel
identity (1.11) we have,

∥

∥

∥

∥

∥

∥

∞
∫

−∞
eitΔg(·, t) dt

∥

∥

∥

∥

∥

∥

2

=
∥

∥

∥

∥

∥

∥

∞
∫

−∞

⎛

⎝

∫

Rn

e2πix·ξ e−4π2it |ξ |2 ĝ(ξ , t) dξ

⎞

⎠ dt

∥

∥

∥

∥

∥

∥

2

=
∥

∥

∥

∥

∥

∥

∫

Rn

e2πix·ξ

⎛

⎝

∞
∫

−∞
e−4π2it |ξ |2 ĝ(ξ , t) dt

⎞

⎠ dξ

∥

∥

∥

∥

∥

∥

2

= ‖ ĝ (ξ ,−2π |ξ |2)‖2.

(4.34)

The proof presented in Section 4.2 is due to J. Ginibre and G. Velo [GV1] (see also
[M], [P1]).

The main point in the argument is the curvature of the hypersurface Mσ defined
by the symbol σ as in (4.33) and not the ellipticity of Δ. In particular, the same
inequalities (4.14), (4.17) hold when we replace Δ by

Lj = ∂2
x1
+ · · · + ∂2

xj
− ∂2

xj+1
− · · · ∂2

xn
, for some j ∈ {1, . . . , n}. (4.35)

The curvature of hypersurface Mσ for the symbol σ = τ + 2π |ξ |2 is reflected on the
decay estimates (4.12) in Lemma 4.1. In fact, the results in Theorem 4.2 are true for
any unitary group satisfying decay estimates of the type described in Lemma 4.1.
Thus, in particular for the linear problem associated to the KdV equation (1.28), we
have that the unitary group V (t)v0 = (ei8π

3 ξ3t v̂0)∨ describing the solutions satisfies
for any (θ ,α) ∈ [0, 1] × [0, 1/2]

∥

∥Dαθ/2V (t)v0

∥

∥

L2/1−θ ≤ c |t |−θ (α+1)/3‖v0‖L2/1+θ . (4.36)

Therefore, the argument used in Theorem 4.2 shows that for any (θ ,α) ∈ [0, 1] ×
[0, 1/2],

∥

∥Dαθ/2V (t)v0

∥

∥

L
q (R:Lp (R)) ≤ c ‖v0‖2, (4.37)

where (q,p) = (6/θ (α+ 1), 2/(1− θ )). Notice that in (4.37) there is a possible gain
of 1/4 derivatives. Roughly speaking, in general this gain is equal to (m − 2)/4,
where m is the order of the dispersive operator (see [KPV2]).

In the case of the IVP associated wave equation:
⎧

⎪

⎨

⎪

⎩

∂2
t w = Δw,

w(x, 0) = 0,

∂tw(x, 0) = g(x),

(4.38)
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x ∈ R
n, t ∈ R

+, whose solution

w(x, t) = U (t)g =
( sin (2π |ξ |t)

2π |ξ | ĝ(ξ )
)∨

(see (1.49)) is associated to the unitary group M(t) = (ei2π |ξ |t ĝ )∨, we have the
decay estimate:

‖U (t)g‖Lp (Rn) ≤ c t
(n−1)( 1

2− 1
p′ )‖Dαg‖

L
p′ (Rn)

, (4.39)

with

α = n− 1

2
− n+ 1

p′ , 2 ≤ p < ∞, n ≥ 2.

From this, we can deduce the equivalent to Theorem 4.2:
∥

∥( −Δ)(1−b)/4 U (t)g
∥

∥

L
q (R:Lp (Rn)) ≤ c ‖g‖2, (4.40)

where

2 < q < ∞,
1

2
− 2

(n− 1)q
= 1

p
, and b = n− 1

2
− n+ 1

p

(see [M], [P1]).
As we mentioned above, the decay estimates (4.12), (4.36), and (4.39) are related

to the “curvature” of the hypersurfacesMσj , j = 1, 2, 3, which described the zero set
of the symbols σ1 = τ + 2π |ξ |2, σ2 = τ − 4π2ξ 3, and σ3 = τ ±|ξ |, respectively. In
the case σ1 and σ3, we observe that the hypersurfacesMσ1 andMσ3 have nonvanishing
curvature in n and n− 1 directions (rank of the Hessian), respectively.

In the limiting case, the inequality (4.14) in dimension n = 2 (i.e., (q,p) =
(2,∞)) fails (see [MSm]). Similarly, the limiting case of the estimate (4.40) for
the wave equation in dimension n = 3 (i.e., (q,p) = (2,∞)) fails (see [KlM])
although both hold in the radial case; see [To1] for the Schrödinger equation and
[KlM] for the wave equation. Moreover, in the case of the Schrödinger equation
((n,p, q) = (2,∞, 2)) one has the following generalization of the radial result, see
[To1]

‖eitΔu0‖L2
t (R:L∞

r L2
θ (R2)) ≤ c ‖u0‖2,

where

‖f ‖L∞
r L2

θ
= sup

r>0

⎛

⎝

1

2π

π
∫

−π

|f (reiθ )|2 dθ
⎞

⎠

1/2

.

In [KT1], the limiting cases in higher dimension were shown to hold in both cases,
i.e., the Schrödinger equation (4.14) holds for n ≥ 3, (q,p) = (2, 2n/(n− 2)), as
well as the wave equation in (4.40) hold for n ≥ 4, (q,p) = (2, 2(n− 1)/(n− 3)).
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The problem of finding the best constant for the Strichartz estimate (4.14):

c(n;p; q) = sup
‖u0‖2=1

(∫ ∞

−∞
‖eitΔu0‖qpdt

)1/q

(4.41)

as well as its maximizers, i.e., the u0 ∈ L2(Rn) for which the equality (4.41) holds
with (p, q) as in (4.18) has been studied in several works. In [Kz], it was proved
the existence of a maximizer for n = 1 and p = q = 6. In [Fs] and [HuZ],
it was established that for the case n = 1, 2 and p = q = 2 + 4/n, one has
c(1; 6; 6) = 12−1/12 and c(2; 4; 4) = 2−1/2 with the maximizer, up to the invariant
of the Schrödinger equation (see Proposition 4.1), equal to cne

−|x|2, n = 1, 2. Also
in [Fs], the same problem was settled for the case of the wave equation (4.38) in
dimension n = 2, 3 with p = q = 2 + 4/(n − 1). The value c(1; 8; 4) = 2−1/4 in
(4.41) was computed in [BBCH] and [Car].

Corollary 4.1 was proved in [CzW1]. For further results in this directio, we refer
to [Vi1].

Concerning the decay of the free Schrödinger equation, on one hand, one has
that if u0 ∈ C∞

0 (Rn) with u0 �≡ 0, then for any t �= 0 and any ε > 0, eitΔu0 ∈
S(Rn)\L1(eε |x| dx) (see Exercises 4.4 and 4.5). On the other hand, Example 4.2
tells us that solutions corresponding to Gaussian data exhibits a global Gaussian
decay. In [EKPV1], it was shown that given u0 ∈ S ′(Rn) the following conditions
are equivalent:

(i) There are two different real numbers t1 and t2, such that eitjΔu0 ∈ L2(eaj |x|2dx)
for some aj > 0, j = 1, 2.

(ii) u0 ∈ L2(eb1 |x|2dx) and û0 ∈ L2(eb2 |x|2dx), for some bj > 0, j = 1, 2.
(iii) There is ν : [0,+∞) −→ (0,+∞), such that eitΔu0 ∈ L2(eν(t)|x|2dx), for all

t ≥ 0.
(iv) u0(x + iy) is an entire function such that |u0(x + iy)| ≤ N e−a|x|2+b|y|2 for

some constants N , a, b > 0.
(v) There exist δ, ε > 0, and h ∈ L2(eε|x|2dx) such that u0(x) = eδΔh(x).

It was also established in [EKPV1] that if one of the above conditions holds then for
appropriate values α,β > 0 the function

f (t) = ∥∥e
|x|2

(αt+β)2 eitΔu0

∥

∥

2

is logarithmically convex. In particular, one has that

f (t) ≤ f (0)θ (t) f (T )1−θ (t),

with θ (t) = β(T − t)/(T (αt + β)) for all t ∈ [0, T ].
In [EKPV1], the constants used above were described in a precise manner as a

consequence of (4.7) and the following result due to Hardy for n = 1 [H] and its
extension to higher dimension given in [SS]: if f (x) = O(e−πA|x|2 ) and f̂ (ξ ) =
O(e−πB|ξ |2 ), with A > 0, B > 0, and AB > 1, then f ≡ 0.
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Extensions of these results to the case of Schrödinger equation, with potential (in
an appropriate class) as (4.42) below depending on x or on (x, t), i.e., V = V (x, t)
(as well as application to unique continuation properties of semilinear Schrödinger
equations) were given in [EKPV2].

Consider the IVP associated to the Schrödinger equation with a potential V :
{

i∂tu = Δu − V (x) u,

u(x, 0) = u0(x).
(4.42)

Assume first that the potential V = V (x) is real and regular enough such that
L = −Δ+ V (x) is self-adjoint.

A natural question is whether or not the unitary group eitL = eit(−Δ+V ) satisfies
the L∞ −L1 estimate in (4.13) as in the free case V ≡ 0, i.e., there exists c > 0 for
every f ∈ L2(Rn) such that

‖eitLf ‖∞ ≤ c t−n/2‖f ‖1. (4.43)

If L has an eigenvalue (with eigenfunction f ∈ L1(Rn) ∩ L2(Rn)), (4.43) fails.
Similarly, if zero is a resonance of L. So, one reformulates the inequality (4.43) as

‖eitLPac(L)f ‖∞ ≤ c|t |−n/2‖f ‖1, (4.44)

where Pac(L) defines the projection onto the absolutely continuous spectrum of L.
The following conditions on the decay of V have been shown to be sufficient

for (4.43) to hold: n = 1 and (1 + |x|)V ∈ L1(R) [GSch], n = 2 and |V (x)| ≤
c (1 + |x|)−3−ε [Scl1], n = 3 and V ∈ L3/2−ε(R3) [Gb].

In [JSS], for n ≥ 3 sufficient conditions on the decay and regularity on the
potential V (x) which guarantees (4.43) were deduced. In [GVi], it was shown that
for n > 3 decay assumptions alone do not imply the estimate (4.43). More precisely,
it was proved that (4.43) fails for any potential V with compact support such that
∑

|α|≤ n−3
2

‖∂αV ‖∞ ≤ 1.

The cases of time-dependent potentials have been also studied (see for instance
[RS]). Also, decay estimates of the type in (4.43) with electromagnetic potentials
were obtained in [FFFP].

For conditions on the potential V that guarantee the extension of the local
smoothing effect described in Corollary 4.2 to solutions of the IVP (4.42) see [RV],
[BRV].

Local-in-time extensions of Strichartz estimates to the variable coefficients’ case,
where the Laplacian Δ is replaced by an elliptic operator of the form:

L = ∂xk ajk(x, t)∂xj + ∂xl bl(x, t) + bl(x, t)∂xl + V (x, t) (4.45)

have been considered in several works. In [StTa], Staffilani and Tataru established
these estimates under the assumptions: bl = V = 0, (ajk(x, t)) a compactly sup-
ported perturbation of the Laplacian and a nontrapping condition on the bicharacteric
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flow. Extensions of this result under appropriate hypotheses on the “asymptotic flat-
ness” and the nontrapping condition of the coefficients ajk were given in [MMTa1],
[RZ], [Td]. The one-dimensional case was considered in [Sl].

Next, we briefly treat the periodic case:
{

i∂tu = ∂2
xu,

u(x, 0) = u0(x),
(4.46)

x ∈ S
1 × · · · × S

1, t ∈ S
1.

Theorem 4.8 ([Z]).

∥

∥

∥

∞
∑

k=−∞
ake

i(tk2+kx)
∥

∥

∥

L4(T2)
≤ c

( ∞
∑

k=−∞
|ak|2
)1/2

, (4.47)

where (x, t) ∈ S
1 × S

1 = T
2.

Note that u(x, t) =∑k ake
i(tk2+kx) is the solution of the periodic problem (4.46)

for n = 1 with u0(x) =∑k ake
ikx .

Proof. If u(x, t) = ∑
k

ake
i(tk2+kx), then ‖u‖2

L4(T2) = ‖u · ū‖L2(T2). It is easy to see

that
uū =

∑

k

|ak|2 +
∑

k1 �=k2

ak1 āk2e
i((k1−k2)x+(k2

1−k2
2 )t).

If we fix l1 = k1 − k2 and l2 = k2
1 − k2

2 we have at most one pair (k1, k2) of solutions
of these equations. So, we can conclude that

‖u · ū‖2 =
∑

k

|ak|2 +
⎛

⎝

∑

k1 �=k2

|ak1 āk2 |2
⎞

⎠

1/2

≤
∑

k

|ak|2 +
(

∑

k1

|ak1 |2
∑

k2

|ak2 |2
)1/2

= 2
∑

k

|ak|2.

�

We observe that for the case n = 1, the corresponding inequality to (4.32) in R is
true with p = 6. So, the next question is natural: Is the inequality (4.47) still true if
we substitute 4 by 6? The answer is negative. In fact, one has that

∥

∥

∥

N
∑

k=1

ei(kx+k2t)
∥

∥

∥

L6(T2)
� ( logN )1/6 N1/2. (4.48)

So, if φ =
N
∑

k=1
eikx , then ‖φ‖2 = N1/2, which combined with (4.48) implies that

∥

∥eitΔφ
∥

∥

L
2(n+2)

n (Tn+1)
≤ c ‖φ‖2 (4.49)

fails for n = 1.
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Nevertheless, Bourgain [Bo1] proved that there exists a constant c0 > 0 such that
for all ε > 0 and N ∈ Z

+ we have

∥

∥

∥

∑

|k|≤N

ake
i(tk2+kx)

∥

∥

∥

L6(T2)
≤ c0 N

ε

⎛

⎝

∑

|k|≤N

|ak|2
⎞

⎠

1/2

. (4.50)

It is an open problem to determine if the inequality can be obtained in the interval
(4, 6). More precisely, it was conjectured in [Bo2] that

∥

∥eitΔφ
∥

∥

Lq (Tn+1) ≤ c ‖φ‖2 if q <
2(n+ 2)

n
, (4.51)

and assuming supp̂φ ⊂ B(0,N )

∥

∥eitΔφ
∥

∥

Lq (Tn+1) " N
n
2 − n+2

q
+ε‖φ‖2 if q ≥ 2(n+ 2)

n
(4.52)

hold. In this direction, some partial results are gathering in the next proposition.

Proposition 4.4 ([Bo2]).

1. For n = 1, 2, inequality (4.52) holds.
2. For n ≥ 3, inequality (4.52) holds for q ≥ 4.

For details, see [Bo1] and [Bo2].
The extension of Theorem 4.8 to other compact manifolds (i.e., Lp–Lq esti-

mates for the Schrödinger flow on manifolds) has been studied by Burq, Gerard and
Tzvetkov [BGT3].

In the particular case of the two-dimensional sphere S
2, they proved that

⎛

⎝

∫

I

⎛

⎝

∫

S2

∣

∣eitΔu0(x)
∣

∣

q
dx

⎞

⎠

p/q

dt

⎞

⎠

1/q

≤ cI ‖u0‖1/p,2, (4.53)

where I is a finite time interval and ‖·‖1/p,2 is defined as in (3.38), for every admissible
pair in (4.18) Theorem 4.2 with n = 2, i.e.,

1

p
= 1

2
− 1

q
.

Roughly, (4.53) gives a gain of 1/2 derivatives with respect to the Sobolev embedding
(Theorem 3.3),

‖u0‖q ≤ c‖u0‖1/r ,2 with
1

r
= n

(

1

2
− 1

q

)

.

The local smoothing effect studied in Section 4.3 was first established by T. Kato
[K2] for solutions of the Korteweg–de Vries equation:

{

∂tu + ∂3
xu + u∂xu = 0,

u(x, 0) = u0(x).
(4.54)
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t , x ∈ R. More precisely, Kato proved the following inequality:

⎛

⎝

T
∫

−T

R
∫

−R

|∂xu(x, t)|2 dx dt

⎞

⎠

1/2

≤ c(T ,R)‖u0‖2, (4.55)

which was the main ingredient in his proof of existence of the global weak solutions
of (4.54) with initial data u0 ∈ L2(R) (see [K2]). In [KF], Kruzhkov and Faminskii
independently obtained a similar result to that described in (4.55). Later on and
simultaneously, Constantin and Saut [CS], Sjölin [Sj], and Vega [V] showed that the
estimates of the type in (4.55) are intrinsic properties of linear dispersive equations.
Let P (ξ ) be the real symbol associated to the operator P (D). Suppose that at infinity
P (ξ ) ∼ |ξ |α , for α a real positive number, and u(x, t) = eitP (D) u0(x), then

⎛

⎝

T
∫

−T

∫

|x|≤R

∣

∣( −Δ)(α−1)/4u(x, t)
∣

∣

2
dx dt

⎞

⎠

1/2

≤ c (T ,R)‖u0‖2. (4.56)

In particular, inequality (4.56) implies that if u0 ∈ L2(Rn), then the solutions
eitP (D) u0 ∈ H

(α−1)/2
loc (Rn) for almost all t . Notice that this gain of derivatives is

a pure dispersive phenomenon, which cannot hold in hyperbolic problems.
The version of the homogeneous smoothing effect given here (Theorem 4.3) is

taken from [KPV3] (see also [LP]). The inhomogeneous smoothing effect version
described in Theorem 4.4 was first established in [KPV3]. Observe that the gain of
derivatives here doubles from that in the homogeneous case. Also, one has that the
result in Theorem 4.4 still holds with Lj as in (4.35) instead of the Laplacian.

It is interesting to note that in [CS] the authors extended Kato’s result (4.55) to
linear dispersive equations. In contrast, in [Sj] and [V] inequality (4.56) with α = 2
appears implicitly in the study of the following problem introduced by L. Carleson:
Determine the minimum value of s which guarantees that if u0 ∈ Hs(Rn), then

lim
t↓0

eitΔu0(x) = u0(x) for almost every x ∈ R
n. (4.57)

In the one-dimensional case n = 1, we have that s ≥ 1/4 implies (4.57) (see [C])
and this is the best possible result (see [DK], [KR]). For the case n = 2, the best
result asserting (4.57) is s > 3/8 obtained in [Le] (improving previous results of
[Sj], [V], s > 1/2, [Bo3], s > 1/2 − ε, [MVV2], s > (164 + √

2)/339, [TV]
s > 15/32). In [Bo11], it was shown that in any dimension n the statement (4.57)
holds if s > 1/2−1/4n (improving previous results of [Sj], [V], s > 1/2). Moreover,
it was also established in [Bo11] that for n > 4 the condition s ≥ n−2

2n is necessary
for (4.57) to hold.

The original Kato’s proof of the smoothing effect (4.55) was based on an energy
estimate argument. Let us consider the linear problem (4.54) with data u0 ∈ L2(R).
Then multiplying the equation by u(x, t)ϕ(Rx) = u(x, t)ϕR(x),ϕ ∈ C∞(R), (ϕ(x) =
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1 for x > 2, ϕ(x) = 0 for x < −2, with ϕ′(x) > 0 for −1 < x < 1 and R > 0), we
obtain after integration by parts that

1

2

d

dt

∫

u2ϕR dx + 3

2

∫

(∂xu)2 ϕ′
R dx − 1

2

∫

u2ϕ
(3)
R dx = 0.

Thus, integrating in the time interval [0, T ] and using that theL2-norm of the solution
is preserved we get (4.55).

The extension of the estimate (4.56) to general dispersive linear models (with
constant coefficients) given in [CS] was based on a Fourier transform argument. In
nonlinear problems and in linear ones with variable coefficients (where the Fourier
transform does not provide the result) it may be useful to obtain the result via “energy
estimates.”

For example, consider the IVP:
{

∂tu = iAu,

u(x, 0) = u0(x),
(4.58)

x ∈ R
n, t ∈ R, where A has a real symbol a = a(x, ξ ) of order m (for instance,

A = ∂xj (ajk(x)∂xk ), i∂3
x , Δ, and iH∂2

x ). By integration by parts, we have that the
solutions u(·, t) preserve the L2-norm, i.e., ‖u(·, t)‖2 = ‖u0‖2. Now to establish the
corresponding local smoothing effect (4.55), we follow the argument in [CKS]. First,
one applies an operator B of order zero with real symbol b(x, ξ ) to our equation to
get:

∂tB u = iAB u + i[B;A] u. (4.59)

By multiplying the equation (4.59) by ū and the conjugate of equation (4.58) by Bu,
adding the results and integrating in the x-variable, and then in the time interval
[0, T ], it follows that

T
∫

0

∫

R

i [B;A] u ū dx dt ≤ c0 (T ;B)‖u0‖2. (4.60)

Let C = i [B;A] = −i [A;B]. The operator C has order m − 1 and its symbol
c(x, ξ ) is given by

c(x, ξ ) = −{a, b} = − d

ds
b (ϕ(s; x, ξ ))

∣

∣

s=0 = Ha(b)(x, ξ ), (4.61)

(where ϕ(s; x, ξ ) denotes the bicharacteristic flow associated to the symbol of A, that
is, a(x, ξ ), and Ha(b) is defined as in (3.27)). The aim is to find an operator B such
that C > 0. By quadrature,

b(x, ξ ) =
∞
∫

0

c(ϕ(s; x, ξ )) ds. (4.62)
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Thus, if A = Δ/8π2, a(x, ξ ) = |ξ |2/2, and ϕ(s; x, ξ ) = (x + sξ , ξ ). Taking

c(x, ξ ) = −f ′(|xj |) ξ 2
j

〈ξ〉2
, (4.63)

with f ∈ L1([0,∞) : R
+), f decreasing, and 〈ξ〉 = (1 + |ξ |)1/2, we have C > 0 of

order 1.
By (4.61) one gets:

b(x, ξ ) = f (|xj |) ξj
〈ξ〉 (nonlocal operator of order zero).

Now, from (4.60), (4.61), (4.63) it follows that

T
∫

0

∫

R

Cu ū dx dt =
T
∫

0

∫

R

−f ′(|xj |)Λ−1∂2
xj

u ū dxdt

=
T
∫

0

∫

R

∂xjΛ
−1/2( − f ′(|xj |)Λ−1/2∂xj u) ū dxdt (4.64)

+
T
∫

0

∫

R

[ − f ′(|xj |); ∂xjΛ−1/2]Λ−1/2∂xj
︸ ︷︷ ︸

zero order operator

u ū dxdt.

From (4.60) combined with (4.64) and the choice of f , one basically has that

T
∫

0

∫

|x|≤R

|D1/2 u(x, t)|2 dx dt �
T
∫

0

∫

R

∂xjΛ
−1/2(−f ′(|xj |)Λ−1/2∂xj u) ū dx dt

(4.65)
≤ c0 (R; f ; T )‖u0‖2.

Repeating the argument for A = i∂3
x and taking c(x, ξ )=ϕ′(x)ξ 2 with ϕ′(x) = 1 if

|x| ≤ R and ϕ′(x) = 0 and if |x| ≥ 2R, even, C∞, nonincreasing for x > 0, we
obtain b(x, ξ ) = ϕ(x) (local operator as in Kato’s approach). Similarly, forA = iH∂2

x

(the dispersive operator associated to the Benjamin–Ono equation) with the same
choice of c(x, ξ ) = ϕ′(x) ξ 2, we get the same b(x, ξ ) = ϕ(x), again a local operator
so the result can be obtained by standard integration by parts.

For the variable coefficients case A = ∂xj (ajk(x)∂xk ), we need several hypotheses
that guarantee the appropriate behavior of the bicharacteristic flow at infinity as well
as the integrability of l(s) = c(ϕ(s; x, ξ )) in (4.62). In this regard, we find the
following result due to Doi [Do1].

Let A(x) = (ajk(x)) be a real and symmetric n×n matrix of functions ajk ∈ C∞
b .

Assume that

|∇ ajk(x)| = o(|x|−1) as |x| → ∞, j , k = 1, . . . , n, (4.66)
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and that A(x) is positive definite, so the operator ∂xj (ajk(x)∂xk ) is elliptic as in (3.25).
Assume that the bicharacteristic flow is nontrapped in one direction, which means
that the set

{X(s; x0, ξ0) : s ∈ R}
is unbounded in R

n for each (x0, ξ0) ∈ R
n × R

n − {0}.
Lemma 4.3. Let A(x) and its bicharacteristic flow satisfy the assumptions above.
Suppose λ ∈ L1([0,∞)) ∩ C([0,∞)) is strictly positive and nonincreasing. Then,
there exist c > 0 and a real symbol p ∈ S0, both depending on h2 and λ, such that

Hh2p = {h2,p}(x, ξ ) ≥ λ(|x|) |ξ | − c, ∀ (x, ξ ) ∈ R
n × R

n. (4.67)

Extensions and refinements as well as different proofs of the estimates in Theo-
rems 4.2 and 4.3 have been deduced in connection with specific problems. To simplify
the exposition we shall only mention some of them.

In [Bo5], Bourgain showed that there exists c0 > 0 such that if u1, u2 ∈ L2(R2),
0 < M1 ≤ M2 satisfying that

uj (x) = PMj
uj =

∫

Mj/2≤|ξ |≤2Mj

e2πx·ξ ûj (ξ ) dξ , j = 1, 2, (4.68)

then

∥

∥(eitΔu1)(e−itΔu2)
∥

∥

L2(R2
x×Rt )

≤ c0

(M1

M2

)1/2

‖u1‖2‖u2‖2. (4.69)

Inequality (4.69) measures the interaction of a pair of solutions corresponding to
data with localized support in the frequency space.

Notice that for M1 ∼ M2 (4.69) yields the case p = q = 4 = 2 + 2/n of
Theorem 4.2.

In [OT1], Ozawa and Tsutsumi studying the bilinear form:

(u0, v0) → ∂x(eit∂
2
x u0)(e−it∂2

x v̄0)

established the following identity: there exists c0 > 0 such that for any u0, v0 ∈ L2(R)
∥

∥D1/2
x [(eit∂

2
x u0)(e−it∂2

x v̄0)]
∥

∥

L2(Rx×Rt )
= c0‖u0‖2‖v0‖2. (4.70)

The estimate (4.70) resembles the gain of 1/2 derivative in Theorem 4.3 as well as
(after Sobolev embedding) the limit case (p = ∞, q = 4, n = 1, u0 = v0) of
Theorem 4.2.

In higher dimensions, Lions and Perthame [LP] applied theWinger transformation
to obtain a different proof of (4.23) in Theorem 4.3. They also showed that for
α ∈ (0,∞),

(

∞
∫

−∞

∫

Rn

|∇eitΔu0(x)|2
1 + |x|1+α

dxdt
)1/2

≤ cn,α

∥

∥D1/2
x u0

∥

∥

2. (4.71)
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Finally, we shall briefly discuss the L2-well-posedness of the IVP
{

∂tu = iΔu + bj (x)∂xj u + d(x)u + f (x, t),

u(x, 0) = u0(x),
(4.72)

where the coefficients bj and d and their derivatives are assumed to be bounded.
The problem (4.72) is said to be L2-well-posed if for any u0 ∈ L2(Rn) and

f ∈ C0([0,∞) : L2(Rn)) (where C0 stands for the set of continuous functions with
compact support) there exist T > 0 and a unique solution u ∈ C([0, T ] : L2(Rn)) of
(4.72) such that for t ∈ [0, T ]

sup
[0,t]

‖u(·, s)‖2 ≤ c(t)
{

‖u0‖2 +
∫ t

0
‖f (·, s)‖2 ds

}

.

Notice that if the bj take real values the result follows by integration by parts. Also,
if bj (x) = b0j is a constant then the assumption Im b0j = 0 for all j is a necessary
and sufficient condition. In the one-dimensional case, Takeushi [Ta1] proved that the
condition

sup
 ∈R

∣

∣

∣

 
∫

0

Imb(s) ds
∣

∣

∣ < ∞ (4.73)

is sufficient for the L2-well-posedness of (4.72). In [Mz] Mizohata showed that in
any dimension n the condition

sup
ŵ∈Sn−1

sup
x∈Rn

 ∈R

∣

∣

∣

 
∫

0

Imbj (x + s · ŵ) · ŵj ds

∣

∣

∣ < ∞ (4.74)

is necessary. (4.74) is an integrability condition on the coefficients b = (b1, . . . , bn)
of the first order term along the bicharacteristic. In fact, Ichinose [I] extended (4.74)
to the case where the Laplacian Δ in (4.72) is replaced by the elliptic variable
coefficients A = ∂xj (ajk(x)∂xk ) by deducing that

sup
ŵ∈Sn−1

sup
x∈Rn

 ∈R

∣

∣

∣

 
∫

0

Imbj (X(s; x, ŵ)) ·Ξ (s; x, ŵ) ds
∣

∣

∣ < ∞ (4.75)

is a necessary condition for theL2-well-posedness (to the IVP associated to the equa-
tion ∂tu = iAu + bj (x)∂xj u + d(x)u + f (x, t)), where s → (X(s; x, ŵ),Σ(s; x, ŵ))
denotes the bicharacteristic flow associated to A (see 3.28).

Notice that the notion of nontrapping for the bicharacteristic flow associated is
essential in the hypothesis (4.75) for bj (·), even in C∞

0 (Rn). We will return to this in
Chapter 10, where the above results are further studied.
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4.5 Exercises

4.1 Prove Proposition 4.1
4.2 Prove Proposition 4.2.
4.3 Prove that if 1 < p ≤ q < ∞, 0 ≤ γ < n/q, 0 ≤ α < n(1 − 1/p), and

α − γ = n(1 − 1
q
− 1

p
), then there exists c > 0 such that for all t ∈ R\{0}

∥

∥eitΔu0 |x|−γ
∥

∥

q
≤ c |t |−(α+γ )/2−n/2(1/p−1/q)

∥

∥u0 |x|α
∥

∥

p
. (4.76)

Notice that the exponent in (4.76) satisfies

−α + γ

2
− n

2

( 1

p
− 1

q

)

= −n

2
+ 1 − 1

p
− α = −n

2
+ 1

q
− γ.

Hint: Combine the formula (4.7) and Pitt’s theorem (Exercise 2.12).
4.4 Define the operators:

Γj = xj + 2it∂xj , j = 1, . . . , n.

(i) Prove that for any α ∈ (Z+)n (with multi-index notation),

Γ α f (x, t) = ei|x|
2/4t (2it∂x)α e−i|x|2/4t f = eitΔ xα e−itΔ f.

(ii) Prove that Γj commutes with Os = ∂t − iΔ.
(iii) If u0 ∈ L2 and xα u0 ∈ L2(Rn), show that Γ αu ∈ C(R : L2(Rn)) and so

∂α
x

(

ei|x|
2/4t eitΔ u0

) ∈ C
(

R \ {0} : L2(Rn)
)

.

In particular, ∂α
x eitΔ u0 ∈ L2

loc(Rn) for t �= 0.
(iv) If u0 ∈ Hs(Rn), s ∈ Z

+, and xα u0 ∈ L2, |α| ≤ s, prove that

u = eitΔu0 ∈ C
(

R : Hs ∩ L2(|x|s dx)
)

.

(v) If u0 ∈ S(Rn) show that eitΔu0 ∈ S(Rn).

4.5 (i) Prove that if u0, xα u0 ∈ L2(Rn), and ∂α
x u0 /∈ L2(Rn), then xα eitΔ u0 /∈

L2(Rn) for any t �= 0.
(ii) Show that if u0 ∈ C0(Rn), then for any t ∈ R \ {0} and any ε > 0,

eitΔu0 /∈ L1(eε|x|dx), and that eitΔu0 has an analytic extension to C
n for

t �= 0.
Hint: Use formula (4.7).

4.6 Using the notation in Definition 3.4.

(i) Prove that for t > 0, and b ∈ (0, 1)

Db (eit |x|
2
) ≤ cn,b (t

b/2 + tb |x|b).
(ii) Prove that for b ∈ (0, 1)

∥

∥ |x|b∥∥2 ≤ c
(

tb/2 ‖u0‖2 + tb ‖Dbu0‖2 + ‖ |x|bu0‖2
)

.
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(iii) Prove that if s ≥ b/2, b ∈ (0, 2) and

u0 ∈ Hs(Rn) ∩ L2(|x|b dx) ≡ F s
b ,

then

(a) eitΔu0 ∈ F s
b , for all t �= 0.

(b) Moreover, eitΔu0 ∈ C(R : F s
b ) (see [NhPo1]).

Hint: For (ii) combine part (i) and Exercise 3.10 inequality 3.42.
4.7 Check that for the group of translations

Lt : L2(Rn) �→ L2(Rn)

defined by Lt (u0)(x) = u0(x+ t) the inequalities (4.12) and (4.14) are not true.
4.8 Prove that there do not exist p, q, t with 1 ≤ q < p < ∞, t ∈ R\ {0} such that

eitΔ : Lp(Rn) �→ Lq(Rn) is continuous.

This is a particular case of Hörmander’s theorem in [Ho2].
Hint:

(i) Verify that eitΔ commutes with translations. That is, if τhf (x) = f (x− h),
then τh(eitΔf (x)) = eitΔτhf (x).

(ii) Show that if f ∈ Lp0 (Rn), 1 ≤ p0 < ∞, then

lim|h|→∞ ‖f + τhf ‖p0 = 21/p0‖f ‖p0 .

(iii) Using (ii) deduce that if T commutes with translations and ‖Tf ‖q ≤
c‖f ‖p, then

‖Tf ‖q ≤ c 2(1/p−1/q)‖f ‖p,

which leads to a contradiction because q < p.

4.9 (i) Prove that if f ∈ L2(R), then eitΔf is continuous in R for almost every
t ∈ R.
Hint: Combine Strichartz estimate (4.14) with (p, q) = (∞, 4) and a density
argument.

(ii) Prove that inequality (4.14) is not true when the pair (p, q) does not satisfy
the condition 2/q = n/2 − n/p in (4.18) Theorem 4.2.
Hint: Use the fact that if u(x, t) is a solution of the linear Schrödinger
equation, then for all λ > 0, λ u(λx, λ2t) is also a solution.

4.10 Given a sequence of times A = {tj ∈ R : j ∈ Z
+} converging to t0, prove that

there exists f ∈ L2(R) such that eitΔf /∈ L∞(R) if t ∈ A (compare this result
with the inequality (4.14)).
Hint: For all t ∈ A choose atgt ∈ L1(R) ∩ L2(R) such that gt /∈ L∞(R)
and where the constants at are fixed and such that if ft = e−itΔatgt then
f =∑t∈A ft satisfies the statement (use Lemma 4.1).
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4.11 Prove that

‖eitΔu0‖L3r
xt (R2) =

⎛

⎝

∞
∫

−∞

∞
∫

−∞

∣

∣eitΔu0(x)
∣

∣

3r
dxdt

⎞

⎠

1/3r

≤ c ‖̂u0‖r ′ (4.77)

with 1/r + 1/r ′ = 1 and 2 ≤ r < ∞. (The inequality (4.77) holds for
4/3 < r < ∞ see [Ff]).

4.12 Prove that if f ∈ L2(Rn), then

lim
t→±∞

∥

∥

∥e
itΔf − ei|·|2/4t

√
(4πit)n

̂f ( · /4πt)
∥

∥

∥

2
= 0. (4.78)

Hint:

(i) Verify that for all t �= 0,

U (t)f (x) = (4πit)−n/2ei|x|
2/4t
̂f (x/4πt)

defines a unitary operator. Hence, it is enough to prove (4.78) assuming
f ∈ S(Rn).

(ii) Prove that

eitΔf (x) − U (t)f (x) = ei|x|2/4t

√

(4πit)n/2
̂Ft (x/4πt),

with Ft (y) = (ei|y|2/4t − 1)f (y).
(iii) Use the estimate |ei|x|2/4t − 1| ≤ c

|x|2
4t to complete the proof (see [Dl]).

4.13 Prove that if u0 ∈ H 1(R) ∩ L2(|x|2dx), then

‖x eit∂
2
x u0‖2 ≥ 2|t | ‖∂xu0‖2 − ‖xu0‖2.

4.14 Show that the initial value problem:
{

∂tu = iΔu,

u(x, 0) = u0(x),
(4.79)

x ∈ R
n, t > 0, is ill-posed.

Hint: Differentiate equation (4.79) with respect to the variable t , then use the
conjugate of equation (4.79) to obtain an equation in terms of second-order
derivatives with respect to t and the bi-Laplacian.

4.15 (Duhamel’s principle) Prove that the solution u(x, t) of the inhomogeneous
IVP:

{

∂tu = iΔu + F (x, t),

u(x, 0) = u0(x),
(4.80)
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x ∈ R
n, t ∈ R, with F ∈ C(R : S(Rn)) is given by the formula:

u(x, t) = eitΔu0 +
t
∫

0

ei(t−t ′)ΔF (·, t ′) dt ′. (4.81)

4.16 Prove that if F ∈ S(Rn+1), then the solution u(x, t) of problem (4.80) can be
written as:

u(x, t)=eitΔu0+
∞
∫

−∞

∫

Rn

e2πiτ t − e−4π2i|ξ |2t

4π2i|ξ |2 + 2πiτ
e2πix·ξ

̂F (ξ , τ ) dξdτ , (4.82)

where ̂F represents the Fourier transform of F with respect to the variables
x, t .

4.17 [AvHe]

(i) Show that if u(x, t) is a solution of the IVP for the Schrödinger equation
with Stark potential:

{

∂tu = i(Δu + (ν · x)u),

u(x, 0) = u0(x)
(4.83)

with ν ∈ R
n for (x, t) ∈ R

n × R, then

w(x, t) = u(x + t2ν, t) e−itν·x−it3|ν|2/3

solves the linear Schrödinger equation with the same data, i.e., w(x, t) =
eitΔu0.

(ii) Do the estimates (4.14) and (4.24) hold for the solution u(x, t) of (4.83)?

4.18 Prove inequality (4.37).

4.19 Prove that m(ξ ) = e8π3itξ3
is not an Lp-multiplier for p �= 2.

4.20 Using the estimates (4.23), (4.24) from Theorem 4.3, prove that:
(i) If n > 2, α > 1/2, and f ∈ L2(Rn), then (1+|x|)−αD

1/2
x eitΔf ∈ L2(Rn),

a.e. t ∈ R.
(ii) If n = 1 the result in (i) is not true.

(iii) What can be said in the case n = 2? (See [KY]).
4.21 Use the commutator estimates in (3.16) to show that operator defined in (4.64),

i.e.,
[− f ′(|xj |); ∂xjΛ−1/2

]

Λ−1/2∂xj ,

is in fact of order zero.



Chapter 5
The Nonlinear Schrödinger Equation:
Local Theory

In this chapter, we shall study local well-posedness of the nonlinear initial value
problem (IVP):

{

i∂tu = −Δu − λ|u|α−1u,

u(x, 0) = u0(x),
(5.1)

t ∈ R, x ∈ R
n, where λ and α are real constants with α > 1.

The equation (5.1) appears as a model in several physical problems (see references
[GV1], [N], [SCMc], [ZS]).

Formally solutions of problem (5.1) satisfy the following conservation laws, that
is, if u(x, t) is solution of (5.1), then for all t ∈ [0, T ], the L2-norm

M(u0) = ‖u(·, t)‖2
2 = ‖u0‖2

2, (5.2)

the energy

E(u0) =
∫

Rn

(

|∇xu(x, t)|2 − 2λ

α + 1
|u(x, t)|α+1

)

dx

= ‖∇u0‖2
2 −

2λ

α + 1
‖u0‖α+1

α+1,

(5.3)

the momentum

Im
∫

Rn

∇u(x, t) ū(x, t) dx = Im
∫

Rn

∇u0(x) ū0(x) dx, (5.4)

and the so-called quasiconformal law [GV1]

‖(x + 2it∇)u(t)‖2
2 −

8λt2

α + 1
‖u(t)‖α+1

α+1

= ‖xu0‖2
2 − 4λ

(4 − n(α − 1))

α + 1

t
∫

0

⎛

⎝

∫

Rn

|u(x, s)|α+1 dx

⎞

⎠ s ds.

(5.5)
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We will use these identities in the next chapter.
We shall say that equation in (5.1) is focusing if λ > 0 (attractive nonlinearity)

and defocusing if λ < 0 (repulsive nonlinearity).
In any dimension, the equation in (5.1) in the focusing case λ > 0 has solutions

of the form

u(x, t) = eit ϕ(x), (5.6)

called standing waves. The ground state ϕ is closely related to the elliptic problem

−Δv = f (v), (5.7)

which have been extensively studied. In our case, f (v) = −v+ |v|α−1v, with λ = 1.
Indeed, the problem is to find ϕ ∈ H 1(Rn), positive, such that

−Δϕ + ϕ = |ϕ|α−1ϕ. (5.8)

Hence, for any ω > 0,

uω(x, t) = eiωtω1/(α−1)ϕ(
√
ω x) = eiωtϕω(x) (5.9)

is a solution of the equation in (5.1) with λ = 1.
The existence of solutions of the equation (5.8) in dimensionn ≥ 3 was established

by Strauss [Sr2] and Berestycki and Lions [BLi] (see also [BLiP]). The bidimensional
case was considered in [BGK] by Berestycki, Gallouët and Kavian Regarding the
uniqueness of solutions of (5.8), Kwong [Kw1] showed that positive solutions of the
problem (5.7) with f (v) = −v + vp are unique up to translations. We summarize
these results in the next theorem.

Theorem 5.1. Let n ≥ 2 and 1 < α < (n+ 2)/(n− 2) (1 < α < ∞, n = 2).
Then, there exists a unique positive, spherically symmetric solution of (5.8) ϕ ∈
H 1(Rn). Moreover, ϕ and its derivatives up to order 2 decay exponentially at infinity.

Remark 5.1. The restriction on α comes from Pohozaev’s identity (5.83) since we
want to have H 1-solutions of (5.8) (see Exercise 5.3).

Remark 5.2. There are infinitely many radially symmetric solutions under the
hypothesis of Theorem 5.1 without the positivity assumption (see [BLi], [E], [JK]).

As given below, once we have a solution of (5.1), we can use the invariance of the
equation to generate other solutions. Thus, if u = u(x, t) is a solution of the equation
in (5.1), then the following are also solutions:

(i) uμ(x, t) = μ
2

α−1 u(μx,μ2t), μ ∈ R, with initial data given by

u0μ(x) = μ
2

α−1 u0(μx).
(5.10)

(ii) uθ (x, t) = eiθu(x, t), θ ∈ R.
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(iii) uA(x, t) = u(Ax, t), A any n× n orthogonal matrix.

(iv) ua,b(x, t) = u(x − a, t − b), a ∈ R
n, b ∈ R.

(v) uc(x, t) = eic·xe−i|c|2tu(x − 2tc, t) for c ∈ R
n, with initial data

uc(x, 0) = eic·x u0(x).
(5.11)

(vi) In addition, if α = 4/n+ 1, then [GV1]

uω(x, t) = 1

(α + ωt)n/2
exp

(

iω|x|2
4(α + ωt)

)

× u

(

x

α + ωt
,
γ + θt

α + ωt

)

, α θ − ω γ = 1,

(vii) u7(x, t) = u(x,−t).

Property (i) is called scaling, property (v) Galilean invariance, and property (vi)
pseudo-conformal invariance.

Hence, gathering this information, one gets the multiparametric family of
solutions R = R(ν,ω, θ , x0) with ν, x0 ∈ R

n, ω > 0, and θ ∈ R.

R(x, t) = ei(ν·x−|ν|2t+ω t+θ ) ϕω(x − x0 − 2ν t) (5.12)

of (5.1) with λ = 1 (focusing case), where ϕ(·) is the positive solution of (5.8) and
ϕω(·) is defined in (5.9). Notice that the solitary wave in (5.12) moves on the line
x = x0 + 2ν t . In the one-dimensional (1-D) case, the equation (5.8) becomes an
ordinary differential equation (ODE) and one has that

ϕω(x) =
{

(α + 1)

2
ω sech2

(

α − 1

2

√
ω x

)}1/(α−1)

. (5.13)

Thus, for all t ∈ R and p ∈ [1,∞]

‖u(·, t)‖p = ‖u0‖p = K(α,ω). (5.14)

From the nonlinear differential equations point of view, the existence of the solitary
wave describes a perfect balance between the nonlinearity and the dispersive char-
acter of its linear part. More precisely, although the solutions of the linear problem
eitΔu0 with u0 ∈ L1(Rn) ∩ L2(Rn) decay as t → ∞ (see (4.12) for the case
u0 ∈ L1(Rn) and (4.14) for u0 ∈ L2(Rn)), the solutions of (5.1) neither decay nor
develop singularities. The latter situation is addressed in the next chapter.
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5.1 L2 Theory

We consider the integral equation (see Exercise 4.15)

u(t) = eitΔu0 + iλ

t
∫

0

ei(t−t ′)Δ(|u|α−1u)(t ′) dt ′. (5.15)

The difference between this equation and the one in (5.1) is that (5.15) does not require
any differentiability of the solution. Using the properties described in Proposition 4.2,
it is easy to see that if u is a solution of the differential equation in (5.1), then it is
also a solution of (5.15). We shall prove in Section 5.3 that under some hypotheses
on α and n, if u0 ∈ H 2(Rn), the solution of (5.15) also satisfies the differential
equation in (5.1).

We say that the integral equation (5.15) is locally well-posed in X, where X is
a function space, if for every u0 ∈ X there exist T > 0 and a unique solution u ∈
C([0, T ) : X)∩. . . of (5.15) for (x, t) ∈ R

n×[0, T ). Moreover, the map data solution,
i.e., u0 �→ u(·, t), locally defined from X to C([0, T ) : X), is continuous. Therefore,
our notion of well-posedness includes existence, uniqueness, and persistence (the
solution u(t) belongs to the same space as the initial data and its time trajectory
describes a curve on it). Thus, the solution flow of (5.15) defines a dynamical system
in X. In the case that T can be taken arbitrarily large, we shall say that (5.15) is
globally well-posed in X.

As we shall see below in the subcritical case, one has that T = T (‖u0‖X) > 0
and in the critical case that T = T (u0) > 0. These definitions of local and global
well-posedness also apply to the initial value problem (IVP) (5.1).

Our first result indicate that under some restriction on the power of the nonlinearity,
α ∈ (1, 1 + 4/n), problem (5.15) is locally well-posed in L2.

Theorem 5.2 (Local theory in L2). If 1 < α < 1 + 4/n, then for each u0 ∈
L2(Rn) there exist T = T (‖u0‖2, n, λ,α) > 0 and a unique solution u of the
integral equation (5.15) in the time interval [−T , T ] with

u ∈ C([−T , T ] : L2(Rn)) ∩ Lr ([−T , T ] : Lα+1(Rn)), (5.16)

where r = 4(α + 1)/n(α − 1).
Moreover, for all T ′ < T there exists a neighborhood V of u0 in L2(Rn)

such that

F : V �→ C([−T ′, T ′] : L2(Rn)) ∩ Lr ([−T ′, T ′] : Lα+1(Rn)), ũ0 �→ ũ(t),

is Lipschitz.
As we shall see in the proof of Theorem 5.2 (see (5.24)) and in Exercise 5.5, one

can give a precise estimate for the life span of the solution according to the size of
the data in L2-norm. This fact holds whenever the problem is “subcritical” and the



5.1 L2 Theory 97

scaling of the norm of the initial data is homogeneous, i.e., in our case, if u = u(x, t)
is a solution of (5.1) or (5.15), then

uμ(x, t) = μ2/(α−1) u(μx,μ2t),

is also a solution with data uμ(x, 0) = μ2/(α−1) u0(μx) so that

‖uμ(0)‖2 = μ2/(α−1)−n/2 ‖u0‖2.

If, in addition to the hypothesis of Theorem 5.2, one has that u0 ∈ Hs(Rn), s > 0,
and α ≥ [s] + 1, [·] denoting the greatest integer function, then

u ∈ C([0, T ] : Hs(Rn)) ∩ Lr ([−T , T ] : Lα+1
s (Rn)), (5.17)

with T as in the theorem. This fact holds in any subcritical case with a regular enough
nonlinearity, since by taking s derivatives the problem becomes linear in this variable.

The proof of Theorem 5.2 is based on the contraction mapping principle. This has
the advantage that it also shows that if the nonlinearity is smooth, i.e., α is an odd
integer, then the map data-solution u0 �→ u(t) is smooth (see Corollary 5.6).

Corollary 5.1. The solution u of equation (5.15) obtained in Theorem 5.2 belongs
to Lq([−T , T ] : Lp(Rn)) for all (p, q) defined by condition (4.18) of Theorem 4.2,
that is:

2 ≤ p <
2n

n− 2
if n ≥ 3

2 ≤ p < ∞ if n = 2

2 ≤ p ≤ ∞ if n = 1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

and
2

q
= n

2
− n

p
. (5.18)

In the proof of Theorem 5.2, we use the following notation: For all positive
constants T and a, we define

E(T , a)={v ∈C([−T , T ]:L2(Rn)) ∩ Lr ([−T , T ]:Lα+1(Rn)) :

|||v|||
T
≡ sup

[−T ,T ]
‖v(t)‖2+

⎛

⎝

T
∫

−T

‖v(t)‖rα+1dt

⎞

⎠

1/r

≤ a
}

(5.19)

with 1 < α < 1 + 4/n and r = 4(α + 1)/n(α − 1). Note that E(T0, a) is a
complete metric space.

Proof of Theorem 5.2 For appropriate values of a and T > 0, we shall show that

Φu0 (u)(t) = Φ(u)(t) = eitΔu0 + iλ

t
∫

0

eiΔ(t−t ′)(|u|α−1u)(t ′) dt ′ (5.20)

defines a contraction map on E(T , a).
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Without loss of generality we consider only the case t > 0. Using (4.14), (4.17),
and Hölder’s inequality combined with the definition Φ(·) in (5.20), we obtain:

⎛

⎝

T
∫

0

‖Φ(u)(t)‖rα+1dt

⎞

⎠

1/r

≤ c‖u0‖2 + c|λ|
⎛

⎝

T
∫

0

‖ |u(t)|α‖r ′(α+1)/αdt

⎞

⎠

1/r ′

≤c‖u0‖2+c|λ|
⎛

⎝

T
∫

0

‖u(t)‖αr ′(α+1)dt

⎞

⎠

1/r ′

.

(5.21)

By hypothesis (1 < α < 1 + 4/n), we have that α r ′ < r , that is,

α
r

r − 1
< r or α < r − 1 = 4(α + 1)

n(α − 1)
− 1.

Therefore, from (5.21) we deduce that

⎛

⎝

T
∫

0

‖Φ(u)(t)‖rα+1dt

⎞

⎠

1/r

≤c‖u0‖2+c|λ|T θ

⎛

⎝

T
∫

0

‖u‖rα+1dt

⎞

⎠

α/r

(5.22)

with θ = 1 − n(α − 1)/4 > 0. Then, if u ∈ E(T , a) we have

⎛

⎝

T
∫

0

‖Φ(u)(t)‖rα+1dt

⎞

⎠

1/r

≤ c‖u0‖2 + c|λ| T θ aα.

Using 4.16 and the unitary group properties in expression (5.20), we obtain that if
u ∈ E(T , a) , then

sup
[0,T ]

‖Φ(u)(t)‖2 ≤ c‖u0‖2 + c|λ|
(

T
∫

0
‖ |u|α‖r ′(α+1)/α dt

)1/r ′

≤ c‖u0‖2 + c|λ| T θ aα ,

(5.23)

where the constant c depends only on α and the dimension n. Hence,

|||Φ(u)|||T ≤ c ‖u0‖2 + c|λ|T θaα.

If we fix a = 2c‖u0‖2 and take T > 0 such that

2αcα |λ| T θ ‖u0‖α−1
2 < 1, (5.24)
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it follows that the application Φ is well defined on E(T , a). Now, if u, v ∈ E(T , a),

(Φ(v) −Φ(u))(t) = iλ

t
∫

0

ei(t−t ′)Δ(|v|α−1v − |u|α−1u)(t ′) dt ′.

The same argument as in (5.21) and (5.22) shows that

⎛

⎝

T
∫

0

‖(Φ(v) −Φ(u))(t)‖rα+1 dt

⎞

⎠

1/r

≤ c|λ|
⎛

⎝

T
∫

0

‖ |v|α−1v − |u|α−1u‖r ′(α+1)/α dt

⎞

⎠

1/r ′

≤ cα|λ|
⎛

⎝

T
∫

0

(‖v‖α−1
α+1 + ‖u‖α−1

α+1)r
′ ‖v − u‖r ′α+1(t) dt

⎞

⎠

1/r ′

≤ cα|λ| T θ

⎧

⎪

⎨

⎪

⎩

⎛

⎝

T
∫

0

‖v‖r(α+1) dt

⎞

⎠

(α−1)/r

+
⎛

⎝

T
∫

0

‖u‖r(α+1) dt

⎞

⎠

(α−1)/r
⎫

⎪

⎬

⎪

⎭

×
⎛

⎝

T
∫

0

‖v(t) − u(t)‖r(α+1) dt

⎞

⎠

1/r

≤ 2cα |λ| T θ aα−1

⎛

⎝

T
∫

0

‖v(t) − u(t)‖r(α+1) dt

⎞

⎠

1/r

.

Combining (4.16) with the unitary group properties and the arguments used in (5.21)
and (5.22), we see as in (5.23) that

sup
[0,T ]

‖(Φ(v) −Φ(u))(t)‖2 ≤ 2cα|λ| T θ aα−1

⎛

⎝

T
∫

0

‖v(t) − u(t)‖rα+1 dt

⎞

⎠

1/r

.

Finally, it follows from the choice of a, a ≤ 2c‖u0‖2, and inequality (5.24) that

2c |λ| T θ aα−1 ≤ 2αcα|λ| T θ ‖u0‖α−1
2 < 1.

Hence,

T # ‖u0‖β2 , with β = 4(1 − α)

4 − n(α − 1)
. (5.25)



100 5 The Nonlinear Schrödinger Equation: Local Theory

Thus, we have proved the existence and uniqueness in an appropriate class of the
solution of equation (5.15). To prove the continuous dependence of Φ(u(t)) =
Φu0 (u(t)) with respect to u0, note that if u, v are the corresponding solutions of
(5.15) with initial data u0, v0, respectively, then

u(t) − v(t) = eitΔ(u0 − v0) + iλ

t
∫

0

ei(t−t ′)Δ(|u|α−1u − |v|α−1v)(t ′)dt ′.

Therefore, the same argument used in (5.21) and (5.22) implies

⎛

⎝

T
∫

0

‖u(t) − v(t)‖rα+1 dt

⎞

⎠

1/r

≤ c‖u0 − v0‖2

+Kα|λ| T θ
(‖u0‖α−1

2 + ‖v0‖α−1
2

)

⎛

⎝

T
∫

0

‖u(t) − v(t)‖rα+1 dt

⎞

⎠

1/r

.

As a consequence, if ‖u0 − v0‖2 is small enough (see (5.24)), then

⎛

⎝

T
∫

0

‖u(t) − v(t)‖rα+1 dt

⎞

⎠

1/r

≤ ˜K‖u0 − v0‖2.

Analogously we can prove that

sup
[0,T ]

‖u(t) − v(t)‖2 ≤ ˜K‖u0 − v0‖2,

which completes the proof. �

Proof of Corollary 5.1 The proof is obtained by combining Corollary 4.1 with in-
equality (5.21). That is, taking (p, q) in Corollary 4.1 instead of (α + 1, r) on the
left-hand side of (5.21) and then using the argument in the proof of Theorem 5.2.
The details of this proof are left as an exercise to the reader. �

Remark 5.3. Observe that in the proof of Theorem 5.2 we only used the hypothesis
on the growth of the nonlinear term but not its particular form.

Next, we show how to extend the argument used in the proof of Theorem 5.2 to
the critical case α = 1 + 4/n.

Proposition 5.1. Let (p, q) be a pair satisfying condition (5.18) in Corollary 5.1.
Given u0 ∈ L2(Rn) and ε > 0, there exist δ > 0 and T > 0 such that if
‖v0 − u0‖2 < δ, then

⎛

⎝

T
∫

0

‖eitΔv0‖qp dt

⎞

⎠

1/q

< ε. (5.26)
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Proof. If we take δ < ε/2c, then it suffices to show that

⎛

⎝

T
∫

0

‖eitΔu0‖qp dt

⎞

⎠

1/q

< ε/2. (5.27)

We choose ũ0 ∈ S(Rn) such that ‖u0 − ũ0‖2 < ε/4c and then combining
Theorem 4.2 (inequality (4.14)), the fact that {eitΔ} defines a unitary group in
Hs(Rn) and Sobolev’s inequality (Theorem 3.3), we have

⎛

⎝

T
∫

0

‖eitΔu0‖qp dt

⎞

⎠

1/q

≤
⎛

⎝

T
∫

0

‖eitΔ (̃u0 − u0)‖qp dt

⎞

⎠

1/q

+
⎛

⎝

T
∫

0

‖eitΔũ0‖qp dt

⎞

⎠

1/q

≤ c‖̃u0 − u0‖2 + cT 1/q ‖̃u0‖s,2,

where s ≥ n(1/2 − 1/p). Fixing T such that cT 1/q ‖̃u0‖s,2 < ε/4, we obtain
(5.27). �

Theorem 5.3 (Critical case, α = 1 + 4/n in L2(Rn)). If α = 1 + 4/n, then
for each u0 ∈ L2(Rn) there exist T = T (u0, λ,α) > 0 and a unique solution u
of the integral equation (5.15) in the time interval [−T , T ] with

u ∈ C([−T , T ] : L2(Rn)) ∩ Lσ ([−T , T ] : Lσ (Rn)), (5.28)

where σ = 2 + 4/n.
Moreover, for all T ′ < T there exists a neighborhood V of u0 in L2(Rn)

such that

F : V �→ C([−T ′, T ′] : L2(Rn)) ∩ Lσ ([−T ′, T ′] : Lσ (Rn)), ũ0 �→ ũ(t),

is Lipschitz.

Remark 5.4. Notice that the time of existence in Theorem 5.2 depends only on the
size of u0 (that is, on ‖u0‖2); meanwhile, in Theorem 5.3, the time of existence
depends on the position of u0, and not only on its size.

Proof. We shall show that Φu0 = Φ in (5.20) defines a contraction in:

˜E(T , a) =
{

v ∈ C([−T , T ] : L2(Rn)) ∩ Lσ ([−T , T ] : Lσ (Rn)) :

|||v|||
T
≡ sup

[−T ,T ]
‖v(t) − eitΔu0‖2 +

⎛

⎝

T
∫

−T

‖v(t)‖σσ dt

⎞

⎠

1/σ

≤ a
}

.

First, from (5.20) it follows that

sup
[0,T ]

‖Φ(u)(t) − eitΔu0‖2 ≤ sup
[0,T ]

‖
t
∫

0

eiΔ(t−t ′)λ|u|α(t ′) dt ′‖2
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≤ c|λ|
⎛

⎝

T
∫

0

‖|u(t)|α‖σ ′
σ ′ dt

⎞

⎠

1/σ ′

(5.29)

≤ c|λ|
⎛

⎝

T
∫

0

‖u(t)‖σσ dt

⎞

⎠

α/σ

.

On the other hand, it is easy to see that the pair (σ , σ ) satisfies the condition (5.18)
of Corollary 5.1. Then, combining the integral equation (5.20), estimates (4.14), and
(5.26) with (p, q) = (σ , σ ), with the argument used on (5.21), we obtain:

⎛

⎝

T
∫

0

‖Φ(u)(t)‖σσ dt

⎞

⎠

1/σ

≤ cε + c|λ|
⎛

⎝

T
∫

0

‖ |u(t)|α‖σ ′
σ ′ dt

⎞

⎠

1/σ ′

≤ cε + c|λ|
⎛

⎝

T
∫

0

‖u(t)‖σσ dt

⎞

⎠

α/σ

,

(5.30)

because ασ ′ = (1 + 4/n) ((2n+ 4)/(n+ 4)) = 2 + 4/n = σ .
From Proposition 5.1, inequalities (5.29) and (5.30), we obtain that given ε > 0 ,

there exists T > 0 such that if u ∈ ˜E(T , a), then

|||Φ(u)|||
T
≤ cε + c|λ| aα.

Therefore, if

cε + c |λ| aα < a, (5.31)

we get that Φ(˜E(T , a)) ⊆ ˜E(T , a). The argument used in the proof of Theorem 5.2
yields:

⎛

⎝

T
∫

0

‖(Φ(v) −Φ(u))(t)‖σσ dt

⎞

⎠

1/σ

≤2c|λ| aα−1

⎛

⎝

T
∫

0

‖v(t) − u(t)‖σσ dt

⎞

⎠

1/σ

.

Thus, for

2c |λ| aα−1 < 1/2, (5.32)

we have that Φ(·) is a contraction. Now, fixing ε > 0 such that

c|λ| εα−1 < 1/2

we see that both (5.31) and (5.32) are verified. This basically completes the proof, the
remainder of the proof follows using the same argument employed to show Theorem
5.2. �
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Corollary 5.2. There exists ε0 > 0 depending on λ and n such that for all
u0 ∈ L2(Rn) with ‖u0‖2 ≤ ε0, the results of Theorem 5.3 extends to any time
interval [0, T ], i.e,

u ∈ C(R : L2(Rn)) ∩ Lσ (R : Lσ (Rn)), σ = 2 + 4/n. (5.33)

Proof. It is enough to note that if ‖u0‖2 is sufficiently small, then taking ε = ‖u0‖2

and a = 2‖u0‖2 (both independent of T ), and

c |λ| ‖u0‖α−1
2 < 1/2,

we see that (5.31) and (5.32) hold. �

Combining the results in Corollary 5.2 and those in Exercise 6.2 (concerning the
scattering of the solutions obtained in Corollary 5.2), one should expect that the
constant ε in Corollary 5.2 be given by ‖ϕ‖2, where ϕ is the positive solution of
equation (5.8), with ω = 1 and α = 1+ 4/n. This has been proved in the radial case
and for dimension n = 2 in [KTV].

5.2 H1 Theory

We consider the integral equation (5.15) with u0 ∈ H 1(Rn) with the nonlinearity α

satisfying
⎧

⎨

⎩

1 < α <
n+ 2

n− 2
, if n > 2

1 < α < ∞, if n = 1, 2.
(5.34)

Theorem 5.4 (Local theory in H 1). If α satisfies hypothesis (5.34), then for all
u0 ∈H 1(Rn) there exist T= T (‖u0‖1,2, n, λ,α) > 0 and a unique solution u of the
integral equation (5.15) in the time interval [−T , T ] with

u ∈ C([−T , T ] : H 1(Rn)) ∩ Lr ([−T , T ] : Lρ
1 (Rn)), (5.35)

where (ρ, r) = ( n(α + 1)

n+ α − 1
,

4(α + 1)

(n− 2)(α − 1)

)

for n ≥ 3, and (ρ, r) satisfies (5.18)

for n = 1, 2, and L
ρ
1 is defined as in (3.38).

Moreover, for all T ′ < T there exists a neighborhood W of u0 in H 1(Rn)
such that the function

F : W �→ C([−T ′, T ′] : H 1(Rn)) ∩ Lr ([−T ′, T ′] : Lρ
1 (Rn)), ũ0 �→ ũ(t),

is Lipschitz.
If in addition to the hypothesis of Theorem 5.4 one has that u0 ∈ Hs(Rn), s > 1,

and α ≥ [s] + 1, [·] denoting the greatest integer function, then

u ∈ C([0, T ] : Hs(Rn)) ∩ Lr ([0, T ] : Lα+1
s (Rn)), (5.36)
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where [0, T ] is the same time interval given for s = 1. As in (5.17), the problem
becomes linear in Ds

xu once one takes Ds
x in the equation and the result follows by

reapplying the argument in the proof of Theorem 5.4 in this linear equation whose
coefficients (depending on u) have sufficient regularity to get the desired result.

As we shall see in the next chapter, in the critical case, a similar result was quite
difficult to establish.

Corollary 5.3. The solution of the integral equation (5.15) obtained in Theorem 5.4
belongs to u ∈ Lq([−T , T ] : Lp

1 (Rn)) for all pair (p, q) defined by condition (5.18)
in Corollary 5.1. Moreover, in these spaces, the solution depends continuously on
the initial data.

The proof of this theorem is similar to the one given in the previous section for
the L2 case; therefore, we can give only a sketch of it.

Proof of Theorem 5.4 We will show the theorem in the case n ≥ 3. We first define

E1(T , a)=
{

v ∈ C([−T , T ] : H 1)∩Lr ([−T , T ] : Lρ
1 ) : |||v|||T ≡ sup

[−T ,T ]
‖v(t)‖1,2

+
⎛

⎝

T
∫

−T

(‖v(t)‖rρ + ‖∇xv(t)‖rρ) dt

⎞

⎠

1/r

≤ a
}

. (5.37)

Notice that the pair (ρ, r) is an admissible pair (see Corollary 4.1).
We prove that there exist positive constants T and a such that the operator

defined in (5.20) is a contraction on E1(T , a).
Combining Hölder’s inequality and the Sobolev inequality (Theorem 3.3) it

follows that

‖|u|α−1∇u‖ρ′ ≤ c ‖|u|α−1‖l‖∇u‖ρ ≤ c ‖u‖α−1
(α−1)l‖∇u‖ρ ≤ c ‖∇u‖αρ.

Thus,

‖|u|α−1u‖1,ρ′ ≤ c ‖u‖α1,ρ , (5.38)

with 1/ρ ′ = 1/l + 1/ρ. Then,

1

l
= 1 − 2

ρ
and

1

(α − 1)l
= 1

ρ
− 1

n
, i.e.,

1

l
= α − 1

ρ
− α − 1

n
.

Therefore, (α + 1)/ρ = (n+ α − 1)/n.
Using Corollary 4.1, (5.20), and (5.38), we have

|||Φ(u)|||T ≤ c ‖u0‖1,2 + c

⎛

⎝

T
∫

0

‖|u|α−1u(t)‖r ′1,ρ′ dt

⎞

⎠

1/r ′

≤ c ‖u0‖1,2 + c

⎛

⎝

T
∫

0

‖u(t)‖αr ′1,ρ dt

⎞

⎠

1/r ′

(5.39)
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≤ c ‖u0‖1,2 + c T δ

⎛

⎝

T
∫

0

‖u(t)‖r1,ρ dt

⎞

⎠

α/r

,

with δ = 1 − (α + 1)/r = 1 − (n− 2)(α − 1)/4. Hence, taking a = 2c ‖u0‖1,2 in
(5.37), we get from (5.39) that

|||Φ(u)|||T ≤ c ‖u0‖1,2 + c T δ |||u|||αT
≤ a

2
+ c T δ aα

(2c)α
≤ a

if T is sufficiently small, i.e.,

c T δ

(2c)α
aα−1 ≤ 1

2
.

Thus,

T � a(1−α)/δ. (5.40)

To complete the proof of existence and uniqueness of the solution, it is enough to
show that the operator Φ is a contraction. The proof of this as well as the continuous
dependence is similar to the one given in the previous section, so it will be omitted.�

Remark 5.5. As we commented in the previous section, in the proof of this (local)
result, we did not use the particular structure of the nonlinear term.

Theorem 5.5 (Critical case, α = (n + 2)/(n − 2), n > 2, in H 1(Rn)). Let n > 2
and α = (n + 2)/(n − 2). Given u0 ∈ H 1(Rn), there exist T = T (u0, n, λ,α) > 0
and a unique solution u of the integral equation (5.15) in the time interval [−T , T ]
with

u ∈ C([−T , T ] : H 1(Rn)) ∩ Lr ([−T , T ] : Lρ
1 (Rn)),

where r = 2n/(n− 2), ρ = 2n2/(n2 − 2n+ 4) and L
p

1 is defined as in (3.38).
Moreover, for all T ′ < T there exists a neighborhood W of u0 in H 1(Rn)

such that the function

F : W → C([−T ′, T ′] : H 1(Rn)) ∩ Lr ([−T ′, T ′] : Lρ
1 (Rn)), ũ0 → ũ(t),

is Lipschitz.

Remark 5.6. We notice that the time of existence depends on the initial data. In
Theorem 5.4, it depends only on the size of u0, that is, on ‖u0‖1,2. In Theorem 5.5,
the interval of existence depends on the position of u0, and not only on its size.

Proof. Observe that the pair (r , ρ) = (2n/(n − 2), 2n2/(n2 − 2n + 4)) satisfies
condition (5.18) of Corollary 5.1. First, we have that

⎛

⎝

T
∫

0

‖∇x(|u|α−1u)‖r ′ρ′
⎞

⎠

1/r ′

≤ c

⎛

⎝

T
∫

0

‖∇xu‖rρ
⎞

⎠

1/r⎛

⎝

T
∫

0

‖|u|α−1‖lν
⎞

⎠

1/l

(5.41)
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≤ c

⎛

⎝

T
∫

0

‖∇xu‖rρ
⎞

⎠

1/r⎛

⎝

T
∫

0

‖u‖l(α−1)
ν(α−1)

⎞

⎠

1/l

,

where 1/r + 1/r ′ = 1/ρ + 1/ρ ′ = 1, 1/ρ ′ = 1/ρ + 1/ν, and 1/r ′ = 1/r + 1/l.
Since (α, r , ρ) = ((n + 2)/(n − 2), 2n/(n − 2), 2n2/(n2 − 2n + 4)) , we have
l(α − 1) = r and ν(α − 1) = 2n2/(n − 2)2. Then by Gagliardo–Nirenberg’s
inequality (3.14) it follows:

‖u‖ν(α−1) ≤ c ‖u‖1,ρ = c (‖u‖ρ + ‖∇xu‖ρ). (5.42)

Combining (5.41), (5.42), Proposition 5.1, Theorem 4.2, and the notation in the
proof of Theorem 5.4, we obtain that for any ε > 0 fixed there exists T > 0 such
that

⎛

⎝

T
∫

0

‖Φ(u)(t)‖r1,ρ dt

⎞

⎠

1/r

≤ c

⎛

⎝

T
∫

0

‖Φ(u)(t)‖rρ dt
⎞

⎠

1/r

+
⎛

⎝

T
∫

0

‖∇xΦ(u)(t)‖rρ dt
⎞

⎠

1/r

≤ cε + c|λ|
⎛

⎝

T
∫

0

‖u‖rρ dt
⎞

⎠

1/r

(5.43)

+ c|λ|
⎛

⎝

T
∫

0

‖∇xu‖rρ dt
⎞

⎠

1/r ⎛

⎝

T
∫

0

‖u‖r1,ρ dt

⎞

⎠

(α−1)/r

≤ cε + c|λ|
⎛

⎝

T
∫

0

‖u‖r1,ρ dt

⎞

⎠

α/r

.

On the other hand, we have that

sup
[0,T0]

‖Φ(u)(t) − eitΔu0‖1,2 ≤ c|λ|
⎛

⎝

T
∫

0

‖u‖r1,ρdt

⎞

⎠

α/r

. (5.44)

Therefore, defining

˜E1(T , a) =
{

v ∈ C([0, T ] : H 1(Rn)) ∩ Lr ([0, T ] : Lρ
1 (Rn)) :

|||v|||
T
≡ sup

[0,T0]
‖v(t) − eitΔu0‖1,2 +

⎛

⎝

T
∫

0

‖v‖r1,ρ dt

⎞

⎠

1/r

≤ a
}

,
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and applying (5.44) and (5.43), we have that for all ε > 0 there exists T > 0 such
that if u ∈ ˜E1(T , a) , then

|||Φ(u)(t)||| ≤ cε + c|λ| aα. (5.45)

Once inequality (5.45) is established, the remainder of the proof follows an argument
given previously, so it will be omitted. �

Corollary 5.4. There exists ε0 > 0 depending on λ and n such that for all
u0 ∈ H 1(Rn) with ‖u0‖1,2 small, the results of Theorem 5.5 extend to all time
intervals [0, T ], so

u ∈ C(R : H 1(Rn)) ∩ Lr (R : Lρ
1 (Rn)) (5.46)

with (r , ρ) as in Theorem 5.5.

Proof. Once Theorem 5.5 is established, we follow the argument used in the proof
of Corollary 5.2. �

5.3 H2 Theory

Consider again the integral equation (5.15) with u0 ∈ H 2(Rn).
Assume that the nonlinearity α satisfies

⎧

⎨

⎩

2 ≤ α <
n

n− 4
, if n ≥ 5

2 ≤ α < ∞, if n ≤ 4.
(5.47)

Theorem 5.6 (Local theory in H 2(Rn)). If α satisfies (5.47), then for all u0 ∈
H 2(Rn) there exist T = T (‖u0‖2,2, n, λ,α) > 0 and a unique solution u of the
integral equation (5.15) in the interval of time [−T , T ] with

u ∈ C([−T , T ] : H 2(Rn)) ∩ Lq([−T , T ] : Lp

2 (Rn)) (5.48)

for all pairs (p, q) defined by condition (4.18) of Corollary 5.1.
Moreover, for all T ′ < T there exists a neighborhood W of u0 in H 2(Rn)

such that for all pairs (p, q) in (4.18) the function

F : W �→ C([−T ′, T ′] : H 2(Rn)) ∩ Lq([−T ′, T ′] : Lp

2 (Rn)), ũ0 �→ ũ(t),

is Lipschitz.
The proof of this result is similar to the one exposed to establish Theorem 5.2 and

Corollary 5.1, so it is left to the reader to complete the details.
As a consequence of Theorem 5.5 we obtain the following relation between the

differential equation (5.1) and integral equation (5.15).
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Corollary 5.5. If u is the solution of equation (5.15) obtained in Theorem 5.6,
then for all pair (p, q) which verifies condition (5.18) of Corollary 5.1, we have

∂tu ∈ Lq([−T , T ] : Lp(Rn)).

Moreover, u is the (unique) solution of the differential equation (5.1) in the time
interval [−T , T ].

Proof. Using Theorem 3.3 and hypothesis (5.47) on the nonlinearity, it is easy to
see that u ∈ C([−T , T ] : H 2) implies that |u|α−1u ∈ C([−T , T ] : L2). Combining
Theorem 5.6, which guarantees Δu ∈ C([−T , T ] : L2) with the previous results
and the integral equation (5.15), we see that ∂tu ∈ C([−T , T ] : L2), and that the
differential equation in (5.1) is realized in the space C([−T , T ] : L2).

The end of the proof is left as an exercise to the reader. �

In the next chapter, we will use the identities (5.2) and (5.3) to establish global
solutions. To justify them, we present the following result in H 2.

Theorem 5.7.

1. Let u ∈ C([−T , T ] : L2(Rn))∩Lq([−T , T ] : Lp(Rn)) be the solution of integral
equation (5.15) obtained in Section 5.1. If u0 ∈ H 1(Rn), then

u ∈ C([−T , T ] : H 1(Rn)) ∩ Lq([−T , T ] : Lp

1 (Rn)). (5.49)

2. Let u ∈ C([−T , T ] : H 1) ∩ Lq([−T , T ] : Lp

1 ) be the solution of the integral
equation (5.15) obtained in Section 5.2. If u0 ∈ H 2(Rn) and α ≥ 2, then
u ∈ C([−T , T ] : H 2) and satisfies the differential equation (5.1) and estimates
(5.2) and (5.3).

Proof. We prove only part 1 of the theorem. Given u0 ∈ H 1(Rn), we know by
Theorem 5.4 that there exists T ′ > 0 such that u ∈ C([−T ′, T ′] : H 1(Rn)). If
T ′ > T it is easy to see that the solution in L2 can be extended to the interval
[−T ′, T ′]. Thus, we assume that T ′ < T . To get the desired result, it is enough to
prove that

sup
[0,T ′]

‖∇xu(t)‖2 ≤ K‖u(0)‖1,2

with K depending only on T and M = sup{‖u(t)‖2 : t ∈ [0, T ]}.
Differentiate the integral equation (5.15) and use the notation vj = ∂xj u, j =

1, . . . , n, to have that

vj (t) = eitΔvj (0) + iλα

t
∫

0

ei(t−t ′)Δ(|u|α−1vj )(t ′) dt ′, (5.50)

which is a linear integral equation, because u(·) is known in the time interval [0, T ].
With the same method used in the proof of Theorem 5.2, it is easy to see that this
new integral equation (5.50) has unique solution on [0,ΔT ], where ΔT depends
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on α, λ, n, and M , which remains constant in the interval [0, T ]. Combining
this result with an iterative argument, we obtain (5.49), which leads to the result. �

Now, we explain how to use Theorems 5.6 and 5.7 to justify the use of identities
(5.2) and (5.3), respectively, in the proof of theorems (global).

Assume that u0 ∈ L2(Rn) and α ∈ (2, 1 + 4/n), we choose {uk
0}∞k=1 in

H 2(Rn) such that ‖uk
0 − u0‖2 = o(1) when k → ∞. Combining Theorems 5.2,

(5.6), and (5.7), we see that for all T > 0 there exist uk ∈ C([−T , T ] : H 2(Rn)),
k = 1, . . . , a solution of (5.1) and (5.15) with initial data uk

0. Since it satisfies the
differential equation in (5.1), we infer that for all t ∈ [−T , T ],

‖uk(t)‖2 = ‖uk
0‖2,

i.e., identity (5.2). From Theorem 5.2 (continuous dependence on the initial data),
we have that sup

[−T ′,T ′]
‖uk(t) − u(t)‖2 = o(1) when k → ∞, where T ′ < T . Thus,

‖u(t)‖2 = ‖u0‖2 for all t ∈ [−T ′, T ′]. (5.51)

This identity allows us to reapply Theorem 5.2 and extend the solution to the interval
[−(T ′ + ΔT ′), T ′ + ΔT ′], where (using the same argument) identity (5.51) still
holds. By successive applications of this step, we obtain the desired result (identity
(5.42) in any time interval).

Finally, the case α ∈ (1, 2) requires some changes: For initial data uk
0 ∈ H 2(Rn)

we will have the nonlinear term ρk ∗ (|ρk ∗ u|α−1ρk ∗ u), where ρk(·) = knρ(· /k),
with ρ(·) an approximation of the identity. In this case it will be necessary to prove
the stability of the solution in L2 with respect to initial data and the nonlinear term.

As we remarked at the end of Theorem 5.2 all the previous existence proofs are
based on the contraction principle. This approach has the advantage that it also shows
that for smooth nonlinearity the map data-solution is smooth.

This general fact follows from the implicit function theorem. However, to simplify
the exposition we will sketch the details in the case of Theorem 5.2.

Corollary 5.6. Assume the same hypotheses of Theorem 5.2. Suppose F (u, ū) =
iλ|u|α−1u is smooth (i.e., α−1 is an even integer). Then there exists a neighborhood
˜V of u0 ∈ L2(Rn) such that the map F : u0 �→ u(t) from ˜V into E(T , a) is smooth.

Proof. Define for F (u, ū) = iλ|u|α−1u

H : V × E(T , a) �→ E(T , a)

(v0, v(t)) �→ v(t) −Φv0 (v)(t)

= v(t) − (eitΔv0 +
t
∫

0

ei(t−t ′)Δ F (v, v̄)(t ′) dt ′).

Thus, H is smooth, H (u0, u(t)) = 0, and

DvH (u0, u(t))v(t) = v(t) +
t
∫

0

ei(t−t ′)Δ [∂vF (u, ū) v + ∂v̄F (u, ū)v̄](t ′) dt ′.
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Hence,

Dv H (u0, u(t)) = I + L.

From the proof of Theorem 5.2 it is easy to see that

|||Lv||| ≤ c|λ|T θaα−1 < 1

for any choice of a in (5.24). Then,

DuH (u0, u(t)) : E(T , a) → E(T , a)

is invertible, i.e., one-to-one and onto. Thus, by the implicit function theorem there
exists h : ˜V → E(T , a) smooth (˜V ⊂ V neighborhood of u0 ∈ L2(Rn)) such that

H (v0,h(v0)) = 0, ∀v0 ∈ ˜V ,

so,

h(v0) = eitΔv0 +
t
∫

0

ei(t−t ′)Δ F (h(v0),h(v0))(t ′) dt ′

is a solution of (5.15) with data v0 (instead of u0). �

Remark 5.7. The same argument shows that if F (u, ū) = iλ|u|α−1u is C[α] (when
α−1 is not an even integer), then the map F : u0 �→ u(t) from ˜V into E(T , a) is C[α].

5.4 Comments

The L2 theory exposed on Section 5.1 was obtained byY. Tsutsumi [T1] in the case
α ∈ (1, 1+ 4/n). The critical case L2 (α = 1+ 4/n) was established by Cazenave
and Weissler [CzW3]. The results of Section 5.2 were taken from references [CzW2],
[GV1], [K1], and [T2]. Finally, the H 2 theory can be found in [K2].

It is important to note that Theorems 5.2, 5.4, and 5.6 prove that under some
conditions on the power of the nonlinearity α, the solutions of the integral equation
possess, at least locally in time, the same smoothing properties as the Strichartz type
(discussed in Section 4.2, Theorem 4.2) that the solution of the associated linear
problem.

From the proof of Theorem 5.3, one sees that the conditions on the data u0 in
the existence results can be significantly weaker. To simplify the exposition, let us
concentrate on the results in Theorem 5.3: Instead of u0 ∈ L2(Rn), one can take
u0 ∈ S ′(Rn) such that

‖eitΔu0‖Lσ (Rn
x×Rt ) < ∞, σ = 2 + 4

n
(5.52)
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to get the same local result, or

‖eitΔu0‖Lσ (Rn
x×Rt ) " 1 (5.53)

to obtain a global one in the function space u(·) with

u − eitΔu0 ∈ C([0, T ] : L2(Rn)) and u ∈ Lσ ([0, T ] : Lσ (Rn)). (5.54)

Several methods to construct u0 ∈ S ′(Rn) such that (5.52) or (5.53) are satisfied (or
simply, u0 ∈ L2(Rn) with ‖u0‖2 ! 1 such that (5.53) holds) have been developed.

Let us consider first the last problem. Without loosing generality, assume the 1-D
case. We will use Examples 4.1–4.3 Chapter 4 to obtain u0 ∈ L2(R) with ‖u0‖2 ! 1
such that (5.53) holds.

Let ϕ ∈ C∞
0 (R) with suppϕ ⊆ B1(0) and ‖ϕ‖2 = 1. Let N ∈ Z

+ and define

uN
0 (x) ≡

N
∑

j=1

ϕ(x − νj )e2πiμj x =
N
∑

j=1

ϕj (x), (5.55)

where ν1, . . . , νN andμ1, . . . ,μN are numbers chosen such that for t > 0 the “cones”
containing most of the mass of uj (x, t) = eitΔϕj , i.e., for t0 ! 1 fixed

cj =
{

(x, t) :
(2N − 1)t0 + 1

t0
t − 1 ≤x ≤ (2N + 1)t0 − 1

t0
t + 1, 0 ≤ t ≤ t0

}

,

do not overlap. Thus,

‖uN
0 ‖2 =

√
N (5.56)

and using that outside cj , uj (x, t) decays exponentially (for a t fixed and |x| → ∞),
one can show (for a similar computation see [Vi2]):

‖eitΔuN
0 ‖L6(R×R+) =

∥

∥

∥

N
∑

j=1
eitΔϕj

∥

∥

∥

L6(R×R+)

#
⎛

⎝

N
∑

j=1

∞
∫

0

∞
∫

−∞
|eitΔϕj (x)|6 dxdt

⎞

⎠

1/6

# N1/6

(5.57)

(since ‖eitΔϕj‖6
L6 ≤ ‖ϕj‖6

L2 = 1). So by taking vN0 = uN
0 /

√
N , we get a sequence

of data with ‖vN0 ‖L2 = 1 and

‖eitΔv0‖L6(R×R+) ≤ cN−1/3 " 1 for N large.

For the same problem, Bourgain [Bo3] introduced the following norm (two-
dimensional case, n = 2)

|||u0|||Xp
=

⎛

⎜

⎜

⎝

∞
∑

j=1

∞
∑

k=1

2−4j

⎛

⎜

⎜

⎝

1

2−2j

∫

Q
j
k

|u0(x)|p dx

⎞

⎟

⎟

⎠

4/p⎞

⎟

⎟

⎠

1/4

, (5.58)
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where {Qj

k}k∈Z+ denotes a grid of squares with disjoint interior of side 2−j parallel
to the axes.

First one notices that the norm ||| · |||
Xp

scales like the L2(R2)-norm, i.e., |||fλ|||Xp

with fλ(x) = λf (λx) is independent of λ (see Exercise 5.5). In [MVV1], [MVV2]
Moyua, Vargas and Vega (improving and extending results in [Bo3]) showed that

‖eitΔu0‖L4(R2
x×Rt ) ≤ c|||u0|||Xp

(5.59)

for 12/7 ≤ p ≤ 2 for any u0 ∈ L1
loc(R2), and for 4(

√
2 − 1) ≤ p < 2 if

u0 is the characteristic function of a measurable set. Moreover, they showed that
p > 4(

√
2 − 1) is sharp.

Using (5.58) and (5.59), one can find u0 ∈ L1
loc(R2) \ L2(R2) such that (5.53)

holds.
Let

u0j (x, y) = χ{[0,2−j ]×[0,2j ]}(x, y), j ∈ Z
+. (5.60)

It is not hard to see that |||u0j |||Xp
≤ 2−j/4 (Exercise 5.7) while ‖u0j‖2 ≡ 1. Then

taking

u0(x, y) = ε

∞
∑

j=1

u0j ((x, y) − (j , 0)), ε > 0 (5.61)

it follows that u0 /∈ L2(R2) and

‖eitΔu0‖L4(R2×R) ≤ |||u0j |||Xp
≤ cε.

It is not difficult to show that solutions of (5.15) also enjoy the local regularity
property described in Section 4.3. For instance, we see that the solution u(·) of (5.15)
obtained in Theorem 5.2 satisfies

u ∈ L2([−T , T ] : H 1/2
loc (Rn)). (5.62)

In fact, writing the equation (5.15) in the form:

u(t) = eitΔ
(

u0 +
t
∫

0

e−it ′Δ(|u|α−1u)(t ′) dt ′
)

and using (4.25) (or (4.23) when n = 1 ) and (4.16) we have that
⎛

⎜

⎝

∫

{|x|≤R}

T
∫

−T

|D1/2
x u(x, t)|2 dtdx

⎞

⎟

⎠

1/2

≤ c R

⎛

⎝‖u0‖2+ sup
[−T ,T ]

‖
t
∫

0

e−it ′Δ(|u|α−1u)(t ′) dt ′‖2

⎞

⎠

≤ c R

⎛

⎜

⎝‖u0‖2 +
⎛

⎝

T
∫

0

‖ |u|α(t)‖r ′(α+1)/α dt

⎞

⎠

1/r ′⎞

⎟

⎠ ,
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where r = 4(α + 1)/n(α − 1). Combining (5.21) and (5.22) with Corollary 5.1, we
obtain (5.62).

As we have seen along this chapter, the results concerning local existence are a
consequence of the estimates obtained in Theorem 4.2. Thus, the method of proof
applied can be extended to any group satisfying Theorem 4.2 (even locally). In
particular, we obtain the same local theorems for the nonlinear Schrödinger (NLS)
equation with real potential

∂tu = iΔu + V (x)u + λ|u|α−1u,

under appropriate conditions on V (see the references [C], [Y]).
Theorems 5.6 and 5.7 are concerned with the regularity of solution measured

in Sobolev spaces. One can also ask whether the decay properties of the data are
preserved by the solution. To simplify the matter, consider the case where α is an
odd integer (or, where the nonlinearity has the form f (|u|2)u with f (·) smooth).
In [HNT1], [HNT2], [HNT3], Hayashi, Nakamitsu, and Tsutsumi showed that if
u0 ∈ Hm(Rn) ∩ L2(|x|k dx) with m ≥ k, then there exists T = T (‖u0‖Hl ), l =
min{m; n/2+} such that the IVP (5.1) has a unique solution

u∈C([0, T ] :Hm(Rn) ∩ L2(|x|k dx))∩Lq([0, T ] :Lp

k (Rn) ∩ Lp(|x|k dx))

with p, q as in Theorem 4.2 and where L
p

k (Rn) is defined as in (3.38).
In the case k ≥ m they showed that the solution u does not belong to L2(|x|k dx)

but possesses a further regularity property, roughly speaking ∂α
x u(·, t) ∈ L2

loc(Rn),
t �= 0, for |α| ≤ k, (see [HNT1], [HNT2]).

In particular, one has that if u0 ∈ S(Rn), then the solution u(·) of the IVP (5.1)
(with α an odd integer) belongs to C([0, T ] : S(Rn)), and that if u0 ∈ H 1(Rn)
with compact support, α an odd integer, and 1 + 4/n < α < 1 + 4/(n − 2), then
u ∈ C∞(Rn × R − {0}).

The proofs given in [HNT1]–[HNT3] are based on the properties of the operators
Γj = xj + 2it∂xj , j = 1, . . . , n, deduced there.

In particular, using that for Γ = (Γ1, . . . ,Γn),

Γ αu = ei|x|
2/4t (2it)|α|∂α

x (e−i|x|2/4tu) for α ∈ Z
+ (5.63)

and

xαeitΔu0 = eitΔ Γ αu0 (5.64)

(see Exercise 4.4), they developed a calculus of inequalities for the operators Γj

similar to that in (3.15) for the operators ∂xj . For instance, for n = 1 they showed
that

‖Γ m(|v|2αv)(t)‖L2 ≤ cm‖v(t)‖2α
L∞‖Γ mv(t)‖L2

and
‖v(t)‖L∞ ≤ t−1/2 ‖Γ v(t)‖1/2

L2 ‖v(t)‖1/2
L2

(compare with (3.14), (3.15), and (3.16) in Chapter 3) which have been essential
tools in the study of the asymptotic behavior of solution of (5.1). The extension of



114 5 The Nonlinear Schrödinger Equation: Local Theory

these weighted results to L2(|x|k dx) with k ≥ 0 (not necessarily an integer) was
obtained in [NhPo1].

To simplify the exposition, we have presented local well-posedness results in
Sobolev spaces with integer indexes, i.e., Hs(Rn), s = 0, 1, 2. Concerning the local
existence theory in fractional Sobolev spaces, Hs(Rn), s ≥ 0, we have the following
result due to Cazenave and Weissler [CzW4].

Theorem 5.8. Let 1 + 4/n ≤ α < ∞ and s > sα = n/2 − 2/(α − 1), with
[s] < α − 1 if α − 1 is not an even integer. Given v0 ∈ Hs(Rn), there exist
T = T (‖v0‖s,2; s) > 0 and a unique strong solution v(·) of the IVP (5.1) satisfying

v ∈ C([−T , T ] : Hs(Rn)) ∩WT
s,n. (5.65)

Moreover, given T ′ ∈ (0, T ) there exist a constant r = r(‖v0‖s,2; s; T ′) > 0 and a
continuous, nondecreasing function G(·) = G(‖v0‖s,2) with G(0) = 0 such that

sup
[0,T ′]

‖(v − ṽ)(t)‖s,2 ≤ G(‖v0‖s,2)‖v0 − ṽ0‖s,2 (5.66)

for any ṽ0 ∈ Hs(Rn) with ‖v0 − ṽ0‖s,2 < r , i.e., the map data-solution is locally
Lipschitz.

The space WT
s,n in (5.65) is related to the Strichartz estimates, and its precise

definition will not be needed in the discussion below. We recall that for 1 < α <

1 + 4/n the problem is locally well-posed in L2(Rn).
From the scaling argument, i.e., if u(x, t) is a solution of the IVP (5.1), then

uμ(x, t) = μ2/(α−1)u(μx,μ2t), μ > 0, (5.67)

is also a solution with data uμ(x, 0) = μ2/(α−1)u0(μx), for which one has that

‖Ds
xuμ(·, 0)‖2 = cμ2/(α−1)μs−n/2‖u0‖2.

To have results invariant by rescaling, one needs to consider data u0 ∈ Ḣ s(Rn)
(= (−Δ)−s/2L2(Rn)), with s(α) = sc = n/2 − 2/(α − 1) which is called the
critical case. The case s > sc = n/2 − 2/(α − 1) is called subcritical case. Notice
that Theorem 5.8 above corresponds to the subcritical case and Theorem 5.3 to the
critical case in L2(Rn) (s = 0).

So the following question arises. Are the results in Theorem 5.8 optimal? This
seems to be the case. First, let us consider the “focusing case,” i.e., for λ > 0 in
(5.1), the following result was obtained in [BKPSV].

Theorem 5.9. If 4/n+ 1 ≤ α < ∞, then the IVP (5.1) with λ > 0 is ill-posed in
Hsc (Rn) with sc = n/2− 2/(α− 1), in the sense that the time of existence T and the
continuous dependence cannot be expressed in terms of the size of the data in the
Hsc -norm. More precisely, there exists c0 > 0 such that for any δ, t > 0 small there
exist data u1, u2 ∈ S(Rn) such that

‖u1‖s,2 + ‖u2‖s,2 ≤ c0, ‖u1 − u2‖s,2 ≤ δ, ‖u1(t) − u2(t)‖s,2 > c0/2,

where uj (·) denotes the solution of the IVP (5.1) with data uj , j = 1, 2.
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Proof. For simplicity, we shall only consider the case 0 < sc < 1 and fix λ = 1. We
consider the one-parameter family of ground states:

vμ(x, t) = eiμtϕμ(x) = eiμtμ1/(α−1)ϕ(
√
μx),

where the function ϕ(·) = ϕ1(·) solves the nonlinear elliptic eigenvalue problem
(5.8) with 0 < α < 4/(n− 2), if n > 2. The idea is to estimate

‖Dsc
x (vμ1 − vμ2 )(t)‖2

2

and

‖Dsc
x (μ1/(α−1)

1 ϕ1(
√
μ1·) − μ

1/(α−1)
2 ϕ1(

√
μ2·))‖2

2.

Choosing μ1 = (N + 1)2 and μ2 = N2 so that μ1 − μ2 > 2N , we have that

‖Dsc
x (vμ1 − vμ2 )(t)‖2

2

= ‖Dsc
x vμ1 (t)‖2

2 + ‖Dsc
x vμ2 (t)‖2

2 − 2Re
{

eit(μ1−μ2)〈vμ1 (t), vμ2 (t)〉sα
}

= Ψ (μ1,μ2)(t).

Given any T > 0 there exist N > c(T ) and t ∈ (0, T ) such that

Re {eit(μ1−μ2)〈vμ1 (t), vμ2 (t)〉sc} = 0,

hence,
sup
[0,T ]

Ψ (μ1,μ2)(t) = 2‖Dsc
x ϕ1‖2

2.

On the other hand,

lim
N→∞ ‖Dsc

x (vμ1 − vμ2 )(0)‖2
2 = ‖Dsc

x vμ1 (0)‖2
2 + ‖Dsc

x vμ2 (0)‖2
2

− 2Re {〈vμ1 , vμ2〉sc} = 0

by using that μ1/μ2 → 1 as N → ∞ and so

lim
N→∞ Re {〈vμ1 , vμ2〉sc} = ‖Dsc

x ϕ1‖2
2.

Therefore, for any T > 0

lim
N→∞ sup

[0,T ]
‖Dsc

x (vμ1 − vμ2 )(t)‖2 =
√

2‖Dsc
x ϕ1‖2,

while
lim

N→∞‖Dsc
x (μ1/(α−1)

1 ϕ(
√
μ1·) − μ

1/(α−1)
2 ϕ(

√
μ2·))‖2 = 0,

which essentially proves the result. �

Christ, Colliander and Tao [CrCT1] have shown that the results in Theorem 5.9
extend to the defocusing case λ < 0. Moreover, the following stronger ill-posedness
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result in norm inflation concerning the IVP (5.1) in both the focusing and defocusing
cases was established in [CrCT3]:

Theorem 5.10. Given s ∈ (0, sc) ∃{um
0 : m ∈ Z

+} ⊂ S(Rn) and {tm : tm > 0}
with ‖um

0 ‖s,2 → 0, tm → 0 as m ↑ ∞ such that the corresponding solution um of
the IVP (5.1) with λ �= 0, and initial data um(x, 0) = um

0 (x) satisfies that

‖um(·, tm)‖s,2 → ∞, as m ↑ ∞. (5.68)

In the case α ≥ 3, this result has been strengthened in [AlCa] by showing:

Theorem 5.11. Given α ≥ 3 and s ∈ (0, sc) there exist {um
0 : m ∈ Z

+} ⊂
S(Rn) and {tm : tm > 0} with ‖um

0 ‖s,2 → 0, tm → 0 as m ↑ ∞ such that the
corresponding solution um of the IVP (5.1), in the defocusing case λ < 0, with initial
data um(x, 0) = um

0 (x), satisfies that

‖um(·, tm)‖l,2 → ∞, as m ↑ ∞, ∀l ∈
(

2s

2 + (α − 1)(sc − s)
, s

)

. (5.69)

All the existence results for the IVP (5.1) discussed so far are restricted to Sobolev
spaces with nonnegative index, i.e., in Hs(Rn), s ≥ 0, even in the cases when the
scaling argument tells us that the critical value is negative, that is, s(α) = sc =
n/2 − 2/(α − 1) < 0. Thus, for example, we can ask whether for the IVP for the
cubic 1-D Schrödinger equation:

{

i∂tv + ∂2
x v + λ|v|2v = 0,

v(x, 0) = v0(x),
(5.70)

t ∈ R, x ∈ R, λ ∈ R, for which sc = 1/2 − 2/(α − 1) = −1/2, one can obtain a
local existence result in Hs(R), with s < 0 (we recall that Theorem 5.2 provides the
result in Hs(R), with s ≥ 0). In this regard, we have the following result found in
[KPV4].

Theorem 5.12. If s ∈ (−1/2, 0), then the mapping data-solution u0 �→ u(t), where
u(t) solves the IVP (5.70) with λ > 0 (focusing case), is not uniformly continuous.

In [VV] and [Gr3], Vargas and Vega, and Grünrock found spaces which scale
is below the one from L2 but above that of Ḣ−1/2(R), i.e., spaces whose norm is
invariant by λθ u0(λx) with θ ∈ (−1/2, 0), for which the IVP (5.70) is locally and
globally well-posed.

Remark 5.8. The result in Theorem 5.12 can be extended to higher dimensions.
More precisely, it applies to the IVP

{

i∂tu +Δu + |u|ρ−1u = 0,

u(x, 0) = u0(x),
(5.71)

t ∈ R, x ∈ R
n, with u0 ∈ Hs(Rn), n < 4/(ρ − 1), and s ∈ (n/2 − 2/(ρ − 1), 0).
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For the IVP (5.70), on one hand, one has that the map data solution fails to be
continuous, i.e., there exist data u0 ∈ S(R) with arbitrary small Hs-norm for s ≤
−1/2, whose corresponding solution u(t) provided byTheorem 5.2 has arbitrary large
Hs-norm at an arbitrary small time (see (5.68)). On the other hand, Theorem 5.12
for the focusing case and the results in [CrCT1] for the defocusing case, shows that
the map data-solution is not uniformly continuous in Hs for s < 0.

In [KTa3], Koch and Tataru obtained the following a priori estimates for solutions
of the IVP (5.70), improving a previous result found in [CrCT2] and [KTa2].

Theorem 5.13 ([KTa3]). Let u ∈ C(R+ : L2(R)) ∩ L4(R × [0, T ]) for all T > 0
be the global solution of the IVP (5.70) (see Theorem 5.2). Then for all T > 0 there
exists α(T ) > 0 such that

sup
t∈[0,T ]

‖u(t)‖
H

−1/4
α(T )

≤ 1,

where

‖f ‖2
H

−1/4
α(T )

=
∞
∫

−∞

|̂f (ξ )|2
(α + ξ 2)1/4

dξ.

This a priori estimate allows one to establish the existence of an appropriate class
of global weak solution of (5.70) (see [CrCT2] and [KTa3]).

Proof of Theorem 5.12 As in the previous proof, consider the one-parameter family
of standing wave solutions (with n = 1 in this case)

vω(x, t) = eitω
2
ϕω(x),

where ϕω(x) = ωϕ(ωx) and ϕ(x) = ϕ1(x) solves the nonlinear equation in (5.8) with
ω = 1. Using the Galilean invariance (5.11), we obtain the two-parameter family of
solutions:

uN ,ω(x, t) = e−itN2+iNx vω(x − 2tN , t) = e−it(N2−ω2)eiNx ϕω(x − 2tN ).

We fix s such that s ∈ (−1/2, 0) and take ω = N−2s and N1,N2 # N .
First, we calculate

‖uN1,ω(0) − uN2,ω(0)‖2
s,2 .

Observing that ϕ̂ω(ξ ) = ϕ̂(ξ/ω) so that ϕ̂ω(·) concentrates in Bω(0)= {ξ ∈ R : |ξ |
< ω}. From the choice of ω and s > −1/2, if ξ ∈ Bω(±N ), then |ξ | # N . Then, a
straight calculation yields

‖uN1,ω(0) − uN2,ω(0)‖2
s,2

≤ cN2s |N1 −N2|
ω2

(∫ η+N1

η+N2

dξ

)
∞
∫

−∞
|ϕ̂′

ω(η)|2dη
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≤ cN2s(N1 −N2)2 1

ω2
ω = c(N2s(N1 −N2))2,

and that

‖uNj ,ω(0)‖2
s,2 # cN2sω = c, j = 1, 2.

Now, we consider the solutions uN1,ω(t), uN2,ω(t) at time t = T , and compute

‖uN1,ω(T ) − uN2,ω(T )‖s,2.

Note first that

‖uNj ,ω(T )‖2
s,2 # c, j = 1, 2.

In fact,

‖uNj ,ω(T )‖2
s,2 = ‖uNj ,ω(0)‖2

s,2 # c, j = 1, 2.

Note that the frequencies of both uNj ,ω(T ), j = 1, 2, are localized around |ξ | # N ,
and hence,

‖uN1,ω(T ) − uN2,ω(T )‖2
s,2 # N2s‖uN1,ω(T ) − uN2,ω(T )‖2

2. (5.72)

Next, we observe that

uNj ,ω(x, T ) = e
−i(TN2

j −Nj x−T ω2)
ωϕ(ω(x − 2TNj )), j = 1, 2.

Thus, the support of uNj ,ω(T ) is concentrated in Bω−1 (2TNj ), j = 1, 2. Therefore,
if for T fixed, N1, N2 are chosen such that

T (N1 −N2) ! ω−1 = N2s ,

then there is not interaction and

‖uN1,ω(T ) − uN2,ω(T )‖2
2 # ‖uN1,ω(T )‖2

2 + ‖uN2,ω(T )‖2
2 # ω.

The above estimate combined with (5.72) yields

‖uN1,ω(T ) − uN2,ω(T )‖2
s,2 ≥ cN2sω = c. (5.73)

Take now

N1 = N and N2 = N − δ

N2s
,

so that
{

c(N2s(N1 −N2))2 = cδ2,

T (N1 −N2) = T δ

N2s ! N2s , i.e., T ! N4s

δ
.

(5.74)
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Since s < 0, given δ, T > 0, we can choose N so large that (5.74) is valid, and
from this we see that (5.73) violates the uniform continuity. �

Well-posedness for some particular cases of the IVP (5.71) has been studied in
other spaces. In [Pl], the problem was considered in Besov spaces, in [CVV] in Lp∗
(Lp-weak spaces) and in [Gr3] in the spaces ̂Hs

r (Rn) defined as:

f ∈ ̂Hs
r (Rn) if ‖f ‖

̂Hs
r
= ‖(1 + |ξ |2)s/2

̂f ‖
Lr′
ξ
< ∞. (5.75)

The idea was to find larger spaces than Hs(Rn) or other ones which scale closer to
the critical homogeneity given by the equation.

In [KPV12], the study of the IVP:
{

i∂tu ±Δu +Nk(u, u) = 0,

u(x, 0) = u0(x),
(5.76)

x ∈ R
n, t ∈ R, where

Nk(z1, z2) =
∑

a+b=k

Ck za1 zb2, (5.77)

was first considered. Even though it may not have a physical interpretation in general,
the main purpose of this study was motivated to test new local estimates based onXs,b

spaces (see Definition 7.1) and variant of them and their relation with the geometry
of the nonlinearity Nk .

We summarize next some local results obtained for the IVP (5.76). First, we will
consider the 1-D situation. For the nonlinearity N2(u, u) = u2, Bejenaru and Tao
[BTo] obtained a sharp local well-posedness result in Hs(R) for s ≥ −1. In [Ki3],
Kishimoto established a similar result for the quadratic nonlinearity N2(u, u) = (u)2.
In [KiT], Kishimoto and Tsugawa showed the local well-posedness for the case
N2(u, u) = u u = |u|2 in Hs(R) for s > −1/2. In each case, these results improve
by one fourth the previous ones obtained in [KPV12]. Grünrock [Gr1] has shown that
the IVP (5.76) is locally well-posed in Hs(R) with s > −5/12 for N3(u, u) = (ū)3

and N3(u, u) = u3 and with s > −2/5 for N3(u, u) = u(ū)2. Notice that all these
nonlinearities have the same homogeneity, but only N3(u, u) = |u|2u is Galilean
invariant. For higher powers in (5.77), the results known are due to Grünrock [Gr1].
He proved local well-posedness for the IVP (5.76) when the nonlinearity N4(u, u)
has either of the following forms: (u)4, u4, u3u, and u3u in Hs(R), s > −1/6, and
for N4(u, u) = |u|4 in Hs(R), s > −1/8.

In dimension n = 2, Bejenaru and De Silva [BeDS] showed local well-posedness
for the IVP (5.76) in Hs(R2), s > −1 when N2(u, u) = u2 and a similar result was
obtained by Kishimoto [Ki2] for N2(u, u) = (u)2. These results improved by one
fourth the previous ones found in [CDKS]. In the later work, local well-posedness
for the nonlinearity N2(u, u) = uu was established in Hs(R2), s > −1/4. In the
three-dimensional case, Tao [To3] proved that the IVP (5.76) is locally well-posed
in Hs(R3), s > −1/2 for either N2(u, u) = u2 or N2(u, u) = u2, and in Hs(R3),
s > −1/4 for the nonlinearity N2(u, u) = uu.
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Next, we deal with the existence and uniqueness question for the IVP associated
to the cubic Schrödinger equation with the delta function as initial datum:

{

i∂tu + ∂2
xu ± |u|2u = 0,

u(x, 0) = δ(x).
(5.78)

t > 0, x ∈ R.

Theorem 5.14 ([KPV5]). Either there is no weak solution u for the IVP (5.78) in
the class

u, |u|2u ∈ L∞([0,∞) : S ′(R)) with lim
t↓0

u(·, t) = δ (5.79)

or there is more than one.
Consider now the local and global well-posedness of the periodic problem:

{

i∂tu = −Δu ± |u|α−1u,

u(x, 0) = u0(x).
(5.80)

x ∈ T
n, t ∈ R, α > 1.

For n = 1, Bourgain [Bo1] established local well-posedness for (5.80) in Hs(T),
s ∈ [0, 1/2) for α ∈ (1, 1 + 4/(1 − 2s)). This combined with the conservation law
‖u(t)‖L2 = ‖u0‖L2 yields the corresponding global well-posedness result.

In the defocussing cubic NLS case ((+) in (5.80)) it was shown in [BGT2],
[CrCT1] that the problem (5.80) is ill-posed (the map data-solution is not uniformly
continuous) in Hs(T), s < 0.

For n = 3, local well-posedness with α = 3 was proved in [Bo1] for u0 ∈
Hs(T3), s > 1/2. For n ≥ 2, local well-posedness was established in [Bo1] for
α ∈ [3, 4/(n− 2s)) and s > 3n/n+ 4.

The problem (5.80) in an n-dimensional nonflat compact manifold Mn has been
studied by Burq, Gerard and Tzvetkov [BGT2], [BGT3]. Among other results, for
the case of the two-dimensional sphere S

2 they have shown that the IVP (5.80) in
the cubic defocusing case (i.e., α = 3 and positive sign in front of the nonlinearity)
is locally well-posed in Hs(S2) for s > 1/4 and ill-posed for s < 1/4.

The IVP problem (5.76) can also be considered in the periodic setting. We list
next some results regarding the local well-posedness for this IVP in this situation.
In the 1-D case, Bourgain [Bo1] established local well-posedness in L2(T) for any
nonlinearity in (5.76) such that a + b = k ≤ 4. Kenig, Ponce and Vega [KPV12]
established the local well-posedness theory in Hs(T), s > −1/2, for N2(u, u) = u2,
and for N2(u, u) = u2. Also, in the 1-D case Grünrock [Gr1] proved local well-
posedness for N3(u, u) = u3 and N4(u, u) = u4 in Hs(T), with s > −1/3 and
s > −1/6, respectively. In the two-dimensional case, Grünrock [Gr1] showed local
well-posedness in Hs(T2), s ≥ −1/2, for N2(u, u) = u2, and in dimension three that
the IVP (5.76) is locally well-posed in Hs(T3), s ≥ −3/10, for N2(u, u) = u2. For
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further well-posedness results in the spaces

Hs,p(T) =
(

∑

n∈Z

(1 + n2)ps/2 |̂f (n)|p
)1/p

,

we refer to [Cr] and [Th].

5.5 Exercises

5.1 (i) Prove that if u = u(x, t) satisfies

i∂tu = −Δu + |u|4/nu (5.81)

(u is the solution of the equation in (5.1) with λ = 1 and the critical power
α = 4/n+ 1 in L2(Rn)) then:

u1(x, t) = eiθu(x, t),

u2(x, t) = u(x − x0, t − t0), withx0 ∈ R
n, t0 ∈ R fixed,

u3(x, t) = u(Ax, t), with A any orthogonal matrixn× n,

u4(x, t) = u(x − 2x0 t , t) e
i(x·x0−|x0|2t), withx0 ∈ R

n fixed,

u5(x, t) = μn/2u(μx,μ2t), μ ∈ R fixed,

u6(x, t) = 1

(α + ωt)n/2
exp

[

iω|x|2
4(α + ωt)

]

u

(

x

α + ωt
,
γ + θt

α + ωt

)

,

α θ − ω γ = 1,

u7(x, t) = u(x,−t),

also satisfy equation (5.81).
(ii) Prove that u1, u2, u3, u4, u5 (with different powers in μ) and u7 still satisfy

the equation (5.81) for general nonlinearity ± |u|α−1u in (5.81).

5.2 Let u ∈ H 1(Rn) solve −Δu + au = b|u|αu, where a > 0 and b ∈ R. Show
that u satisfies
(i)

∫

Rn

|∇u|2 dx + a

∫

Rn

|u|2 dx = b

∫

Rn

|u|α+2 dx. (5.82)

(ii) Pohozaev’s identity:

(n− 2)
∫

Rn

|∇u|2 dx + na

∫

Rn

|u|2 dx = 2nb

α + 2

∫

Rn

|u|α+2 dx. (5.83)
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5.3 Use Pohozaev’s identity to show that a necessary condition to have solu-
tion in H 1(Rn) of problem (5.8) is that the nonlinearity satisfies 1 < α <

(n+ 2)/(n− 2) (1 < α < ∞, n = 1, 2).

5.4 (i) Show that a formal scaling argument yields the estimate:

T = T (‖u0‖2) = c ‖u0‖−β

2 , β = 4(α − 1)

4 − n(α − 1)
, (5.84)

for the life span of the L2-local solution as a function of the size of the
data given in Theorem 5.2.

(ii) Review the proof of Theorem 5.2 to obtain the estimate (5.84).

5.5 Consider the IVP for the 1-D NLS equation
{

∂tu = i ∂2
xu ± iλ |u|α−1u,

u(x, 0) = u0(x),
(5.85)

λ ∈ R, α > 1.
(i) Prove that if α ∈ (1, 5) and u0 ∈ L2(R), then the solution u(·, t) of the

IVP (5.85) provided by Theorem 5.2 satisfies that

u(·, t) ∈ C(R) a.e. t ∈ [−T , T ].

(ii) Can the result in (i) be extended to the case α = 5?
Hint: Combine the idea of the proof of Exercise 4.9(ii) with Theorem 5.2,
Corollary 5.1 and Theorem 5.3.

5.6 Let fμ(x) = μf (μx). Show that |||fμ|||Xp
is independent of μ, where ||| · |||

Xp

was defined in (5.58).
5.7 Let

u0j (x, y) = χ{[0,1/2j ]×[0,2j ]}(x, y) j ∈ Z
+.

Prove that
|||u0j |||Xp

≤ 2−j/4.

5.8 Show that

u(x, t) = eit
{

1 − 4(1 + 2it)

1 + 2x2 + 4t2

}

solves the IVP associated to

i∂tu + ∂2
xu + |u|2u = 0,

with datum

u(x, 0) = 1 − 4

1 + 2x2
.
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5.9 (i) Prove that for any ω > 0 the function:

uω(x, t) = eitωω1/(α−1)ϕ(
√
ω x) = eitωϕω(x), x ∈ R

n, t ∈ R, (5.86)

where ϕ(·) is the unique positive, spherical symmetric solution of (5.8),
satisfies the equation in (5.1) with λ = 1 (focussing case).

(ii) Show that

d

dω
‖uω‖2 = d

dω
‖ϕω‖2

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

> 0, if
1

α − 1
>

n

4
,

= 0, if
1

α − 1
= n

4
,

< 0, if
1

α − 1
<

n

4
.

5.10 [Generalized pseudo-conformal transformation] Let u(x, t) be a solution of the
equation

i∂tu + Lju ± |u|α−1 u = 0, α > 1 (5.87)

with

Lj = ∂2
x1
+ · · · + ∂2

xj
− ∂2

xj+1
− · · · − ∂2

xn
, j ∈ {1, . . . , n}.

Prove that for ν, θ ,ω, γ ∈ R such that ν θ − ω γ = 1,

v(x, t) = eiωQj (x)/4(ν+ωt)

(ν + ωt)n/2
u

(

x

ν + ωt
,
γ + θt

ν + ωt

)

with

Qj (x) = x2
1 + · · · + x2

j − x2
j+1 − · · · − x2

n

verifies the equation:

i∂tv + Ljv ± (ν + ωt)(α−1)n/2−2|v|α−1 v = 0. (5.88)

In particular, if α− 1 = 4/n (critical L2-case) (5.87) and (5.88) are equal, see
[GV1].

5.11 Let u ∈ C([0, T ] : L2(R)) ∩ L4([0, T ] : L∞(R)) be the local solution of the
IVP

{

∂tu = i(∂2
xu ± |u|2u),

u(x, 0) = u0(x),
(5.89)

x, t ∈ R, provided by Theorem 5.2.
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(i) Prove that if x u0, x u(·, T ) ∈ L2(R), then

u ∈ C([0, T ] : H 1(R) ∩ L2(|x|2 dx)) = C([0, T ] : F1
2 ).

(ii) Extend the result in (i) for any m ∈ Z
+, i.e. If |x|m u0, |x|m u(·, T ) ∈

L2(R), then

u ∈ C([0, T ] : Hm(R) ∩ L2(|x|2 m dx)) = C([0, T ] : Fm
2 m).

(iii) Prove that if u0 ∈ Hs(R) ∩ L2(|x|2b dx) = F s
2b with s ≥ b ∈ Z

+, then
u ∈ C([0, T ] : F s

2b).



Chapter 6
Asymptotic Behavior of Solutions
for the NLS Equation

In this chapter, we shall study the longtime behavior of the local solutions of the
initial value problem (IVP)

{

i∂tu +Δu + λ |u|α−1u = 0,

u(x, 0) = u0(x),
(6.1)

t ∈ R, x ∈ R
n, obtained in the previous chapter.

In the first section, we shall present results that under appropriate conditions
involving the dimension n, the nonlinearity α, the sign of λ (focusing λ > 0, defo-
cusing λ < 0), and the size of the data u0 guarantee that these local solutions extend
globally in time, i.e., to any time interval [−T, T ] for any T > 0.

In the second section, we shall see that when these conditions are not satisfied,
the local solution should blowup in finite time.

6.1 Global Results

We shall start with the L2 case. Theorem 5.2 (subcritical case) tells us that the initial
value problem (IVP) (6.1) is locally well-posed in L2(Rn) for α ∈ (1, 1 + 4/n) in a
time interval [0, T ] with T = T (‖u0‖2) > 0. Multiplying the equation in (6.1) by
ū, integrating the result in the space variables, and taking the imaginary part we get
that the mass is conserved:

M(u) = ‖u(t)‖2
2 = ‖u0‖2

2, (6.2)

(to justify this procedure one needs to use continuous dependence, approximate the
data u0 by a sequence in H 2(Rn), and take the limit). The conservation law (6.2)
allows us to reapply Theorem 5.2 as many times as we wish, preserving the length
of the time interval to get a global solution.

Theorem 6.1 (Global L2-solution, subcritical case). If the nonlinearity power
α ∈ (1, 1 + 4/n), then for any u0 ∈ L2(Rn) the local solution u = u(x, t) of the
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initial value problem (IVP) (6.1) extends globally with

u ∈ C([0,∞) : L2(Rn)) ∩ L
q

loc([0,∞) : Lp(Rn)),

where (p, q) satisfies the condition (4.18) in Theorem 4.2.
The situation for the L2-critical case α = 1 + 4/n,

i∂tu +Δu + λ |u|4/nu = 0 (6.3)

with u(x, 0) = u0(x) ∈ L2(Rn), whose solutions are given by Theorem 5.3, is quite
different. In this case, the local result shows the existence of solution in a time interval
depending on the data u0 itself and not on its norm. So, the conservation law (6.2)
does not guarantee the existence of a global solution. The problem of the longtime
behavior of the L2-solution of the equation (6.3) has received considerable attention.

The progress on this problem can be roughly described as follows:

(i) ||u0||2 is small enough (Corollary 5.2); and
(ii) For the “defocusing” case, i.e., λ < 0 in (6.1), with u0 ∈ Hs(Rn), s > 4/7,

[CKSTT2], and for s ≥ 1/2 for n = 2 [FGr] or under the decay assumption
|x|l u0 ∈ L2(Rn), l > 3/5 [Bo4].
In this case, it was also proved [Bo2] that if the local L2-solution provided by
Theorem 6.1 cannot be extended beyond the time interval [0, T∗), then at least in
the two-dimensional case (n = 2), the following L2-concentration phenomenon
of the L2 mass occurs: There exists c > 0 such that

lim sup
t↑T∗

sup
Q⊂R2 : |Q|=(T∗−t)1/2

∫

Q

|u(x, t)|2 dx ≥ c, (6.4)

where Q denotes a square in R
2 and |Q| the size of its side. The result in (6.4)

holds in both the defocusing case λ < 0 and the focusing case λ > 0 in which,
as we see, blowup takes place but in the H 1-norm.

(iii) If the initial data u0(·) are assumed to be radial, then
– In the defocusing case (λ = −1), the global existence and scattering results

were established in [TVZ] for dimension n ≥ 3 and in [KTV] for dimension
n = 2.

– In the focusing case (λ = 1) for initial radially symmetric data u0 satisfying

‖u0‖2 < ‖ϕ‖2,

whereϕ is the positive solution of the elliptic equation (5.8) withα = 1+4/n,
it was proved in [KTV] and [KVZ] that the corresponding local solution
extends globally and scattering results hold (this is sharp).

(iv) Finally, in [D1]–[D3] Dobson removed the radial assumptions on the result
described in (iii). More precisely, in [D1]–[D3] global well-posedness and scat-
tering results were established in the defocussing case for any data u0 ∈ L2(Rn)
and the focussing case for any data u0 ∈ L2(Rn) with ‖u0‖2 < ‖ϕ‖2, with ϕ

being the positive solution of the elliptic equation (5.8) with α = 1 + 4/n.
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Definition 6.1. A global solution u of the IVP (6.1) is said to scatter in the space
X to a free solution as t → ±∞, if there exists u± ∈ X such that

lim
t→±∞‖e

itΔu± − u(·, t)‖X = 0. (6.5)

Notice that for the IVP associated to the L2-critical equation (6.3) focusing case
(λ = 1), scattering cannot occur for all L2-data in the ball with center as the origin
and radius R, R > ‖ϕ‖2 (with ϕ as in (5.8)).

Let us consider now the extension problem of the H 1-local solution proved in
Chapter 5. We first examine the subcritical case (Theorem 5.4), i.e., α ∈ (1, 1 +
4/(n − 2)), n ≥ 3, or 1 < α < ∞, if n = 1, 2, where the time of existence T

depends on the size of the data, i.e., T = T (‖u0‖H 1). In this case, if u is a solution in
the interval [0, T ], then multiplying the equation by −∂t ū, integrating the result in
the space variables, taking its real part and using integration by parts, one gets that
for t ∈ [0, T ]

d

dt
E(u(t)) = d

dt

∫

Rn

(

|∇xu(x, t)|2 − 2λ

α + 1
|u(x, t)|α+1

)

dx = 0.

So, E(u(t)) is constant and E(u(t)) = E(u0) or

E(u0) =
∫

Rn

(

|∇xu(x, t)|2 − 2λ

α + 1
|u(x, t)|α+1

)

dx. (6.6)

Therefore, if λ < 0 (defocusing case) it follows that

sup
[0,T ]

∫

Rn

|∇u(x, t)|2dx ≤ E(u0),

which combined with (6.2) gives

sup
[0,T ]

‖u(t)‖2
1,2 ≤ E(u0) + ‖u0‖2

2.

This allows us to reapply Theorem 5.4 to extend the local solution u to any time
interval.

In the focusing case λ > 0, using the Gagliardo–Nirenberg inequality, see (3.14),
we have that for t ∈ [0, T ]

‖u(t)‖α+1 ≤ c‖∇xu(t)‖θ2 ‖u(t)‖1−θ
2 ≤ c ‖∇xu(t)‖θ2 ‖u0‖1−θ

2 , (6.7)

with
1

α + 1
= θ
(1

2
− 1

n

)+ 1 − θ

2
or θ = n(α − 1)

2(α + 1)
.

Then,
‖u(t)‖α+1

α+1 ≤ c ‖u0‖[(α+1)−n(α−1)/2]
2 ‖∇xu(t)‖n(α−1)/2

2 .

This combined with (6.6) proves that if E(u0) < ∞, then

‖∇xu(t)‖2
2 ≤ |E(u0)| + cα|λ| ‖u0‖[(α+1)−n(α−1)/2]

2 ‖∇xu(t)‖n(α−1)/2
2 . (6.8)
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Assume first that α ∈ (1, 1 + 4/n), so n(α − 1)/2 < 2. Then, from (6.8) and the
notation y = y(t) = ‖∇xu(t)‖2, one gets

y2 ≤ E(u0) + c ‖u0‖[(α+1)−n(α−1)/2]
2 y2−γ , (6.9)

with γ = 2−n(α−1)/2 ∈ (0, 2). Therefore, there exists M = M(‖u0‖1,2; n;α; λ) >
0 independent of T such that

sup
[0,T ]

‖∇xu(t)‖2 ≤ M.

Thus, the same argument used above allow us to reapply Theorem 5.4 to extend the
local solution u to any time interval.

In the case α = 1 + 4/n , the inequality (6.9) becomes

y2 ≤ E(u0) + c ‖u0‖4/n
2 y2. (6.10)

Hence, there exists c0 > 0 such that if ‖u0‖2 < c0, then the local solution u provided
by Theorem 5.4 extends to any time interval.

Finally, we consider the case α ∈ (1 + 4/n, (n+ 2)/(n− 2)). In this case, using
the notation δ = ‖u0‖2, the inequality (6.9) becomes

y2(t) ≤ E(u0) + c δ[(α+1)−n(α−1)/2] y2+ν(t), (6.11)

with ν = n(α−1)/2−2 ≥ 0. For ‖u0‖1,2 = ‖u0‖2+‖∇u0‖2 ≤ ρ sufficiently small,
it follows from (6.11), evaluated at t = 0, that E(u0) > 0. Also, from (6.11), one
gets that there exists M > 0 such that y(t) = ‖∇xu(t)‖2 ≤ M , which combined with
(6.2) allows us to extend the local solution to any interval of time as in the previous
case.

Summarizing, we have the following result:

Theorem 6.2. Under any of the following set of hypotheses the local solution of
the IVP (6.1) with u0 ∈ H 1(Rn) provided by Theorem 5.4 extends globally in time, if

(i) λ < 0,
(ii) λ > 0 and 1 < α < 1 + 4/n,

(iii) λ > 0, α = 1 + 4/n, and ‖u0‖2 < c0,
(iv) λ > 0, α > 1 + 4/n, and ‖u0‖1,2 # ‖u0‖2 + ‖∇u0‖2 ≤ ρ, for ρ sufficiently

small.

The size assumption on the data in (iii), i.e., α = 1 + 4/n, can be made precise. In
[W3], Weinstein showed that

Jn(f ) = inf
f∈H 1

‖∇f ‖2
2 ‖f ‖4/n

2

‖f ‖2+4/n
2+4/n

= ‖ϕ‖4/n
2

1 + 2/n
, (6.12)

and the infimum is attained at ϕ, where ϕ is the unique positive solution up to
translation of the elliptic problem (5.8) (for details see Exercise 6.6). From (6.12),
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it follows that E(ϕ) = 0 and that if u0 ∈ H 1(Rn) with ‖u0‖2 < ‖ϕ‖2, then the
corresponding solution of the IVP (6.1) with α = 1 + 4/n extends globally in time,
i.e., c0 = ‖ϕ‖2 in part (iii) of Theorem 6.2. We shall return to this point after Theorem
6.4.

Next, we consider the extension problem of the local solution of the IVP (6.1)
with u0 ∈ H 1(Rn) in the critical case α = (n+2)/(n−2). As we shall see in the next
section, in the focusing case λ > 0, local solutions of this problem may blow up. So,
we first consider the defocusing case λ < 0. Under these assumptions, one may ask if
the local solution provided by Theorem 5.5 extends to all time and there is scattering.
For this problem, the first result known is due to Bourgain [Bo7], who gave a positive
answer in the case of dimensions n = 3, 4 for radial data, i.e., u0(x) = φ(|x|) (see
also [Gl1]). In [To5], Tao extended Bourgain’s result to any dimension. For any data,
not necessarily radial in dimension n = 3, Colliander, Keel, Staffilani, Takaoka and
Tao [CKSTT7] established global well-posedness and scattering results. Ryckman
and Visan [RVi] showed the corresponding result in dimension n = 4 and Visan [Vs]
obtained it for dimension n ≥ 5.

A similar problem for the semilinear wave equation:

∂2
t w −Δw + |w|4/(n−2)w = 0, x ∈ R

n, t > 0, (6.13)

with (w(0), ∂tw(0)) = (f , g) ∈ H 1(Rn) × L2(Rn) was previously solved by Struwe
[Stw] in the radial case and n = 3, and by Grillakis [Gl2], [Gl3] for general data
in dimensions n = 3, 4, 5 (see [ShS] for a simplified proof and an extension to the
cases n = 6, 7).

In both cases, one reviews the local existence theory to deduce what happens
if the local solution is assumed not to extend beyond the time interval [0, T ∗). In
this case, a “concentration of energy” in small sets must occur as t ↑ T ∗. In the
radial case, this should only take place at the origin. Roughly speaking, to exclude
this possibility in the case of the wave equation one combines the Morawetz estimate
and the finite propagation speed of the solution. The case of the Schrödinger equation
is more involved. The corresponding local Morawetz estimate (appropriate truncated
version) [LS] (see Exercise 6.3) is significantly more difficult to establish and even
in the radial case requires an inductive argument in the accumulation of energy to
disprove the possible concentration.

In [KM1], assuming that the Ḣ 1/2(R3)-norm of the solution of the defocusing

i∂tu +Δu − |u|2u = 0

remains bounded, Kenig and Merle showed that the above global results apply.
Next, consider the Ḣ 1 critical focusing case (λ = 1):

i∂tu +Δu + |u|4/(n−2) u = 0, (6.14)

assuming that the data u0 are spherically symmetric and 3 ≤ n ≤ 5, Kenig and Merle
[KM2] established a sharp condition for the global existence and blow-up results.
Let Φ be the solution of the elliptic problem:

ΔΦ + |Φ|4/(n−2) Φ = 0 (6.15)
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(so-called Aubin–Talenti solution), where

Φ(x) =
(

1 + |x|2
n(n− 2)

)−(n−2)/2

,

i.e., the solution of the associated stationary problem to (6.15).
For u0 ∈ H 1(Rn), radial:

(i) If E(u0) < E(Φ) and ‖∇u0‖2 < ‖∇Φ‖2, then the local solution extends to a
global one and scatters as t → ±∞.

(ii) If E(u0) < E(Φ) and ‖∇u0‖2 > ‖∇Φ‖2, then the local solution blows up in
finite time in both directions.

In [KV1], Killip and Visan extended the result in (i) to dimension n ≥ 5 without the
radial assumption on the data. They also extended the result in (ii) to all dimension
n ≥ 6 under the radial assumption on the data.

The caseE(u0) = E(Φ) for radial solutions for the equation (6.14) withn = 3, 4, 5
was studied in [DM]. To describe these results, we need to introduce the following
notation:

Given u = u(x, t), a radial solution of the IVP associated to (6.14) define Ω rad
u

the set of its radial symmetries:

Ω rad
u = {eiθ λ n−2

2 u(λx, λ2t) : θ ∈ R, λ > 0}.
Then in [DM] it was shown that if u0 ∈ H 1(Rn), radial, with E(u0) = E(Φ) the
corresponding radial solutions u = u(x, t) of (6.14) verify the next threshold:

(i) If ‖∇u0‖2 < ‖∇Φ‖2, then the local solution extends to a global one in R.
(ii) If ‖∇u0‖2 = ‖∇Φ‖2, then u ∈ Ω rad

Φ .
(iii) If ‖∇u0‖2 > ‖∇Φ‖2, then either u ∈ Ω rad

w+ (for some fixed radial solution w+)
or u(t) blows up in both directions.

Above, we have considered the equation (6.3) critical in L2(Rn) and (6.14) critical in
Ḣ 1(Rn). The critical problem in Ḣ s(Rn) with s = sc ∈ (0, 1) was studied by Holmer
and Roudenko in [HR1]. For the case n = 3, sc = 1/2, i.e.,

{

i∂tu +Δu + |u|2u = 0,

u(x, 0) = u0(x),
(6.16)

(denoting by ϕ(x) the solution of (5.8) with ω = 1) they proved:
Let u0 ∈ H 1(R3) radial such that

M(u0)E(u0) < M(ϕ)E(ϕ).

(i) If ‖u0‖2 ‖∇u0‖2 < ‖ϕ‖2 ‖∇ϕ‖2, then for all t , u(t) satisfies

‖u0‖2 ‖∇u(t)‖2 < ‖ϕ‖2 ‖∇ϕ‖2

and is globally defined and scatters.
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(ii) If ‖u0‖2 ‖∇u0‖2 > ‖ϕ‖2 ‖∇ϕ‖2, then the local solution blows up in finite time.

The radial assumption in (i) was removed by Duyckaerts, Holmer and Roudenko in
[DHR]. The method in [HR1] and [DHR] follows some of the ideas introduced in
[KM1].

In [NSc], Nakanishi and Schlag obtained the following:
There exists ε > 0 such that for any u0 ∈ Xε where

Xε = {f ∈ H 1(R3) : f radial, M(f )E(f ) < M(ϕ)(E(ϕ) + ε2) and ‖f ‖2 = ‖ϕ‖2},

the corresponding local solution u(t) of the IVP associated to the equation in (6.14)
as t → +∞ (and t → −∞) satisfies one of the next three possibilities:

(i) Scatters,
(ii) Finite time blowup,
(iii) After sometime it remains close in H 1 to B = {eiθ ϕ(·) : θ ∈ R}.
Considering t → ±∞, this gives nine possibilities.

Moreover, the subset of Xε having the behavior in (i) and (ii) (four possibilities)
is open and B describes “their boundaries.”

The case ‖u0‖2 ‖∇u0‖2 = ‖ϕ‖2 ‖∇ϕ‖2 for equation (6.16) was studied in [DRu],
where they obtained results in the direction of [DM] for the Ḣ 1 critical case (see
above).

The extension of the results in [HR1] and [DHR] to the energy subcritical range

1 + 4

n
< α < 1 + 4

n− 2
, for n ≥ 3, and 1 + 4

n
< α < ∞, for n = 1, 2 was

considered by Fang, Xie and Cazenave [FXC], and Guo [Gq].
The problem of the longtime behavior of the local solution for the supercritical

H 1- case, i.e., α > 1+4/(n−2), n ≥ 3, remains largely open. For some techniques
and results in this direction, see [KM1] and [KV2].

6.2 Formation of Singularities

In this section, we prove that the global results in the previous section are optimal.
We shall see that if (i)–(iii) in Theorem 6.2 do not hold, then there exists u0 ∈ H 1(Rn)
and T ∗ < ∞ such that the corresponding solution u of the IVP (6.1) satisfies

lim
t↑T ∗ ‖∇u(t)‖2 = ∞. (6.17)

To simplify, the exposition we shall assume λ = 1. In the proof of (6.17), we need
the following identities.

Proposition 6.1. If u(t) is a solution in C([−T , T ] : H 1(Rn)) of the IVP (6.1) with
λ = 1 obtained in Theorems 5.4 and 5.5, then

d

dt

∫

Rn

|x|2|u(x, t)|2 dx = 4 Im
∫

Rn

r u ∂ru dx, (6.18)
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with r = |x| and Im (·) = imaginary part of (·), and

d

dt
Im
∫

Rn

ru ∂ru dx = 2
∫

Rn

|∇u(x, t)|2 dx + ( 2n

α + 1
− n
)

∫

Rn

|u(x, t)|α+1 dx. (6.19)

Proof. To obtain (6.18) we multiply the equation in (6.1) by 2 u and take the
imaginary part to get

Im (2i∂tu u) = ∂t |u|2 = −Im (2Δu u) = −2 div (Im (∇u u)).

Multiplying this identity by |x|2, integrating in R
n, using integration by parts and

that r∂ru = xj∂xj u (with summation convention) it follows that

d

dt

∫

|x|2|u|2 dx =
∫

|x|2∂t |u|2 dx = −2
∫

div (Im ( u ∇u))|x|2dx

= 2
∫

Im ( u ∂xj u) 2xj dx = 4
∫

Im (r u ∂ru) dx,

which proves (6.18).
For (6.19), we multiply the equation in (6.1) by 2r∂r u, integrate in R

n, and take
the real part of this expression to get

Re (2i
∫

r∂r u ∂tu dx) = i

∫

r(∂r u ∂tu − ∂ru∂t u) dx

= −2Re

∫

r∂r u Δudx − 2Re

∫

r∂r u |u|α−1u dx. (6.20)

By integration by parts and the equation in (6.1) it follows that

i

∫

r (∂ru ∂tu−∂ru∂tu) dx = i

∫

xj (∂xj u ∂tu − ∂xj u∂tu) dx

= i

∫

xj (∂t (∂xj u u) − ∂xj (u∂tu)) dx

= i
d

dt

∫

r u ∂ru dx + n i

∫

u∂tu dx (6.21)

= d

dt

(

i

∫

r u ∂ru dx

)

+ n

(∫

u(Δu + |u|α−1u) dx

)

= d

dt

(

i

∫

ru∂ru dx

)

− n

∫

|∇u|2 dx + n

∫

|u|α+1 dx.
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Similarly, we see that

2 Re

(∫

r∂ruΔu dx

)

= 2 Re

(∫

xj ∂xj u ∂2
xk

u dx

)

= 2 Re

(

−
∫

|∇u|2 dx −
∫

xj∂xku ∂xk ∂xj u dx

)

= −2
∫

|∇u|2 dx −
∫

xj∂xku ∂xk ∂xj u dx

−
∫

xj ∂xku ∂xk ∂xj u dx (6.22)

= −2
∫

|∇u|2 dx + n

∫

|∇u|2 dx

+
∫

xj∂xk ∂xj u ∂xk u dx −
∫

xj∂xk ∂xj u ∂xku dx

= (n− 2)
∫

|∇u|2dx.

Also,

2 Re
(

∫

|u|α−1ru ∂ru dx
)

= 2 Re
(

∫

|u|α−1u xj∂xj u dx
)

=
∫

xj (|u|2)(α−1)/2(∂xj u u + u∂xj u) dx (6.23)

= 2

α + 1

∫

xj∂xj [(|u|2)(α+1)/2] dx

= − 2n

α + 1

∫

|u|α+1 dx.

Collecting the information in (6.21)–(6.23) we can rewrite (6.20) as:

d

dt
Im
(

∫

ru∂ru dx
)

= 2
∫

|∇u|2 dx +
( 2n

α + 1
− n
)

∫

|u|α+1 dx,

which yields (6.19). �

In the last proof, we used implicitly the following result commented on at the end
of Chapter 4.

Proposition 6.2 ([HNT2]). If u is a solution of the IVP (6.1) in C([ − T, T ] :
H 1(Rn)) provided by Theorems 5.4 and 5.5 such that xju0 ∈ L2(Rn) for some
j = 1, . . . , n, then

xj u(·, t) ∈ C([−T, T ] : L2(Rn)).

Thus, if u0 ∈ L2(Rn, |x|2 dx), then

u(·, t) ∈ C([−T, T ] : H 1 ∩ L2(|x|2 dx)).

Now, we shall prove one of the main results in this section.
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6.2.1 Case α ∈ (1 + 4/n, 1 + 4/(n− 2))

Theorem 6.3. Let u be a solution in C([0, T ] : H 1(Rn) ∩ L2(|x|2 dx)) of the IVP
(6.1) with λ = 1 provided by Theorems 5.4 and 5.5 and Proposition 6.2. Assume that
the initial data u0 and the nonlinearity α satisfy the following assumptions:

(i)
∫

(

|∇u0|2 − 2

α + 1
|u0|α+1

)

dx = E(u0) = E0 < 0,

(ii) α ∈ (1 + 4/n, 1 + 4/(n− 2));

then there exists T ∗ > 0 such that

lim
t↑T ∗ ‖∇u(t)‖2 = ∞. (6.24)

We observe that condition (i) implies that ‖u0‖1,2 is not arbitrarily small. In par-
ticular, for any u0 ∈ H 1(Rn) one has that E0(νu0) < 0 for ν > 0 sufficiently
large.

In the proof, we just need α > 1+4/n, therefore, the theorem extends to solutions
u ∈ C([0, T ] : H 2(Rn) ∩ L2(|x|2 dx)), α < ∞ for n ≤ 4 and α ≤ n/(n − 4) for
n ≥ 5.

Proof. We first assume that Im
( ∫

ru0 ∂r u0 dx
)

< 0. We define

f (t) = − Im
∫

r(∂ru u)(x, t) dx.

By hypothesis, f (0) > 0. Using identities (6.19) and (6.6) it follows that

f ′(t) = −2
∫

|∇u(x, t)|2 dx −
( 2n

α + 1
− n
)

∫

|u(x, t)|α+1 dx

= −2
∫

|∇u(x, t)|2 dx + n
(α + 1

2
− 1
) 2

α + 1

∫

|u(x, t)|α+1 dx

= −2
∫

|∇u(x, t)|2 dx + n
(α + 1

2
− 1
)(

∫

|∇u(x, t)|2 dx − E0

)

(6.25)

= −[2 − n
(α + 1

2
− 1
)

]

∫

|∇u(x, t)|2 dx − n
(α + 1

2
− 1
)

E0

≥ M ‖∇u(t)‖2
2,

since by hypothesis E0 < 0, α > 1 implies that (α+1)/2−1 > 0, and α > 1+4/n
implies that n((α + 1)/2 − 1) − 2 = M > 0.

From (6.25), f (t) is an increasing function, so f (t) ≥ f (0) > 0 for all t > 0.
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Now we use (6.18) to see that

d

dt

∫

|x|2|u(x, t)|2 dx = 4 Im
∫

r( u ∂ru)(x, t) dx = −4 f (t) < 0.

Thus, h(t) = ∫ |x|2|u(x, t)|2 dx is a decreasing function with

h(t) ≤
∫

|x|2|u0(x)|2 dx = h(0).

The Cauchy–Schwarz inequality tells us that

|f (t)| = f (t) = −Im
∫

r(u ∂ru)(x, t) dx

≤
(

∫

r2|u|2(x, t) dx
)1/2( ∫

|∂ru|2(x, t) dx
)1/2

≤ (h(0))1/2‖∇u(t)‖2,

which combined with (6.25) proves that f (t) satisfies the differential inequality:
⎧

⎨

⎩

f ′(t) ≥ M

h(0)
(f (t))2,

f (0) > 0.

Hence,

(h(0))1/2‖∇u(t)‖2 ≥ f (t) ≥ h(0)f (0)

h(0) −Mf (0)t
. (6.26)

Defining

T0 = h(0)

Mf (0)
> 0, (6.27)

we obtain (6.24) with T ∗ = T0.
Next, we consider the case Im

( ∫

ru0 ∂r u0 dx
) ≥ 0. From (6.25), it follows that

d

dt
Im

∫

ru ∂r u(x, t) dx = 2E0 +
(2(n+ 2)

α + 1
− n
)

∫

|u(x, t)|α+1 dx ≤ 2E0

because α > 1 + 4/n. Hence, since E0 < 0 there exists t̂ > 0 such that

Im
∫

ru ∂r u(x, t̂) dx < 0

and we are in the case previously considered. �

The antecedently result gives us an upper bound on the life span of the local
solution in H 1 since we have shown that the existence of the interval of time [0, T ∗)
implies (6.24). This only tells us that the time of life span T ∗ of the solution is less
than or equal to T0 as above. It is easy to see that the Lp-norm with p ≥ α+ 1 of the
solution u, that is ‖u(t)‖p, also satisfies an estimate of the type described in (6.24).
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6.2.2 Case α = 1 + 4/n

In this case, n(1 − 2/(α + 1)) = 4/(α + 1), (6.19) can be rewritten as:

d

dt
Im
∫

r u ∂ru dx = 2
(

∫

|∇u(x, t)|2 dx − 2

α + 1

∫

|u(x, t)|α+1 dx
)

= 2E0.

Integrating this equality we see that

Im
∫

r u ∂ru dx = Im
∫

r u0 ∂ru0 dx + 2tE0,

which combined with (6.18) tells us that

d

dt

∫

|x|2|u(x, t)|2 dx = 4 Im
∫

r u0 ∂ru0 dx + 8tE0.

Integrating again, we obtain the identity:
∫

|x|2|u(x, t)|2 dx = ‖ |x| u0‖2
2 + 4t Im

∫

r u0 ∂ru0 dx + 4t2E0. (6.28)

Assume first that either (i) E0 < 0 or (ii) E0 ≤ 0 (with E0 as in Theorem 6.3 (i)) and
Im
∫

r ū0 ∂ru0 dx < 0 or (iii) E0 > 0 and Im
∫

r ū0 ∂ru0 dx < −√
E0 ‖ |x| u0‖2.

Suppose that the desired result (6.24) does not hold, i.e., the H 1-solution can be
extended globally.

Our assumptions and (6.28) allow us to deduce that there exists T ∗ such that

lim
t↑T ∗ ‖ |x| u(·, t)‖2 = 0. (6.29)

Now, we recall Weyl–Heisenberg’s inequality (see Exercise 3.14): For any f ∈
H 1(Rn) ∩ L2(|x|2 dx),

‖f ‖2
2 ≤

2

n
‖ |x| f ‖2 ‖∇f ‖2. (6.30)

Notice that (6.22) still holds when one substitutes x by x − a for any fixed a ∈ R
n.

Combining (6.2) and (6.30), it follows that

0 < ‖u0‖2
2 = ‖u(t)‖2

2 ≤
2

n
‖ |x| u(·, t)‖2 ‖∇u(·, t)‖2,

which together with (6.29) leads to a contradiction. Therefore, it follows that

lim
t↑T ∗ ‖∇u(t)‖2 = ∞.

Thus, we have proved the following theorem.



6.2 Formation of Singularities 137

Theorem 6.4. Let u ∈ C([−T, T ] : H 1(Rn)∩L2(|x|2 dx)) be the solution of the IVP
(6.1) with α = 1 + 4/n obtained in Theorem 5.4 and Proposition 6.2 such that the
initial data u0 ∈ H 1(Rn) ∩ L2(|x|2 dx) satisfy

(i) E0 < 0,

(ii) E0 ≤ 0 and Im
∫

r u0 ∂ru0 dx < 0,

or

(iii) E0 > 0 and Im
∫

r u0 ∂ru0 dx ≤ −√E0 ‖ |x| u0‖2,

where E0 was defined in Theorem 6.3(i). Then there exists T ∗ for which identity
(6.24) holds.

It is important to notice that (6.29) has not been proved as part of Theorem 6.3,
since the singularity in (6.24) could form before time T ∗, i.e., T0 < T ∗, T0 being
the time when the inequality (6.24) occurs since we assume the existence in the time
interval [0, T0]. However, when T0 in (6.24) and T ∗ in (6.29) coincide then (6.24),
(6.2), and (6.29) ensure that

|u(·, t)|2 → cδ(·) (“concentration”), (6.31)

when t ↑ T ∗ in the distribution sense.
In the critical case α = 1 + 4/n, the pseudo-conformal invariance tells us that if

u = u(x, t) is a solution of the equation in (6.1) with α = 1+ 4/n and λ = ±1, then

v(x, t) = ei|x|2/4t

|t |n/2
u

(

x

t
,

1

t

)

(6.32)

solves the same equation for t �= 0, with v(·, t) ∈ H 1(Rn)∩L2(|x|2 dx). In particular,
in the focusing case λ = 1, if u(x, t) = eiωtϕ(x) is the standing wave solution of the
equation in (6.1) see Chapter 5 (5.7) and (5.8), to simplify the notation we fix ω = 1.
Then,

z(x, t) = ei(|x|2−4)/4t

|t |n/2
ϕ
(x

t

)

(6.33)

is also a solution in C(R − {0} : H 1(Rn) ∩ L2(|x|2 dx)), which blows up at time
t = 0, i.e.,

lim
t↑0

‖∇z(t)‖2 = ∞.

Moreover, ‖∇z(t)‖2 ∼ c/t.

The next result tells us that this is the “unique” minimal mass blow up solution.
Observe that ‖z(t)‖2 = ‖ϕ‖2 and as it was commented before, if ‖u0‖2 < ‖ϕ‖2, then
the corresponding H 1-solution extends globally in time.
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Theorem 6.5 ([Me3]). Let u1 be a solution of the IVP (6.1) withλ = 1, α = 1+4/n,
and data u1,0 ∈ H 1(Rn) with

‖u1,0‖2 = ‖ϕ‖2,

where ϕ is the unique positive solution of the elliptic problem (5.8). Assume that u1

blows up at time T > 0, i.e.,

lim
t↑T ‖∇u1(t)‖2 = ∞. (6.34)

Then,

u1(x, t) =
( 1

T − t

)n/2

ei(|x|
2−4)/4(T−t) ϕ

(

x

T − t

)

up to the invariance of the equation (see (5.10) and (5.11)).
Next, we consider the IVP (6.1) as in Theorem 6.5, i.e., λ = 1, α = 1+ 4/n, and

u0 ∈ H 1(Rn), n = 1, 2 (so that the nonlinearity is smooth). Assuming that for some
δ > 0 sufficiently small

‖u0‖2 = ‖ϕ‖2 + δ

and that (6.34) occurs, Bourgain and Wang [BoW] have shown that the corresponding
solution u can be written as:

u(x, t) = u1(x, t) + u2(x, t),

with u1 as in Theorem 6.5 and where u2 remains smooth after the blow-up time T ,
i.e., for some ρ > 0,

∂tu2 +Δu2 + |u2|4/nu2 = 0, t ∈ (T − ρ, T + ρ),

with u2(x, T ) = φ(x), where φ is smooth, with fast decay at infinity and vanishes at
0 to sufficiently high order.

In particular, this result tells us that at the blow-up time the solution does not need
to absorb all the L2-mass.

The following result is concerned with the concentration phenomenon in the blow
up solutions.

Theorem 6.6 ([Me2]). Given T > 0 and a set of points {x1, . . . , xk} ⊂ R
n,

there exists an initial datum u0 such that the corresponding solution of the IVP (6.1)
with λ = 1 and α = 1 + 4/n blows up exactly at time T with the total L2-mass
concentrating at the points {x1, . . . , xk}.

Next, we comment on the blow-up rates. As a consequence of the H 1-local
existence theorem (Theorem 5.8), we have

Corollary 6.1 ([CzW4]). If the solution of the IVP (6.1) satisfies

lim
t↑T ∗ ‖∇u(t)‖2 = ∞, (6.35)

then

‖∇u(t)‖2 ≥ c0(T ∗ − t)−(1/(α−1)−(n−2)/4). (6.36)
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We recall that (6.35) can only occur in the focusing case λ = 1 with α ≥ 1+4/n.

Proof. For t0 < T ∗, we consider the IVP (6.1) for time t > t0 with data u(t0). By
hypothesis, the solution cannot be extended in H 1 beyond the interval [0, T ∗). From
the proof of Theorem 5.4 (estimates (5.38) and (5.39)), it follows that if for some
M > c ‖u(t0)‖1,2 one has that

c ‖u(t0)‖1,2 + c(T − t0)δ Mα ≤ M , δ = 1 − (n− 2)(α − 1)

4
, (6.37)

then T < T ∗. Therefore, for all M > c ‖u(t0)‖1,2,

c ‖u(t0)‖1,2 + c (T ∗ − t0)δ Mα ≥ M. (6.38)

Choosing M = 2c‖u(t0)‖1,2, it follows that

(T ∗ − t0)δ‖u(t0)‖α−1
1,2 ≥ c0. (6.39)

Since ‖u(t)‖2 = ‖u0‖2, it follows that

‖∇xu(t0)‖2 ≥ c0(T ∗ − t0)−δ/(α−1) = c0(T ∗ − t0)−(1/(α−1)−(n−2)/4).

�

Thus, on the one hand we have that, in the critical case α = 1 + 4/n, Corollary 6.1
gives the following estimate for the lower bound for the blow-up rate:

‖∇xu(t)‖2 ≥ c0 (T ∗ − t)−1/2.

On the other hand, numerical simulations in [LPSS] suggested the existence of
solutions with blow-up rates as:

‖∇xu(t)‖2 ∼
(

ln | ln |T ∗ − t ||
T ∗ − t

)1/2

. (6.40)

The constructions of the two previous blow-up solutions imply the following: there
are at least two blow-up dynamics for (6.1) with two different rates, one which is
continuation of the explicit z(x, t) blow-up dynamic with the 1/(T − t) rate (6.36),
and which is expected to be unstable; another one with the log–log rate (6.40), which
has been conjectured to be stable.

In the one-dimensional case (n = 1), Perelman [Pe1] established the existence of
a solution blowing up at the rate described in (6.40).

In [MeRa1], [MeRa2], Merle and Raphael have obtained general upper bound
results for the blow up rate. More precisely, they characterize a set of data, i.e.,

Bα∗ = {u0 ∈ H 1(Rn) :
∫

ϕ2 ≤
∫

|u0|2 ≤
∫

ϕ2 + α∗}, (6.41)

where α∗ is a small enough parameter and ϕ is a ground state solution of (6.1), see
(5.6)–(5.8), with α = 1 + 4/n and λ = 1, satisfying

EG(u) = E(u) − 1

2

(Im (
∫ ∇xu u)

‖u‖L2

)2

< 0, (6.42)
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blow up with an upper rate of the form:

‖∇xu(t)‖2 �
( ln | ln |T ∗ − t ||

T ∗ − t

)1/2

. (6.43)

Regarding the dynamics of the blow up solutions Raphael [Ra1] established the
following result:

Theorem 6.7 ([Ra1]). Let n = 1, 2, 3, 4. There exist universal constants C∗, C∗
1

> 0 such that the following is satisfied:

(i) Rigidity of blow-up rate: Let u0 ∈ Bα∗ with

EG(u0) > 0,

and assume the corresponding solution u(t) to (6.1) blows up in finite time
T < ∞; then, there holds for t close to T either

‖∇xu(t)‖2 ≤ C∗
( log | log (T − t)|

T − t

)1/2

(6.44)

or

‖∇xu(t)‖2 ≥ C∗
1

(T − t)
√
EG(u0)

.

(ii) Stability of the log–log law: Moreover, the set of initial data u0 ∈ Bα∗ such that
u(t) blows up in finite time with upper bound (6.44) is open in H 1.

6.3 Comments

The results shown in Section 6.1 are due to Glassey [G2], based on previous ideas of
Zakharov and Shabat [ZS]. Section 6.2 was built on the works of Tsutsumi [Ts] and
of Nawa and Tsutsumi [NT]. Proposition 6.1, crucial in the proof of Theorem 6.2,
is known as “the pseudoconformal invariant property” and was proved by Ginibre
and Velo [GV1]. Observe that all these blow up results apply to local solution u ∈
C([0, T ] : H 1(Rn)∩L2(|x|2 dx)). In [OgT], the one-dimensional case n = 1, critical
case α = 5, the weighted condition xu0 ∈ L2(R) was removed. The formation of
singularities in solutions of the problem associated to the equation in (6.1) in the
case of boundary and periodic values was studied in [Ka].

We recall that the existence of solutions in L2 for the critical power α = 1+4/n
was established in Theorem 5.2 (see [CzW2]). Using this result, we have that an
extension is only possible when the L2-limt↑T0 u(t) exists. The identity (6.2) assures
the existence of the limit in the weak topology of L2. It was proved in [MT] that
the strong limit does not exist and moreover that the same extension does not exist.
This shows that if a solution that corresponds to radial data and dimension n ≥ 2
develops singularities, then this solution satisfies (6.24) and (6.29).
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In [Ra2], Raphael studied the dynamical structure of the blow up for the quintic
nonlinear Schrödinger (NLS) in two dimensions, i.e., the equation in (6.1) with
α = 5, λ = 1, and n = 2, which is supercritical in L2. Among other results he
showed the existence of H 1 radial initial data for which the associated solutions
blow up in finite time on a sphere of strictly positive radius.

In this setting, one has the equation:

i ∂tu + ∂2
r u + 1

r
∂ru + |u|4u = 0.

Removing the term ∂ru/r above, one gets the one-dimensional equation with the
critical L2-power (α = 1 + 4/n). Roughly proving that the contribution of the term
∂ru/r is negligible for the analysis and using Theorem 6.6, with one point x = 1,
one gets the idea of the form of the result in [Ra2].

This approach to get blow up results which concentrate in a surface of R
n has also

been obtained and extended in [HR2], [HR3], [HPR], and [MRS].
Corollary 6.1 was taken from Cazenave and Weissler [CzW4]. There they also

showed that the IVP (6.1) with data u0 ∈ Hs(Rn), s ∈ (0, 1), and ‖(−Δ)s/2u0‖2

sufficiently small and nonlinearity α = 1+ 4/(n− 2 s) has a unique global solution
(notice that the cases s = 0, s = 1 were covered in Corollaries 5.2, 5.4, respectively).
This result holds in both the focusing and defocusing case. In fact, it is just based on
the homogeneity of the nonlinearity, so it applies to any nonlinear term of the form
f (u, u) with f (λu, λu) = λαf (u, u).

Based on a pioneering idea of Bourgain [Bo5], one can obtain a global solution
below the “energy norm,” which in this case is H 1. The argument in [Bo5] has
been significantly refined in a sequence of works of Colliander, Keel, Staffilani,
Takaoka and Tao [CKSTT1], [CKSTT2], [CKSTT3]. For the IVP (6.1), with λ <

0, they have shown that in the cases (n,α) = (1, 5), (2, 3), (3, 3), u0 ∈ Hs(Rn),
s > 1/2, 1/2, 4/5, respectively, suffice for the global existence. In the last case
(n,α) = (3, 3) with radial initial data the condition is lower: s > 5/7. Notice that in
the above cases, the IVP (6.1) is locally well-posed in Hs(Rn), with s > 0, 0, 1/2.
So, it is unclear whether these results are optimal.

Now, we regard the problem of the rate of growth of the higher Sobolev norm.
Consider the IVP (6.1) defocusing case λ < 0 with α ∈ (1 + 4/n, (n+ 2)/(n− 2)).
Theorem 5.4 provides the global solution for data u0 ∈ H 1(Rn) with

sup
t∈R

‖u(t)‖1,2 < ∞.

Assuming that u0 ∈ Hs(Rn), s > 1, and the nonlinearity is sufficiently smooth, one
can ask what are the best possible bounds for ‖u(t)‖s,2 ∼ ‖(−Δ)s/2u(t)‖2.

Standard energy estimates give an exponential upper bound. In [Bo6], Bourgain
showed that if n = 3 and α < 5, then

‖u(t)‖s,2 ≤ c |t |c(s−1)
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for some constant c. In [Sta1], Staffilani refined the arguments seen in [Bo6] and
among other results in the case (n,α) = (1, 3), she showed that

‖u(t)‖s,2 ≤ c|t |μ as t → ∞,

with μ = 2/3(s − 1)+.
Concerning the asymptotic behavior of the H 1-global solution of the IVP (6.1)

obtained in Theorem 6.2, one has the following Lp-norm decay result due to Ginibre
and Velo [GV2].

Theorem 6.8. Assume

λ < 0, α ∈
(

1 + 4

n
, 1 + 4

n− 2

)

, and n ≥ 3. (6.45)

Then, for each u0 ∈ H 1(Rn) the corresponding global solution u(t) of the IVP (6.1)
provided by Theorem 6.2(i) satisfies

lim
t→±∞‖u(t)‖p = 0 for p ∈

(

2,
2n

n− 2

)

. (6.46)

In addition, in [GV2] and [GV3], Ginibre and Velo proved the following theorems:

Theorem 6.9. Under assumption (6.45), for each u0 ∈ H 1(Rn) there exists a unique
u±0 ∈ H 1(Rn) such that

lim
t→±∞ ‖eitΔu±0 − u(t)‖1,2 = 0, (6.47)

with

‖u±0 ‖2 = ‖u0‖2, and ‖∇u±0 ‖2
2 = E(u0).

Theorem 6.10. Under assumption (6.45) for each u±0 ∈ H 1(Rn), there exists a
unique u0 ∈ H 1(Rn) such that (6.47) holds.

Theorems 6.9 and 6.10 were used in [GV2] and [GV3] to define (continuous)
maps W± (asymptotic states) and Ω± (wave operators) in H 1(Rn), respectively, as
W±(u0) = u±0 and Ω±(u±0 ) = u0. Hence, W±Ω± = I on H 1(Rn) and one has the
scattering operator S = W+Ω−, with S(u−0 ) = u+0 . For extensions of these results,
see [GV2], [GV3]; for results in the cases n = 1, 2, see [Na].

Regarding global well-posedness for the periodic problem:
{

i∂tu = −Δu ± |u|α−1u,

u(x, 0) = u0(x),
(6.48)

x ∈ T
n, t ∈ R, α > 1, we have the following results:

For n = 2, Bourgain [Bo1] showed that (6.48) with α ≥ 3 in the defocussing
case ((–) sign) is globally well-posed. A similar result holds for the focusing case
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((+) sign) under the additional assumption of ‖u0‖L2 being small enough or for
α > 3 assuming that ‖u0‖1,2 is sufficiently small. In [BGT1], Burq, Gerard and
Tzvetkov proved the existence of finite time (T < ∞) H 1 blow-up solutions, with
data close to the ground state, i.e., limt↑T ‖u(t)‖1,2 = ∞ for (6.48) with α = 3 in
the focusing case. Moreover, they found the precise rate of the blowup showing that
(T − t) ‖u(t)‖1,2 ∼ c0.

Finally, we describe some results concerning the stability and instability of
standing waves. Before doing that we introduce the following notation:

A = {φ ∈ H 1(Rn); φ �= 0 and −Δφ + ωφ = |φ|α−1φ} (6.49)

and

G = {φ ∈ A; S(φ) ≤ S(v) for all v ∈ A}, (6.50)

where

S(φ) = 1

2

∫

Rn

|∇φ|2 dx − 1

α + 2

∫

Rn

|φ|α+1 dx − ω

2

∫

Rn

|φ|2 dx.

The functions in the first set are called ground states and u(x, t) = eiωtφ(x) bound
states or standing waves or solitary waves.

If we require the following conditions be satisfied:

(i) α = 1 + 4/n, ω > 0 and ϕ ∈ A or

(ii) 1 + 4/n < α < (n+ 2)(n− 2), (1 + 4/n < α < ∞, n = 1, 2), ω > 0 and
ϕ ∈ G,

then u(x, t) = eiωt ϕ(x) is an unstable solution of (6.1), in the sense that there is a
sequence {ϕm}m∈N ⊂ H 1(Rn) such that

ϕm → ϕ in H 1(Rn)

and such that the corresponding maximal solution um of (6.1) blows up in a finite
time for both t > 0 and t < 0.

The result in case (i) was established by Weinstein [W3] and case (ii) was proved
by Berestycki and Cazenave [BC2]. The argument of proof involves variational
methods.

On the other hand, if we let 1 < α < 1 + 4/n, ω > 0, and ϕ ∈ G, then the
solution u(x, t) = eiωt ϕ(x) is a stable solution of (6.1), in the sense that for every
ε > 0 there exists δ(ε) > 0 such that if ψ ∈ H 1(Rn) verifies ‖ϕ − ψ‖H 1 < δ(ε),
then the corresponding maximal solution v of (6.1) with data ψ verifies

sup
t∈R

inf
θ∈R

inf
y∈Rn

‖v(·, t) − eiθϕ(· −y)‖H 1 ≤ ε.

This result shows orbital stability in the subcritical case. It was established by
Cazenave and Lions [CzL]. Extensions of this result to other dispersive equations
can be found in [AL].
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The interaction of solitary waves:

R(x, t) = ei(ν·x−|ν|2t+ωt+θ ) ϕω(x − 2ν t − x0), (6.51)

with ν, x0 ∈ R
n, ω, θ ∈ R, ω > 0, and ϕω a solution of (5.8), is not yet well

understood. For example, the detailed description of solutions of the IVP (6.1) with
λ > 0 and data:

u0(x, 0) =
N
∑

j=1

Rj (x, 0) =
N
∑

j=1

ei(νj ·x+θj )ϕω(x − x0), N ≥ 2 (6.52)

such that ∃ j , k ∈ {1, . . . ,N}, j �= k, and ̂t > 0 with

|2(νj − νk)̂t − (x0j − x0k )| " 1

(i.e., at t = ̂t the solitary waves Rj (x, t) and Rk(x, t) interact) is quite open. In
the integrable case n = 1, α = 3, the scattering theory [ZS] describes the solution
u(x, t) in terms of the data as a nearly perfect elastic interaction between solitary
waves (see Section 8.3). In the nonintegrable case, numerical simulations predict a
similar behavior which has not been rigorously established. However, some results
are known: In [MM7], Martel and Merle for the L2-subcritical case (1 < α <

1 + 4/n) proved the existence of multisolitary waves. More precisely, for

R(x, t) =
N
∑

j=1

ei(νj ·x−|νj |2t+ωj t+θj )ϕω(x − 2 vj t − x0), (6.53)

the sum of the N -traveling waves in (6.51) with νj �= νk if j �= k, they showed that
there exists u ∈ C([0,∞) : H 1(Rn)) solution of the equation in (6.1) with λ > 0
such that for all t > 0

‖R(·, t) − u(·, t)‖1,2 ≤ c e−α0 t for some c, α0 > 0. (6.54)

Notice that in the L2-subcritical case the solitary waves are stable (see [CzL]), (for
other results in this direction see [Pe2].)

In the same vein as in [HoZ], [HMZ], and [DH], the time evolution of the solution
of the IVP:

{

i∂tu + ∂2
xu − q δ0(x) u + |u|2u = 0,

u(x, 0) = eiν xsech(x − x0), x0 " −1,
(6.55)

q ∈ R, has been studied. Notice that if q = 0, the solution of (6.55) is the soliton:

u(x, t) = eiν x e−iν2 t sech(x − 2ν t − x0), (6.56)

and that for q �= 0 the “soliton” should interact with the localized potential at time
t ∼ |x0|/ν. In [HoZ], it was shown that for |q| " 1 the “soliton solution” of
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(6.55) remains “intact.” In the repulsive case (q > 0), for high velocity (ν ! 1), it
was proven in [HMZ] that the incoming solution split into transmitted and reflected
components (traveling with velocity ν to the right and to the left, respectively). The
attractive case (q < 0) was studied in [DH].

In the one-dimensional L2-supercritical case:

i∂tu + ∂2
xu + |u|α−1u = 0, α > 5,

it is known that the traveling wave solution in (5.14) is unstable. In [KrS], a kind
of “finite dimensional version” of the stable manifold for the ordinary differential
equation (ODE) system was constructed. For further developments in this direction
see [Scl2] and [Bc].

The “soliton resolution conjecture” claims that any “reasonable” solution to a
nonlinear dispersive equation eventually resolve into a radiation component that
behaves as a linear solution plus a localized component that behaves as a finite sum
of special solutions (traveling waves, standing waves, breathers, . . . ). This conjecture
is largely open (see Section 8.3). In the case of the NLS (6.1) for the defocusing case
(λ < 0 in (6.1)) (where no nontrivial special solutions exist) is known in some cases.
In [To8], a weak form of this conjecture was established for energy-subcritical and
mass-supercritical global H 1(Rn) radial solutions in higher dimension n ≥ 5.

Finally, we return to the formula (4.7) (and the comment after it). This affirms
that if u0 ∈ C0(Rn), then for any t �= 0 and ε > 0, eitΔu0 /∈ L1(eε|x|dx). So, one
can ask if a similar result holds for solutions of the IVP (5.1). The following unique
continuation principle established in [KPV15] answers this question:

Consider the equation:

∂tu = i(Δu + λ |u|α−1), λ ∈ R − {0}, (6.57)

with α such that [α] > n/2 if α is not an odd integer.
Let u1, u2 ∈ C([−T, T ] : Hk(Rn)), k > n/2, T > 0, be two solutions of the

equation (6.57) such that

supp(u1(·, 0) − u2(·, 0)) ⊂ {x ∈ R
n : x1 ≤ a1}, a1 < ∞.

If for some t ∈ (−T, T ) − {0} and for some ε > 0,

u1(·, t) − u2(·, t) ∈ L2(eε|x1| dx),

then u1 ≡ u2.
Notice that fixing u2 ≡ 0 one settles the above question. Moreover, by taking

u1(x, 0) = ϕ(x) as in (5.8) and u2(x, 0) = ϕ(x) + φ(x), with φ ∈ Hs(Rn), s > n/2,
with compact support, one can see that

u2(·, t) /∈ L2(eε|x| dx) for any ε > 0,

for any t �= 0 and α as in (6.57). This follows by combining Theorem 5.1 and the
above unique continuation result. In other words, regardless of the stability of the
standing wave a compact perturbation of it destroys its exponential decay.
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6.4 Exercises

6.1 (i) Let α ∈ (1, 1 + 4/n]. Prove that the local L2-solution of the IVP (5.1)
provided by Theorems 5.2 and 5.3 satisfies the identity (5.2).

(ii) Let α ∈ (1, 1 + 4/(n − 2)]. Show that the local H 1-solution of the IVP
(5.1) provided by Theorems 5.4 and 5.5 satisfies the identities (5.2) and
(5.3).

(iii) If in addition to the hypothesis in (ii), assuming that |x|u0 ∈ L2(Rn),
prove (5.5).

(iv) Assume λ < 0 (defocusing case) and α ≥ 1 + 4/n with the hypotheses
in (iii), prove the decay estimate:

‖u(t)‖α+1 ≤ c t−2/(α+1).

6.2 Consider the IVP (6.1) withα = 1+4/n. Let u(t) be its globalL2-solution corre-
sponding to a datum u0 ∈ L2(Rn) with ‖u0‖2 < ε provided by Theorem 6.2 (iii).

(i) Prove that there exist u±0 ∈ L2(Rn) such that

u(t) = e±itΔ u±0 + R±(t) with lim
t→±∞‖R±(t)‖2 = 0. (6.58)

(ii) Prove that (6.58) fails for arbitrary u0 ∈ L2(Rn).
Hint: (i) Using Theorem 4.2, inequality (4.16), and Corollary 5.2 prove that

u±0 = u0 +
±∞
∫

0

e−it ′Δ |u|4/n u(t ′) dt′ ∈ L2(Rn).

(ii) Use the standing wave solutions in (5.8), (5.9), and (5.13) if n = 1.

6.3 (Morawetz’s estimate) Consider the IVP (6.1) in the defocusing case λ = −1,
with α < 1+ 4/(n− 2), and n ≥ 3. Let u ∈ C([−T0, T1] : H 1(Rn)) be the local
solution of this problem provided by Theorem 5.4.

(i) Prove the following estimates:

(a) Re

∫

i∂tu
(

∂r ū + (n− 1)

2r
ū
)

dx = Re
1

2

d

dt

∫

iu∂ru dx.

(b) Re

∫

Δu
(

∂r ū + (n− 1)

r
ū
)

dx ≤ 0.

(c) Re

∫

−|u|α−1u
(

∂r ū + (n− 1)

r
ū
)

dx =− α − 1

2(α + 1)

∫

(n− 1)

2r
|u|α+1 dx

where r = |x|.
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(ii) Using part (i) and the equation in (6.1) show that

1

2

d

dt

∫

iu∂r ū dx ≥ (α − 1)(n− 1)

4(α + 1)

∫ |u(x, t)|α+1

|x| dx. (6.59)

(iii) Integrate (6.59) in the interval (t1, t2) ⊂ [−T0, T1] to get

t2
∫

t1

∫

Rn

|u(x, t)|α+1

|x| ≤ c (‖u(t1)‖1,2 + ‖u(t2)‖1,2). (6.60)

(iv) Use Theorem 6.2 to conclude that if in addition α < 1 + 4/n, then the
global solution u ∈ C(R : H 1(Rn)) satisfies

∞
∫

−∞

∫

Rn

|u(x, t)|α+1

|x| dxdt < ∞. (6.61)

(Notice that |x|−1 is not integrable around the origin, so (6.61) gives
information over the movement in time of the solution around the origin.)

6.4 For the IVP (6.1) with λ = 1 (focussing case), with the notation in Exercise 5.9,
prove that

E(uω(x, t)) =
∫

Rn

(

|∇xuω(x, t)|2 − 2

α + 1
|uω(x, t)|α+1

)

dx

= E(ϕω) =
∫

Rn

(

|∇xϕω(x)|2 − 2

α + 1
|ϕω(x)|α+1

)

dx (6.62)

=
(n(α − 1) − 4

2(α + 1)

)

∫

Rn

|ϕω(x)|α+1 dx.

Thus, E(ϕω) > 0 if α − 1 > 4/n, E(ϕω) = 0 if α − 1 = 4/n and E(ϕω) < 0
if α − 1 < 4/n.
Hint: Combine the fact that ϕω(x) = ω1/(α−1)ϕ(

√
ω x) is the solution of (5.8),

with the identity (5.83).
6.5 Prove that for any α > 1, there exist u+0 , u−0 , u0

0 ∈ H 1(Rn) such that if

E(u0) =
∫

Rn

(

|∇xu0(x)|2 − 2

α + 1
|u0(x)|α+1

)

dx,

then E(u+0 ) > 0, E(u−0 ) < 0 and E(u0
0) = 0.
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6.6 [W3] Consider the following case of the Gagliardo–Nirenberg inequality (3.14):

‖f ‖α+1 ≤ c‖∇f ‖θ2 ‖f ‖1−θ
2 , (6.63)

θ = n

(

1

2
− 1

α + 1

)

and 2 < α + 1 <
2n

n− 2
.

For f ∈ H 1(Rn), define

Jα,n(f ) = ‖∇f ‖θ (α+1)
2 ‖f ‖(1−θ )(α+1)

2

‖f ‖α+1
α+1

, (6.64)

c∗α,n and μα,n as:

c∗α,n
−(α+1) = μα,n = Inf

f∈H 1(Rn)
f �=0

Jα,n(f ),

i.e., c∗α,n = μ
−1/(α+1)
α,n is the optimal constant in (6.63).

(i) Assuming that μα,n is attained, i.e., there exists f ∗ ∈ H 1(Rn) such that
Jα,n(f ∗) = μα,n, with f ∗ ≥ 0, prove that for any λ, ν > 0

Jα,n(λ f ∗(ν ·)) = μα,n. (6.65)

(ii) Choosing λ0, ν0 in (6.65) such that g(x) = λ0 f
∗(ν0 x) satisfies

‖g‖2 = ‖∇g‖2 = 1, i.e. μα,n = ‖g‖−(α+1)
α+1 , and using that D Jα,n(g) ≡ 0

(i.e., d
dε

Jα,n(g + εh)|ε=0 = 0, ∀h ∈ H 1(Rn)) prove that

−θ Δg + (1 − θ ) g − μα,n g
α ≡ 0, g ≥ 0.

(iii) Prove that the function gβ,ρ(x) = β g(ρ x), β, ρ > 0 satisfies

− θ

ρ2
Δgβ,ρ + (1 − θ )gβ,ρ − μα,n β

α−1gβ,ρ ≡ 0. (6.66)

(iv) Choose β0, ρ0 in (6.66) such that gβ0,ρ0 solves (5.8) with ω ≡ 1, i.e.,

−Δϕ + ϕ − |ϕ|α−1ϕ = 0, ϕ ≥ 0,

to prove that

μα,n = (1 − θ )1+ n
4 (α−1)

θ
n
4 (α−1)

1

‖gβ0,ρ0‖α−1
2

= (1 − θ )1+ n
4 (α−1)

θ
n
4 (α−1)

1

‖ϕ‖α−1
2

,

so,

c∗α,n = (μα,n)−1/(α+1) = θ
n(α−1)
4(α+1)

(1 − θ )
4+n(α−1)

4(α+1)

‖ϕ‖(α−1)/(α+1)
2 .

(v) Verify that f ∗ is a “rescaling” of ϕ(·).
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6.7 Consider the IVP (6.1) in the focussing case (λ = 1) and for the L2-critical
power (α = 1 + 4/n). Assume that the local H 1-solution provided by
Theorem 5.4 blows up in finite time, i.e., there exists T ∗ > 0 such that

lim
t↑T ∗ ‖∇u(t)‖2 = ∞. (6.67)

(i) Prove that for any s ∈ (0, 1] it follows that

lim inf
t↑T ∗ ‖Dsu(t)‖2 = ∞.

(ii) Prove that for any p ∈ (2,∞] it follows that

lim inf
t↑T ∗ ‖u(t)‖p = ∞.

(iii) If instead of α = 1 + 4/n one considers a nonlinearity
α ∈ (1 + 4/n, 1 + 4/(n − 2)) and assume that (6.67) holds, for
which values of s (i) holds, and for which values of p (ii) holds.

6.8 [GHW] Consider the one-dimensional cubic focussing NLS with a δ-potential:

i∂tv + ∂2
x v + μδ(·) v + |v|2v = 0, μ ∈ R. (6.68)

(i) Prove that if μ = 0, the equation (6.68) has a one-parameter family of
standing wave solutions of the form:

vω(x, t) = eiω t
√
ω φ(

√
ωx), ω > 0,

with φ(x) = sech(x) (positive, even, and radially decreasing) being the
ground state.

(ii) Prove that for μ �= 0 formally

vω,μ(x, t) = eiω t
√
ω ϕμ(

√
ωx)

is a standing wave solution of (6.68), if

ϕ(x) = ϕμ,ω(x) = √
ω ϕμ(

√
ωx)

satisfies the elliptic equation

−ω ϕ + ϕ′′ + |ϕ|2ϕ + μδ(·)ϕ = 0, (6.69)

with ϕ ∈ H 1(R) ∩H 2(R\{0}).
(iii) Prove that if ω ≤ μ2/4, then (6.69) has no even positive radially

decreasing nonnull L2-solution.
(iv) Prove that if ω > μ2/4 and μ > 0, then (6.69) has an even, positive,

radially decreasing solution of the form:

ϕμ,ω(x) = √
ω sech

(√
ω|x| + tanh−1

(

μ

2
√
ω

))

. (6.70)
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(v) Show that if the radially decreasing requirement is removed, then for
ω > μ2/4 and μ < 0, the formula (6.70) describes another set of
solutions of (6.69).
Hint: show that if ϕ solves (6.69), then

ϕ′(0+) − ϕ′(0−) + μϕ(0) = 0. (6.71)

Use that for x > 0, one should have

ϕ(x) = √
ω sech(

√
ω(x + x0)), x0 > 0,

and a similar argument for x < 0. Combine this and (6.71) to obtain the
equation:

μ = 2
√
ω tanh (

√
ωx0),

which yields the desired result.



Chapter 7
Korteweg–de Vries Equation

In this chapter, we study the local well-posedness (LWP) for the initial value problem
(IVP):

{

∂tv + ∂3
xv + vk ∂xv = 0,

v(x, 0) = v0(x),
(7.1)

x, t ∈ R, k ∈ Z
+. The family of equations above is called the k-generalized

Korteweg–de Vries (k-gKdV) equation. The case k = 1 is known as the Korteweg–de
Vries (KdV) equation and is the most famous of the family. It was first derived as a
model for unidirectional propagation of nonlinear dispersive long waves [KdV] but
it also has been considered in different contexts, namely in its relation with inverse
scattering (see Chapter 9, Section 9.6 for a brief introduction to it), in plasma physics,
and in algebraic geometry (see [Mu] and references therein). The case k = 2 is called
the modified Korteweg–de Vries (mKdV) equation. Like the KdV equation, it models
propagation of weak nonlinear dispersive waves and it also can be solved via inverse
scattering, i.e., this is a completely integrable system. There is an important relation-
ship between these two equations given by the Miura transformation [Mu1]. More
precisely, if we assume u to be a solution of the mKdV equation, then

v = i
√

6 ∂xu + u2 (7.2)

is a solution for the KdV equation. This relation was first used to obtain the inverse
scattering results for both equations. Below we return to this transformation when
we discuss global and ill-posedness results.

The KdV and mKdV equations have an infinite number of conserved quantities
(see [MGK]). For k > 2, that is not the case. However, real solutions to the k-gKdV
equation have the following conserved quantities: total mass

I1(v) =
∞
∫

−∞
v(x, t) dx =

∞
∫

−∞
v0(x) dx, (7.3)
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the L2-norm

I2(v) =
∞
∫

−∞
v2(x, t) dx =

∞
∫

−∞
v2

0(x) dx, (7.4)

and the energy

I3(v) =
∞
∫

−∞

(

(∂xv)2 − ck vk+2
)

(x, t) dx =
∞
∫

−∞

(

(v′0)2 − ck vk+2
0

)

(x) dx, (7.5)

where ck = 2{(k + 1)(k + 2)}−1.
The k-gKdV equation admits solitary wave solutions having strong decay at infin-

ity. These solutions are given by vc,k(x, t) = φc,k(x− ct), c > 0 (c is the propagation
speed) where

φc,k(x) =
{

(k + 1)(k + 2)

2
c sech2

(k

2

√
c x
)

}1/k

(7.6)

are the unique (up to translation) positive solutions decaying at infinity of

−cϕ + ϕ′′ + 1

k + 1
ϕk+1 = 0. (7.7)

To motivate the local results that we describe in this chapter, we first note that
if v solves (7.1), then, for λ > 0, so does vλ(x, t) = λ2/kv(λx, λ3t), with data
vλ(x, 0) = λ2/kv(λx, 0).

Note that

‖vλ(·, 0)‖Ḣ s = ‖Ds
x vλ(·, 0)‖2 = λ2/k+s−1/2‖v(·, 0)‖Ḣ s . (7.8)

This suggests that the optimal s, for the power k, is s = sk = 1/2 − 2/k. Thus,
sk ≥ 0 if and only if k ≥ 4.

A simple computation shows that

‖φc,k‖Ḣ sk = ‖Dskφc,k‖2 = ak , independent of c, (7.9)

and if s �= sk , ‖Dsφc,k‖2 → 0 as either c → 0 or +∞. Later on we illustrate the
significance of this.

The best LWP results in Sobolev spaces Hs(R) known for the k-gKdV equation
can be summarized as follows:

k Scaling Result

1 s = − 3
2 s ≥ − 3

4

2 s = − 1
2 s ≥ 1

4

3 s = − 1
6 s ≥ − 1

6

k ≥ 4 s = 1
2 − 2

k
s ≥ 1

2 − 2
k



7.1 Linear Properties 153

In this chapter, the local results apply to both real and complex solutions. In
Chapter 8, where we study global well-posedness for the k-gKdV, we will only
consider real solutions since they satisfy the conservation laws (7.4) and (7.5).

Here we provide the proofs of the local results for the initial value problem (IVP)
associated to the KdV (k = 1), mKdV (k = 2), and the L2-critical gKdV (k = 4)
equations.

The approach we follow for the last two equations is closely related to the previ-
ous one described for the nonlinear Schrödinger (NLS) equation. However, we shall
remark that the situation faced here is more difficult to deal with due to the presence
of derivatives on the nonlinearity that causes the so-called loss of derivatives. The
idea is to analyze the special properties of solutions of the associated linear prob-
lem, such as smoothing effects like those of Strichartz (4.32) and Kato type (4.55),
maximal function estimates combined with interpolated estimates. These along with
some commutator estimates for fractional derivatives and the contraction mapping
principle are the main ingredients in this method.

On the other hand, to establish LWP for the IVP associated to the KdV equation
we use the function spaces Xs,b introduced in the context of dispersive equations
in [Bo1]. These functions spaces have a norm given in terms of the symbol of the
associated linear operator (in this case ∂t + ∂3

x ) and have been very useful in analysis
of the interaction between the nonlinear and the dispersive effects. In this point, the
so-called bilinear estimates play a main role to obtain sharp results.

In Section 7.3, we also list some results regarding the supercritical case (k > 4).
There we use (7.6) and (7.9) mentioned above to illustrate ill-posedness results and
thus the sharpness of the LWP results for the k-gKdV equation for k ≥ 4.

7.1 Linear Properties

In this section, we establish a series of estimates for solutions of the linear initial
value problem (IVP):

{

∂tv + ∂3
xv = 0,

v(x, 0) = v0(x),
(7.10)

x, t ∈ R. These estimates are useful to show sharp LWP results for the IVP (7.1) for
k = 2 and k ≥ 4.

We first recall that the solution of the IVP (7.10) is given by

v(x, t) = V (t)v0(x) = St ∗ v0(x), (7.11)

where

St (x) =
∞
∫

−∞
e2π ixξ e8π3itξ3

dξ = 1
3
√
t
S1
( x

3
√
t

)

(see (1.30)).
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Notice that {V (t)}∞t=−∞ defines a unitary group operator in Hs(R) (see Proposi-
tion 4.2).

We begin by showing a sharpened version of the “local smoothing” effect
found by Kato and Kruskov and Faminskii (see (4.55)) for solutions of the linear
equation (7.10) and the inhomogeneous problem:

{

∂tv + ∂3
xv = f ,

v(x, 0) = 0,
(7.12)

x, t ∈ R.

Lemma 7.1. The group {V (t)}∞t=−∞ satisfies

‖∂xV (t)v0‖L∞
x L2

t
≤ c ‖v0‖2, (7.13)

∥

∥

∥∂
2
x

t
∫

0

V (t − t ′)f (t ′) dt ′
∥

∥

∥

L∞
x L2

t

≤ c ‖f ‖L1
xL

2
t
. (7.14)

Remark 7.1. The proofs show that in (7.13) and (7.14), we can also have D1+iγ ,
D2+iγ , γ real.

Remark 7.2. To simplify the exposition from now on we omit the 2π factor in the
Fourier transform. Thus, in particular we write

V (t)v0(x) =
∞
∫

−∞
ei(xξ+tξ3) v̂0(ξ ) dξ.

Proof. We only give the proof of (7.13), and refer to the proof of Theorem 4.4
estimate (4.28) for an argument similar to that needed to obtain (7.14).

The change of variables ξ 3 = η shows that

∂xV (t)v0(x) = 1

3

∞
∫

−∞
eitηeixη1/3

η−2/3+1/3 v̂0(η1/3) dη.

Using Plancherel’s identity (1.11) in the t variable, we get

‖∂xV (t)v0‖2
L2
t
= 1

9

∞
∫

−∞

∣

∣eixη1/3
η−2/3+1/3v̂0(η1/3)

∣

∣

2
dη

= c

∞
∫

−∞
|̂v0(ξ )|2 dξ ,

using η1/3 = ξ . This proves (7.13). �
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A consequence of (7.13) is

Corollary 7.1.

‖∂x
∫ ∞

−∞
V (t − t ′)g(·, t ′) dt ′‖L2 ≤ c ‖g‖L1

xL
2
t
. (7.15)

Remark 7.3. The result in (7.15) is equivalent to (7.13) by duality. Note that this
corollary implies

sup
t∈[−T ,T ]

‖ ∂x
t
∫

0

V (t − t ′)g(·, t ′) dt ′‖L2 ≤ c ‖g‖L1
xL

2
t
. (7.16)

The next lemma is useful to obtain maximal function estimates.

Lemma 7.2. For any x ∈ R,

|I t (x)| =
∣

∣

∣

∞
∫

−∞
ei(xξ+tξ3) dξ

|ξ |1/2+iγ

∣

∣

∣ ≤ c (1 + |γ |)
|x|1/2

(7.17)

for γ real.

Proof. Since for t = 0 the result is obvious (Exercise 1.14), we assume t �= 0 and
see that a dilation argument reduces the proof to show

|I 1(x)| ≤ c (1 + |γ |)
|x|1/2

.

This can be done using a similar argument as the one in the proof of Proposition 1.6,
taking into account the following sets:

Ω1 = {ξ ∈ R : |ξ | ≤ 2},
Ω2 = {ξ /∈ Ω1 : |3ξ 2 + x| ≤ |x|/2},
Ω3 = R − (Ω1 ∪Ω2). �

Next, we have maximal function estimates for solutions of (7.10).

Lemma 7.3.

‖ sup
−∞<t<∞

|V (t)v0| ‖L4
x
= ‖V (t)v0‖L4

xL
∞
t
≤ c ‖D1/4

x v0‖2, (7.18)

∥

∥

∥D
−1/2+iγ
x

t
∫

0

V (t − t ′)f (t ′) dt ′
∥

∥

∥

L4
xL

∞
t

≤ cγ ‖f ‖L4/3
x L1

t
, (7.19)

where γ is real.
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Remark 7.4. The estimate (7.18) due to [KR] is sharp in the sense that for anyp �= 4
on the left-hand side require even in a finite time interval more than 1/4 derivatives
on the right-hand side of the inequality.

Proof. Showing estimate (7.18) is equivalent to proving

‖D−1/4+iγ
x V (t)v0‖L4

xL
∞
t
≤ cγ ‖v0‖2. (7.20)

Hence, we do so for γ = 0 and prove (7.20).
We see that a version of (7.19) implies (7.20) by a method that follows the proof

of the Stein–Tomas L2-restriction theorem for the Fourier transform. In fact, duality
shows that (7.18) is equivalent to

∥

∥

∥

∞
∫

−∞
D−1/4

x V (t)g(·, t) dt
∥

∥

∥

L2
≤ c ‖g‖

L
4/3
x L1

t
.

Squaring the left-hand side of the inequality we obtain

∥

∥

∥

∞
∫

−∞
D−1/4

x V (t)g(·, t) dt
∥

∥

∥

2

2
=
∫ ∫

g(x, t)

∞
∫

−∞
D−1/2

x V (t − t ′)g(·, t ′) dt ′ dx dt ,

so that (7.18) follows from

∥

∥

∥

∞
∫

−∞
D−1/2

x V (t − t ′)g(·, t ′) dt ′
∥

∥

∥

L4
xL

∞
t

≤ c ‖g‖
L

4/3
x L1

t
. (7.21)

Next, we observe that (7.17) shows that

∣

∣

∣

∞
∫

−∞
D−1/2

x V (t − t ′)g(·, t ′) dt ′
∣

∣

∣ ≤ c

|x|1/2
∗

∞
∫

−∞
|g(·, t ′)| dt ′.

Thus, inequality (7.21) can be deduced from the Hardy–Littlewood–Sobolev theorem

(Theorem 2.6), since
c

|x|1/2
∗ : L4/3 → L4. The estimate (7.19) follows by the same

argument. �

Lemma 7.4.

1. If v0 ∈ L2(R), then

‖V (t)v0‖L5
xL

10
t
≤ c‖v0‖2. (7.22)

2. If g ∈ L
5/4
x L

10/9
t , then

∥

∥

∥

t
∫

0

V (t − t ′)g(t ′) dt ′
∥

∥

∥

L5
xL

10
t

≤ c‖g‖
L

5/4
x L

10/9
t

. (7.23)
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Proof. To prove (7.22), we consider the analytic family of operators

Tzv0 = D−z/4
x D(1−z)

x V (t)v0, with z ∈ C, 0 ≤ Re z ≤ 1.

When z = iγ ,

Tiγ v0 = ∂

∂x
V (t)D−i5γ /4

x Hv0,

where H denotes the Hilbert transform (see (1.18)). Hence, estimate (7.13) implies

‖Tiγ v0‖L∞
x L2

t
≤ c ‖v0‖2,

where we used that ‖D−i5γ /4
x Hv0‖2 = ‖v0‖2.

On the other hand, setting z = 1 + iγ we get

T1+iγ v0 = D−1/4
x V (t)D−iγ 5/4

x v0.

Thus, estimate (7.18) yields

‖T1+iγ v0‖L4
xL

∞
t
≤ c ‖v0‖2.

Hence, from Stein’s analytic interpolation (Theorem 2.7), the estimate (7.22) follows
by choosing z = 4/5.

The proof of part 2 uses a similar, but more delicate arguments (see Corollary 3.8 in
[KPV4]). �

Lemma 7.5. If v0 ∈ L2(R), then

‖DxV (t)v0‖L20
x L

5/2
t

≤ ‖D1/4
x v0‖2. (7.24)

Proof. The result follows using the Stein interpolation theorem (see Theorem 2.7)
and the estimates (7.13), i.e.,

‖D5/4
x Diγ

x V (t)v0‖L∞
x L2

t
≤ c ‖D1/4

x v0‖2,

and (7.18), i.e.,
‖Diγ

x V (t)v0‖L4
xL

∞
t
≤ c ‖D1/4

x v0‖2,

with θ = 4/5. �

Lemma 7.6 (Leibniz rule).

(i) Let α ∈ (0, 1). Let p ∈ (1,∞), f = f (x), g = g(x), then

‖Dα(fg) − fDαg‖p ≤ c ‖g‖∞‖Dαf ‖p. (7.25)
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(ii) Let α ∈ (0, 1), α1,α2 ∈ [0,α] with α = α1 + α2. Let p, q,p1,p2, q2 ∈ (1,∞),
q1 ∈ (1,∞] be such that

1

p
= 1

p1
+ 1

p2
and

1

q
= 1

q1
+ 1

q2
.

Let f = f (x, t) and g = g(x, t). Then,

‖Dα
x (fg)−fDα

x g − gDα
x f ‖Lp

x L
q
T
≤ c ‖Dα1

x f ‖Lp1
x L

q1
T
‖Dα2

x g‖Lp2
x L

q2
T
. (7.26)

Moreover, for α1 = 0 the value q1 = ∞ is allowed.

Lemma 7.7 (Chain rule). Let α ∈ (0, 1) and p, q, p1, p2, q2 ∈ (1,∞), q1 ∈
(1,∞] be such that

1

p
= 1

p1
+ 1

p2
and

1

q
= 1

q1
+ 1

q2
.

Then,

‖Dα
x F (f )‖Lp

x L
q
T
≤ c ‖F ′(f )‖Lp1

x L
q1
T
‖Dα

x f ‖Lp2
x L

q2
T
. (7.27)

For the proof of Lemmas 7.6 and 7.7, we refer to [KPV4] (see also [CrW]).
The extra difficulty in obtaining these estimates comes from the fact that one needs

to control derivatives in the space variable in a norm depending on the t variable first.

7.2 mKdV Equation

In this section, we establish the LWP theory for the IVP associated to the modified
Korteweg–de Vries (mKdV) equation,

{

∂tv + ∂3
xv + v2 ∂xv = 0,

v(x, 0) = v0(x),
(7.28)

x, t ∈ R. The idea of the proof is to use the linear estimates that we have obtained
in the previous section plus a contraction mapping argument. As in the case of the
nonlinear Schrödinger (NLS) equation, we employ the integral equation form of
(7.28) for the same reason, i.e., it does not require differentiability of the solution.

Theorem 7.1. Let s ≥ 1/4 . Then, for any v0 ∈ Hs(R) there exist T =
T (‖D1/4

x v0‖2) = c ‖D1/4
x v0‖−4

2 and a unique strong solution v(t) of the IVP (7.28)
such that

v ∈ C([−T , T ] : Hs(R)), (7.29)
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‖Ds
x ∂xv‖L∞

x L2
T
= sup

−∞<x<∞

(

T
∫

−T

|Ds
x∂xv(x, t)|2 dt

)1/2

< ∞, (7.30)

‖Ds−1/4
x ∂xv‖

L20
x L

5/2
T

+ ‖Ds
xv‖L5

xL
10
T
< ∞, (7.31)

and

‖v‖L4
xL

∞
T

< ∞. (7.32)

Moreover, there exists a neighborhood V of v0 in Hs(R) such that the map ṽ0 �→ ṽ(t)
from V into the class defined by (7.29)–(7.32) is smooth.

Proof. We define

XT = {v ∈ C([−T , T ] : Hs(R)) : |||v|||T < ∞}
and

X a
T = {v ∈ C([−T , T ] : Hs(R)) : |||v|||T ≤ a},

where

|||v|||T = ‖v‖L∞
T Hs + ‖Ds

x ∂xv‖L∞
x L2

T
+ ‖Ds−1/4

x ∂xv‖
L20
x L

5/2
T

+ ‖Ds
xv‖L5

xL
10
T
+ ‖v‖L4

xL
∞
T
.

We shall prove that for appropriate values of a and T the operator

Ψv0 (v)(t) = Ψ (v)(t) = V (t)v0 −
t
∫

0

V (t − t ′)(v2∂xv)(t ′) dt ′ (7.33)

defines a contraction map on X a
T .

We only consider the case s = 1/4. As the higher derivatives derivatives appear
linearly in the norms (7.29)–(7.31), argument below also provide the proof in the
general case s > 1/4.

Using the operator (7.33), group properties, and the Minkowsky and Cauchy–
Schwarz inequalities it follows that

‖D1/4
x Ψ (v)(t)‖2 ≤ c ‖D1/4

x v0‖2 +
t
∫

0

‖D1/4
x (v2 ∂xv)‖2 dt

≤ c ‖D1/4
x v0‖2 + c T 1/2‖D1/4

x (v2 ∂xv)‖L2
xL

2
T
.

To estimate the last term we make use of the Leibniz rule for fractional derivatives
(7.26) and the chain rule (7.27). Thus,

‖D1/4
x (v2 ∂xv)‖L2

xL
2
T
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≤ ‖v2‖L2
xL

∞
T
‖D1/4

x ∂xv‖L∞
x L2

T
+ ‖D1/4

x (v2)‖
L

20/9
x L10

T
‖∂xv‖

L20
x L

5/2
T

≤ ‖v‖2
L4
xL

∞
T
‖D1/4

x ∂xv‖L∞
x L2

T
+ ‖v‖L4

xL
∞
T
‖D1/4

x v‖L5
xL

10
T
‖∂xv‖

L20
x L

5/2
T

(7.34)

≤ c |||v|||3T .
Hence,

‖D1/4
x Ψ (v)(t)‖2 ≤ c ‖D1/4

x v0‖2 + c T 1/2 |||v|||3T . (7.35)

From Definition 7.33, Minkowski’s inequality, group properties, the smoothing effect
(7.13), and the Cauchy–Schwarz inequality it follows that

‖D1/4
x ∂xΨ (v)(t)‖L∞

x L2
T

≤ c ‖D1/4
x v0‖2 +

t
∫

0

‖∂x(V (t)V (−t ′)D1/4
x (v2 ∂xv))‖L∞

x L2
T
dt ′ (7.36)

≤ c ‖D1/4
x v0‖2 + c T 1/2‖D1/4

x (v2 ∂xv)‖L2
xL

2
T
.

The maximal function norm of Ψ can be estimated applying Minkowski’s
inequality, group properties, (7.18), and the Cauchy–Schwarz inequality:

‖Ψ (v)(t)‖L4
xL

∞
T
≤ c ‖D1/4

x v0‖2 +
t
∫

0

‖V (t)V (−t ′)(v2 ∂xv)‖L4
xL

∞
T
dt ′

≤ c ‖D1/4
x v0‖2 + c T 1/2‖D1/4

x (v2 ∂xv)‖L2
xL

2
T
.

(7.37)

A similar argument as the previous one, but using (7.24) instead of (7.18) yields

‖∂xΨ (v)(t)‖
L20
x L

5/2
T

≤ c ‖D1/4
x v0‖2 +

t
∫

0

‖∂xV (t)V (−t ′)(v2 ∂xv)‖
L20
x L

5/2
T

dt ′

≤ c ‖D1/4
x v0‖2 + c T 1/2‖D1/4

x (v2 ∂xv)‖L2
xL

2
T
.

(7.38)

Finally, the estimate (7.22) and the above argument gives us

‖D1/4
x Ψ (v)(t)‖L5

xL
10
T
≤ c‖D1/4

x v0‖2 +
t
∫

0
‖V (t)V (−t ′)D1/4

x (v2 ∂xv)‖L5
xL

10
T
dt ′

≤ c ‖D1/4
x v0‖2 + c T 1/2‖D1/4

x (v2 ∂xv)‖L2
xL

2
T
.

(7.39)

Hence, the argument in (7.34) applied in (7.36)–(7.39) yields

|||Ψ (v)(t)|||T ≤ c ‖v0‖1/4,2 + c T 1/2|||v|||3T . (7.40)



7.3 Generalized KdV Equation 161

Choosing a = 2c‖v0‖1/4,2 and T such that

ca2 T 1/2 <
1

2
(7.41)

we obtain that Ψv0 : X a
T → X a

T .
A similar argument shows that

|||Ψ (v) − Ψ (ṽ)|||T ≤ cT 1/2(|||v|||2T + |||ṽ|||2T ) |||v − ṽ|||T ≤ 2c T 1/2a2 |||v − ṽ|||T .
Then, the choice of a and T in (7.41) implies that Ψ is a contraction. Consequently,
we have that there exists a unique v ∈ X a

T with Ψv0 (v) ≡ v, i.e.,

v(t) = V (t)v0 −
t
∫

0

V (t − t ′)(v2∂xv)(t ′) dt ′. (7.42)

Using similar arguments as above, we also deduce that for T1 ∈ (0, T )

|||Ψv0 (v) − Ψṽ0 (ṽ)||| ≤ c ‖v0 − ṽ0‖s,2 + c T
1/2

1 (|||v|||2 + |||ṽ|||2) |||v − ṽ|||.
This shows that for T1 ∈ (0, T ), the map ṽ0 �→ ṽ on a neighborhood W of v0

depending on T1 to X a
T is Lipschitz. We notice that an argument as the one used in

Corollary 5.6 allows one to prove that this map actually is smooth.
Hence, the solution v(·) ∈ X a

T of the integral equation (7.42) is a strong solution
of the IVP (7.28). In particular, v satisfies the equation in (7.28) in the distribution
sense.

Next, we extend the uniqueness result to the class XT . Suppose w ∈ XT1 for small
T1 ∈ (0, T ) is a strong solution of the IVP (7.28). The argument used in (7.40) shows
that for some T2 ∈ (0, T1), w ∈ X a

T2
. Thus, (7.41) implies w ≡ v in R× [−T2, T2]. By

reapplying this argument, the result can be extended to the whole interval [−T , T ].
This yields the uniqueness result in XT . �

7.3 Generalized KdV Equation

The local theory for the IVP (7.1) when k ≥ 4 is discussed in this section. We will
prove the local theory for the critical case k = 4. For the case k > 4, we give the
statements of the LWP results without proofs and talk over the sharpness of these
results.

We first consider the L2-critical case (see 7.8), i.e.,
{

∂tv + ∂3
xv + v4∂xv = 0,

v(x, 0) = v0(x).
(7.43)

To show the LWP for (7.43), we follow a similar approach to the one applied for the
mKdV equation.



162 7 Korteweg–de Vries Equation

Theorem 7.2. There exists δ > 0 such that for any v0 ∈ L2(R) with

‖v0‖2 < δ,

there exists a unique strong solution v(·) of the IVP (7.43) satisfying

v ∈ C(R : L2(R)) ∩ L∞(R : L2(R)), (7.44)

‖∂xv‖L∞
x L2

t
< ∞, (7.45)

and

‖v‖L5
xL

10
t
< ∞. (7.46)

Moreover, the map v0 �→ v(t) from {v0 ∈ L2(R) : ‖v0‖2 < δ} into the class defined
by (7.44)–(7.46) is smooth.

Remark 7.5. Observe that this globalL2 result is valid for real or complex solutions.
This is due to the homogeneity of the equation (scaling argument) and not to the L2

conserved quantity.

Remark 7.6. It is expected that δ in the theorem be equal to the size of the solitary
wave solution in the L2-norm (7.6) with k = 4.

Proof of Theorem 7.2 We now define, for v0 ∈ L2(R), ‖v0‖2 < δ,

Ψ (v)(t) = Ψv0 (v)(t) = V (t)v0 −
t
∫

0

V (t − t ′) v4∂xv(t ′) dt ′. (7.47)

We shall show that there is δ > 0 and a > 0 such that if ‖v0‖2 < δ, then

Ψ : Xa → Xa

is a contraction map, where

Xa = {w ∈ C(R : L2(R)) : |||w||| ≤ a}
and

|||v||| = ‖∂xv‖L∞
x L2

t
+ ‖v‖L∞

t L2
x
+ ‖v‖L5

xL
10
t
.

From (7.47) and (7.15), we have

‖Ψ (v)(t)‖2 ≤ ‖v0‖2 + c ‖∂x
t
∫

0

V (t − t ′) v5(t ′) dt ′‖2 ≤ ‖v0‖2 + c ‖v5‖L1
xL

2
t

(7.48)

≤ ‖v0‖2 + c ‖v‖5
L5
xL

10
t
≤ ‖v0‖2 + c|||v|||5.
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Similarly, (7.22) and (7.23) lead to

‖Ψ (v)(t)‖L5
xL

10
t
≤ c‖v0‖2 + c ‖

t
∫

0

V (t − t ′) ∂x(v5)(t ′) dt ′‖L5
xL

10
t

≤ c ‖v0‖2 + c ‖v4 ∂xv‖
L

5/4
x L

10/9
t

(7.49)

≤ c ‖v0‖2 + c ‖v‖4
L5
xL

10
t
‖∂xv‖L∞

x L2
t

≤ c ‖v0‖2 + c|||v|||5.
Finally, we use (7.13) and (7.14) to have

‖∂x Ψ (v)(t)‖L∞
x L2

t
≤ c‖v0‖2 + c

∥

∥

∥∂
2
x

t
∫

0

V (t − t ′) (v5)(t ′) dt ′
∥

∥

∥

L∞
x L2

t

≤ c ‖v0‖2 + c ‖v5‖L1
xL

2
t

(7.50)

≤ c ‖v0‖2 + c|||v|||5.
Using Remark 7.3, it follows that Ψ (v) ∈ C(R : L2(R)). Thus, from (7.48) to

(7.50) we obtain that
|||Ψ (v)||| ≤ c‖v0‖2 + c|||v|||5.

Now, choosing δ such that

c(4cδ)4 <
1

2
and a ∈ (2cδ, 3cδ),

we conclude that Ψ : Xa → Xa .
A similar argument leads to

|||Ψ (v) − Ψ (ṽ)||| ≤ c (|||v|||4 + |||ṽ|||4)|||v − ṽ||| ≤ 2ca4|||v − ṽ||| ≤ 1

2
|||v − ṽ|||.

As the remainder of the proof follows the argument employed in Theorem 7.1, it is
omitted. �

As a corollary of this result, we have the LWP for the L2-critical case.

Theorem 7.3 (Critical case). Let k = 4. Given any v0 ∈ L2(R) there exist T =
T (v0) > 0 and a unique strong solution v(·) of the IVP (7.43) satisfying

v ∈ C([−T , T ] : L2(R)), (7.51)

‖v‖L5
xL

10
T
< ∞, (7.52)

and

‖∂xv‖L∞
x L2

T
< ∞. (7.53)
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Given T ′ ∈ (0, T ), there exists a neighborhood W of v0 in L2(R) such that the
map ṽ0 �→ ṽ(t) from W into the class defined by (7.51)–(7.53), with T ′ instead of T
is smooth.

If v0 ∈ Hs(R) with s > 0, the previous result extends to the class

v ∈ C([−T , T ] : Hs(R))

and

‖Ds
x ∂xv‖L∞

x L2
T
< ∞,

in the above time interval [− T , T ].

Remark 7.7. The norm we define to prove this result is as follows:

|||v||| = ‖v − V (t)v0‖L∞
T L2

x
+ ‖∂xv‖L∞

x L2
T
+ ‖v‖L5

xL
10
T

,

which is “similar” to the L2-critical case for the semilinear Schrödinger equation
(see Theorem 5.3). Notice that in Theorem 7.3 the time of existence of the local
solution depends on v0 itself and not on its norm.

Next, we have the subcritical local existence result.

Theorem 7.4. Let s > 0. Then, for any v0 ∈ Hs(R) there exist T = T (‖v0‖s,2)
(with T (ρ, s) → ∞ as ρ → 0) and a unique strong solution u(·) of the IVP (7.43)
satisfying

v ∈ C([−T , T ] : Hs(R)), (7.54)

‖v‖L5
xL

10
T
+‖Ds

x v‖L5
xL

10
T
+ ‖Ds/3

t v‖L5
xL

10
T
< ∞, (7.55)

and

‖∂xv‖L∞
x L2

T
+ ‖Ds

x ∂xv‖L∞
x L2

T
+ ‖Ds/3

t ∂xv‖L∞
x L2

T
< ∞. (7.56)

Given T ′ ∈ (0, T ), there exists a neighborhood V of v0 in Hs(R) such that the map
ṽ0 → ṽ(t) from V into the class defined by (7.54), (7.55), and (7.56) with T ′ instead
of T is smooth.

Next, we consider the IVP (7.1) in the L2-supercritical case, i.e., k > 4. The
results are listed without proof.

Theorem 7.5. Let k > 4 and sk = (k − 4)/2k. Then, there exists δk > 0 such that
for any v0 ∈ Ḣ sk (R) with

‖Dsk
x v0‖2 ≤ δk ,

there exists a unique strong solution v(·) of the IVP (7.1) satisfying

v ∈ C(R : Ḣ sk (R)) ∩ L∞(R : Ḣ sk (R)), (7.57)
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‖Dsk
x ∂xv‖L∞

x L2
t
< ∞, (7.58)

‖Dsk
x v‖L5

xL
10
t
< ∞, (7.59)

and
∥

∥D1/10−2/5k
x D

3/10−6/5k
t v

∥

∥

L
pk
x L

qk
t

< ∞, (7.60)

where

1

pk

= 2

5k
+ 1

10
and

1

qk
= 3

10
− 4

5k
.

Moreover, the map v0 �→ v(t) from

V = {v0 ∈ Ḣ sk (R) : ‖Dsk
x v0‖2 ≤ δk}

into the class defined by (7.57)–(7.60) is smooth.
Next, we have the result corresponding to any size data.

Theorem 7.6. Let k > 4 and sk = (k − 4)/2k. Given v0 ∈ Ḣ sk (R), there exist
T = T (v0) > 0 and a unique strong solution v(·) of the IVP (7.1) satisfying

v ∈ C([−T , T ] : Ḣ sk (R)), (7.61)

‖Dsk
x ∂xv‖L∞

x L2
T
< ∞, (7.62)

‖Dsk
x v‖L5

xL
10
T
< ∞, (7.63)

and
∥

∥D1/10−2/5k
x D

3/10−6/5k
t v

∥

∥

L
pk
x L

qk
T

< ∞ (7.64)

with pk and qk as in (7.60).
Given T ′ ∈ (0, T ), there exists a neighborhood W of v0 ∈ Ḣ sk (R) such that the

map ṽ0 → ṽ(t) from W into the class defined by (7.61)–(7.64) is smooth.
If v0 ∈ Hs(R) with s ≥ sk , the previous results extend to the class

v ∈ C([−T , T ] : Hs(R))

and

‖Ds
x ∂xv‖L∞

x L2
t
< ∞

in the above interval [−T , T ].

Corollary 7.2. Let k > 4 and s > sk = (k−4)/2k. Then, for any v0 ∈ Hs(R) there
exist T = T (‖v0‖s,2) > 0 (T (ρ; s) → ∞ as ρ → 0) and a unique strong solution
v(·) of the IVP (7.1) satisfying, in addition to (7.62)–(7.64):

v ∈ C([−T , T ] : Hs(R)), (7.65)
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‖Ds
x ∂xv‖L∞

x L2
T
+ ‖Ds/3

t ∂xv‖L∞
x L2

T
< ∞, (7.66)

‖Ds
x v‖L5

xL
10
T
+ ‖Ds/3

t v‖L5
xL

10
T
< ∞, (7.67)

and

‖Ds/5
x D

3s/5
t v‖

L
pk
x L

qk
T

< ∞ (7.68)

with pk and qk as in (7.60).
Given T ′ ∈ (0, T ), there exists a neighborhood W of v0 ∈ Ḣ sk (R) such that the

map ṽ0 → ṽ(t) from W into the class defined by (7.65)–(7.68) is smooth.
If v0 ∈ Hs′ (R) with s ′ > s, the previous results hold with s ′ instead of s in the

same time interval [−T , T ].
To conclude, we discuss the sharpness of the results described in this section.
In [BKPSV], it was proved that if the notion of well-posedness given in Chapter 5

is strengthened, then the IVP (7.1) is ill-posed for k ≥ 4. More precisely, we have
the following.

Theorem 7.7. The IVP (7.1) with k ≥ 4 is ill-posed in Hsk (R) with sk = 1/2−2/k
in the sense that the time of existence and the continuous dependence cannot be
expressed in terms of the size of the data in the Hsk -norm.

Proof. We only consider the case k = 4. We prove that if we assume T =
T (‖v0‖L2 ) > 0, then the part in the theorem regarding the continuous dependence
of the solution upon the data fails. The proof below also establishes the second part
of the theorem.

Consider the solitary wave solutions φc,4 in (7.6) and vck ,4(x, t) the solution
corresponding to initial data v0(x) = φck ,4(x). We compare

‖φc1,4 − φc2,4‖2
2 and ‖vc1,4(·, t) − vc2,4(·, t)‖2

2

for t �= 0. We show that one can choose c1 and c2 so that the first expression tends to
0 while the second one does not. Thus, well-posedness cannot hold for these data.

Let a2
4 = ∫ φ2

cj ,4, j = 1, 2, and note that

‖φc1,4 − φc2,4‖2
2 = ‖φc1,4‖2

2 + ‖φc2,4‖2
2 − 2〈φc1,4, φc2,4〉.

Writing ϕ4(x) = 31/4 (sech2(2x))1/4, the inner product equals

c
1/4
1 c

1/4
2

∞
∫

−∞
ϕ4(

√
c1x)ϕ4(

√
c2x) dx.

If
√
c1x = y, we get

(c1

c2

)1/4
∞
∫

−∞
ϕ4(y)ϕ4

(

√

c1

c2
y
)

dy → a2
4 if

c1

c2
→ 1.
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Thus,

‖φc1,4 − φc2,4‖2
2 → 0. (7.69)

Analyzing ‖vc1,4(·, t) − vc2,4(·, t)‖2
2 similarly, we obtain

a2
4 + a2

4 −
(c1

c2

)1/4
∞
∫

−∞
ϕ4(y − c

3/2
1 t)ϕ4

(

√

c1

c2
y − c

3/2
2 t
)

dy

= a2
4 + a2

4 −
(c1

c2

)1/4
∞
∫

−∞
ϕ4(z)ϕ4

(

√

c1

c2
z − c

1/2
2 (c1 − c2)t

)

dz.

Choose now c1/c2 → 1, but c1/2
2 (c1 − c2) → ∞ (for instance, c1 = N + 1,

c2 = N , N ∈ Z+). The rapid decay of ϕ4 shows that the integral approaches 0. Thus,

sup
[0,T ]

‖vc1,4(·, t) − vc2,4(·, t)‖2
2 → 2 a2

4 for any T > 0 (7.70)

as c1/c2 → 1.
Finally, (7.8), (7.69), and (7.70) yield the result. �

7.4 KdV Equation

In this section, we establish the local theory of the IVP associated to the KdV
equation, that is,

{

∂tv + ∂3
xv + v∂xv = 0,

v(x, 0) = v0(x),
(7.71)

x, t ∈ R. The method used here is quite different from the one illustrated for the
NLS equation in Chapter 5 and in the previous three sections of this chapter for the
mKdV and generalized KdV (gKdV) equations.

We start out by defining the function spaces introduced in the context of dispersive
equations by Bourgain in [Bo1]:

Definition 7.1. For s, b ∈ R and f ∈ S ′(R2), we say that f ∈ Xs,b , if

‖f ‖Xs,b =
(

∫

R2

(1 + |τ − ξ 3|)2b(1 + |ξ |)2s |̂f (ξ , τ )|2 dξdτ
)1/2

< ∞ , (7.72)

where ̂ denotes the Fourier transform in R
2.

We solve (a variant) of the integral equation, namely

v(t) = θ (t)V (t)v0 + θ (t)

t
∫

0

V (t − t ′)v∂xv(t ′) dt ′, (7.73)
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where θ ∈ C∞
0 (R), 0 ≤ θ ≤ 1, θ ≡ 1 near 0, supp θ ⊆ [−1, 1] with v0 ∈ Hs(R)

and v ∈ Xs,b.

Remark 7.8. Let ̂J sf (ξ ) = (1 + |ξ |2)s/2
̂f (ξ ), and ̂Λbf (τ ) = (1 + |τ |2)b/2

̂f (τ ),
where ̂ denotes the Fourier transform in one variable. Then,

‖f ‖Xs,b = ‖Λb J s V (−t)f ‖L2
ξ L

2
τ
.

Corollary 7.3. If b > 1/2,

Xs,b ⊂ C((−∞,∞) : Hs(R)).

This is an easy consequence of Remark 7.8 and the usual Sobolev embedding
theorem.

Let us set θρ(t) = θ (ρ−1t), ρ ∈ (0, 1], where θ is as above.

Lemma 7.8. For any b > 1/2 and s ∈ R,

‖θρV (t)v0‖Xs,b ≤ c ρ(1−2b)/2 ‖v0‖s,2. (7.74)

Proof.

θρ(t)V (t)v0 = θ (ρ−1t)

∞
∫

−∞

∞
∫

−∞
eixξ eitτ δ(τ − ξ 3)̂v0 dξ dτ ,

so that (θ (ρ−1t)V (t)v0)∧(ξ , τ ) = ρ̂θ (ρ(τ − ξ 3)) v̂0(ξ ). Thus,

‖θρ(t)V (t)v0‖2
Xs,b

= c ρ2

∞
∫

−∞

∞
∫

−∞
|̂θ (ρ(τ − ξ 3))|2(1 + |τ − ξ 3|)2b(1 + |ξ |)2s |̂v0(ξ )|2 dξ dτ

=c

∞
∫

−∞
(1+|ξ |)2s |̂v0(ξ )|2

(

ρ2

∞
∫

−∞
|̂θ (ρ(τ − ξ 3))|2(1 + |τ − ξ 3|)2b dτ

)

dξ.

Since b > 1/2 and ρ ∈ (0, 1), the inner integral can be estimated as follows:

ρ2

∞
∫

−∞
|̂θ (ρ(τ − ξ 3))|2(1 + |τ − ξ 3|)2b dτ

≤ cρ2

∞
∫

−∞
|̂θ (ρ(τ − ξ 3))|2 dτ + cρ2

∞
∫

−∞
|̂θ (ρ(τ − ξ 3))|2|τ − ξ 3|2b dτ

≤ cρ + cρ1−2b ≤ cρ1−2b.

This completes the proof of the lemma. �
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Lemma 7.9. For all s ∈ R and 1/2 < b ≤ 1,

‖θρ v‖Xs,b ≤ c ρ(1−2b)/2 ‖v‖Xs,b . (7.75)

Proof. (θρ(t)v(x, t))∧ = v̂ ∗τ (ρ̂θ (ρ · )), so that by definition of the Xs,b-norm, the
proof reduces to showing that, for a ∈ R,

∞
∫

−∞
|(ρ̂θ (ρ · )) ∗ v̂(τ )|2 (1 + |τ − a|)2b dτ ≤ c ρ(1−2b)

∞
∫

−∞
|̂v(τ )|2 (1 + |τ − a|)2b dτ.

Since ∞
∫

−∞
|ρ̂θ (ρτ )| dτ < ∞,

it follows that ∞
∫

−∞
|(ρ̂θ (ρ · )) ∗ v̂(τ )|2 dτ ≤ c

∞
∫

−∞
|̂v(τ )|2 dτ.

We turn to

∞
∫

−∞
|(ρ̂θ (ρ · )) ∗ v̂(τ )|2 |τ − a|2b dτ =

∞
∫

−∞
|Db

t (eiat v(t)θ (ρ−1t))|2 dt.

The Leibniz rule (7.25) yields

‖Db
t (eiatvθ (ρ−1 · )) − eiatvDb

t θ (ρ−1 · )‖L2
t
≤ c ‖Db

t (eiatv)‖L2
t
‖θ‖L∞

t
.

Note that ‖θ‖L∞
t
≤ c, and

‖Db
t (eiatv)‖2

L2
t
=

∞
∫

−∞
|̂v(τ )|2|τ − a|2b dτ.

Thus, we only have to bound the term:

∞
∫

−∞
|eiatvDb

t θ (ρ−1t)|2 dt.

But the Sobolev embedding theorem and the fact that b > 1/2 lead to

(

∞
∫

−∞
|eiatvDb

t θ (ρ−1 · )|2 dt
)
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≤ c
(

∞
∫

−∞
|eiat v(t)|2 dt +

∞
∫

−∞
|Db

t (eiatv)|2 dt
)

∥

∥Db
t θ (ρ−1 · )

∥

∥

2
L2
t

≤ c
(

∞
∫

−∞
|̂v(τ )|2 dτ +

∞
∫

−∞
|τ − a|2b |̂v(τ )|2 dτ

)

∥

∥Db
t θ (ρ−1 · )

∥

∥

2
L2
t
.

By Plancherel’s identity (1.11) and since b > 1/2 we have

‖Db
t θ (ρ−1 · )‖2

L2
t
=

∞
∫

−∞
|τ |2bρ2 |̂θ (ρτ )|2 dτ ≤ c ρ(1−2b) ‖θ‖2

H 1
t
.

The proof of the lemma then follows. �

Lemma 7.10. Let w(x, t) =
t
∫

0
V (t − t ′)h(t ′) dt ′ . If 1/2 < b ≤ 1; then

‖θρ w‖Xs,b ≤ c ρ(1−2b)/2 ‖h‖Xs,b−1 . (7.76)

Proof. We write

θρ(t)

t
∫

0

V (t − t ′)h(t ′) dt ′

= θρ(t)
∫ ∫

eixξ
eitτ − eitξ

3

τ − ξ 3
̂h(ξ , τ ) dξ dτ

= θρ(t)
∫ ∫

eixξ
eitτ − eitξ

3

τ − ξ 3
θ (τ − ξ 3)̂h(ξ , τ ) dξ dτ (7.77)

+ θρ(t)
∫ ∫

eixξ
eitτ − eitξ

3

τ − ξ 3
(1 − θ )(τ − ξ 3)̂h(ξ , τ ) dξ dτ

≡ I + II .

A Taylor expansion gives us

I =
∞
∑

k=1

ik

k! t
kθρ(t)

∞
∫

−∞
eixξ eitξ

3
(

∞
∫

−∞

̂h(ξ , τ )(τ − ξ 3)k−1θ (τ − ξ 3) dτ
)

dξ. (7.78)

Let tkθρ(t) = ρk (t/ρ)k θ (ρ−1t) = ϕk(t). Then,

ρ2

∞
∫

−∞
|ϕ̂k(ρτ )|2 (1 + |τ |)2b dτ
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≤ cρ2
(

∫

|ϕ̂k(ρτ )|2 dτ +
∫

|τ |2b |ϕ̂k(ρτ )|2 dτ
)

≤ cρ(1−2b)(‖ϕk‖2
L2
t
+ ‖Db

t ϕk‖2
L2
t
) ≤ cρ(1−2b) (1 + k)2.

Thus, by the proof of (7.74) and (7.78):

‖I‖Xs,b ≤
∞
∑

k=1

1 + k2

k! ρk ρ(1−2b)
∥

∥

∥

(

∞
∫

−∞
ĥ(ξ , τ )(τ − ξ 3)k−1θ (τ − ξ 3) dτ

)∨ ∥
∥

∥

s,2
.

But

∥

∥

∥

(

∞
∫

−∞

̂h(ξ , τ )(τ − ξ 3)k−1θ (τ − ξ 3) dτ
)∨ ∥
∥

∥

2

s,2

≤
∞
∫

−∞
(1 + |ξ |)2s

(

∞
∫

−∞
|ĥ(ξ , τ )(τ − ξ 3)k−1θ (τ − ξ 3)| dτ

)2

dξ

≤
∞
∫

−∞
(1 + |ξ |)2s

(

∫

|τ−ξ3|<1

|ĥ(ξ , τ )| dτ
)2

dξ

≤
∞
∫

−∞
(1 + |ξ |)2s

(

∞
∫

−∞

|̂h(ξ , τ )|
(1 + |τ − ξ 3|)(1−b)

1

(1 + |τ − ξ 3|)b dτ
)2

dξ

≤ c ‖h‖2
Xs,b−1

since b > 1/2.
Next, we estimate II in (7.77). We rewrite it as II = II1 + II2, where

II1 = − θρ(t)

∞
∫

−∞
ei(xξ+tξ3)

(

∞
∫

−∞

(1 − θ )(τ − ξ 3)

τ − ξ 3
̂h(ξ , τ ) dτ

)

dξ

II2 = θρ(t)

∞
∫

−∞

∞
∫

−∞
ei(xξ+tτ ) (1 − θ )(τ − ξ 3)

τ − ξ 3
̂h(ξ , τ ) dξ dτ.

Using Lemma 7.8, the Cauchy–Schwarz inequality, and b > 1/2, we deduce

‖II1‖Xs,b ≤ cρ(1−2b)/2
∥

∥

∥

(

∞
∫

−∞

(1 − θ )(τ − ξ 3)

τ − ξ 3
̂h(ξ , τ ) dτ

)∨∥
∥

∥

s,2

≤ cρ(1−2b)/2
[

∞
∫

−∞
(1 + |ξ |)2s



172 7 Korteweg–de Vries Equation

×
(

∫

|τ−ξ3|≥1/2

1

1 + |τ − ξ 3| |ĥ(ξ , τ )| dτ
)2

dξ
]1/2

≤ cρ(1−2b)/2
[

∞
∫

−∞
(1 + |ξ |)2s

×
(

∫

|τ−ξ3|≥1/2

|ĥ(ξ , τ )|
(1 + |τ − ξ 3|)(1−b)

1

(1 + |τ − ξ 3|)b dτ
)2

dξ
]1/2

≤ cρ(1−2b)/2 ‖h‖Xs,b−1 .

Finally, by (7.75) and the definition of Xs,b−1,

‖II2‖Xs,b ≤ c ρ(1−2b)/2
∥

∥

∥

∞
∫

−∞

∞
∫

−∞
ei(xξ+tτ ) (1 − θ )(τ − ξ 3)

τ − ξ 3
̂h(ξ , τ ) dξ dτ

∥

∥

∥

Xs,b

≤ c ρ(1−2b)/2 ‖h‖Xs,b−1 .

This completes the proof of the lemma. �

Lemma 7.11.

‖θρ(t)

t
∫

0

V (t − t ′)h(t ′) dt ′‖s,2 ≤ cρ(1−2b)/2 ‖h‖Xs,b−1 . (7.79)

Proof. A similar argument as the one used to show Lemma 7.10 yields (7.79). Thus,
we omit it. �

Lemma 7.12. Let s ∈ R, b′, b ∈ (1/2, 7/8) with b < b′ and ρ ∈ (0, 1), then for
v ∈ Xs,b′−1, we have

‖θρ v‖Xs,b−1 ≤ c ρ(b′−b)/8(1−b) ‖v‖Xs,b′−1
. (7.80)

Proof. To prove (7.80), we use duality and prove the estimate

‖θρ v‖X−s,1−b′ ≤ c ρ(b′−b)/8(1−b) ‖v‖X−s,1−b
. (7.81)

This result follows by interpolation. To do so, we need to establish the next
inequalities:

‖θρ v‖X−s,0 ≤ c ρ1/8 ‖v‖X−s,1−b
(7.82)

and

‖θρv‖X−s,1−b
≤ c ‖v‖X−s,1−b

. (7.83)
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Combining Remark 7.8, the Hölder inequality, and the Sobolev inequality (Theo-
rem 3.3), we have

‖θρv‖X−s,0 = ‖J−sV (t)(θ (ρ−1 · )v)‖L2
t L

2
x
= ‖V (t)θ (ρ−1 · ) J−sv‖L2

t L
2
x

= ‖θ (ρ−1 · )V (t) J−sv‖L2
t L

2
x
≤ cρ1/8 ‖V (t) J−sv‖

L2
xL

8/3
t

≤ cρ1/8 ‖V (t) J−sv‖
L2
xH

1/8
t

= cρ1/8 ‖v‖X−s,1/8

≤ cρ1/8 ‖v‖X−s,1−b
,

where we use that 1 − b > 1/8. This shows (7.82).
On the other hand, to prove (7.83) we use a similar argument to the one applied

in the proof of Lemma 7.9. Since (θρ(t) v(x, t))∧ = ̂θρ ∗τ v̂, by the definition of the
Xs,b-space, the proof reduces to showing that, for a ∈ R,

∞
∫

−∞
|̂θρ ∗t v̂|2(1+|τ−a|)2(1−b)dτ ≤ c

∞
∫

−∞
|̂v|2(1 + |τ − a|)2(1−b)dτ. (7.84)

Since ‖ρ̂θ (ρ · )‖L1
τ
< ∞, we have that

∞
∫

−∞
|̂θρ ∗t v̂|2 dτ ≤ c

∞
∫

−∞
|̂v|2 dτ.

Next, we estimate
∞
∫

−∞
|̂θρ ∗t v̂|2 |τ − a|2(1−b) dτ =

∞
∫

−∞
|D1−b

t (eiatv(t) θ (ρ−1t))|2 dt.

Using the Leibniz rule (7.25) we have that

‖D1−b
t (eiatvθρ) − eiatvD1−b

t θρ‖L2
t
≤ c ‖D1−b

t (eiatv)‖L2
t
‖θρ‖L∞

t
. (7.85)

The first term on the right-hand side of (7.85) can be estimated as follows. We first
notice that ‖θρ‖L∞ < ∞. Thus, Plancherel identity (1.11) gives us

‖D1−b
t (eiatv)‖L2

t
=
(

∞
∫

−∞
|̂v(τ )|2|τ − a|2(1−b) dτ

)1/2

. (7.86)

To bound ‖eiatvD1−b
t θρ‖L2

t
, we use the Hölder inequality to obtain

‖eiatvD1−b
t θρ‖L2

t
≤ ‖eiatv‖

L
2p
t
‖D1−b

t θρ‖L2q
t

,

with 1/p + 1/q = 1. Then, we choose p such that 1/2 − 1/2p = 1 − b. Using the
Sobolev inequality (Theorem 3.3), we have

‖eiatv‖
L

2p
t
≤ ‖eiatv‖H 1−b

t
= c
(

∞
∫

−∞
(1 + |τ − a|)2(1−b) |̂v(τ )|2 dτ

)1/2

. (7.87)



174 7 Korteweg–de Vries Equation

Since the inverse Fourier transform is bounded from L
2q

(2q−1)(R) into L2q(R), we have

‖D1−b
t θρ‖L2q

t
≤
⎛

⎝

∞
∫

−∞
| |τ |1−bρ̂θ (ρτ )| 2q

2q−1 dτ

⎞

⎠

2q−1
2q

=
⎛

⎝

∞
∫

−∞
| |τ |1−b

̂θ (τ )| 2q
2q−1 dτ

⎞

⎠

2q−1
2q

< ∞.

(7.88)

Combining (7.87) and (7.88), we have

‖eiatvD1−b
t θρ‖L2

t
≤ c

∞
∫

−∞
(1 + |τ − a|)2(1−b) |̂v(τ )|2 dτ. (7.89)

Thus, (7.86) and (7.89) yield (7.84).
The estimates (7.82) and (7.83) and interpolation yield the inequality (7.81). Thus,

the lemma follows. �

The next estimate is the key argument to obtain the local result for the IVP (7.71).
Notice that when we estimate the Xs,b-norm of the integral part in Lemma 7.10, we
end up in the space Xs,b−1, we have lost “one derivative,” so to apply a contraction
mapping argument we need to have an estimate that takes the nonlinear part back to
the space Xs,b.

Lemma 7.13.

1. If v ∈ Xs,b, s > −3/4, there exists b > 1/2 such that v∂xv ∈ Xs,b−1 and

‖∂x(v2)‖Xs,b−1 ≤ c ‖v‖2
Xs,b

.

2. Given s ≤ −3/4 the estimate above fails for any b.

We restate Lemma 7.13 in an equivalent form:

For v ∈ Xs,b, let f (ξ , τ ) = v̂(ξ , τ )(1+|ξ |)s(1+|τ−ξ 3|)b, so that ‖v‖Xs,b = ‖f ‖2.
In terms of f we can express v∂xv in the following way:

∂̂x(v2)(ξ , τ ) = iξ

∞
∫

−∞

∞
∫

−∞
f (ξ1, τ1) f (ξ − ξ1, τ − τ1)

× dξ1 dτ1

(1 + |ξ1|)s(1 + |τ1− ξ 3
1 |)b(1 + |ξ− ξ1|)s(1 + |(τ− τ1)− (ξ−ξ1)3|)b .

Thus, if we let

B(f , f , s, b) = (1 + |ξ |)s
(1 + |τ − ξ 3|1−b

|ξ |

×
∫

R2

K(ξ , ξ1, τ , τ1)f (ξ1, τ1)f (ξ − ξ1, τ − τ1) dξ1 dτ1,
(7.90)
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where

K(ξ , ξ1, τ , τ1) = (1 + |ξ1|)−s(1 + |ξ − ξ1|)−s

(1 + |τ1−ξ 3
1 |)b(1 + |(τ − τ1) − (ξ − ξ1)3|)b ,

Lemma 7.13 is equivalent to proving the next result for the bilinear operator B(·, ·)
defined in (7.90).

Lemma 7.14.

1. If s > −3/4, then

‖B(f , f , s, b)‖2 ≤ c ‖f ‖2
2. (7.91)

2. If s ≤ −3/4, the above estimate fails for each b.

We prove (7.91) in detail for s = 0. For this purpose, we need some lemmas. The
first one is regarding some elementary inequalities.

Lemma 7.15. If b > 1/2, there exists c > 0 such that

∞
∫

−∞

dx

(1 + |x − α|)2b(1 + |x − β|)2b
≤ c

(1 + |α − β|)2b
, (7.92)

∞
∫

−∞

dx

(1 + |x|)2b
√|a − x| ≤

c

(1 + |a|)1/2
. (7.93)

Lemma 7.16. Let

G(ξ , τ ) = |ξ |
(1 + |τ − ξ 3|)1−b

×
⎛

⎝

∞
∫

−∞

∞
∫

−∞

dξ1dτ1

(1 + |τ1 − ξ 3
1 |)2b(1 + |τ − τ1 − (ξ − ξ1)3|)2b

⎞

⎠

1/2

.

(7.94)

If 1/2 < b ≤ 3/4, then

|G(ξ , τ )| ≤ c.

Proof. Let us set α = ξ 3
1 and β = τ − (ξ − ξ1)3 in (7.94). Then by (7.92), we have

∞
∫

−∞

∞
∫

−∞

dξ1dτ1

(1 + |τ1 − ξ 3
1 |)2b(1 + |τ − τ1 − (ξ − ξ1)3|)2b

≤
∞
∫

−∞

dξ1

(1 + |τ − (ξ − ξ1)3 − ξ 3
1 |)2b

.

Next, we use the change of variable
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μ = τ − (ξ − ξ1)3 − ξ 3
1 = τ − ξ 3 + 3ξξ1(ξ − ξ1), dμ = 3ξ (ξ − 2ξ1) dξ1,

and

ξ1 = 1

2

{

ξ ±
√

4τ − ξ 3 − 4μ

3ξ

}

.

Thus,
|ξ (ξ − 2ξ1)| # √|ξ |

√

4τ − ξ 3 − 4μ

and

dξ1 # dμ√|ξ |√4τ − ξ 3 − 4μ
.

Substituting this on the right-hand side of the previous inequality and using (7.93),
we obtain

1√|ξ |

∞
∫

−∞

dμ

(1 + |μ|)2b
√

4τ − ξ 3 − 4μ
≤ 1√|ξ |

c

(1 + |4τ − ξ 3|)1/2
.

Hence, using the hypotheses we conclude that

|G(ξ , τ )| ≤ |ξ |
(1 + |τ − ξ 3|)1−b

1

|ξ |1/4

c

(1 + |4τ − ξ 3|)1/4

≤ c |ξ |3/4

(1 + |τ − ξ 3|)1−b(1 + |4τ − ξ 3|)1/4
≤ c.

Thus, the lemma follows. �

Proof of Lemma 7.14 We will prove 1. in the case s = 0. Definition (7.90),
the Cauchy–Schwarz inequality, Lemma 7.16, Fubinni’s theorem, and Young’s
inequality yield

‖B(f , f , 0, b)‖L2
τ L

2
ξ
=
∥

∥

∥

|ξ |
1 + |τ − ξ 3|1−b

×
∞
∫

−∞

∞
∫

−∞

f (ξ1, τ1) f (ξ − ξ1, τ − τ1) dξ1 dτ1

(1 + |τ1 − ξ 3
1 |)b(1 + |(τ − τ1) − (ξ − ξ1)3|)b

∥

∥

∥

L2
τ L

2
ξ

≤
∥

∥

∥

|ξ |
(1 + |τ − ξ 3|)1−b

×
(

∞
∫

−∞

∞
∫

−∞

dξ1dτ1

(1 + |τ1 − ξ 3
1 |)2b(1 + |(τ − τ1) − (ξ − ξ1)3|)2b

)1/2∥
∥

∥

L∞
τ L∞

ξ

×
∥

∥

∥

(

∞
∫

−∞

∞
∫

−∞
|f (ξ1, τ1)|2|f (ξ − ξ1, τ − τ1)|2 dξ1dτ1

)1/2∥
∥

∥

L2
τ L

2
ξ



7.4 KdV Equation 177

≤ c ‖f ‖2
L2
τ L

2
ξ

.

This proves the lemma. �

As a corollary, we have the next result.

Corollary 7.4. For s > −3/4 and b ∈ (1/2, 3/4] and b′ ∈ (1/2, b] we have that

‖B(f , f )‖Xs,b−1 ≤ c ‖f ‖2
Xs,b′ . (7.95)

Now, we are in position to establish the LWP result for the IVP (7.71). More
precisely, we have the following.

Theorem 7.8. Let s ∈ (− 3/4, 0]. Then, there exists b ∈ (1/2, 1) such that for any
v0 ∈ Hs(R) there exist T = T (‖v0‖s,2) with (T (ρ) → ∞ as ρ → 0) and a unique
solution v(t) of the IVP (7.71) in the time interval [−T , T ] satisfying

v ∈ C([−T , T ] : Hs(R)), (7.96)

v ∈ Xs,b ⊂ L
p

x,loc(R : L2
t (R)) for 1 ≤ p ≤ ∞, (7.97)

∂x(v2) ∈ Xs,b−1 (7.98)

and

∂tv ∈ Xs−3,b−1. (7.99)

Moreover, for any T ′ ∈ (0, T ) there existsR = R(T ′) > 0 such that the map ṽ0 �→
ṽ(t) from {ṽ0 ∈ Hs(R) : ‖v0 − ṽ0‖s,2 < R} into the class defined by (7.96)–(7.99)
with T ′ instead of T is smooth.

In addition, if v0 ∈ Hs′ (R) with s ′ > s, the previous results hold with s ′ instead
of s in the same time interval [−T , T ].

Proof. We define

Xa = {v ∈ Xs,b : ‖v‖Xs,b < a}. (7.100)

For v0 ∈ Hs(R), s > −3/4, we define the operator:

Ψv0 (v) = Ψ (v) = θ1(t)V (t)v0 − θ1(t)

2

t
∫

0

V (t − t ′) θρ(t ′) ∂x(v2(t ′)) dt ′. (7.101)

We see that Ψ (·) defines a contraction on Xa .
Let β = (b − b′)/8(1 − b′). By using (7.74), (7.75), (7.76), and (7.91) in

Lemma 7.13 we deduce that

‖Ψ (v)‖Xs,b ≤ c‖v0‖s,2 + c‖θρ(t)∂xv2(·, t))‖Xs,b−1

≤ c‖v0‖s,2 + c ρβ ‖∂xv2(·, t))‖Xs,b′−1
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≤ c‖v0‖s,2 + c ρβ‖v‖2
Xs,b

≤ c‖v0‖s,2 + c ρβ a2. (7.102)

Setting a = 2c‖v0‖Hs and ρ such that

c ρβ a <
1

2

we have

‖Ψ (v)‖Xs,b ≤ a.

A similar argument shows that for v, ṽ ∈ Xa

‖Ψ (v) − Ψ (ṽ)‖Xs,b =
1

2

∥

∥

∥θ1(t)

t
∫

0

V (t − t ′) θρ(t ′) ∂x(v2 − ṽ2)(t ′) dt ′
∥

∥

∥

Xs,b

≤ cρβ ‖v + ṽ‖Xs,b ‖v − ṽ‖Xs,b

≤ 2 cρβ a ‖v − ṽ‖Xs,b

≤ 1

2
‖v − ṽ‖Xs,b .

Therefore, Ψ (·) is a contraction from Xa into itself and we obtain a unique fixed
point that solves the equation for T < ρ, i.e.,

v(t) = θ1(t)V (t)v0 − θ1(t)

2

t
∫

0

V (t − t ′) θρ(t ′) ∂x(v2(t ′)) dt ′. (7.103)

The additional regularity

v ∈ C([0, T ] : Hs(R))

is proved as follows:
Using the integral equation (7.103), Lemmas 7.11, and 7.12, for 0 ≤ t̃ < t ≤ 1

and t − t̃ ≤ Δt it follows that

‖v(t) − v(t̃)‖s,2 ≤ ‖V (t − t̃)v(t̃) − v(t̃)‖s,2

+ c

∥

∥

∥

t
∫

t̃

V (t − t ′) θ2
( t ′ − t̃

Δt

)

∂x(v2(t ′)) dt ′
∥

∥

∥

s,2

≤ ‖V (t − t̃)v(t̃) − v(t̃)‖s,2 + c ‖θ( · − t̃

Δt

)

∂x v2‖Xs,b−1 (7.104)

≤ ‖V (t − t̃)v(t̃) − v(t̃)‖s,2 + c (Δt)
(b−b′)
8(1−b′) ‖∂x v2‖Xs,b′−1

≤ ‖V (t − t̃)v(t̃) − v(t̃)‖s,2 + c (Δt)
(b−b′)
8(1−b′) ‖v‖2

Xs,b′ = o(1)

as Δt → 0. This yields the persistence property. �
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7.5 Comments

The well-posedness of the k-gKdV equation has been studied extensively for many
years. Improving results in [BS], [BSc], [ST], it was shown in [K5] that the IVP
(7.10) is locally well-posed in Hs(R), s > 3/2. However, as Kato remarked in [K2],
“In fact, local well-posedness has almost nothing to do with the special structure of
the KdV equation.” In other words, the local result in Hs(R), s > 3/2, does not
distinguish the powers k and works for any skew-symmetric operator (instead of
∂3
x ) or omitting it (hyperbolic case).

For the study of the stability of solitary wave solutions of the k-gKdV equation,
it was important to have LWP in Sobolev spaces Hs(R) with s ≤ 1, specially for the
case k = 3.

For the KdV equation the L2 LWP was established by Bourgain [Bo1]. The proof
given here was taken from [KPV6], where LWP was obtained for data in Hs(R),
s > −3/4 (Lemmas 7.14 and 7.15 were proved in [KPV6] and by Nakanishi, Takaoka
and Tsutsumi [NTT1] in the case s = −3/4).

Extensions of the bilinear estimates (Lemma 7.14 (1)) were first obtained by
Colliander, Staffilani and Takaoka [CST], motivated by the study of global well-
posedness below the L2-norm for the KdV equation. A further extension was given
by Tao [To3].

The well-posedness in the limiting case s = − 3
4 was established in [Ki1] [Gu]

using a Besov-like generalization of the Xs,b spaces with (s, b) = (−3/4, 1/2) in the
low frequency (see also [BTo]).

It is interesting to compare this LWP result for the KdV with those for the viscous
Burgers’ equation:

{

∂tu = ∂2
xu + u∂xu,

u(x, 0) = u0(x) ∈ Hs(R).
(7.105)

In [Dx], Dix showed that (7.105) is locally well-posed in Hs(R), s ≥ −1/2
(scaling s = −1/2) and uniqueness fails for s < −1/2 (a construction based in the
Cole–Hopf transformation (see Exercise 9.18). Therefore, from the LWP point of
view the KdV equation is better than the viscous Burgers’ equation.

The proof of the LWP result for the mKdV was taken from [KPV4]. The estimate
(7.13) is the sharp version of the Kato smoothing effect. It was already commented
on at the end of Chapter 4 (see (4.54)–(4.67)) which was used to obtain weak L2

solutions for the KdV equation.
The estimate (7.18) regarding the continuity of the maximal function associated to

the group V (t), i.e., sup
t∈[0,T ]

|V (t)v0|, is due to Kenig and Ruiz [KR] and was obtained

in their study of the problem mentioned in Chapter 4 (see (4.57)).
It was shown in [KPV5] that the result s ≥ 1/4 is optimal, i.e., the map data-

solution v0 �→ v(t) cannot be uniformly continuous in Hs(R) for s < 1/4. The
proof of this assertion follows a close argument to the one provided in Chapter 5
for the cubic (focusing) NLS equation in one dimension. There it was constructed



180 7 Korteweg–de Vries Equation

a two-parameter family of solutions for the cubic (focusing) NLS by combining the
Galilean and the scaling invariance of the solutions. However, the mKdV equation is
not Galilean invariant. So to overcome this, one first considers the complex version
of the mKdV equation, namely,

∂tw + ∂3
x w + |w|2∂xw = 0 (7.106)

(see [GO], [KSC]), which has a set of solutions that is Galilean invariant. In fact, we
have the two-parameter family

wN ,ω(x, t) = √
3 e−it(3Nω2−N3)eixNϕω(x − tω2 + 3tN2), (7.107)

where ϕ solves (5.8) (i.e., −ϕ + ϕ′′ + ϕ3 = 0 so ϕ(x) = √
2 sech(x)); and ϕω(x) =

ωϕ(ωx) (notice that
√

3ϕω(x − tω2) solves 7.106). With the two-parameter family,
we follow an argument similar to the one employed in Theorem 5.12 to obtain the
result for equation (7.106). To pass to the mKdV equation, one uses a special solution
called a “breather,” see [Wa],

vN ,ω(x, t) =−2
√

6 ω sech(ωx + γ t)

×
(

cos (Nx + δt) − (ω/N ) sin (Nx + δt) tanh (ωx + γ t)

1 + (ω/N )2 sin2 (Nx + δt) sech (ωx + γ t)

) (7.108)

with δ = N (N2 − 3ω2) and γ = ω(3N2 − ω2) and observe that for ω/N " 1,

vN ,ω(x, t) ≈− 2
√

6 cos (Nx +N (N2 − 3ω2)t)

× ω sech(ωx + ω(3N2 − ω2)t),

which is basically a multiple of the real part of (7.107).
As it was remarked above, Bourgain introduced the spaces Xs,b in the context

of dispersive equations. Previously they were used by Rauch and Reed [RuR] and
Beals [Bs] in their respective studies of propagation of singularities for solutions of
semilinear wave equation.

In the same spirit that [KTa2], [CrCT2] and [CrHoT] a priori estimates were es-
tablished for solutions of the modified KdV below the Sobolev index 1/4 which
guarantees the well-posedness. More precisely, it was shown in [CrHoT] that
solutions of the IVP associated to the mKdV satisfies for s ∈ (−1/4,−1/8),

sup
[0,T ]

‖u(t)‖s,2 ≤ c (T ; ‖u0‖s,2).

This result does not give control on the difference of two solutions (uniqueness).
In a similar regard, in [BuKo] an a priori estimate in H−1(R) for smooth solutions

of the KdV equation was obtained. More precisely, in [BuKo] the following result
was established: if v ∈ C([0,∞) : Hs(R)), with s ≥ −3/4, is a solution of the IVP
with k = 1, then

‖v(·, t)‖−1,2 ≤ c (‖v0‖−1,2 + ‖v0‖3
−1,2), for any t ≥ 0.
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This allows to construct global H−1-weak solutions of the associated IVP. In [Mo2],
it was shown that the map data-solution associated to the IVP for the KdV equation
cannot be continuously extended in Hs(R) for s < −1.

In [FaPa], modified proofs of Theorems 7.4, 7.5, and 7.6 and Corollary 7.2 were
obtained which simplify the argument by not using norm involving time derivatives
Dt of the unknown function.

The LWP result for the case k = 3 for data in Hs(R), s > −1/6, was obtained by
Grünrock [Gr2]. The key tool to prove that result was the following bilinear estimate
for solutions of the linear problem. More precisely,

‖Dx(V (t)f · V (t)g)‖L2
xL

2
t
≤ c ‖f ‖2‖g‖2.

Tao [To6] extended Grünrock’s result to the critical case by showing LWP for data
in Ḣ−1/6(R). From this result, it follows readily the global one for small data due
to the criticality of the space. Thus, the case k = 3 exhibits similar properties to the
case k ≥ 4; see Theorems 7.2 and 7.3 and the Remarks 7.15 and 7.16.

The results for k ≥ 4 were taken from [KPV4] (Theorems 7.2–7.6). Their
sharpness was established in [BKPSV] (Theorem 7.7).

In [GrV], LWP was established in the spaceŝHs
r (R) (see (5.75)) for the parameters

r ∈ (1, 2) and s ≥ 1/2 − 1/2r .
Results concerning the smoothing effects of solutions of (7.10) due to special

decay of the data were first given by Cohen [Co1] and Cohen and Kappeler [CoK]
for the KdV equation for step data using the inverse scattering theory.

In [K2], Kato studied the IVP (7.1) in weighted Sobolev spaces and showed that
if

v0 ∈ F s
2k = Hs(R) ∩ L2(|x|2k dx), k ∈ Z

+, s ≥ 2k, (7.109)

then the local solution describes a continuous curve on F s
2k as far as it exists. In

particular, the solution flow preserves the Schwartz class S(R). Roughly, this is due
to the fact that the operators L = ∂t +∂3

x and Γ = x−3t ∂2
x commute. The extension

of this result to solutions of (7.1) with data:

v0 ∈ F s
2l with s ≥ max{2l; sk}, l > 0, (7.110)

sk = −3/4 if k = 1, sk = 1/2 if k = 2, and sk = 1/2 − 2/k was established
in [Nh] and [FLP4]. In [ILP1], it was shown that this persistence result in F s

l with
s ≥ l > 0 is optimal. More precisely, if u ∈ C([−T , T ] : Hs(R)) ∩ . . . , with
s ≥ max{sk; 0}, is a solution of the IVP (7.1) and there exist t1, t2 ∈ [−T , T ],
t1 �= t2 such that |x|α u(·, tj ) ∈ L2(R) for 2α > s, then u ∈ C([−T , T ] : H 2α(R)).
In other words, persistence in L2(|x|2α dx) (decay) can only hold for solutions in
C([−T , T ] : H 2α(R)).

Also in [K2], Kato proved the following result for the KdV equation (which also
holds for solutions of (7.1) with k ∈ Z

+): if v ∈ C([0, T ] : H 2(R))∩ . . . is a solution
of (7.1) with v0 ∈ H 2(R) ∩ L2(e2β xdx), β > 0, then

eβxv ∈ C([0, T ] : L2(R)) ∩ C((0, T ) : H∞(R)). (7.111)
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Formally, one has that the semigroup {V (t) = e−t∂3
x : t ≥ 0} in L2(eβxdx) is

equivalent to {e−t(∂x−β)3
: t ≥ 0} in L2(R), i.e., if

∂tu + ∂3
xu = 0,

then v(x, t) = eβxu(x, t) satisfies

∂tv + (∂x − β)3v = ∂tv + ∂3
xv − 3β∂2

x v + 3β2∂xv − β3v = 0, (7.112)

which explain this “parabolic effect.” In [KF], Kruskov and Faminskii obtained
another version of this result by considering weights of the form xα+ = xα χ(0,∞)(x).

Tarama [Ta2] showed that solutions of the KdV equation with real-valued initial
data v0(x) ∈ L2(R) satisfying the condition:

∞
∫

−∞
eδ|x|

1/2 |v0(x)|2dx < ∞

with some positive constant δ, become analytic with respect to the variable x for
all t > 0. The proof of this theorem is based on the inverse scattering method (see
Section 9.6), which transforms the KdV equation into a linear dispersive equation
for which the analyticity smoothing effect can be established through the analytic
properties of the fundamental solutions. However, for higher powers a similar result
is unknown even for the integrable case k = 2, i.e., for the mKdV.

In [GT], Ginibre and Tsutsumi proved for the mKdV that if v0 ∈ L2(R) and
x

1/8
+ v0 ∈ L2(R), then the uniqueness holds (observe that decay corresponds to 1/4

derivatives via the operator Γ above which is the sharp LWP). In the KdV case, this
result improves by a factor of 2 the one obtained in [KF].

In (7.111), we have seen that persistence property holds in L2(w(x) dx), w(x) =
eβx , β > 0 for t > 0. The following unique continuation result found in [EKPV3]
gives an upper bound on the weight w(x) for which this property remains: there exists
ck > 0 such that if

v1, v2 ∈ C([0, 1] : H 3(R) ∩ L2(|x|2 dx))

such that

(v1 − v2)(·, 0), (v1 − v2)(·, 1) ∈ L2(eck x
3/2
+ dx), x+ = max{x; 0}. (7.113)

Then,
v1 ≡ v2 on R × [0, 1].

Notice that taking v2 ≡ 0 it follows that persistence in L2(w(x) dx) with w(x) =
eck x

3/2
+ , ck arbitrarily large cannot hold in the interval [0, 1] for a nonnull solution.

In [ILP1], it was shown that (7.113) is optimal. More precisely:
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If v0 ∈ H 1(R) ∩ L2(ea0 x
3/2
+ dx), a0 > 0, then v = v(x, t) the solution of the IVP

(7.1) defined in the time interval [0, T ] satisfies

sup
0≤t≤T

∞
∫

−∞
ea(t) x3/2

+ |v(x, t)|2 dx ≤ c = c(a0; ‖v0‖1,2; ‖e a0
2 x

3/2
+ v0‖2; T ) (7.114)

with

a(t) = a0

(1 + 27a2
0 t

/4)1/2
. (7.115)

In other words, the initial decay of v0 ∈ L2(ea0 x
3/2
+ dx) remains in time but with

a constant a(t) decreasing in t as in (7.115).
Concerning the propagation of asymmetric regularity in solutions of the IVP

(7.1), one has the following result established in [ILP2]: Let v ∈ C([−T , T ] :
H 3/4+ (R)) ∩ . . . be a solution of the IVP (7.1). If for some l ≥ 1

∞
∫

0

|∂l
xv0(x)|2 dx < ∞, (7.116)

then for any ε > 0 and any b > 0

sup
0<t<T

∫

x>ε−bt

|∂l
xv(x, t)|2 dx < ∞. (7.117)

Roughly speaking, this tells us that the regularity in the right-hand side of the data
v0 propagates with infinite speed to its left as time evolves.

Next, we consider the LWP for the periodic boundary value problem associated
to the k-gKdV.

For the case k = 1, the KdV equation, local well-posedness was proven in Hs(T),
s ≥ −1/2 by Kenig, Ponce andVega [KPV6] (improving an earlier result of Bourgain
[Bo1] for s ≥ 0). The proofs are based on the modified version of the Xs,b spaces,
i.e., the spaces Ys, b, which are the completion under the norm:

‖f ‖Ys,b =
⎛

⎝

∑

m�=0

∞
∫

−∞
(1 + |τ −m3|)2b |m|2s |̂f (m, τ )|2 dτ

⎞

⎠

1/2

(7.118)

of the space Y defined as the function space of all f such that

(i) f : T × R → C,
(ii) f (x, ·) ∈ S for each x ∈ T,
(iii) x �→ f (x, ·) is C∞,
(iv) ̂f (0, τ ) = 0 for all τ ∈ R.
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Bourgain [Bo8] also showed that below −1/2 (for s < −1/2) the smoothness of the
map data-solution fails. We recall that the smoothness of this map is a by-product of
the contraction principle. So this type of result in particular shows that the iteration
process by itself does not provide a result in Hs(T), s < −1/2. In this regard, using
the inverse scattering method Kappeler and Topalov [KpTo] showed that the solution
flow of the KdV extends continuously to H−1(T).

For the mKdV equation (k = 2), LWP was established in [KPV6] in Hs(T),
s ≥ 1/2. This was proven to be sharp in [CrCT1]. By requiring the dependence of
solutions on the initial data be just continuous and considering real solutions, Takaoka
and Tsutsumi [TTs] were able to lower the Sobolev index s > 1/2 to s > 3/8. One
of the main new ideas in their approach was the modification of the Bourgain norm
(7.118) by

‖f ‖Zs,b =
(
∑

m�=0

∞
∫

−∞
(1 + |τ −m3 −m|̂u0(m)|2|)2b |m|2s |̂f (m, τ )|2 dτ

)1/2

,

where u0 is the considered initial data. Notice that the definition of the norm ‖ · ‖Zs,b

depends on the initial data. In [NTT2], Nakanishi, Takaoka and Tsutsumi extended
this LWP result for the mKdV to Hs(T), for s > 1/3 (and under some additional
hypotheses on the data to Hs(T), s > 1/4).

For k ≥ 3, the best LWP result is in Hs(T), s ≥ 1/2 (see [CKSTT4]).

7.6 Exercises

7.1 ([BSa2]) Let Ai(x) be defined as in (1.32):

(i) Prove that

A′′
i (z) − z Ai(z) = 0.

(ii) Defining

v(x, t) = 1
6
√
t
A2

i (
1

22/3

x
3
√

3t
),

prove that

∂tv + ∂3
xv = 0, x ∈ R, t > 0.

(iii) Using (1.37), show that for any t > 0,

‖v(·, t)‖p < ∞ if and only if p > 2.

(iv) Show that for any p > 2,

lim
t↓0

‖v(·, t)‖p = +∞.
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7.2 Denote by (k,±1) the equation:

∂tv + ∂3
xv ± vk ∂xv = 0, x, t ∈ R, k ∈ Z

+,

(the cases (k,−1) correspond to the generalized defocusing KdV equation).

(i) Prove that if v(x, t) is a solution of (k,±), then

(a) v(−x,−t) also solves (k,±)
(b) −v(x, t) solves (k, (−1)k)
(c) λ2/k v(λx, λ3 t) solves (k,±) for λ > 0

(ii) Prove that for λ > 0

vλ(x, t) = λ
√

6 tanh (λ(x + 2λ2t)) (kink solution)

is a solution of (2,−1).
(iii) Prove that if v(·, ·) is a solution of (1,±1), then for h ∈ R, v(x±h t , t)±h

also solves (1,±1) (Galilean invariance).
(iv) Let v be a solution of (2,−1). Show that the function (Miura transforma-

tion) w = √
6 ∂xv + v2 solves (1,−1).

(v) Let v be a solution of (2, 1). Show that w = i
√

6 ∂xv + v2 solves (1, 1).

7.3 Consider the IVP associated to the KdV equation (7.71):

(i) Prove that v(x, t) = x

1 + t
is solution of (7.71) with v(x, 0) = x for any

time t > 0.

(ii) Prove that v(x, t) = −x

1 − t
solves (7.71) with v(x, 0) = −x, but it blows

up in finite time.
(iii) Prove that parts (i) and (ii) also hold for the inviscid and viscous Burgers’

equation ((3.46) and (7.105), respectively) and for the Benjamin–Ono
equation (9.9).

7.4 (Soliton) Let u(x, t) = φc,k(x − ct) = φ(x − ct) be solution of

∂tu + ∂3
xu + uk ∂xu = 0

with strong decay at infinity.

(i) Show that

(a) − cφ′ + φ′′′ + φk φ′ = 0.

(b) − cφ + φ′′ + φk+1

k+1 = 0.

(c) − c
φ2

2 + (φ′)2

2 + φk+2

(k+1)(k+2) = 0,
(integrating this equation one gets the explicit solution (7.6)).

(ii) Starting in (b) define x = φ and y = φ′.
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(a) Show that the second order ODE can be written as the Hamiltonian
system:

⎧

⎪

⎨

⎪

⎩

dx

dt
= ∂yH

dy

dt
= −∂xH ,

where

H = y2

2
− c

x2

2
+ xk+2

(k + 1)(k + 2)
.

(b) Using the decay condition at infinity prove that the level set
{H (x, y) = 0} represents the traveling wave.

(c) Prove that φ > 0, symmetric and ‖φ‖∞ = [ c2 (k + 1)(k + 2)]1/k .

7.5 ([Za]) Show that v(x, t) = 1√
6

(

c − 4c

4c2(x − 6c2t)2 + 1

)

solves the mKdV

equation (7.28).
7.6 (Critical KdV) Show that if u0 ∈ Ḣ−3/2(R) ∩ S(R), then the solution of the

KdV equation (7.71) u(·, t) /∈ Ḣ−3/2(R) for all t �= 0.
7.7 Using a formal scaling argument, obtain the estimate of the life span of the

local solutions as a function of the size of the initial data given in Theorem 7.1,
i.e., T (‖D1/4

x v0‖2) = c ‖D1/4v0‖−4
2 .

7.8 (Two-soliton solution of the KdV) Given the solution of the KdV:

v(x, t) = 72
3 + 4 cosh (2(x − 4t)) + cosh (4(x − 16t))

[3 cosh (x − 28t) + cosh (3(x − 12t))]2

show that for ξ1 = x − 16 t fixed

v(x, t) ∼ 48 sech2
(

2ξ1 ∓ log 3

2

)

as t → ±∞;

show that for ξ2 = x − 4t fixed

v(x, t) ∼ 12 sech2
(

2ξ2 ± log 3

2

)

as t → ±∞.

Conclude that

v(x, t) ∼ 48 sech2
(

2ξ1 ∓ log 3

2

)

+ 12 sech2
(

2ξ2 ± log 3

2

)

as t → ±∞.

7.9 ([KPV6])

(i) Assuming that the following inequality holds for s ∈ (−3/4,−1/2) and
b = b(s) ∈ (1/2, 1)

∣

∣

∣

∫ ∫ ∫ ∫ |ξ | h(ξ , τ )

(1 + |τ − ξ 3|)1−b (1 + |ξ |)−s

(1 + |ξ1|)−s f (ξ1, τ1)

(1 + |τ1 − ξ 3
1 |)b
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(1 + |ξ − ξ1|)−s g(ξ − ξ1, τ − τ1)

(1 + |τ − τ1 − (ξ − ξ1)3|)b dτ1dξ1dτdξ

∣

∣

∣ (7.119)

≤ c ‖h‖L2
ξ L

2
τ
‖f ‖L2

ξ L
2
τ
‖g‖L2

ξ L
2
τ
,

prove Corollary 7.4 with b′ = b. Sketch the LWP result for the IVP
associated to the KdV equation (7.71) in Hs(R), s ∈ (−3/4,−1/2).

(ii) Prove that if either |ξ1| ≤ 1 or |ξ − ξ1| ≤ 1, then

(1 + |ξ1|)−s(1 + |ξ − ξ1|)−s ≤ c (1 + |ξ |)−s ,

so the proof of (7.119) in this domain reduces to the estimate (7.94).
(iii) Show by symmetry that to prove (7.119) it suffices to consider

|τ − τ1 − (ξ − ξ1)3| ≤ |τ − ξ 3
1 |.

(iv) Combine (ii) and (iii) to show that in order to obtain Corollary 7.4 with
b′ = b it suffices to establish the following inequalities:

sup
ξ , τ

|ξ |
(1 + |τ − ξ 3|)1−b(1 + |ξ |)−s

×
⎛

⎝

∫ ∫

A

|ξ1(ξ − ξ1)|−2 s dτ1dξ1

(1 + |τ1 − ξ 3
1 |)2b(1 + |τ − τ1 − (ξ − ξ1)3|)2b

⎞

⎠

1/2

< c,

(7.120)

with A = A(ξ , τ ) as:

A = {(ξ1, τ1) ∈ R
2 : |ξ1|, |ξ − ξ1| ≥ 1, |τ − τ1 − (ξ − ξ1)3|

≤ |τ1 − ξ 3
1 | ≤ |τ − ξ 3|}

and

sup
ξ1, τ1

1
(1+|τ1−ξ3

1 |)b

×
⎛

⎝

∫ ∫

B

|ξ |2(1+s)|ξξ1(ξ − ξ1)|−2 s(1 + |ξ |)2s dτdξ

(1 + |τ − ξ 3|)2(1−b)(1 + |τ − τ1 − (ξ − ξ1)3|)2b

⎞

⎠

1/2

< c,
(7.121)

with B = B(ξ , τ ) as:

B =
{

(ξ1, τ1) ∈ R
2 : |ξ1|, |ξ − ξ1| ≥ 1, |τ − τ1 − (ξ − ξ1)3|

≤ |τ1 − ξ 3
1 |, |τ − ξ 3| ≤ |τ1 − ξ 3

1 |.

}

.

(v) Following the argument given in Lemma 7.16 prove the inequality (7.120)
(for the proof of (7.121) we refer the reader to [KPV6]).
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7.10 Assuming b > 1/2 prove the following inequalities:

(i) ‖g‖L8(R2) ≤ c ‖g‖X0,b ,

(ii) ‖D1/6
x g‖L6(R2) ≤ c ‖g‖X0,b ,

(iii) ‖∂xg‖L∞
t L2

x
≤ c ‖g‖X0,b ,

(iv) ‖g‖L∞
x L2

t
≤ c ‖g‖X0,b .

7.11 Let w be a solution of the IVP:
{

(∂t + a∂3
x + ib∂2

x )w = F ,

w(x, 0) = w0(x).
(7.122)

Show that

z(x, t) = e
i b3

27a2 t
ei

b
3a x w

(

x + b2

3a
t , t
)

solves the IVP
{

∂tz + a∂3
x z = ˜F ,

z(x, 0) = z0(x).
(7.123)

where

z0(x) = ei
b

3a x w0(x) and ˜F (x, t) = e
i b3

27a2 t
ei

b
3a x F

(

x + b2

3a
t , t
)

. (7.124)

7.12 ([ILP2]) Consider the linear IVP (7.10) with v0 ∈ L2(R). Prove that if for some
k ∈ Z

+,

v0|(0,∞) ∈ Hk((0,∞)),

then the corresponding solution v(x, t) satisfies that for any b > 0,

v(·, t)|(−b,∞) ∈ Hk((−b,∞)), for each t > 0

and

v(·, t)|(−∞,b) ∈ Hk((−∞, b)) for each t < 0.

Hint: Let η ∈ C∞(R), η′ ≥ 0, η(x) = 0 for x ≤ 0 and η(x) = 1 for x ≥ 1.
Following Kato’s argument in [K2] one easily gets the (formal) identity

1

2

d

dt

∫

v2(x, t) η(x) dx + 3

2

∫

(∂xv)2(x, t) η′(x) dx

−1

2

∫

v2(x, t) η(3)(x) dx = 0.

(7.125)
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Modify η(·) in each step j = 1, 2, . . . , k (ηj (·)) and consider ηj (x + ct) with
c > 0 (for t > 0) to obtain the appropriate version of (7.125).

7.13 ([ILP2]) Consider the linear IVP (7.10) with v0 ∈ L2(R). Prove that if for some
m ∈ Z

+,
x
m/2
+ v0 ∈ L2(R),

then for any t > 0,
x
m/2
+ v(·, t) ∈ L2(R)

and for any b > 0 and t > 0

∞
∫

b

(∂m
x u(x, t))2 dx < ∞.

Hint: Modify the argument in the hint of Exercise 7.12.
7.14 ([ILP2]) Consider the linear IVP (7.10) with v0 ∈ L2(R). Prove that if for some

m ∈ Z
+ and t1, t2 ∈ R with t1 < t2 the corresponding solution v(x, t) satisfies

x
m/2
+ v(·, t1), x

m/2
− v(·, t2) ∈ L2(R),

then v0 ∈ Hm(R).
Hint: Use Exercise 7.13.

7.15 (i) Consider the IVP for the 1-D heat equation
{

∂tu − ∂2
xu = 0,

u(x, 0) = u0(x),
(7.126)

x ∈ R, t > 0. Prove that if u0 ∈ L2(R), then for each t positive the solu-
tion u(·, t) = et∂

2
x u0 of (7.126) has an analytic extension to C. Moreover,

if z = x + iy, then

|u(z, t)| ≤ ey
2/4t

(4πt)1/4
‖u0‖2.

(ii) Consider the linear IVP (7.10). Prove that if v0 ∈ L2(R) ∩ L2(eβxdx),
β > 0, then for each t positive the solution v(·, t) has an analytic extension
to C.
Hint: Combine the result in part (i) and the formula (7.112).



Chapter 8
Asymptotic Behavior of Solutions
for the k-gKdV Equations

This chapter is concerned with the longtime behavior of solutions to the initial value
problem (IVP) associated to the k-generalized Korteweg-de Vries equations,

{

∂tv + ∂3
xv + vk∂xv = 0,

v(x, 0) = v0(x),
(8.1)

x, t ∈ R, k ∈ Z
+.

We shall restrict ourselves to consider only real solutions of (8.1). In this case,
the following quantities are preserved by the solution flow:

I1 =
∞
∫

−∞
v(x, t) dx, (8.2)

I2 =
∞
∫

−∞
v2(x, t) dx, (8.3)

E(v0) = I3 =
∞
∫

−∞

(

(∂xv)2 − 2

(k + 1)(k + 2)
vk+2
)

(x, t) dx. (8.4)

Combining them with the local existence theory in Chapter 7, we shall see that
for k = 1, 3 the IVP (8.1) with v0 ∈ L2(R) has a unique globally bounded solution.
For the case k = 2, the same holds in H 1(R).

In fact, we shall see in Section 8.1 that a quite stronger set of results has been
established in the case k = 1, 2, 3.

In Section 8.2, we treat the L2-critical case k = 4. A major set of results due to
Martel and Merle as well as extensions and further analysis due to Martel, Merle, and
Raphael is discussed. In particular, they have settled a long-standing open problem
by proving the finite time blowup of some local H 1-solutions. Similar results for
k ≥ 5 remain as open problems.

In Section 8.3, we add some further comments.

© Springer-Verlag New York 2015 191
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8.1 Cases k = 1,2,3

We observe that if v(t) is a local real H 1-solution of (8.1), combining Gagliardo–
Nirenberg (3.14) and (8.3)–(8.4) gives

E(v0) =
∞
∫

−∞

[

(∂xv)2 − 2

(k + 1)(k + 2)
vk+2
]

(x, t) dx

≥ ‖∂xv(t)‖2
2 −

2

(k + 1)(k + 2)
‖v(t)‖k+2

k+2

≥ ‖∂xv(t)‖2
2 − ck ‖∂xv(t)‖k/2

2 ‖v(t)‖2+k/2
2 (8.5)

≥ ‖∂xv(t)‖2
2 − ck ‖∂xv(t)‖k/2

2 ‖v0‖2+k/2
2 .

Hence, using the notation η = η(t) = ‖∂xv(t)‖2 it follows that

E(v0) ≥ η2 − ck‖v0‖2+k/2
2 ηk/2. (8.6)

So for k < 4, one obtains the a priori estimate:

η(t) ≤ M(‖v0‖2; k). (8.7)

In this sense as well as in the scaling argument for the L2-norm (see (7.8)), the
case k = 4 is critical.

Thus for k = 2, (8.7) allows us to reapply the local existence theory (local
well-posedness in Hs(R), s ≥ 1/4) for data v0 ∈ H 1(R).

Theorem 8.1. For v0 ∈ H 1(R) real valued the corresponding local solution of the
initial value problem (IVP) (8.1) with k = 2 given by Theorem 7.1 extends in the
same class to any time interval with

v ∈ C(R : H 1(R)) ∩ L∞(R : H 1(R)). (8.8)

Moreover, if v0 ∈ Hs(R), s > 1, then

v ∈ C(R : Hs(R)). (8.9)

In the cases k = 1, 3, the local well-posedness was established in Hs(R) for
s ≥ −3/4 and s > −1/6, respectively (see Theorem 7.8 and [Gr2]). These cases
are subcritical, so the interval of existence in each case [0, T ] satisfies that T =
T (‖u0‖s,2) > 0. Therefore, if v0 ∈ L2(R) by I2 (see (8.3)), we can reapply this local
theory to obtain the following global result.

Theorem 8.2. For v0 ∈ L2(R) real the corresponding local solution of the IVP
(8.1) with k = 1 or 3 extends in the same class to any time interval with

v ∈ C(R : L2(R)) ∩ L∞(R : L2(R)). (8.10)
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Moreover, if v0 ∈ Hs(R), s > 0, then

v ∈ C(R : Hs(R)). (8.11)

In the cases k = 1, 2, due to the form of the infinite conservation laws, one can
replace (8.9) and (8.11) by v ∈ C(R : Hs(R)) ∩ L∞(R : Hs(R)) if s ∈ Z

+.
These local and global results present the following questions:

Question 1. What happens with the longtime behavior of the solution corresponding
to data v0 ∈ Hs(R) with s ∈ [−3/4, 0), [1/4, 1), and (−1/6, 0) in the cases k = 1, 2,
and 3, respectively?

The first result in this direction was given by Bourgain [Bo5] in his study of the
critical two-dimensional nonlinear Schrödinger (NLS) equation. He set up a general
argument to obtain global solutions corresponding to data whose regularity is below
that required if one is using the conservation law.

To illustrate his approach, we take the mKdV equation, k = 2 in (8.1), with
v0 ∈ Hs(R), s ∈ [1/4, 1) (see [FLP2]).

First, one splits the data according to the frequency (low–high). For N large to be
determined one considers

v0 = (χ{|ξ |≤N} v̂0)∨ + (χ{|ξ |>N} v̂0)∨ = v1,0 + v2,0. (8.12)

Thus, v1,0 ∈ H∞(R), with E(v1,0) + ‖v1,0‖1,2 ≤ c N1−s and ‖v2,0‖r ,2 ≤ c Nr−s

for r ∈ [1/4, s).
One solves the mKdV with data v1,0 as in Theorem 7.1, so the corresponding

solution v1(t) satisfies

‖v1(t)‖1,2 ≤ c N1−s , t ∈ [0,ΔT ], ΔT # ‖D1/4
x v1,0‖−4

2 , (8.13)

and v2(t) satisfies the error equation (using that v = v1 + v2):

∂tv2 + ∂3
xv2 + v2∂xv − v2

1∂xv1 = 0, t ∈ [0,ΔT ], (8.14)

with data v2,0 (small) in Hr (R) for r ∈ [0, s). The interval [0,ΔT ] is given by the
local well-posedness theory. Using that

v2(t) = V (t)v2,0 +
t
∫

0

V (t − t ′)[(v1 + v2)2 ∂x(v1 + v2) − v2
1∂xv1](t ′) dt′

= V (t)v2,0 + z(t),

one observes that z(t) is smoother than V (t)v2,0 (see Exercise 8.1 and comments
there). Indeed, it belongs to H 1(R) with a “good” estimate for its norm. Define

{

v1,0(ΔT ) = v1(ΔT ) + z(ΔT ),

v2,0(ΔT ) = V (ΔT )v2,0

and repeat the argument in [ΔT , 2ΔT ].
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Briefly, to reach the time T ∗ we apply it T ∗/ΔT times. If one proves that

E

⎛

⎝v0,1 +
T ∗/ΔT
∑

j=1

z(jΔT )

⎞

⎠+
T ∗/ΔT
∑

j=1

‖z(jΔT )‖1,2 ≤ c N1−s , (8.15)

then all the previous estimates are uniform and one can extend the solution to [0, T ∗].
It is in (8.15) where the restriction on s appears.

By introducing the I-method (see [KT2]) in this context Colliander, Keel, Staffi-
lani, Takaoka and Tao [CKSTT4], [CKSTT5], [CKSTT6] have improved most of
the results obtained by the above argument. By defining

If (x) = IN ,sf (x) = (m(ξ )̂f )∨, (8.16)

where m(ξ ) is a smooth and monotone function given by

m(ξ ) =
{

1, |ξ | ≤ N ,

N−s |ξ |s , |ξ | > 2 N ,
(8.17)

with N to be determined and s < 0, they obtain a series of “almost conserved
quantities.”

By using the “cancellations” in the multilinear form working directly with the
equation, in this case the KdV, they show that

sup
t∈[0,T ]

‖Iv(t)‖2 ≤ ‖Iv(0)‖2 + cN−β ‖Iv(0)‖3
2, (8.18)

for some small β > 0. So if N is large, the increment in ‖Iv(t)‖2 is controlled. In
particular for the IVP (8.1) they have shown the following.

Theorem 8.3 ([CKSTT5]).

1. The local real solutions of the IVP (8.1) with k = 1 corresponding to data
v0 ∈ Hs(R), s > −3/4, extend to any time interval [0, T ∗].

2. The local real solutions of the IVP (8.1) with k = 2 corresponding to data
v0 ∈ Hs(R), s > 1/4, extend to any time interval [0, T ∗].

In [Gu], Guo and [Ki1] Kishimoto have extended these global results to the limiting
cases s = −3/4 and s = 1/4 for the KdV and the mKdV equations, respectively.

For the sake of completeness, we explain how the first step of this method works
for the IVP associated to the KdV equation (8.1) (k = 1).

The material described below was essentially taken from the lecture notes given
by Staffilani at IMPC (see [Sta3]).

One first notices that the operator defined in (8.16) is the identity operator on low
frequencies {ξ : |ξ | < N} and simply an integral operator in high frequencies. In
general, it commutes with differential operators and maps Hs(R) to L2(R).
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As we mentioned before, the goal is to establish an estimate as the one in (8.18). To
do so, we first use the fundamental theorem of calculus, the equation and integration
by parts to get

‖Iv(t)‖2
2 = ‖Iv(0)‖2

2 +
t
∫

0

d

ds
(Iv(s), Iv(s)) ds

= ‖Iv(0)‖2
2 + 2

t
∫

0

(

d

ds
Iv(s), Iv(s)

)

ds

= ‖Iv(0)‖2
2 + 2

t
∫

0

(I (−vxxx − vvx), Iv(s)) ds (8.19)

= ‖Iv(0)‖2
2 + 2

t
∫

0

(I (−vvx), Iv(s)) ds

= ‖Iv(0)‖2
2 + R(t),

where

R(t) =
t
∫

0

∫

R

∂x(−Iv2) Iv dxds (8.20)

is an error term. Hence,

‖Iv(t)‖2
2 = ‖Iv0‖2

2 + R(t). (8.21)

We shall show then that locally in time R(t) is small. This can be achieved using
local well-posedness estimates. Since one introduces the operator I in this analysis,
a well-posedness result involving it has to be proved. A similar argument as the one
given in the proof of Theorem 7.8 and the bilinear estimates (7.91) obtained by Kenig,
Ponce and Vega [KPV6] provide us the local well-posedness result. More precisely:

Theorem 8.4. For any v0 ∈ Hs(R), s > −3/4, the IVP (8.1), k = 1, is locally
well-posed in the Banach space I−1L2 = {φ ∈ Hs(R)} furnished with the norm
‖Iφ‖L2 , with time existence satisfying

T � (‖Iv0‖2)−α , α > 0. (8.22)

Moreover,

‖θ (·/T )Iv‖X0,b ≤ C‖Iv0‖2, (8.23)

where θ was defined in (7.73).
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The proof of this theorem follows by using the same procedure to establish
Theorem 7.8 once one has the bilinear estimate:

‖∂xI (uv)‖X
0,− 1

2 + ≤ c ‖Iu‖X
0, 1

2 +‖Iv‖X
0, 1

2 + . (8.24)

To prove the bilinear estimate (8.24), one applies the usual bilinear estimate (7.91)
due to Kenig, Ponce and Vega [KPV6] combined with the following extra smoothing
bilinear estimate whose proof is given in [CKSTT5].

Proposition 8.1. The bilinear estimate:

‖∂x{IuIv−I (uv)}‖X
0,− 1

2 − ≤cN− 3
4+ ‖Iu‖X

0, 1
2 +‖Iv‖X

0, 1
2 + (8.25)

holds.

Proof. Just to give a flavor of the proof we consider the case when u is localized in
a very small frequency (|ξ | " 1) and v localized in a very large one (|ξ | ! N ). One
notices that in this situation

| ̂(I (uv) − IuIv)(ξ )| =
∫

ξ=ξ1+ξ2

|m(ξ ) −m(ξ2)||̂u(ξ1)||̂v(ξ2)|.

Since m is smooth, the mean value theorem yields

| ̂(I (uv) − IuIv)(ξ )| ≤
∫

ξ=ξ1+ξ2

|m′(ξ̄2)||̂u(ξ1)||̂v(ξ2)|,

where |ξ̄2| ∼ |ξ2| ! N . Moreover, it is easy to check that m′(ξ̄2) � N−1m(ξ2). Thus,

‖∂x(I (uv) − IuIv)‖X0,−1/2+ ≤ N−1‖∂x(I (u)I (v))‖X0,−1/2+ . (8.26)

In this point, one uses the bilinear estimate (8.24) to get (8.25). For the estimates
involving intermediate size frequencies the best gain that one can obtain is N−3/4.�

Next we will obtain the so-called almost conserved quantity from (8.21). Note
that the cancellation property

t
∫

0

∞
∫

−∞
∂x(Iu)2Iu dx dt = 0 (8.27)

holds. In what follows this identity play an important role.
Using (8.27) one can write R(t) as:

R(t) =
t
∫

0

∞
∫

−∞
∂x{(Iv)2 − I (v2)}Iv dx ds. (8.28)
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The Plancherel identity and the Cauchy–Schwarz inequality yield

|R(t)| ≤ c ‖∂x{(Iv)2 − I (v2)}‖X
0,− 1

2 −‖Iv‖X
0, 1

2 + . (8.29)

Now, using (8.29) and Proposition 8.1 the identity (8.21) gives the almost
conservation law,

‖Iv(t)‖2
2 ≤ ‖Iv(0)‖2

2 + c N− 3
4+ ‖Iv‖3

X
0, 1

2 +
. (8.30)

From (8.30), it is clear that the contribution of the error term R(t) is very small
for large N and therefore one can use (8.30) in the iteration process to extend the
local solution.

Now, we are in position to prove the following global well-posedness result.

Theorem 8.5. The IVP (8.1), k = 1, is globally well-posed in Hs(R) for all s >

−3/10.

Proof. It is enough to show that the IVP (8.1) can be extended to [0, T ] for arbitrary
T > 0. To make the analysis easy, one uses the scaling (7.8) mentioned in Chapter 7.
More precisely, if v solves the IVP (8.1), k = 1, with initial data v0, then for 1 >

λ > 0 so does vλ, where vλ(x, t) = λ2v(λx, λ3t), with initial data vλ0(x) = λ2v0(λx).
Observe that v exists in [0, T ] if and only if vλ exists in [0, λ−3 T ]. So we are interested
to extend vλ in [0, λ−3 T ].

An easy calculation shows that

‖Ivλ0‖2 ≤ c λ
3
2+sN−s ‖v0‖s,2, (8.31)

where N = N (T ) is chosen later, but now we pick λ = λ(N ) by demanding

c λ
3
2+sN−s ‖v0‖s,2 =

√

ε0

2
" 1. (8.32)

From (8.32) one deduces that λ ∼ N
2s

3+2s and using (8.32) in (8.31) one gets

‖Ivλ0‖2
2 ≤

ε0

2
" 1. (8.33)

Therefore, if we choose ε0 arbitrarily small, then from Theorem 8.4 we see that IVP
(8.1), k = 1, is well-posed for all t ∈ [0, 1].

Now, using the almost-conserved quantity (8.30), the identity (8.33), and
Theorem 8.4, one gets

‖Ivλ(1)‖2
2 ≤

ε0

2
+ c N− 3

4+
[

3
ε0

2

(ε0

2

)1/2] ≤ ε0 + c N− 3
4+ε0. (8.34)

So, one can iterate this process c−1N
3
4− times before doubling ‖Ivλ(t)‖2

2. Hence,
one can extend the solution in the time interval [0, c−1N

3
4−] by taking c−1N

3
4−
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times steps of size O(1). As one is interested to define the solution in the time
interval [0, λ−3 T ], one chooses N = N (T ) such that c−1N

3
4− ≥ λ−3 T . That is,

N
3
4− ≥ c

T

λ3
∼ TN

−6s
3+2s .

Therefore, for large N , the existence interval is arbitrarily large if we choose s such
that s > −3/10. This completes the proof of the theorem. �

Question 2. For these global solutions whose regularity is below or between those
given by the conservation law, one can ask for upper and lower bounds for the growth
of the Hs-norm.

Theorem 8.1 provides some upper bound. In the case k = 2, where infinitely
many conservation laws are available, one has the upper bound

sup
t∈[0,T ]

‖v(t)‖s,2 ≤ c T θ (s), θ (s) = min{s − [s], [s + 1] − s} (8.35)

(see [Fo], [Sta1]). A similar result for the case k = 1 is unknown as well as any lower
bound estimate of the growth of the Hs-norm of the solutions.

For the case k = 3, the best-known global result for large Hs-data is due to [GPS]
for s > −1/42. We recall that s3 = −1/6 and the results in [To6] included global
well-posedness for small data in Ḣ−1/6(R).

8.2 Case k = 4

In this section, we shall first attempt to describe some of the main results in a series
of works by Martel and Merle. Among other conclusions, they proved that blowup
in finite time occurs in some H 1 local solutions of the IVP (8.1) with k = 4. Later,
we shall add some further analysis with a more precise description of the dynamics
of this blow-up result given by Martel, Merle, and Raphael.

For convenience sake we shall follow their notation, so we rewrite the equation
in (8.1) with k = 4 in divergence form to get

{

∂tu + ∂x(∂2
xu + u5) = 0,

u(x, 0) = u0(x),
(8.36)

i.e., v(x, t) = 4
√

5 u(x, t). In this setting, the conservation law E (or I3) becomes

E(u0) =
∞
∫

−∞

[

(∂xu)2 − 2

6
u6
]

(x, t) dx. (8.37)

We shall recall that the “traveling wave” ϕ(x)=3
1
4 sech

1
2 (2x) satisfies

ϕ′′ + ϕ5 = ϕ (8.38)
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and E(ϕ) = 0.
In [W3], Weinstein (see Exercise 6.6) obtained the following sharp version of a

Gagliardo–Nirenberg inequality,

for all w ∈ H 1(R),
1

6

∫

w6 dx ≤ 1

2

(
∫

w2

∫

ϕ2

)2 ∫

(∂xw)2 dx. (8.39)

Thus, if u0 ∈ H 1(R) with ‖u0‖2 < ‖ϕ‖2, one has

1

2

(

1 −
∫

u2
0

∫

ϕ2

)2 ∫

(∂xu)2(x, t) dx ≤ E(u0) for all t ∈ R. (8.40)

This a priori estimate together with I2 (‖u(t)‖2 = ‖u0‖2) allows one to extend the
local solution of (8.36) globally in time.

Notice that based on homogeneity, Theorem 7.2 guarantees the existence of global
solutions for u0 ∈ L2(R) with ‖u0‖2 < δ sufficiently small. From these results, it is
reasonable to conjecture that δ = ‖ϕ‖2 (see the comments at the end of this chapter).

Also from the proof of Theorem 7.4 with u0 ∈ Hs(R), s ∈ (0, 1], and using an
idea in [CzW4] one has that if there exists T ∗ ∈ (0,∞) such that

lim
t↑T ∗ ‖u(t)‖s,2 = ∞ for s ∈ [0, 1), (8.41)

then

‖u(t)‖s,2 ≥ c (T ∗ − t)−s/3, (8.42)

and by [W], [Me5] there exist c0, R0 > 0 both depending on ‖u0‖2 such that

lim
t↑T ∗ inf

∫

|x−x(t)|≤R0(T ∗−t)1/3

|u(x, t)|2 dx ≥ c0 , (8.43)

for some function x(t).
The next result by Martel and Merle [MM3] tells us that any global H 1 solution

of (8.36) that at t = 0 is close to a traveling wave and does not disperse has to be
precisely the traveling wave.

Theorem 8.6 ([MM3] of Liouville’s type). Let u0 ∈ H 1(R) and let

‖u0 − ϕ‖1,2 = α. (8.44)

Suppose that the corresponding H 1 solution u = u(x, t) of (8.36) satisfies:

(i) There exist c1, c2 > 0 such that

c1 ≤ ‖u(t)‖1,2 ≤ c2 for all t ∈ R. (8.45)
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(ii) There exists x(t) such that for every ε > 0 there exists R0 > 0 so that

inf
x(t)∈R

∫

|x−x(t)|>R0

u2(x, t) dx ≤ ε for all t ∈ R. (8.46)

Then, there exists α0 > 0 such that for α ∈ (0,α0) in (8.44) one has

u(x, t) = λ
1/2
0 ϕ(λ0(x − x0) − λ3

0t) (8.47)

for some λ0 ∈ R
+ and x0 ∈ R.

The proof of this theorem is quite interesting.
First, the problem is renormalized by properly fixing the “center of mass” x(t)

and the “scaling” λ(t), which is possible due to the invariance up to translations and
dilations of the equation. Next, the authors establish a uniform-in-time exponential
decay in the x-variable by using (8.46). Once this exponential decay is available they
reduce the problem in studying which solutions of the associated linearized equation
have such decay. They show that the solutions should have nontrivial projection on
the singular spectrum of the linearized problem. But this possibility is withdrawn
by using the choice of the parameters x(t), λ(t). So the solution of the linearized
problem has to be the trivial one.

The next theorem complements the result in Theorem 8.6.

Theorem 8.7 ([MM5]). Under the hypotheses (8.44) and (8.45) in Theorem 8.6
there exists α1 such that if α ∈ (0,α1), then there exist λ(t), x(t) such that

λ1/2(t) u(λ(t)(x − x(t)), t) = ϕ(x) + uR(x, t), (8.48)

where

uR(t) ⇀
(weakly)

0 in H 1 as t ↑ ∞. (8.49)

In fact, one has that

λ(t) ∈ (λ1, λ2) for all t and x(t) ↑ ∞ as t ↑ ∞. (8.50)

In [MM1], Martel and Merle studied the stability of the traveling wave solution
of the IVP (8.1) with k = 4.

We recall that it was shown in [Be1] and [BSS] that for the IVP (8.1) with k =
1, 2, 3, the corresponding traveling waves were stable and in [BSS] that for k ≥ 5
they were unstable. Also, we recall that for the IVP (8.36), we have that ϕ satisfies

E(ϕ) =
∫

(

(ϕ′)2 − 2

6
ϕ6
)

dx = 0

and using (8.38) that

DE(ϕ)φ = d

dη
E(ϕ + ηφ)

∣

∣

η=0 = 2
∫

(

ϕ′ φ′ − ϕ5 φ
)

dx
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= −2
∫

(ϕ′′ + ϕ5)φ dx = −2
∫

ϕ φ dx = 〈−2ϕ, φ〉.

So,

DE(ϕ) = −2ϕ.

Let ε ∈ H 1(R) with ‖ε‖1,2 " 1; thus, E(ϕ + ε) ∼ 〈−2ϕ, ε〉.
The next result establishes the instability of the traveling wave in this critical case

k = 4 in (8.1) (see also (8.36)).

Theorem 8.8 ([MM1]). There exist α0, a0, b0, c0 > 0 such that if u0 = ϕ+ε with

ε ∈ H 1(R), ‖ε‖1,2 < a0, xε2 ∈ L1(R), (8.51)

|ε(x)| < b0(1 + x)−2, for all x > 0 (8.52)

and

0 <

∫

ε ϕ dx < c0

∫

ϕ2 dx, (8.53)

then there exists t0 = t0(u0) such that

inf
y∈R

‖u(·, t0) − ϕ( · −y)‖1,2 ≥ α0. (8.54)

In fact, they show that (8.54) holds in L2(R). Observe that taking εn = n−1ϕ for
n large enough, εn satisfies the hypotheses (8.51)–(8.53). Similarly, if ε = aϕ + ε0

with xε2 ∈ L1, (1+ x)2 |ε0(x)| ≤ c0 for all x ≥ 0 with ‖ε0‖1,2 ≤ b0
√
a0, then ε also

satisfies (8.51)–(8.53).
In [Me4], Merle proved the existence of blow-up solutions of (8.36) in finite or

infinite time.

Theorem 8.9 ([Me4]). There exists α0 > 0 such that if u0 ∈ H 1(R) with

E(u0) < 0 and
∫

ϕ2 <

∫

u2 <

∫

ϕ2 + α0, (8.55)

then the corresponding solution u(t) of (8.36) blows up in the H 1-norm in finite or
infinite time.

Observe that since E(ϕ) = 0 and DE(ϕ) = −2ϕ there is a large class of data u0

satisfying (8.55) whose corresponding solution blows up.
In [MM5], the authors showed that any blowup solution close to the traveling

wave ϕ behaves asymptotically like it up to rescaling and translation, i.e., for some
C1 functions x(t), λ(t),

±λ1/2(t) u(λ(t)x + x(t), t) ⇀ ϕ in H 1(R) as t ↑ T , T ≤ ∞.

(See [ABLS] for a related result.)
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As a consequence they established that the blowup at finite time must occur at a
rate that in particular excludes the possibility of blowup at the self-similar rate:

u(x, t) ∼ 1

(T − t)1/6
h

[

x − x(t)

(T − t)1/3

]

since they establish that in this case (finite blow up time T )

lim
t↑T (T − t)1/3 ‖∂xu(·, t)‖2 = ∞.

Based on these works, Martel and Merle were able to show the blowup in finite
time [MM4] for solutions corresponding to data u0 with negative energy (E(u0) < 0),
L2-norm close to that of the solitary wave, see (8.55), and with sufficient decay at
the right, i.e., there exists θ > 0 such that for all x0 > 0

∫

x≥x0

u2
0(x) dx ≤ θ

x6
0

. (8.56)

Theorem 8.10 ([MM4]). Under the hypotheses (8.55) and (8.56) the correspond-
ing solutions of the IVP (8.36) blowup in finite time T < ∞, i.e.,

lim
t↑T ‖∂xu(t)‖2 = ∞. (8.57)

Moreover, let tn ↑ T be the sequence defined as:

‖∂xu(·, tn)‖2 = 2n ‖∂xϕ‖2 (8.58)

with

‖∂xu(·, t)‖2 > 2n ‖∂xϕ‖2, t ∈ (tn, T ).

Then there exists n0 = n(u0) such that for all n ≥ n0,

‖∂xu(·, tn)‖2 ≤ c0

|E(u0)| (T − tn)
, (8.59)

where c0 = 4(
∫

ϕ)2 ‖∂xϕ‖2.
The proof of this theorem used the results in the previous ones together with some

elliptic and oscillatory integral-type estimates.
Finally, we have their following result regarding the nonexistence of minimal

mass blow up solutions.

Theorem 8.11 ([MM6]). Let u0 ∈ H 1(R) be such that

‖u0‖2 = ‖ϕ‖2.
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Assume that for some c > 0 and θ > 3
∫

x>x0

u2
0(x) dx ≤ c

xθ
0

for all x0 > 0.

Then the corresponding solution u(t) of the IVP (8.36) does not blowup in H 1(R)
either in finite or in infinite time.

We recall that for u0 ∈ H 1(R) with ‖u0‖2 < ‖ϕ‖2 global existence is known
(see 8.40). Also that for the NLS with critical power there exists a unique (up to
the invariants of the equation) blow-up solution with minimal mass, i.e., a blow-up
solution for

{

i∂tu +Δu + |u|4/nu = 0,

u(x, 0) = u0(x),

α = 1 + 4/n, and ‖u0‖2 = ‖ϕ‖2, where ϕ is a solution of (7.10) (see [Me3]).
The blow-up problem for the local solutions of the IVP (8.36) has been revised in

the sequence of works [MMR1], [MMR2], [MMR3]. In these papers, a more concise
description of the results in Theorems 8.9, 8.10, and 8.11 was established.

By defining the L2-tubular neighborhood of the soliton manifold:

Vα∗ = {u ∈ H 1(R) : Inf
λ0>0, x0∈R

∥

∥u − 1

λ0
ϕ(( · −x0)/λ0)

∥

∥

2 < α∗},
and the set of data:

Aα0 = {u0 = ϕ + ε0 : ‖ε0‖2 < α0,
∫

y>0
y10ε0(y)dy < 1}

with 0 < α0 << α∗ < 1 and ϕ the soliton (8.38), it was obtained in [MMR1] the
following blow-up scenario near the soliton in Aα0 .

Theorem 8.12 ([MMR1]). There exist universal constantsα0, α∗ with 0 < α0 <<

α∗ < 1 such that if u0 ∈ Aα0 , with E(u0) ≤ 0 and u0 �= ϕ, then the corresponding
solution u(t) blows up in finite time T and for t ∈ [0, T ) u(t) ∈ Vα∗ . Moreover, there
exists l0 = l0(u0) > 0 such that

‖∂xu(t)‖2 ∼ ‖ϕ′‖2

l0(T − t)
, as t ↑ T ,

and ∃ λ(t), x(t), u∗ ∈ H 1, u∗ �= 0 such that

u(x, t) − 1

λ1/2(t)
ϕ((x − x0)/λ(t)) → u∗ in L2as t ↑ T ,

with

λ(t) ∼ l0(T − t) and x(t) ∼ 1

l20 (T − t)
.

Also, there exists ρ0 = ρ0(u0) > 0 such that if v0 ∈ Aα0 with ‖u0 − v0‖1,2 < ρ0, then
the corresponding solution v(t) blows up in finite time T (v0) in the manner described
above.
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Notice that x(t) → ∞ as t ↑ T . The next result found in [MMR1] gives a picture
of the dynamic of the solution flow in Aα0 .

Theorem 8.13 ([MMR1]). There exist universal constants α0, α∗ with 0 <

α0"α∗ < 1 such that if u0 ∈ Aα0 , then one of the following three possibilities
occurs:

(i) ∃ t∗ ∈ [0, T ) such that u(t∗) /∈ Vα∗ .
(ii) The solution u(t) blows up in finite time in the regime of the previous theorem.

(iii) The solution is global, for all t , u(t) ∈ Vα∗ and there exist λ∞ > 0, x(t) such
that

λ1/2
∞ u(λ∞(·+ x(t)), t) → ϕ in H 1

loc as t ↑ ∞

x(t) ∼ t

λ∞
and |λ∞ − 1| = o(1) as α0 ↓ 0.

Thus, the set of data found in (i) and (ii) are open. Also, results in [MMR3] delineates
the exit scenario (i) in Theorem 8.13 and the existence and uniqueness of the minimal
mass blowup element.

The following result shows that the decay assumption in the definition of Aα0 is
essential in the above theorems. More precisely, H 1-data with slower right decay
may produce “exotic” blow-up rates.

Theorem 8.14 ([MMR3]).

(i) ∀ γ > 11/13 ∃ u ∈ C([0, T ) : H 1(R)) solution of the IVP (8.36) which blows
up at t = T with

‖∂xu(t)‖2 ∼ 1

(T − t)γ
.

(ii) ∃ u ∈ C([0,∞) : H 1(R)) solution of the IVP (8.36) such that

‖∂xu(t)‖2 ∼ et .

(iii) ∀γ > 0 ∃ u ∈ C([0,∞) : H 1(R)) solution of the IVP (8.36) such that

‖∂xu(t)‖2 ∼ tγ .

The possibility of continua blow up rates were first observed in [KST] for solutions
of the H 1(R3)-critical semilinear wave equations.

8.3 Comments

The global solution for the IVP (8.1) with k ≥ 5 with small data v0 ∈ H 1(R) follows
by the argument used in (8.5). This tells us that

E(v0) ≥ ‖∂xv(t)‖2
2 − ck ‖∂xv(t)‖k/2

2 ‖v0‖2+2/k
2 . (8.60)
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Since at t = 0 we have

E(v0) ≥ ‖∂xv0‖2
2 − ck ‖∂xv0‖k/2

2 ‖v0‖2+2/k
2

then for ‖v0‖2+‖∂xv0‖2 " 1 one has E(v0) > 0, which inserted into (8.60) provides
an a priori estimate for ‖∂xv(t)‖2 through an argument similar to the one in (6.11).
This combined with I2 gives an a priori estimate for ‖v(t)‖1,2.

More precisely, in [FaLP] Farah, Linares and Pastor following some arguments
in [HR1] proved

Theorem 8.15. Let u0 ∈ H 1(R). Let k > 4 and sk = (k − 4)/2k. Suppose that

E(u0)sk I2(u0)1−sk < E(Q)sk I2(Q)1−sk , E(u0) ≥ 0. (8.61)

If

‖∂xu0‖sk2 ‖u0‖1−sk
2 < ‖∂xQ‖sk2 ‖Q‖1−sk

2 , (8.62)

then for any t as long as the solution exists,

‖∂xu(t)‖sk2 ‖u0‖1−sk
2 = ‖∂xu(t)‖sk2 ‖u(t)‖1−sk

2 < ‖∂xQ‖sk2 ‖Q‖1−sk
2 , (8.63)

where Q(x) = (k + 1)1/k φ1,k(x) and φ1,k is unique positive even solution of the
equation (7.7).

This in turn implies that H 1 solutions exist globally in time.
We also recall that in the case k ≥ 5 global well-posedness based on the homo-

geneity (scaling argument) was established in Theorem 7.5 for small data in Ḣ sk (R),
sk = 1/2 − 2/k.

The problem of describing the long time behavior of solutions to the generalized
KdV equation corresponding to “small” data was studied by Hayashi and Naumkin
[HN1], [HN2].

In [HN1], they answered the following question: what is the smallest power ρ

which guarantees that “small” solutions of the generalized KdV equation:

∂tu + ∂3
xu + |u|ρ−1∂xu = 0, ρ > 1, (8.64)

behave as the solutions of the associated linear problem (7.21) and scatter? They
showed that if ρ > 3 and the data u0 satisfies that

‖(1 + x2)1/2Λu0‖2 ≤ ε (for some ε fixed " 1), (8.65)

then the corresponding solution u(·, t) of (8.64) satisfies that for any t > 0,

‖u(·, t)‖p ≤ c (1 + t)−1/3 p′
, p ∈ (4,∞],

1

p
+ 1

p′ = 1. (8.66)

Moreover, there exists u+ ∈ L2(R) such that for t > 0

‖u(·, t) − V (t)u+‖2 ≤ c t−(ρ−3)/3, (8.67)
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(see the notations in (3.1) and (7.22)).
In [HN2], they proved that the above result is optimal by establishing that “small”

solutions of the mKdV (ρ = 3 in (8.64)), although satisfy (8.65), they do not
hold (8.66). (The description of their asymptotic behavior involves the self-similar
solutions (= 1

3√t
ω( x

3√t
)) of the mKdV).

Consider the periodic boundary value problem:
{

∂tv + ∂3
xv + vk∂xv = 0,

v(x, 0) = v0(x) ∈ Hs(T),
(8.68)

t ∈ R, x ∈ T, k ∈ Z+. Global well-posedness for (8.68) with k = 1, 2, 3 has been
established in Hs(T) with s ≥ −1/2, s ≥ 1/2, s > 5/6, respectively, by Colliander,
Keel, Staffilani, Takaoka and Tao [CKSTT4], [CKSTT5].

For k ≥ 4 the best results are due to Staffilani [Sta2] (s ≥ 1 with a smallness
condition on the ‖v0‖2 norm).

In the same regard for the IVP (8.36), global well-posedness was obtained in
Hs(R) with s > 6/13 (see [MSWX]) for data satisfying ‖u0‖2 < ‖ϕ‖2 (improving
previous results in [FLP1] (s > 3/4) and in [Fa] (s > 3/5)). As it was mentioned
this result should hold in L2, i.e., if u0 ∈ L2(R) and ‖u0‖2 < ‖ϕ‖2, then the local
solution extends globally or δ = ‖ϕ‖2 in Theorem 7.2 with ϕ as in (8.38).

Next, we shall briefly comment on stability for the solitary wave solutions (7.6)
for the k-generalized Korteweg–de Vries (k-gKdV) equation. In [Be1] and [Bn2],
the stability of the solitary wave solution for the KdV equation was established. The
stability is understood in the following sense: Given ε > 0, there exists δ > 0 such
that if ‖v0 − φc,1‖1,2 < δ, then for all t ∈ R, there is x(t) such that

‖v(·+x(t), t) − φc,1(·)‖1,2 < ε, (8.69)

this is known as orbital stability.
For the k-gKdV, it was proved in [BSS] that for k < 4 (subcritical case) the

solitary waves are stable, and for k > 4 they are unstable (see also [GSS]). Martel
and Merle [MM1] have shown the instability of the solitary waves in the critical case
k = 4. Regarding asymptotic stability of the solitary waves φc,k , Pego and Weinstein
[PW] obtained results for the cases k = 1 and k = 2 for data decaying exponentially
as x → ∞. In [MM2], the following assertion was proved: Given c0 there exists
a δ0,c0 such that for ‖v0 − φc0,k‖1,2 ≤ δ0,c0 there exist c∞ a constant and x(t) a real
function so that

v(x + x(t), t) ⇀ φc∞,k in H 1 as t → ∞
for k = 1, 2, 3, i.e., the subcritical case.

The results listed above were obtained in the H 1-norm. Merle and Vega [MV]
have shown the stability and asymptotic stability for the solitary wave solutions of
the KdV equation in the L2-norm. More precisely, in [MV] the following result was
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proved (see also [MiT]): Let c0 > σ > 0. Then, there exist ĉ, δ > 0 such that if
u(x, t) is a solution of the IVP (8.1) with k = 1 (KdV) such that

u(x, 0) = φc0,1(x) + v0(x), with ‖v0‖2 < δ,

then there exist c+ > 0 and x : [0,∞) �→ R a C1 function such that

sup
t>0

‖u(·, t) − φc0,1(· − x(t))‖2 ≤ ĉ ‖v0‖1/2
2

c+ = lim
t→∞ x(t)

|c+ − c0| + sup
t≥0

|ẋ(t) − c0| ≤ c ‖v0‖2

and

lim
t→∞

∫

x>σ t

|u(x, t) − φc+,1(x − x(t))|2 dx = 0.

In [KM], the stability of the traveling wave solution for the quartic KdV, i.e.,
k = 3 in (8.1), was studied in the critical space Ḣ−1/6(R).

In [W4], Weinstein deduced the following variational characterization of the
traveling wave φc,k in (7.6):

If u(x, t) is a solution of (8.1) with k = 1, 2, 3, 4 such that

I3(u(t)) = I3(φc,k) and I2(u(t)) = I2(φc,k) for some c > 0. (8.70)

Then, u(x, t) = φc,k(x − x0 − ct) for some x0 ∈ R.
In particular, this implies (see Exercise 8.4) that if u = u(x, t) is a solution of

(8.1) with k = 1, 2, 3, 4 such that

lim
t→∞ Inf

y∈R

‖u(·, t) − φc,k(· −y)‖1,2 = 0, (8.71)

then u(x, t) = φc,k(x − x0 − ct) for some x0 ∈ R.
Based on the previous works [DM], [DRu], concerning related results for the

NLS in [Cb] it was shown that (8.71) fails for n ≥ 5. More precisely, it was proved
the existence of a one parameter family of special solutions of (8.1) with k ≥ 5
{UA(x, t)}A∈R such that

lim
t→∞ Inf

y∈R

‖UA(·, t) − φc,k(· −y)‖1,2 = 0.

Moreover, if u = u(x, t) is a global solution of (8.1) with k ≥ 5 such that

lim
t→∞ Inf

y∈R

‖u(·, t) − φc,k(· −y)‖1,2 = 0,

then
u(x, t) = UA(x − x0, t), t ≥ t0, for some A, t0, x0 ∈ R.

In [AlMn1], it was established that the breather solutions of the mKdV equa-
tion (7.108) are orbitally stable in the H 1 topology.
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In the introduction to this chapter we mentioned the fact that the KdV and mKdV
equations can be solved via the inverse scattering method. Now, we would like
to describe some interesting applications deduced from this method. The first one
regards the construction of explicit solutions called N -solitons. These solutions gen-
eralize the solitary wave solutions or “solitons” (7.6) (k = 1, 2) (see [Lb], [Hi1],
[Sc]). In particular, they describe the interaction between several solitons with dif-
ferent speeds. In addition, the N -soliton solutions decompose exactly as a sum of
N solitons as t → +∞. In other words, for any given 0 < c1 < c2 < · · · < cN ,
x1, . . . , xN , there exists an explicit N -soliton solution v(t) such that

∥

∥

∥v(t) −
N
∑

j=1

φcj ,k(· −xj − cj t)
∥

∥

∥

1,2
→ 0 as t → +∞. (8.72)

Another interesting result obtained in [ES] for the case k = 1 is the following: Any
sufficiently smooth and decaying solution v of (7.1) splits into two parts as t → ∞,
i.e.,

v(x, t) = vd (x, t) + vc(x, t),

where vd is an N -soliton solution and vc(x, t) → 0 uniformly for x > 0 as t → +∞.
(see also [Sc]).

Concerning the stability of N -solitons in the sense given in (8.69) for the solitary
waves, Martel, Merle and Tsai [MMT] obtained for powers k = 1, 2 (integrable
cases) and k = 3 (nonintegrable) the following result:

Theorem 8.16. Let 0 < c1 < · · · < cN and k = 1, 2, 3. There exists γ0, A, L0,
α0 > 0 such that the following is satisfied. Assume that there exist L > L0, α < α0,
and x0

1 < · · · < x0
N such that

‖v(0) −
N
∑

j=1

φcj ,k
(· − x0

j

) ‖1,2 ≤ α, with x0
j > x0

j−1 + L

for all j = 2, . . . ,N . Then there exist x1(t), . . . , xN (t) ∈ R such that for all t ≥ 0,

∥

∥

∥v(t) −
N
∑

j=1

φcj ,k(x − xj (t))
∥

∥

∥

1,2
≤ A(α + e−γ0L).

The above result tells us that if v(0) is close in the H 1-norm to the sum of N -
solitons whose speeds are ordered (so they do not interact for t > 0) and whose
centers are far apart, then the corresponding solution v(t) remains close in H 1-norm
to a translated sum of N -solitons for all t > 0.

Using the ideas in [MV] and [MMT], Alejo, Muñoz and Vega [AlMnVe] were
able to establish the L2-stability of the N -solitons solutions.

In [Ma], the following existence and uniqueness result of an asymptoticN -soliton-
like solution was established for the subcritical k = 1, 2, 3 and critical case k = 4 in
(8.1).
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Theorem 8.17. Let N ∈ Z
+, 0 < c1 < c2 < · · · < cN , x1, . . . , xN ∈ R. There

exists a unique v ∈ C([T0,∞) : H 1(R)) for some T0 > 0 solution of the equation
in (8.1) with k = 1, 2, 3, or 4 such that (8.72) holds. Moreover, there exist A, γ > 0
such that

‖v(t) −
N
∑

j=1

φcj ,k(−xj − cj t)‖1,2 ≤ Ae−γ t .

Notice that Theorem 8.17 extends the estimate (8.72) to the nonintegrable cases
k = 3, 4.

In [FePaUl], Fermi, Pasta and Ulam and latter in [ZaKr] Zabusky and Kruskal
presented numerical evidences describing the remarkable phenomena of the soliton
collision. They illustrated the elastic character of the collision of two solitons (elastic:
the collision preserves the shape of the solitons). So the unique consequence of the
collision is a shift translation on each soliton.

For the equation:
∂tu + ∂3

xu + ∂x(f (u)) = 0,

it was established in [Mu] that the collision between two solitons is not elastic in
general, except for the KdV equation, for the mKdV equation and for the Gardner
equation (f (u) = u2 − μu3) all completely integrable systems. This work was
preceded by [MM8], where for the case f (u) = u4 with two solitons of different
masses it was shown that the collision is inelastic by proving the nonexistence of a
pure two-soliton solution. More precisely, if the solution u(x, t) satisfies that

u(x, t) = φc1,3(x − c1t) + φc2,3(x − c2t) + η(x, t), as t ↓ −∞
(see 7.6) with

‖η(t)‖1,2 " ‖φc2,3‖1,2 " ‖φc1,3‖1,2,

then for t ! 1

u(x, t) = φc1(t),3(x − y1(t)) + φc2(t),3(x − y2(t)) + η(x, t)

with
‖η(t)‖1,2 " ‖φc2(t),3‖1,2,

and
c1(t) → c+1 , c2(t) → c+2 as t ↑ ∞.

In the case where u(x, t) is a pure two-soliton as t ↓ −∞, one has that

c+1 > c1, c+2 < c2, lim
t→∞‖η(t)‖1,2 > 0.

In the case of the modified KdV equation and the Gardner equation, it is an interesting
problem to characterize the initial data which precede to the formation of these special
solution solitons or “breathers” (see 7.108). Using the inverse scattering method
(IST) this question was studied in [SaYa].
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Also, it is interesting to describe the interaction between these solutions traveling
in opposite directions. In this regard, one has the results concerning the generalized
Gardner equation found in [CGD]:

∂tu + α u∂xu + β u2 ∂xu + δ ∂3
xu = 0, α, β, δ ∈ R. (8.73)

It has been proved that this equation is integrable and also arises in the study of wave
propagation (see [GKM]). Notice that in (8.73) the interaction between the dispersion
and the nonlinearity cubic and quadratic should be considered. It was shown in [CGD]
that (8.73) possesses breather solutions and solitons traveling in both directions when
β, δ > 0. Also based on the Hirota method of constructing multisoliton solution to
integrable models (see [Hi2]) explicit expressions describing the interaction of these
solutions were deduced. It was proved that these solutions retain their shape after
the interaction, except for a phase shift, and numerical simulations were presented
to confirm this fact.

In the same regard, one has the special solutions of the modified KdV equation:

∂tv + ∂3
xv + v2∂xv = 0,

given by solitons (described in 7.6) traveling to the right and the breathers (see
(7.108)), which travel to the left if 3 N2 > ω2. The description of the interaction of
these solutions is largely open.

Regarding the “soliton resolution conjecture”: any “reasonable” solution of the
k-gKdV (7.1) will eventually resolve into a radiation-dispersive wave moving to
the right plus a finite number of traveling waves moving to the left. Notice that the
breather solution of the mKdV equation (7.108) contradicts this statement. In [ES],
Eckhaus and Schuur were able to prove this conjecture for the KdV equation (k = 1
in (7.1)). Their proof uses the inverse scattering theory and is based on the relation
between properties of the datum u0 = q and the reflected coefficient b(k) (see (9.59)–
(9.64)). More precisely, they proved that if u0 and its derivatives up to order fourth
have an appropriate algebraic decay as |x| → ∞, then b(k) = b ∈ Cr (R) and

∂mb(k) = O(|k|−5) as |k| → ∞,

for m = 0, 1, . . . , r . We recall that in the cases when b(k) ≡ 0 the solution is the sum
of N solitons with N being the number of discrete eigenvalues in (9.62).

8.4 Exercises

8.1 Consider the IVP (8.36) with a real-valued datum u0 ∈ H 1(R) such that ‖u0‖2 <

‖ϕ‖2 with ϕ as in (8.38). As it was shown in this case, u ∈ C(R : H 1(R)) is the
global solution of the problem.
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(i) Prove that for any time interval (t0, t0 +ΔT ) with ΔT > 0,

1
∑

j=0

(‖∂j
x u‖L5

xL
10
t ((t0,t0+ΔT )) + ‖∂j+1

x u‖L∞
x L2

t ((t0,t0+ΔT ))

) ≤ c (‖u0‖1,2; ΔT ).

(8.74)

Hint: Use Theorem 7.4, and the conservation laws I2 and I3 in (7.4) and (7.5).
Notice that in this case s = 1 one can take ∂x instead of Dx in (7.55) and
(8.38).

(ii) Prove that for any time interval (t0, t0 +ΔT )

‖u‖L4
xL

∞
t ((t0,t0+ΔT )) ≤ c (‖u0‖1,2;ΔT ). (8.75)

Hint: Use Lemma 7.3 and the integral equation:

u(t) = V (t)u0 −
t
∫

0

V (t − t ′) ∂x(u5)(t ′) dt′ = V (t)u0 + z(t). (8.76)

(iii) Prove that z(·) in (8.76) satisfies

z ∈ C(R : H 2(R)). (8.77)

Hint: First observe that to obtain (8.77) it suffices to show that ∂2
x z ∈ C(R :

L2(R)). Use (7.16) to reduce the problem to bound ‖∂2
x (u5)‖L1

xL
2
t ((t0,t0+ΔT ))

with ΔT " 1. Now combine parts (i) and (ii) to get the desired result.

Remark 8.1. Roughly speaking, Exercise 8.1 illustrates a general principle, i.e., if
v ∈ C([0, T ] : Hŝ(R)) is a solution of the k-gKdV (7.10) with ŝ > s0,k , where s0,k is
the smallest Sobolev exponent, where local well-posedness can be established (i.e.,
s0,1 = −3/4, s0,2 = 1/4, . . . ), then the integral term in zk(t),

v(t) = V (t)v0 −
t
∫

0

V (t − t ′) vk∂xv(t ′) dt′ = V (t)v0 + zk(t)

is more regular in the Hs(R) scale than both v(t) and the linear part V (t)v0.

8.2 Consider the linear IVP (7.10). Prove:

(i) If v0 ∈ L2(R) ∩ L2(|x|2dx), then V (t)v0 ∈ C1(R) for t �= 0.
Hint: Use the commutative property of the operators Γ = x + 3t∂2

x and
L = ∂t + ∂3

x .
(ii) Given ε > 0 and the set:

AN = {(xj , tj ) : j = 1, . . . ,N} ⊂ R
2,

there exists v0 ∈ H 1(R) (real valued) with ‖v0‖2 < ε such that
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(a) If t /∈ {t1, . . ., tN }, then V (t)v0 ∈ C1(R).
(b) If t = tj , then V (tj )v0 ∈ C1(R) − {xk : (xk , tk) ∈ An}, and ∂xV (tj )v0(xk)

does not exist if (xk , tj ) ∈ AN .

(iii) If u = u(x, t) is the solution of the IVP (8.36) with data u(x, 0) = v0(x) as in
part (ii) with ε = ‖ϕ‖2, then (a) and (b) hold for u(x, t).
Hint: Use Exercise 8.1

Remark 8.2. This is a particular case of the so-called dispersive blow up, studied
by Bona and Saut [BSa1], [BSa2].

8.3 Let v ∈ C(R : H 2(R)) be a solution of the KdV equation.

(i) Prove that for t ∈ R,

I4(v)(t) =
∞
∫

−∞

[

9

5
(∂2

x v)2 − 3u(∂xv)2 + 1

4
v4

]

(x, t) dx

= I4(v)(0) = I4(v0). (8.78)

(ii) Prove that there exists c > 0 such that

sup
t∈R

‖v(t)‖2,2 ≤ c ‖v0‖2,2.

Hint: Combine (8.78) and I2, I3 in (7.4) and (7.5).
(iii) If ṽ ∈ C(R : H 1(R)) is solution of the IVP associated to the KdV equation

and ṽ0 ∈ H 1+δ(R), prove that ṽ ∈ C(R : H 1+δ(R)) and deduce an upper
bound for

Φ(T ) = sup
0≤t≤T

‖ṽ(t)‖1+δ,2

in terms of T and ‖ṽ0‖1+δ,2 (for the case of the mKdV, see (8.35)).
8.4 (i) Using the notation in (7.6), prove that

d

dc
‖φc,k‖2

⎧

⎪

⎨

⎪

⎩

> 0, if k = 1, 2, 3,

= 0, if k = 4,

< 0, if k = 5, . . . .

(ii) Using the notation in (7.6)–(7.6), prove that

I3(φc,k) = k − 4

2(k + 1)(k + 2)

∞
∫

−∞
φk+2
c,k (x) dx.

Thus,

I3(φc,k)

⎧

⎪

⎨

⎪

⎩

< 0, if k = 1, 2, 3,

= 0, if k = 4,

> 0, if k = 5, . . . .
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Hint: Combine the equation (7.7) and the identity (5.83).
8.5 [W2] Defining the functional B : H 1(R) �→ R as:

B(v) = I3(v) + c I2(v). (8.79)

(i) Prove that B is differentiable, and

DB(v)w = d

dε
B(v + εw)|ε=0 = 2

∞
∫

−∞

(

−∂2
x v + c v − vk+1

k + 1

)

w dx,

if v ∈ H 2(R) and w ∈ H 1(R).
(ii) Prove that φc,k is a critical point of B, i.e. DB(φc,k) ≡ 0.

(iii) Prove that DB(·) is differentiable, and

D2B(v)(h, w) = d

dε
DB(v + εh)w|ε=0 = 2

∞
∫

−∞

(−∂2
x h− vkh+ ch

)

w dx

if v ∈ H 1(R) and h, w ∈ H 2(R).
(iv) Using the notation:

Lφc,k f (x) = − d2

dx2 f (x) − φk
c,k(x)f (x) + cf (x),

show that

(a) D2B(φc,k)(h, w) = 2

∞
∫

−∞
Lφc,k hw dx = 2

∞
∫

−∞
hLφc,kw dx.

(b) Lφc,kφ
k+2

2
c,k = −c

k(k+4)
4 φ

k+2
2

c,k .

(c) Lφc,kφ
′
c,k = 0.

(d) Lφc,k

(

− d

dc
φc,k

)

= φc,k .

8.6 Using the notation in (7.6) prove that h : (0,∞) �→ R defined as:

h(c) = I3(φc,k) + c I2(φc,k)

is strictly convex if and only if k = 1, 2, 3.
Hint: Use Exercises 8.4(i) and 8.5(ii).

8.7 Assuming the characterization of the traveling wave described in (8.70) for k =
1, 2, 3, 4 prove property (8.71).

8.8 Let u ∈ C([0, T ] : H 4(R) ∩ L2(|x|2 dx)) be a real solution of the k-gKdV
equation (8.1).
(i) Prove the identity:

d

dt

∫

x u2(x, t) dx = −3

[

I3(u0) + 4 − 2k

3(k + 1)(k + 2)

∫

uk+2 dx

]

.
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(ii) Prove that if k = 2 (mKdV) and a0 ∈ R such that
∫

(x − a0) u2
0(x) dx = 0,

then
∫

(x − a(t)) u2
0(x) dx = 0,

with a(t) = a0 + t
3 I3(u0)

I2(u0)
.

8.9 Let u ∈ C([0, T ] : H 1(R)) be a solution of the k-gKdV equation (8.1). Prove
that if |x| u(0), |x| u(1) ∈ L2(R), then u ∈ C([0, T ] : H 2(R)).

8.10 Consider the equation (8.73) with the parameters α = δ = 1, β = −γ , i.e.,

∂tu + u∂xu − γ u2 ∂xu + ∂3
xu = 0, γ ∈ R. (8.80)

(i) Prove that for γ > 0 the equation (8.80) has traveling wave solutions of
the form qc,γ (x − ct) with

qc,γ (x) = 6c

1 + ρ cosh (
√
cx)

, ρ = (1 − 6cγ )1/2, c ∈ (0, 1/6γ ). (8.81)

(ii) Prove that if u ∈ C([0, T ] : H 4(R)) is a solution of the equation (8.80),
then

v = v(x, t) = u −√6γ ∂xu − γ u2 ∈ C([0, T ] : H 3(R))

satisfies the KdV equation.
(iii) Prove that if γ ↓ 0, then

qc,γ (x) → φc,1(x) = 3c sech2

(√
cx

2

)

,

the soliton solution of the KdV equation (7.6).
8.11 Let u ∈ C([0, T ∗) : H 1(R)) ∩ . . . be a local solution of the IVP (8.1) with

k = 4 (L2-critical case). Assume that

lim
t↑T ∗ ‖∂xu(t)‖2 = ∞.

(i) Prove that for any s ∈ (0, 1],

lim inf
t↑T ∗ ‖Ds

xu(t)‖2 = ∞.

(ii) Prove that for any p ∈ (2,∞],

lim inf
t↑T ∗ ‖u(t)‖p = ∞.



Chapter 9
Other Nonlinear Dispersive Models

In this chapter, we will discuss local and global well-posedness for some nonlinear
dispersive models arising in different physical situations. Our goal is to present
some relevant results associated to the equations to be contemplated here and it is
by no means an exhaustive study of each of them. In Section 9.1 we will treat the
Davey–Stewartson systems. The Ishimori equations will be considered in Section 9.2.
The Kadomtsev–Petviashvili (KP) equations will be discussed in Section 9.3. The
Benjamin–Ono equation will be studied in Section 9.4 and in Section 9.5 we will
be examine the Zakharov systems. Finally, in Section 9.6 we will briefly review the
inverse scattering method for the KdV equation and well-posedness results regarding
higher order KdV equations.

9.1 Davey–Stewartson Systems

The cubic nonlinear Schrödinger equation

i∂tu + ∂2
xu = ±|u|2u, x, t ∈ R,

among other phenomena models the propagation of wave packets in the theory of wa-
ter waves. It is also a complete integrable system. The corresponding bi-dimensional
model is called the Davey–Stewartson system, which is given by the nonlinear system
of partial differential equations,

{

i∂tu+ c0∂
2
xu+ ∂2

yu=c1|u|2u+ c2u∂xϕ,

∂2
xϕ + c3∂

2
yϕ = ∂x(|u|2),

(9.1)

x, y ∈ R, t > 0, where u = u(x, y, t) is a complex-valued function, ϕ = ϕ(x, y, t)
is a real-valued function, and c0, c3 are real parameters and c1, c2 are complex pa-
rameters. It was first derived by Davey and Stewartson in [DS] in the case c3 > 0.
When capillary effects are important, Djordjevic and Redekopp [DR] showed that
c3 can be negative (see also Benney and Roskes [BnR]). Independently, Ablowitz
and Haberman [AH] obtained a particular form of (9.1) as an example of a com-
pletely integrable model generalizing the two-dimensional nonlinear Schrödinger
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equation. In the context of inverse scattering theory the system above with parame-
ters (c0, c1, c2, c3) = (1,−1,−2,−1), (− 1,−2, 1, 1), and (− 1, 2,−1, 1) are known
as DSI, DSII defocusing, and DSII focusing, respectively. For these particular cases
several results regarding the existence of solitons and the Cauchy problem have been
established by inverse scattering techniques (see [AnF], [BC1], [FS1], [Su1]). For
instance, in [FS1] Fokas and Sung proved that for initial data in the Schwartz class
S(R2) and boundary data ∂xϕ1(x, t) and ∂yϕ2(y, t) in the Schwartz class in the spatial
variable and continuous in t , (9.1) has a unique global solution in time t which, for
each t belongs to the Schwartz class in the spatial variable. The same result was
obtained in [BC1] for the DSII defocusing.

Ghigladia and Saut [GS] classified the system as elliptic-elliptic, hyperbolic-
elliptic, elliptic-hyperbolic, and hyperbolic-hyperbolic according to the signs of the
parameters (c0, c3), i.e., (+,+), (−,+), (+,−), and (−,−), respectively.

Solutions of (9.1) satisfy the following two conservation laws:

M(u0) =
∫

R2

|u(x, y, t)|2 dxdy,

E(u0) =
∫

R2

(c0 |∂xu(x, y, t)|2 + |∂yu(x, y, t)|2) dxdy

+ 1

2

∫

R2

(c1 |u(x, y, t)|4 + c2 (∂xϕ)2(x, y, t) + c3 (∂yϕ)2(x, y, t)) dxdy.

The elliptic-elliptic and hyperbolic-elliptic cases were considered by Ghigladia
and Saut [GS]. In these cases they reduced the system (9.1) to the nonlinear cubic
Schrödinger equation with a nonlocal nonlinear term, i.e.,

i∂tu + c0∂
2
xu + ∂2

yu = c1|u|2 u + A(u),

where A(u) = (Δ−1 ∂2
x |u|2)u. They showed local well-posedness for data in L2(R2),

H 1(R2), and H 2(R2) using Strichartz estimates (see 4.23) and the continuity prop-
erties of the operator Δ−1∂2

x . They also established global well-posedness and blow
up results for the elliptic–elliptic case (see also [SG]). Ozawa in [Oz] found exact
blow up solutions in the hyperbolic–elliptic case (see Exercise 9.6).

For the elliptic–hyperbolic and hyperbolic–hyperbolic cases the Strichartz esti-
mates by itself does not provide the desired result. To explain this we will consider
without loss of generality c0 = ±1 and c3 = −1. So using a rotation in the xy-plane
and assuming that ϕ satisfies the radiation condition

lim
y→∞ϕ(x, y, t) = ϕ1(x, t) and lim

x→∞ϕ(x, y, t) = ϕ2(y, t),
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for some given functions ϕ1,ϕ2, then the system (9.1) can be written as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

i∂tu +Hu = d1 |u|2u + d2 u
∞
∫

y

∂x(|u(x, y ′, t)|2) dy ′

+ d3 u
∞
∫

x

∂y(|u(x ′, y, t)|2) dx ′ + d4u∂xϕ1 + d5u∂yϕ2,

u(x, y, 0) = u0(x, y),

(9.2)

where H = Δ in the elliptic–hyperbolic case and H = 2∂x∂y in the hyperbolic-
hyperbolic case. The difficulty of these problems comes from the fact that the
nonlinear terms contain derivatives of the unknown function and that the terms

∞
∫

y

∂x(|u(x, y ′, t)|2) dy ′ and

∞
∫

x

∂y(|u(x ′, y, t)|2) dx ′

do not decay as |x| → ∞, |y| → ∞, respectively.
To describe the results in these two cases we introduce the weighted Sobolev

spaces Fm
l defined as follows:

Fm
l = Hm(R2) ∩ L2(|x|l dx).

First we look at the elliptic–hyperbolic case. In [LiPo] Linares and Ponce proved
local well-posedness for the IVP (9.2) for sufficiently small data in Fm

12, m ≥ 12,
ϕ1 = ϕ2 ≡ 0. They use the smoothing effect of Kato’s type associated to the group
{eiHt }. Chihara [Ch1], using pseudo differential operators, obtained a local result for
data in u0 ∈ Hm(R2) satisfying ‖u0‖2 ≤ 1/(2

√
max{d1, d2}), ϕ1 = ϕ2 ≡ 0, with

m sufficiently large. Hayashi in [H2] showed local well-posedness for small data
in Fm

2 l , m, l > 1. The main tool for accomplishing this was the use of smoothing
effects. In [HH2] Hayashi and Hirata proved that one can have local result in the
usual Sobolev space H 5/2(R2) for data with L2-norm small. The latest updated result
is due to Hayashi [H3], where he got local well-posedness for the IVP (9.2) for data
of any size in Hs(R2), s ≥ 2. Global results were obtained by Hayashi and Hirota
in [HH1] for small data in F3

6 ; see also [Ch1]. For analytic function spaces a global
result for small data was established by Hayashi and Saut in [HS].

For the hyperbolic–hyperbolic case, using Kato’s smoothing effect Linares and
Ponce proved local well-posedness for small data in F6

4 , ϕ1 = ϕ2 = 0 in [LiPo].
Hayashi [H2] showed local well-posedness for small data in F δ

2δ , δ > 1. No local
well-posedness results are known without restriction on the size of the data.

9.2 Ishimori Equation

In this section we comment on local and global well-posedness results for a two
dimensional generalization of the Hesinberg equation, called the Ishimori equation
which reads
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{

∂tS = S ∧ (∂2
x S ± ∂2

y S) + b(∂xφ∂yS + ∂yφ∂xS),

∂2
xφ ∓ ∂2

yφ = ∓2S · (∂xS ∧ ∂yS),
(9.3)

x, y, t ∈ R, where S(·, t) : R
2 → R

3 with ‖S‖ = 1, S → (0, 0, 1) as
‖(x, y)‖ → ∞, and ∧ denotes the wedge product in R

3.
This model was proposed by Ishimori in [Is1] as a two-dimensional generalization

of the Heisenberg equation in ferromagnetism, which corresponds to the case b = 0
and signs (−,+,+) in (9.3) and it was studied in [SSB].

For b = 1 the system (9.3) is completely integrable by inverse scattering (see
[AH], [BC1], [KMa], [Su2], [ZK], and references therein).

Using the stereographic variable u : R
2 �→ C one can get rid of the constraint

‖S‖ = 1. Thus, for

u = S1 + iS2

1 + S3
,

S = (S1, S2, S3) = 1

1 + |u|2 (u + ū,−i(u − ū), 1 − |u|2),
(9.4)

the IVP for (9.3) can be written as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

i∂tu + ∂2
xu + a∂2

yu=2u
(∂xu2 − ∂yu2)

(1 + |u|2)
− ib(∂xφ∂yu − ∂yφ∂xu),

∂2
x φ + a′∂2

y φ = 8 Im (∂xu∂yu)

(1 + |u|2)2
,

u(x, y, 0) = u0(x, y),

(9.5)

with the condition u(x, y, t) → 0 as ‖(x, y)‖ → ∞, where a, a′ ∈ R \ {0}.
To discuss the local and global results we will distinguish two cases: case (−,+),

i.e., a < 0 in the first equation, and a′ > 0 in the second equation in (9.5) and case
(+,−) with similar connotation.

The case (−,+) was studied by Soyeur [Sy]. He obtained local well-posedness
for the IVP (9.5) for small data in Hm(R2), m ≥ 4. Assuming additional regularity
on the data he extended the local solution globally in Hm(R2), m ≥ 6. The argument
used here does not extend to the case (+,−).

The case (+,−) was first studied by Hayashi and Saut [HS]. They considered the
problem in a class of analytic functions obtaining local and global existence results
for small analytic data. This approach allows them to overcome the loss of derivatives
introduced by the nonlinearity.

Hayashi in [H4] removed the analyticity hypotheses used in [HS]. He established
local well-posedness for the IVP (9.5) for small data in the weighted Sobolev F4

8 .
In [KPV9] Kenig, Ponce and Vega established a local well-posedness result for

data of arbitrary size in the space F s
2m = Hs(R2)∩L2(|x|2m dx), s > m. The method

of proof follows closely the method explained in detail in the next chapter.
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9.3 KP Equations

Here we shall discuss some well-posedness results for the Kadomtsev–Petviashvili
(KP) equations. The KP equations are two-dimensional versions of the KdV equa-
tion. They arise in many physical contexts as models for the propagation of weakly
nonlinear dispersive long waves, which are essentially one-directional, with weak
transverse effects. For instance, in the plasma physics context these models were
derived by Kadomtsev and Petviashvili [KP]. Meanwhile, in surface water wave
theory, they were deduced by Ablowitz and Segur in [AS1]. It is also one of the
classical prototype problems in the field of exactly solvable equations (see [AC] for
a complete set of references on this subject).

The equation reads as follows.
{

∂x(∂tu + ∂3
xu + u∂xu) ∓ ∂2

yu = 0,

u(x, y, 0) = u0(x, y),
(9.6)

x, y ∈ R, t > 0. Under some conditions on the initial data, (9.6) can be written as
{

∂tu + ∂3
xu + u∂xu ∓ ∂−1

x ∂2
yu = 0,

u(x, y, 0) = u0(x, y),
(9.7)

x, y ∈ R, t > 0. When the sign in front of ∂−1
x ∂2

y in (9.7) is minus we refer to this
equation as the KPI equation; otherwise we called it the KPII equation.

The results concerning well-posedness for KPI and KPII equations are quite
different. We will first list the results regarding the KPII equation.

Bourgain [Bo10] showed local and global well-posedness for data in Hs(R2),
s ≥ 0. The local result was obtained by the Fourier transform restriction method in-
troduced by him to study nonlinear dispersive equations. In [Tz1] Tzvetkov obtained
local results in anisotropic Sobolev spaces Hs1,s2 (R2) defined as

Hs1,s2 (R2) = {f ∈ S ′(R2) :

‖f ‖2
Hs1,s2 =

∫

R2

(1 + |ξ1|)2s1 (1 + |ξ2|)2s2 |̂f (ξ1, ξ2)|2 dξ1 dξ2 < ∞},

with s1 > −1/4, s2 ≥ 0. He combined the ideas in [Bo1] with bilinear estimates
in [KPV6] and Strichartz estimates. Improvements of these results were obtained
in [Tz2], [Tk2]. Independently, Isaza and Mejia [IM1] and Takaoka and Tzvetkov
[TT] established local well-posedness for data in Hs1,s2 (R2) for s1 > −1/3 and
s2 ≥ 0. Global results are also obtained in [IM1], [Tk2] using Bourgain’s method
in [Bo5]. In [IM2] Isaza and Mejia using the I-method introduced by [CKSTT6]
showed global well-posedness for data in Hs1,s2 (R2) for s1 > −1/14 and s2 ≥ 0. In
[HaHK] Hadac, Herr and Koch obtained local well-posedness in the critical space
Ḣ−1/2,0(R2) (see Exercise 9.14(i)). These solutions corresponding to small data are
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global and scattered. They also showed local well-posedness in the inhomogeneous
case H 1/2,0(R2) for arbitrary data.

The problem for the KPI equation is completely different. The techniques used
in Bourgain [Bo1] do not work here due to the lack of symmetry of the symbol
associated to the equation. In [IN] Iorio and Nunes proved local existence result using
the Kato quasilinear theory for data in Hs(R2), s > 2. Molinet, Saut and Tzvetkov
[MST1] showed that the difficulty with respect to the symmetry of the symbol was
not at all technical, by proving that a Picard’s scheme cannot be applied to study
local in well-posedness for that equation in standard Sobolev spaces. However, they
obtained [MST2] using the conservation laws for the solution flow of the KPI equation
and a compactness argument the global existence of solutions for (9.7).

In [Ke] Kenig showed local well-posedness in

Ys = {u ∈ L2(R2) : ‖u‖2 + ‖J s
x u‖2 + ‖∂−1

x ∂yu‖2 < ∞} (9.8)

for the KPI equation, s > 3/2. Combining this local result with the results in [MST2]
he established global well-posedness in the space

Z0={u ∈ L2(R2) :‖u‖2 +‖∂−1
x ∂yu‖2 +‖∂2

xu‖2 +‖∂−2
x ∂2

yu‖2 < ∞}.
In [CIKS] Colliander, Ionescu, Kenig and Staffilani obtained local well-posedness

in the space Y1 ∩ L2(|y| dxdy).
In [IKT] Ionescu, Kenig and Tataru proved global well-posedness in the energy

space Y1, i.e. u0, ∂xu0, ∂y∂−1
x u0 ∈ L2(R2).

Regarding the periodic setting there are some results by Bourgain [Bo10], Iorio
and Nunes [IN], and Isaza, Mejía and Stallbohm [IMS].

9.4 BO Equation

{

∂tu + H∂2
xu + u∂xu = 0,

u(x, 0) = u0(x),
(9.9)

x ∈ R, t > 0, where H denotes the Hilbert transform (see Definition 1.7).
This integro-differential equation serves as a generic model for the study of weakly

nonlinear long waves incorporating the lowest-order effects of nonlinearity and non-
local dispersion. In particular, the propagation of internal waves in stratified fluids
of great depth is described by the BO equation (see [Be2], [On]) and turns out to
be important in other physical situations as well (see [DaR], [Is2], [MK]). Among
noticeable properties of this equation we can mention that it defines a Hamiltonian
system, can be solved by an analogue of the inverse scattering method (see [AF]),
admits (multi)soliton solutions (see [Ca]), and satisfies infinitely many conserved
quantities (see [Ca]).



9.4 BO Equation 221

Regarding the IVP associated to the BO equation, local and global results have
been obtained by various authors. Iorio [Io1] showed local well-posedness for data
in Hs(R), s > 3/2, and making use of the conserved quantities he extended globally
the result in Hs(R), s ≥ 2. He also studied the problem in weighted Sobolev spaces.
In [Po], Ponce extended the local result for data in H 3/2(R) and the global result
for any solution in Hs(R), s ≥ 3/2. The argument of proof combines parabolic
regularization, smoothing properties, and energy estimates. In [MST3], Molinet,
Saut and Tzvetkov showed that the Picard iteration process cannot be carry out to
prove local results for the BO equation in Hs(R) for any s ∈ R. Koch and Tzvetkov
[KTz] established a local result for data in Hs(R), s > 5/4, improving the one given
in [Po]. In [KeKo] Kenig and Köenig refined the argument in [KTz] to obtain s > 9/8.
The main idea is the use of the Strichartz estimates to control one derivative of the
solution. More precisely, through energy estimates and Kato–Ponce commutator
estimates (3.16) a smooth solution of the BO equation satisfies

‖Dsu‖L∞
T L2

x
≤ ‖u(0)‖s,2 exp

(

c

T
∫

0

‖∂xu(t)‖L∞ dt
)

. (9.10)

Then the Strichartz estimates allow them to establish the existence of a constant c
such that

1
∫

0

‖∂xu(t)‖L∞ dt ≤ c (9.11)

whenever u0 ∈ Hs(R), s > 5/4. Thus, a combination of (9.10) and (9.11) and a
standard compactness argument yields the result.

Tao in [To4] showed that the IVP associated to the BO equation is globally
well-posed in H 1(R). The new tool introduced by him was the following gauge
transformation

w = P+(e−iFu), F = F (u) =
x
∫

−∞
u(y, t) dy, (9.12)

where ̂P+f (ξ ) = χ[0,∞)(ξ )̂f (ξ ). This is a variant of the Cole–Hopf transformation
for viscous Burgers’ equation (see Exercise 9.18), which in this setting allows one
to remove most of the worst terms involving the derivative.

Tao’s gauge transformation idea was further developed by Burq and Planchon
[BuPl] to carry the local well-posedness to Hs(R), for s > 1/4 and by Ionescu and
Kenig [IK1] to extend it to Hs(R), s ≥ 0. We refer to [MoPi] for further discussion
of the latter results.

In the periodic setting, Molinet [Mo1] has shown global well-posedness for data
in L2(T).

In the previous chapters we discussed some decay and smoothness properties for
solutions of the NLS and k-gKdV equations and their relationship. In particular, for
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initial data in the Schwartz class S, the corresponding solutions (for smooth nonlin-
earity) also belong to this class in their life span. The decay of the data is reflected
in the decay of the corresponding solutions of the associated IVP (persistence). So-
lutions of the BO equation do not share this property, not even mild persistence
properties regarding the decay hold. To illustrate this unusual character of solutions
of the BO equation we shall recall the following spaces:

F s
r = Hs(R) ∩ L2(|x|r dx),

and

Ḟ s
r =
{

f ∈ F s
r :
∫

f (x) dx = ̂f (0) = 0
}

.

The following result is due to Iório [Io2].

Theorem 9.1. Let u ∈ C([0, T ] : H 2(R)), T > 0, be the solution of the IVP (9.9).

(i) If u0 ∈ F2
2j , j = 1, 2. Then

u ∈ C([0, T ] : F2
2j ), j = 1, 2.

(ii) If u0 ∈ F3
6 and

∫

u0(x) dx = 0. Then

u ∈ C([0, T ] : Ḟ3
6 ).

(iii) If u ∈ C([0, T ] : Ḟ4
8 ). Then u ≡ 0.

In [Io3] Iorio strengthened the result in Theorem 9.1(iii) by proving that if at three
different times a solution of the BO equation satisfies u(·, tj ) ∈ F4

8 , j = 1, 2, 3, then
u ≡ 0. In [FoPo] Iorio’s result was extended to non-integer values. In particular it
was shown that if u(·, tj ) ∈ F7/2

7 , j = 1, 2, 3, then u ≡ 0, and that for every ε > 0
if u0 ∈ Ḟ7/2

7−ε , then the corresponding solution satisfies u ∈ C([0, T ] : Ḟ7/2
7−ε). In

[FLP3] it was shown that the uniqueness result of Iorio mentioned above involving
a condition a three different times is necessary. More precisely, it was proved that
there exist non zero solutions of the BO equation u ∈ C([0, T ] : Ḟ3

6 ) such that
u(·, tj ) ∈ F4

8 , j = 1, 2.
Notice that the above results are mainly a consequence of the lack of smoothness

of the symbol σ (ξ ) = ξ |ξ | modeling the dispersion.
For the sake of completeness we shall explain the parabolic regularization method

or artificial viscosity method for the case of the BO equation. This method which is
quite general will be used in the next chapter.

The goal is to establish the following local well posedness result for the IVP (9.9)
associated to the BO equation.

Theorem 9.2. Let s > 3/2. Given any u0 ∈ Hs(R) there exist T (‖u0‖s,2) > 0 and
a unique solution u of the IVP (9.9) such that

u ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)). (9.13)
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Moreover, the map data → solution from Hs(R) to C([0, T ] : Hs(R)) is locally
well defined and continuous.

In addition, if u0 ∈ Hs′ (R) with s ′ > s, then

u ∈ C([0, T ] : Hs′ (R)) ∩ C1((0, T ) : Hs′−2(R)).

To simplify the exposition we shall sketch the details in the case s = 2. It will
be clear from our proof below and the calculus of inequalities in Chapter 3 how to
obtain the general result s > 3/2.

We consider the IVP associated to the viscous BO equation
{

∂tu + H∂2
xu + u∂xu = γ ∂2

xu,

u(x, 0) = u0(x),
(9.14)

t > 0, x ∈ R, γ ∈ (0, 1).

Step 1 A priori estimate for solutions (9.14)
Assume that uγ ∈ C([0, T ∗] : H 2(R)) ∩ C∞((0, T ∗) : H∞(R)) is a solution of

the IVP (9.14), then the standard energy estimate (see 3.12 and 3.13) show that

d

dt
‖uγ (t)‖2

2,2 + γ ‖∂3
xuγ (t)‖2

2 ≤ c‖∂xuγ (t)‖∞‖uγ (t)‖2
2,2. (9.15)

Thus, from Sobolev Embedding (Theorem 3.2)

d

dt
‖uγ (t)‖2,2 ≤ c‖uγ (t)‖2

2,2, (9.16)

where c here and below will denote a constant whose value may change from line
to line but it is independent of the data and the parameters in (9.9) and (9.14) (and
later in (9.32)). From (9.16) one has that

‖uγ (t)‖2,2 ≤ ‖u0‖2,2

1 − ct‖u0‖2,2
, (9.17)

therefore taking T such that

cT ‖u0‖2,2 = 1/2 (9.18)

it follows that

sup
[0,T ]

‖uγ (t)‖2,2 ≤ 2‖u0‖2,2, ∀ γ ∈ (0, 1). (9.19)

Now integrating in the t variable in (9.15), using Sobolev embedding and (9.18)–
(9.19) one gets that

γ

∫ T

0
‖∂3

xuγ (t)‖2
2dt ≤ ‖u0‖2

2,2 + c

∫ T

0
(2‖u0‖2,2)3dt (9.20)
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≤ ‖u0‖2
2,2 + 8cT ‖u0‖3

2,2 ≤ c‖u0‖2
2,2.

To complete this step we observe that if u0 ∈ Hs′ (R) with s ′ > 2, then as in (9.15)
it follows that

d

dt
‖uγ (t)‖s′,2 ≤ c‖uγ (t)‖2,2‖uγ (t)‖s′,2.

Hence,

sup
[0,T ]

‖uγ (t)‖s′,2 ≤ ‖u0‖s′,2 ecT ‖u0‖2,2 = K ‖u0‖s′,2, K = K(‖u0||2,2),

i.e. higher derivatives of the solution are also bounded by the data in the same time
interval [0, T ].

Step 2 Existence of solutions to the IVP (9.14).
We consider the semigroup {Uγ (t) : t ≥ 0} defined as

Uγ (t)f (x) = (e4π2i|ξ |ξ t e−γ 4π2ξ2t
̂f
)∨

(x).

It is easy to see that for any t ≥ 0

(a) ‖Uγ (t)f ‖2 ≤ ‖f ‖2,

(b) ‖∂xUγ (t)f ‖2 ≤ c

(γ t)1/2
‖f ‖2. (9.21)

The solution of the IVP (9.14) is a fixed point of the operator Ψ = Ψγ ,u0 with

Ψ (v)(t) = Uγ (t)u0 −
∫ t

0
Uγ (t − t ′)v∂xv(t ′)dt ′, (9.22)

defined on

Ω
̂T ,r = {v : R × [0,̂T ] → R : v ∈ C([0,̂T ] : H 2(R)), sup

[0,̂T ]

‖v(t)‖2,2 ≤ r},
(9.23)

with ̂T and r > 0 to be chosen. From (9.21) it follows that

sup
[0,Tγ ]

‖Ψ (v)(t)‖2,2 ≤ c‖u0‖2,2 + cT
1/2
γ

γ 1/2
sup

[0,Tγ ]
‖v(t)‖2

2,2,

and

sup
[0,Tγ ]

‖(Ψ (v)−Ψ (ṽ))(t)‖2,2

≤ cT
1/2
γ

γ 1/2
sup

[0,Tγ ]
(‖v(t)‖2,2 + ‖ṽ(t)‖2,2) sup

[0,Tγ ]
‖(v − ṽ)(t)‖2,2.
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Hence, choosing r and Tγ as

r = 2c‖u0‖2,2 and
cT

1/2
γ r

γ 1/2
= 2c2T

1/2
γ ‖u0‖2,2

γ 1/2
= 1

4
, (9.24)

it follows that the operator Ψ defines a contraction in ΩTγ ,r , and so for any γ > 0
the IVP (9.14) has a unique solution

uγ ∈ C([0, Tγ ] : H 2(R)) ∩ C∞(R × (0, Tγ )), with Tγ ∼ γ. (9.25)

Now using the a priori estimate (step–1) we can reapply the above local existence
argument (which only depends on the size of the initial data, see 9.24) to extend for
each γ ∈ (0, 1) the solution uγ in the class (9.25) to the whole time interval [0, T ]
with T as in (9.18). Moreover, we have that

sup
γ>0

( sup
[0,T ]

‖uγ (t)‖2
2,2 + γ

∫ T

0
‖∂3

xuγ (t)‖2
2dt) ≤ c‖u0‖2

2,2. (9.26)

Step 3 Convergence of the uγ ’s as γ ↓ 0.
For 1 > γ > γ ′ > 0 we define

ω(t) = ωγ ,γ ′
(t) = uγ (t) − uγ ′

(t), (9.27)

which satisfies the equation

∂tω + H∂2
xω + ω∂xuγ + uγ ′

∂xω = γ ′∂2
xω + (γ − γ ′)∂2

xuγ , t ∈ [0, T ], (9.28)

with data ω(x, 0) = 0. Using energy estimates it follows that

d

dt
‖ω(t)‖2 ≤ c(‖∂xuγ (t)‖∞ + ‖∂xuγ ′

(t)‖∞)‖ω(t)‖2 + (γ − γ ′)‖∂2
xuγ (t)‖2.

Hence, from (9.26) one has that

sup
[0,T ]

‖(uγ − uγ ′
)(t)‖2 = sup

[0,T ]
‖ω(t)‖2

≤ (γ − γ ′)
∫ T

0
‖∂2

xuγ (t)‖2dt exp{
∫ T

0
(‖∂xuγ ‖∞ + ‖∂xuγ ′ ‖∞)dt} (9.29)

≤ 2(γ − γ ′)T ‖u0‖2,2 · e4cT ‖u0‖2,2 ≤ (γ − γ ′)K ,

K = K(‖u0‖2,2) which shows that the uγ ’s converge as γ ↓ 0 in C([0, T ] : L2(R)).
Moreover, combining (9.26) and interpolation the uγ ’s converge in C([0, T ] :
H 2−μ(R)) for any μ > 0 to a limit function ũ(x, t)

ũ ∈ C([0, T ] : H 2−μ(R)) ∩ L∞([0, T ] : H 2(R)), ∀μ > 0 (9.30)
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(using a weak compactness argument) satisfying that

sup
[0,T ]

‖̃u(t)‖2,2 ≤ c‖u0‖2,2. (9.31)

To complete this step we observe that if u0 ∈ Hs′ (R) with s ′ > 2, then the
uγ ’s converge as γ ↓ 0 in C([0, T ] : Hs′−μ(R)), μ > 0 and by taking limit with
s ′ − μ ≥ 2 one has that

ũ ∈ C([0, T ] : Hs′−μ(R)) ∩ L∞([0, T ] : Hs′ (R)) ∀μ > 0

is a solution of the IVP (9.9).

Step 4 Persistence property: u ∈ C([0, T ] : Hs(R)).
We need some preliminary estimates. Let ρ ∈ C∞

0 (R) be such that

ρ(x) ≥ 0 ∀x ∈ R,
∫

ρ(x)dx = 1,
∫

xk ρ(x) dx = 0, k = 1, . . .,m, (9.32)

for some m ∈ Z
+. Denote

ρε(x) = 1

ε
ρ
(x

ε

)

, ε > 0.

Proposition 9.1. Let r > 0 and f ∈ Hr (R). Then

(a) ‖ρε ∗ f ‖r+α,2 ≤ cε−α‖f ‖r ,2, ∀α > 0,

(b) ‖f − ρε ∗ f ‖r−β,2 ≤ cεβ‖f ‖r ,2, ∀β ∈ [0, r]. (9.33)

Moreover,

(a) ‖ρε ∗ f ‖r+α,2 = O(ε−α) as ε ↓ 0 ∀α > 0,

(b) ‖f − ρε ∗ f ‖r−β,2 = o(εβ) as ε ↓ 0 ∀β ∈ [0, r]. (9.34)

Proof. The proof of part (a) in (9.33) and (9.34) is immediate so we only consider
part (b). We shall restrict ourselves to prove the case r = 1 and β = 1. The proof for
the case where r , β ∈ Z

+ is similar to the argument below. The general case follows
by interpolation between the previous cases.

By hypothesis on ρ(·) one has

f (x) − ρε ∗ f (x) =
∫

ρε(y)(f (x) − f (x − y)) dy

=
∫

ρε(y)( −
∫ 1

0

d

dt
f (x − ty)dt)dy =

∫ 1

0

∫

ρε(y)f ′(x − ty)y dydt

=
∫ 1

0

∫

ρε(y)(f ′(x − ty) − f ′(x))y dydt.
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Hence,

‖f − ρε ∗ f ‖2 ≤ ε

∫ 1

0

∫ |y|
ε
ρε(y)‖f ′(· −ty) − f ′(·)‖2 dydt.

Since f ∈ H 1(R) a density argument shows that

lim
δ↓0

sup
|y|≤δ, |t |≤1

‖f ′(· −ty) − f ′(·)‖2 = 0.

This together with the fact that for any δ > 0 fixed

lim
ε↓0

∫

|y|≥δ

|y|
ε
ρε(y) dy = lim

ε↓0

∫

|x|≥δ/ε

|x|ρ(x) dx = 0

yields the desired result.
Next, we turn to the proof of step 3. We consider the IVP

{

∂tu + H∂2
xu + u∂xu = 0,

u(x, 0) = uε
0(x) = ρε ∗ u0(x),

(9.35)

t > 0, x ∈ R.
Since the data in (9.35) uε

0 ∈ H∞(R) the argument in steps 1 and 2 shows for any
ε > 0 the IVP (9.32) has a solution

uε ∈ C([0, T ] : H∞(R)),

with T as in (9.18), i.e.

cT ‖uε
0‖2,2 = cT ‖u0‖2,2 = 1/2

satisfying that

sup
ε>0

sup
[0,T ]

‖uε(t)‖2,2 ≤ c‖u0‖2,2 (9.36)

with c independent of ε. Also by (9.33) one has that

sup
[0,T ]

‖uε(t)‖l,2 = O(ε−l+2) as ε ↓ 0, ∀ l > 2. (9.37)

Next, for ε > ε′ > 0 we define

v(t) = vε,ε′ (t) = (uε − uε′ )(t),

which solves the IVP
{

∂tv + H∂2
x v + v∂xuε + uε′∂xv = 0,

v(x, 0) = uε
0(x) − uε′

0 (x) = (ρε ∗ u0 − ρε′ ∗ u0)(x) = v0(x),
(9.38)
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t ∈ [0, T ]. Using energy estimates it follows that

d

dt
‖v(t)‖2 ≤ c(‖∂xuε(t)‖∞ + ‖∂xuε′ (t)‖∞)‖v(t)‖2, (9.39)

which combined with (9.36) and Proposition 9.1 lead to

sup
[0,T ]

‖v(t)‖2 ≤ c‖v0‖2 e
2cT ‖u0‖2,2 ≤ cε2 K , K = K(‖u0‖2,2). (9.40)

In the same manner one has

d

dt
‖∂2

x v(t)‖2 ≤ c(‖∂xuε(t)‖∞ + ‖∂xuε′ (t)‖∞)‖∂2
x v(t)‖2

+ c(‖∂2
xuε(t)‖2 + ‖∂2

xuε′ (t)‖2)‖∂xv(t)‖∞
+ ‖∂3

xuε‖2 ‖v(t)‖∞
≡ E1(t) + E2(t) + E3(t). (9.41)

Gronwall’s inequality will be applied to (9.41) after estimating Ej , j = 1, 2, 3.
The estimate for E1 follows from (9.36) and Sobolev Embedding Theorem. Using
the Gagliardo–Nirenberg inequality (see (3.13)), (9.36) and (9.40) the contribution
of E2 can be bounded as

sup
[0,T ]

E2(t) ≤ c‖u0‖2,2 sup
[0,T ]

(‖v(t)‖1/4
2 ‖∂2

x v(t)‖3/4
2 ) ≤ cε1/2K , K = K(‖u0‖2,2).

Similarly, using (9.37) and (9.40) one controls the contribution of the term E3 in
(9.41)

sup
[0,T ]

E3(t) ≤ sup
[0,T ]

(‖∂3
xuε‖2‖v(t)‖3/4

2 ‖∂2
x v(t)‖1/4

2 )

≤ cε−1ε3/2K = cε1/2K , K = K(‖u0‖2,2).

Hence, collecting the above information, using Gronwall’s inequality and (9.41),
and adding the result to (9.40) we conclude that

sup
[0,T ]

‖v(t)‖2,2 = sup
[0,T ]

‖(uε − uε′ )(t)‖2,2 = o(1) as ε ↓ 0. (9.42)

Thus,
uε → u in C([0, T ] : H 2(R)), as ε ↓ 0,

with u(·) solving the IVP (9.9) where the equation holds in C([0, T ] : L2(R)). The
uniqueness of the solution u = u(x, t) in the class C([0, T ] : H 2(R)) follows by
using the argument in (9.39) and (9.40). One can show that our solution u agrees
with the function ũ found in the step 3, see (9.30).

Step 5 (from [BS]) Proof of the continuous dependence of the solution u upon the
data u0.
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We shall show that

∀ λ > 0 ∃ δ > 0
[‖u0 − z0‖2,2 < δ ⇒ sup

[0,T/2]
‖(u − z)(t)‖2,2 < λ

]

, (9.43)

where u, z represent the solutions of the IVP (9.9) with data u0, z0 ∈ H 2(R))
respectively. Without loss of generality we assume u0 �= 0.

In (9.43) we take the time interval [0, T/2] with T as in (9.18) to guarantee that
if ‖u0 − z0‖2,2 < δ, then the solution z(t) is defined in the time interval [0, T/2].

For 1 > ε > ε′ > 0 we define

w(t) = wε,ε′ (t) = (uε − zε
′
)(t), (9.44)

where uε , zε
′
are the solutions of the IVP (9.35) with data uε

0 = ρε ∗u0, zε
′

0 = ρε′ ∗ z0

respectively. Thus, taking δ1 = ‖u0‖2,2/2 from the above results one has that

sup
[0,T/2]

‖uε(t)‖2,2 + sup
[0,T/2]

‖zε
′
(t)‖2,2 ≤ c‖u0‖2,2 + 2c‖u0‖2,2. (9.45)

Since w(t) satisfies the IVP
{

∂tw + H∂2
x w + w∂xuε + zε

′
∂xw = 0,

w(x, 0) = uε
0(x) − zε

′
0 (x) = (ρε ∗ u0 − ρε′ ∗ z0)(x) = v0(x),

(9.46)

t ∈ [0, T/2], one has (combining (9.45) and a familiar argument) that

sup
[0,T/2]

‖w(t)‖2 ≤ ‖uε
0 − zε

′
0 ‖2 K

≤ K(‖u0 − uε
0‖2 + ‖z − zε

′
0 ‖2 + δ) ≤ K(ε2 + δ), (9.47)

K = K(‖u0‖2,2) and

d

dt
‖∂2

x w(t)‖2 ≤ c(‖∂xuε(t)‖∞ + ‖∂xzε
′
(t)‖∞)‖∂2

x w(t)‖2

+ c(‖∂2
xuε(t)‖2 + ‖∂2

x zε
′
(t)‖2)‖∂xw(t)‖∞

+ ‖∂3
xuε‖2 ‖w(t)‖∞

≡ G1(t) +G2(t) +G3(t). (9.48)

First using (9.45) and Sobolev embedding one gets that

G1(t) ≤ c‖u0‖2,2‖∂2
x w(t)‖2, ∀ t ∈ [0, T/2].

Next, combining (9.45) and (9.47) one gets the bound

sup
[0,T/2]

G2(t) ≤ c‖u0‖2,2 sup
[0,T/2]

(‖w(t)‖1/4
2 ‖∂2

x w(t)‖3/4
2 )

≤ c‖u0‖7/4
2,2 K(ε2 + δ)1/4 ≤ K(ε2 + δ)1/4 ≤ cK(ε1/2 + δ1/4),
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K = K(‖u0‖2,2). Finally, from (9.36), (9.37), and (9.47) the term G3 in (9.48) can
bounded as

sup
[0,T/2]

G3(t) = sup
[0,T/2]

(‖∂3
xuε(t)‖2‖w(t)‖∞)

≤ cKε−1 sup
[0,T/2]

(‖w(t)‖3/4
2 ‖∂2

x w(t)‖1/4
2 )

≤ cKε−1(ε2 + δ)3/4 ≤ cK ′(ε1/2 + ε−1δ3/4).

Combining the estimates for Gj , j = 1, 2, 3, Proposition 9.1, and Gronwall’s
inequality and adding the result to (9.47) it follows that

sup
[0,T/2]

‖w(t)‖2,2 = sup
[0,T/2]

‖(uε − zε)(t)‖2,2

≤ K(‖uε
0 − zε0‖2,2 + T (ε1/2 + δ1/4 + ε−1δ3/4)) (9.49)

≤ K(‖uε
0 − u0‖2,2 + ‖zε

′
0 − z0‖2,2 + δ1/4 + ε1/2 + ε−1δ3/4)

assuming δ < 1. Therefore collecting these results one concludes that

sup
[0,T/2]

‖(u − z)(t)‖2,2 ≤ sup
[0,T/2]

(‖u − uε‖2,2 + ‖z − zε
′ ‖2,2 + ‖uε − zε

′ ‖2,2)

≤ o(1)ε + o(1)ε′

+K(‖uε
0 − u0‖2,2 + ‖zε

′
0 − z0‖2,2 + δ1/4 + ε1/2 + ε−1δ3/4)

≤ o(1)ε + o(1)ε′ +K(δ1/4 + ε−1δ3/4).

So we fixed ε small enough such that

o(1)ε ≤ λ/3,

then we take δ < min{1; ‖u‖2,2/2} such that

K(δ1/4 + ε−1δ3/4) < λ/3,

and finally for each z0 ∈ H 2(R) such that ‖z0 − u0‖2,2 < δ we take ε′ = ε′(z0) >

0, ε′ ∈ (0, ε) such that
o(1)ε′ ≤ λ/3,

to conclude the proof of Theorem 9.2.
We observe that the only fact used on the operator H∂2

x describing the dispersive
relation in the BO equation was that it is skew-symmetric.

Next, consider the IVP associated to the generalized BO equation, that is,
{

∂tu + H∂2
xu + uk∂xu = 0,

u(x, 0) = u0(x),
(9.50)
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x ∈ R, t > 0, k ∈ Z
+, k ≥ 2.

In addition to preserve the L2-norm, solutions of the IVP (9.50) leave invariant
the quantity

E(u)(t) =
∞
∫

−∞

(|D1/2
x u(x, t)|2 − 1

(k + 1)(k + 2)
u(x, t)k+2

)

dx. (9.51)

These quantities will be useful for extending possible local results globally in the
corresponding Sobolev spaces dictated for them.

We also notice that the scaling argument for the equation in (9.50) suggests well-
posedness for the IVP in Hs(R) for

s > sk = 1

2
− 1

k
. (9.52)

Using the oscillatory integral techniques described in Chapters 4 and 7 in [KPV11]
local well-posedness for small data was established in Sobolev indices lower than
the 3/2 given by the energy method.

In [MR1] and [MR2] Molinet and Riboud improved the results in [KPV11]. In
particular, they showed local well-posedness for small data in Hs(R), s > 1/3 for
k = 3, and s > sk for k ≥ 4, and for data in Hs(R) of arbitrary size, s ≥ 3/4 for
k = 3, s > 1/2 for k = 4, and s ≥ 1/2 for k ≥ 5. These results can be extended
globally using the conserved quantities (9.51) whenever the local well-posedness is
realized in H 1/2(R). Kenig and Takaoka [KT] has obtained global well-posedness
for (9.50) with k = 2 for s ≥ 1/2. One of the main new tool used by these authors
was a gauge transformation reminiscent of that introduced by Tao (see (9.12)). In
[Ve] Vento established local well-posedness in the critical space Ḣ sk (R), sk = 1

2 − 1
k
,

(and its inhomogeneous version) for k ≥ 4. It was also proved that for k = 3 local
well-posedness holds in Hs(R) for s > 1/3.

From the ill-posedness results obtained by Biagioni and Linares [BiL] the results
in [Ve] for k ≥ 4 should be optimal.

9.5 Zakharov System

In this section we will give a brief account of some results concerning local and
global well-posedness for the Zakharov system,

⎧

⎪

⎨

⎪

⎩

i∂tu +Δu = u v,

λ−2∂2
t v −Δv = Δ(|u|2),

u(x, 0) = u0(x), v(x, 0) = v0(x), ∂tv(x, 0) = v1(x),

(9.53)

x ∈ R
n, t > 0, where u : R

n × [0,∞) �→ C
n and v : R

n �→ R.
This model was introduced by Zakharov [Zk] to describe the long wave Langmuir

turbulence in a plasma. The function u = u(x, t) represents the slowly varying
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envelope of the highly oscillatory electric field; v = v(x, t) is the deviation of the ion
density from the equilibrium; and λ is proportional to the ionic speed of sound. In
the limit when λ → ∞ the system (9.53) reduces formally to the cubic (focusing)
nonlinear Schrödinger equation,

i∂tu∞ +Δu∞ = −|u∞|2 u∞. (9.54)

Solutions of this system satisfy the following conservation laws:

M(u0) =
∫

R2

|u(x, t)|2 dx,

E(u0, v0, v1) =
∫

R2

(|∇u|2 + v|u|2 + v2

2
+ λ−2((−Δ)−1/2∂tv)2

)

(x, t) dx. (9.55)

The Zakharov system has been studied by several authors. Sulem and Sulem [SS1]
showed that for data

(u0, v0, v1) ∈ Hs(Rn) ×Hs−1(Rn) × (Hs−2(Rn) ∩ Ḣ−1(Rn)) (9.56)

with s ≥ 3 and 1 ≤ n ≤ 3, the IVP (9.53) has unique local solution

(u, v) ∈ L∞([0, T ] : Hs(Rn)) × L∞([0, T ] : Hs−1(Rn)).

They also proved that in the case n = 1 these solutions can be extended globally
in time. Later on in [AA2] Added and Added established the global existence for
the solutions given in [SS1] in the case n = 2 corresponding to data u0 with ‖u0‖2

sufficiently small. Schochet and Weinstein [SWe] obtained a local existence and
uniqueness results for data in (9.56) with time interval [0, T ] independent of the
parameter λ. This allowed them to show that solutions (uλ, vλ) of (9.53) converge to a
solution of (9.54) as λ → ∞. For small amplitude solutions rates of this convergence
were obtained in [AA1]. Latter Ozawa and Tsutsumi [OT3] found optimal rates of
convergence of solutions of (9.53) to solutions of (9.54).

In [OT2] Ozawa and Tsutsumi obtained, for a fixed λ, unique local results for
the IVP (9.53) for data (u0, v0, v1) ∈ H 2(Rn) × H 1(Rn) × L2(Rn) with 1 ≤ n ≤ 3,
removing the hypothesis v1 ∈ Ḣ−1 in previous works (see (9.55)). Ozawa and
Tsutsumi approach relies on the Lp-Lq estimates of Strichartz type.

Kenig, Ponce and Vega [KPV8] proved that an iteration scheme can be used
directly to obtain small amplitude solutions. They showed that for n ≥ 1, there exist
s > 0, m ∈ Z

+, and δ > 0 such that for any data

(u0, v0, v1) ∈ X s,m = Hs(Rn) ∩Hs0 (|x|m dx) ×Hs−1/2(Rn) ×Hs−3/2(Rn),
(9.57)

s0 = [(s+3)/2] (where [r] denotes the largest integer ≤ r) with ‖(u0, v0, v1)‖X s,m ≤
δ, there exists a unique solution (uλ, vλ) in an interval of time [0, T ] independent of
λ ≥ 1. They also showed that under some additional hypotheses on v0 and v1,

sup
[0,T ]

‖(uλ − u∞)(t)‖Hs0 = O(λ−1) as λ → ∞.
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The main idea used in [KPV8] was to exploit the inhomogeneous n-dimensional
version of Kato’s smoothing effect (4.30) to overcome the loss of derivatives. This
was complemented with maximal function estimates for the group {eitΔ}.

In [BoC] Bourgain and Colliander showed local well-posedness of IVP (9.53)
in the energy space (u0, v0, v1) ∈ H 1(Rn) × L2(Rn) × H−1(Rn), n = 2, 3, by
extending the method developed in [Bo1]. Global well-posedness for small data
was also established by combining local well-posedness and conservation laws, (see
(9.55)).

Ginibre, Tsutsumi and Velo [GTV], using the Fourier restriction method intro-
duced by Bourgain [Bo1], obtained a more complete set of results concerning local
well-posedness. Their results are roughly as follows:

For data (u0, v0, v1) ∈ Hk(Rn)×Hl(Rn)×Hl−1(Rn) the IVP is locally well-posed
provided

(k, l) Dimension

− 1
2 < k − l ≤ 1, 2k ≥ l + 1

2 n = 1

l ≥ 0, 2k − (l + 1) ≥ 0 n = 2, 3

l > n
2 − 2, 2k − (l + 1) > n

2 − 2 n ≥ 4

The solutions satisfy

(u, v, ∂tv) ∈ C([0, T ] : Hk(Rn) ×Hl(Rn) ×Hl−1(Rn)).

In [BHHT] for the two-dimensional case, Bejenaru, Herr, Holmer and Tataru
obtained local well-posedness in the space L2(R2) × H−1/2(R2) × H−3/2(R2) and
showed that this result should be optimal.

Regarding blow up results we shall mention the following. In the two-dimen-
sional case Glangetas and Merle [GM] proved the existence of blow up solutions
with radial symmetry and self-similar form:

u(x, t) = ω

(T − t)
eiΦ(x,t)P

( ω|x|
T − t

)

,

v(x, t) = ( ω

T − t

)2
N
( ω|x|
T − t

)

,

where ω ∈ R and

Φ(x, t) = ω2

(T − t)
− |x|2

4(T − t)
.

They also showed that concentration happens in L2 (see (6.4)). In [Me5] Merle
found rates for the blow up. In [Me6] he also obtained some extensions of the blow
up results.

In the one-dimensional case a global result below the energy space has been
proved by Pecher [P2].
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The corresponding IVP (9.53) in the periodic setting was treated by Bourgain in
[Bo9] and Takaoka in [Tk1].

To end this section we comment on the results obtained by Colin and Métivier
[CM] and Linares, Ponce and Saut [LPS] regarding the local theory concerning a
system deduced by Zakharov where the Schrödinger linear part has a degenerate
Laplacian. In [CM] it was established that the periodic boundary value problem is
ill-posed. However, the use of some smoothing properties in [LPS] allow the authors
to prove local well-posedness in spaces defined via those regularizing properties.
This example illustrates the difference between the nonperiodic and periodic setting.

9.6 Higher Order KdV Equations

In 1967 Gardner, Greene, Kruskal and Miura [GGKM] discovered the remarkable
fact that the spectrum of the Sturm–Liouville (or stationary Schrödinger) equation

Lq(y) = y ′′ − q(x) y = d2y

dx2
− q(x)y = λ y, −∞ < x < ∞, (9.58)

does not change when the potential q(x) evolves accordingly to the KdV equation,
i.e., if u(x, t) solves the IVP

{

∂tu + ∂3
xu + u∂xu = 0,

u(x, 0) = q(x),
(9.59)

x, t ∈ R, with q(·) in an appropriate class, then

spectrum ofLq = σ (Lq) = σ (Lu(·,t)) for any t ∈ R. (9.60)

This principle allowed them to use results from (direct and inverse) spectral theory
to solve the IVP (9.59) through a succession of linear computations. This procedure is
called the inverse scattering method (ISM) as it was mentioned in previous chapters.

More precisely, to guarantee the validity of the process we will describe next, one
assumes that q(x) satisfies the decay assumption

∞
∫

−∞
(1 + |x|2) |q(x)|2 dx < ∞ (no optimal condition). (9.61)

The scattering data for the problem (9.58) is the spectral information needed to
reconstruct the potential q(x).

First, one has the spectrum σ (Lq) where by (9.61)

σ (Lq) = (−∞, 0] ∪ {k2
j }Nj=1, N ∈ Z

+ ∪ {0}, (9.62)
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where (−∞, 0] is the continuous spectrum and λj = −k2
j , kj > 0, j = 1, . . . ,N ,

are the eigenvalues corresponding to eigenfunctions {ψj }Nj=1 ⊆ L2(R) normalized,
i.e., ‖ψj‖2 = 1, j = 1, . . . ,N . Thus from (9.58) and (9.61)

ψj (x) ∼ cj e
−kj x as x ↑ ∞, j = 1, . . . ,N. (9.63)

The {cj }Nj=1 are called the “normalizing coefficients.”

For λ < 0 the generalized eigenfunctions can be written as (k = √−λ)

ψ(x) ∼
{

e−ikx + b(k) eikx , x → +∞
a(k) e−ikx , x → −∞,

(9.64)

where a(k) and b(k) are called the transmitted and the reflected coefficients,
respectively, extended to k ∈ R.

The scattering data are given by the spectrum, the normalizing coefficients, and
the reflected coefficients

{σ (Lq); {cj }Nj=1; {b(k) : k ∈ R} }. (9.65)

This information permits one to recover the potential q(x) as follows: Define

F (x) =
N
∑

j=1

c2
j e

−kj x + 1

2π

∞
∫

−∞
b(k) eikx dk, (9.66)

and let K(x, z) be the solution of the Marchenko (Fredholm integral) equation

K(x, z) + F (x + z) +
∞
∫

−x

K(x, x ′)F (x ′ + z) dx ′ = 0. (9.67)

Then the potential is obtained via the formula

q(x) = 1

3

d

dx
K(x, z)

∣

∣

z=x
. (9.68)

Assuming now that the potential q(x) evolves accordingly to (9.59), one can show
(see [AS2], [DJ] for details of this discussion) that the scattering data change in time,
the spectrum as (9.60) and the normalized and reflected coefficients as

{

cj (t) = c(0) e4k3
j t = cj e

4k3
j t ,

b(k; t) = b(k; 0) e8ik3t = b(k) e8ik3t .
(9.69)

Hence we know

{σ (Lu(·,t)); {cj (t)}Nj=1; {b(k; t) : k ≥ 0} }, (9.70)
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the scattering data for

Lu(·,t)(y) = y ′′ − u(·, t) y = λ y,

which allows one to recover the potential u(·, t), i.e., the solution of the IVP (9.58)
associated to the KdV.

In [Lx2] Lax generalized this principle by finding a class of evolution equations
for which the operators

Lu(·,t) = d2

dx2
− u(x, t) (9.71)

are unitary equivalent whenever u(·, t) is a solution of an equation in this class. One
must find a family of unitary operators {U (t)}∞t=−∞ such that

U ∗(t)Lu(·,t) U (t) = Lu(·,0). (9.72)

This family should satisfy an equation of the form

d

dt
U (t) = B(t)U (t) (9.73)

for some B(t) skew-symmetric operator. Combining (9.72) and (9.73) one sees that

d

dt
Lu(·,t) = B(t)Lu(·,t) − Lu(·,t) B(t) ≡ [B(t);Lu(·,t)]. (9.74)

Choosing B = B0 = d

dx
one gets

d

dt
Lu(·,t) = ∂tu = [ d

dx
;Lu(·,t)

] = −∂xu, (9.75)

i.e.,

∂tu + ∂xu = 0,

whose solution u(x, t) = u0(x − t) = q(x − t) clearly leaves the spectrum of Lu(·,t)
in (9.71) independently of t .

The choice

B1 = α
d2

dx2
+ β
(

u
d

dx
+ d

dx
(u · )

)

(9.76)

with appropriate values of the constants α and β gives

[B1(t); Lu(·,t)] = −∂3
xu − u ∂xu. (9.77)

Hence, (9.74) becomes the KdV equation.
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In general, one has

Bj = αj

d2j+1

dx2j+1
+

j−1
∑

k=0

[

βjk(u)
d2k+1

dx2k+1
+ d2k+1

dx2k+1
(βkj (u) · )

]

(9.78)

with βjk(u) selected such that [Bj ; Lu(·,t)] has order zero.
Thus for B2(u) one obtains (up to rescaling)

∂tu − ∂5
xu + 10 u ∂3

xu + 20 ∂xu ∂2
xu − 30 u2 ∂xu = 0. (9.79)

This class can also be described using the conservation laws satisfied by solutions
of the KdV [Lx2]

F0(u) = 3
∫

u dx; F1(u) = 1

2

∫

u2 dx; F2(u) =
∫

(u3

6
− (∂xu)2

2

)

dx; . . . .

(9.80)

The gradient of these functionals (∂Fj = Gj ) are

G0(u) = 3, G1(u) = u, G2(u) = 1

2
u2 + ∂2

xu, . . . , (9.81)

which are related by the formula

H Gj = ∂Gj+1, j = 0, 1, . . . , (9.82)

where

H = d3

dx3
+ 2

3
u

d

dx
+ 1

3

du

dx
,

and

∂tu + d

dx
Gj+1 = ∂tu + [Bj ;Lu(·,t)] = 0, j = 0, 1, . . . , (9.83)

which is called the j th equation in the KdV hierarchy.
So (9.79) is the second equation in the KdV hierarchy. Related versions of this

equation appear as a higher order approximations in the study of water wave problems
for long, small amplitude waves over shallow horizontal bottom (see for instance [Ol],
[Bn1] and references therein). In 1972 Zhakarov and Shabat [ZS] showed that the
ISM used for the KdV and its hierarchy can be extended to other relevant physical
equations. More precisely, they proved that the cubic one-dimensional defocusing
Schrödinger equation

i∂tu = ∂2
xu + λ|u|2u, λ > 0,

can be solved by considering an appropriate linear scattering problem and its inverse.
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The local and global well-posedness of the IVP and PBVP associated to equa-
tion (9.79) was established in [St2]. Also the PBVP for the whole KdV hierarchy
was studied in [Sch].

Here we restrict ourselves to consider the IVP for the KdV hierarchy in (9.83).
In a more general framework consider the initial value problem

{

∂tu + ∂
2j+1
x u + P (u, ∂xu, . . . , ∂2j

x u) = 0,

u(x, 0) = u0(x),
(9.84)

x, t ∈ R, j ∈ Z
+, where u = u(x, t) is real-(or complex-)valued function and

P : R
2j+1 �→ R (or P : C

2j+1 �→ C)

is a polynomial having no constant or linear terms, i.e.,

P (z) =
 1
∑

|α|= 0

aα zα with  0 ≥ 2 (9.85)

and z = (z1, . . . , z2j+1).
In [KPV13] local well-posedness of the IVP (9.84) in

F s
m = Hs(R) ∩ L2(|x|m dx)

was established. The proof combines the fact that the results in [HO] extend to
diagonal systems and a change of dependent variable, which allows us to write the
equation in (9.84) (after a few differentiations with respect to the x-variable) as a
diagonal system

∂tω
k + ∂2j+1

x ωk +Qk(ω1, . . . , ωm, ∂xω
1, . . . , ∂2j−1

x ωm) = 0 (9.86)

for k = 1, . . . ,m = m(j ) where the nonlinear termsQk are independent of the highest
derivatives, i.e., those of order 2j . In this case some modifications are needed since
the Qk introduced by the change of variable involve nonlocal operators.

More precisely, in [KPV13] the following two results were proven:

Theorem 9.3. Let P (·) be a polynomial of the type described in (9.85). Then there
exist s, m ∈ Z

+ such that for any u0 ∈ F s
m = Hs(R) ∩ L2(|x|m dx) there exist

T = T (‖u0‖F s
m

) > 0 (with T (ρ) → ∞ as ρ → 0) and a unique solution u(·) of
the IVP (9.84) satisfying

u ∈ C([0, T ] : F s
m), (9.87)

sup
x

T
∫

0

|∂s+j
x u(x, t)|2 dt < ∞ (9.88)
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and

∞
∫

−∞
sup
[0,T ]

|∂r
xu(x, t)| dx < ∞, r = 0, . . . ,

[ s + j

2

]

. (9.89)

If u0 ∈ F s0
m with s0 > s the results above hold with s0 instead of s in the same

time interval [0, T ].
Moreover, for any T ′ ∈ (0, T ) there exists a neighborhood Uu0 of u0 in F s

m such
that the map ũ0 �→ ũ(t) from Uu0 into the class defined in (9.87)–(9.89), with T ′
instead of T , is smooth.

Theorem 9.4. Let P (·) be a polynomial of the type described in (9.85) with  0 ≥ 3,
orP (z) = P (z1, . . . , zj+1) in (9.85). Then the results in Theorem 9.3 hold withm = 0
and L2

x-norm instead of L1
x-norm in (9.89).

Theorem 9.4 tells us that the IVP for the equation

∂tu + ∂3
xu + (u2 + (∂xu)2) ∂2

xu = 0, (9.90)

x, t ∈ R is locally well-posed in Hs(R), s ≥ s0, with s0 sufficiently large. Roughly
speaking Theorems 9.3 and 9.4 establish conditions that guarantee that the local
behavior of the solution of (9.84) is controlled by the linear part of the equation.
Moreover, it shows that the dispersive structure of the equation is strong enough to
overcome nonlinear terms of lower order with arbitrary sign as in (9.90).

However, for a specific model of the kind described in (9.84) the results in Theo-
rems 9.3 and 9.4 can be improved by reducing the index s and m depending on the
order (2j + 1) considered and the structure of the nonlinear term (see for example
[Kw2] and [Ci] for some fifth order cases). In particular in [KePi] Kenig and Pilod
have shown that the third equation in the KdV hierarchy (9.79) is globally well posed
in the energy space H 2(R).

As it was previously mentioned the existence and uniqueness (in Hs(T)) for the
periodic boundary value problem (PBVP) for the KdV hierarchy was established in
[Sch]. The argument relied heavily on the structure of the equations in the hierarchy.
Thus one can ask if a general result can be established for the PBVP associated to
the general equation in (9.84). The answer is not, in [Bo12] Bourgain showed that
the PBVP for the equation

∂tu + ∂3
xu = u2 (∂xu)2

is ill-posed in Hs(T) for every s ∈ R.

9.7 Exercises

9.1 Prove that the Benjamin–Ono equation

∂tu + H∂2
xu + u∂xu = 0
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has a traveling wave solution (decaying at infinity) φc(x + t), c > 0, with

φ(x) = − 4

1 + x2
,

and

φc(x + t) = cφ(c(x + t)).

Notice thatφ(x+ct) is negative and moves to the left, soϕ(x−ct) = −φ(x−ct)
is a traveling wave, positive and traveling to the right, of the equation

∂tv − H∂2
x v + v∂xv = 0.

Hint: Integrate the equation for φ to get a first order ODE. Take Fourier
transform and use Exercise 3.3 to get the result.

9.2 (Camassa–Holm equation [CH]) Consider the equation

∂tu − ∂t∂
2
xu + 3 u∂xu = 2∂xu ∂2

xu + u ∂3
xu. (9.91)

(i) Prove that (9.91) can be written in the formally equivalent form

∂tu + u∂xu + 1

2
∂x e

−|x| ∗ (u2 + (∂xu)2

2

) = 0. (9.92)

(ii) Prove that for any c > 0 the equation (9.91) has the nonsmooth traveling
wave (peakon)

ϕ(x − ct) = c e−|x−ct |.

Hint: (i) Use Exercise 3.4.
(ii) Notice first that it suffices to consider the ODE for ϕ with c = 1. Prove that

(

e−|·| ∗ e−2|·|)(x) = 4

3
e−|x| − 2

3
e−2|x|.

Integrate the ODE and use that (ϕ′(x))2 = ϕ(x)2.

9.3 (Benjamin–Bona–Mahony equation [BBM]) Consider the equation

∂tu + ∂xu + u ∂xu − ∂3
xxtu = 0. (9.93)

(i) Prove that (9.93) can be written in the following forms

∂tu − sgn(x)

2
e−|x| ∗

(

u + u2

2

)

= 0 (9.94)

and

u(x, t) = u0(x) +
∫ t

0

∫

sgn(y)

2
e−|y|
(

u + u2

2

)

(x − y, τ ) dydτ. (9.95)
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(ii) [BTz] Prove that given u0 ∈ L2(R) there exist T = T (‖u0‖2) > 0 and a
unique solution u ∈ C([0, T ] : L2(R)) solution of (9.95).
Hint: Given u0 ∈ L2(R) consider the set

XT (δ) = {v : R × [0, T ] �→ R : sup
0≤t≤T

‖v(t)‖2 ≤ 2δ}

with δ = ‖u0‖2. Show that

Φ(v)(x, t) = u0(x) +
∫ t

0

∫

sgn(y)

2
e−|y|(u + u2

2
)(x − y, τ ) dydτ

defines a contraction map inXT (δ) if T (1+δ) ≤ 1/2. (This result is sharp,
see [BTz]).

(iii) Prove that for any b ∈ (0, 1) (9.93) has a traveling wave solution ub =
ub(x, t) of the form

ub(x, t) = 3b2

1 − b2
sech2

(b

2

(

x − t

1 − b2

)

)

(9.96)

Hint:
(a) For α > 1 look for solutions of (9.93) of the form η(x − α t).
(b) By rescaling the ODE for η(·) obtain a relation between η(·) and φ(·)

in (7.6) and (7.7) with k = 2.
9.4 Consider the sine-Gordon equation

∂2
t u − ∂2

xu + sin (u) = 0. (9.97)

(i) Show that the function

vμ±(x, t) = 4 tan−1 (c e(x−μt)/σ±(μ))

with μ ∈ (− 1, 1), σ±(μ) = ±√1 − μ2 and c ∈ R is a traveling wave
solution of the sine-Gordon equation.

(ii) Show that for μ ∈ (0, 1), vμ+(·) (kink solution) satisfies:
(a) for each t0 ∈ R fixed vμ+(·, t0) is increasing with

lim
x↓−∞ vμ+(x, t0) = 0 and lim

x↑∞ vμ+(x, t0) = 1.

(b) vμ+(x, t) moves to the right as t increases.
(iii) Show that for μ ∈ (−1, 0), vμ−(·) (anti-kink solution) satisfies

(a) for each t0 ∈ R fixed vμ−(·, t0) is decreasing with

lim
x↓−∞ vμ−(x, t0) = −1 and lim

x↑∞ vμ−(x, t0) = 0.

(b) vμ+(x, t) moves to the left as t increases.
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(iv) Verify that

wμ(x, t) = 4 tan−1
(σ+(μ)

μ

sin (μt)

cosh (σ+(μ)x)

)

with 0 < |μ| < 1 is a (stationary breather) solution of the sine-Gordon
equation which satisfies

lim|x|→∞ wμ(x, t) = 0 uniformly in t ∈ R.

(v) Show that if t ′ = (t − αx)/σ+(α), x ′ = (x − αt)/σ+(α), α ∈ (−1, 1)
(Lorentz transformation), then

∂2
t u − ∂2

xu = ∂2
t ′u − ∂2

x′u,

i.e. the sine-Gordon equation is invariant under the Lorentz transformation.
(vi) Combine (iv) and (v) to conclude that for |α|, |μ| < 1 the function

Zμ,α(x, t) = 4 tan−1
(σ+(μ)

μ

sin (μ(t − αx)/σ+(α))

cosh (σ+(x − αt)/σ+(α))

)

is a (moving breather) solution of the sine-Gordon equation.
9.5 (Compactons [RH]) Consider the quasilinear equation

∂tu + ∂3
x (u2) + ∂x(u2) = 0. (9.98)

Show that the C1-function of compact support

φ(x − ct) =
⎧

⎨

⎩

4c

3
cos2 ( x−ct

4 ), |x − ct | ≤ 2π ,

0, |x − ct | > 2π ,

c > 0, is a traveling wave (classical) solution of (9.98).
9.6 (i) Show that the function

u(x, y, t) = 4i
e(−(x+y+8t)−i(x+y))

(1 + exp (− 2x − 8t))(1 + exp (−2y − 8t)) + 1

is a solution of the elliptic-hyperbolic DS system (9.1) with (c0, c1, c2, c3) =
(1, 2,−1,−1) where ϕ satisfies the boundary conditions

lim
y→∞∂xϕ(x, y, t) = 4 sech2(x + 4t)

lim
x→∞∂yϕ(x, y, t) = 4 sech2(y + 4t).

(ii) [Oz] For the hyperbolic-elliptic DS system (9.1) with (c0, c1, c2, c3) =
(− 1, 16, 8, 1) prove:
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(a) u(x, y, t) = ei(x
2−y2)/4(1−t) 1 − t

(1 − t)2 + x2 + y2

ϕ(x, y, t) = x

2

1

(1 − t)2 + x2 + y2

is a solution of (9.1) with u(x, y, 0) ∈ L2(R2) ∩ L∞(R2).
(b) For any t ∈ R, u(·, ·, t) /∈ H 1(R2) and (x2 + y2)1/2 u(·, ·, t) /∈ L2(R2) but

for s ∈ (0, 1) and t ∈ (−∞, 1), one has u(·, ·, t) ∈ Hs(R2) and (x2 +
y2)s/2 u(·, ·, t) ∈ L2(R2).

(c) limt↑1 ‖u(·, ·, t)‖∞ = +∞.

9.7 Show that the function

u(x, y, t) = 4i exp (− (x + y + 4t) − i(x + y))

(1 + exp (− 2x − 4t))(1 + exp (− 2y − 4t)) + 1

is a solution of the Davey–Stewartson system (DSI)
{

i∂tu+ 1
2 (∂

2
xu+ ∂2

yu) =|u|2u+ u∂xϕ,

∂2
xϕ − ∂2

yϕ = −2∂x(|u|2),
(9.99)

when φ satisfies the following boundary conditions

lim
y→∞ ∂xϕ(x, y, t) = −2sech2(x + 2t), and lim

x→∞ ∂xϕ(x, y, t) = −2sech2(y + 2t).

This solution is called dromion (see [FSa]).
9.8 Show that the Boussinesq equation

∂2
t u − ∂2

xu − ∂4
xu + ∂2

x (u2) = 0

has traveling wave solutions of the form

u(x, t) = a sech2(b(x − ct)),

with appropriate values of a, b for c > 0 and c < 0, i.e., the wave can propagate
in any direction.

9.9 Consider the linear part of the Benjamin–Ono equation

Lu = ∂tu + H∂2
xu = 0.

Defining

Γ = x − 2t H ∂x = x − 2t Dx.

Show that

[L; Γ ] = [L; Γ 2] = 0,
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[L; Γ 3]φ = 0 if and only if ̂φ(0, t) = 0, for all t ∈ R,

and

[L; Γ 4] �= 0.

9.10 Consider the IVP
{

∂tv + H∂2
x v = 0,

v(x, 0) = v0(x)

and

Zs,r = Hs(R) ∩ L2(|x|2r ).
Let k ∈ Z

+, prove that v(·, t) ∈ L2(|x|2k dx) for all t > 0 if and only if
v0 ∈ Zk,k , k = 1, 2 and for k ≥ 3,

∞
∫

−∞
xj v0(x) dx = 0, j = 0, 1, . . . , k − 3.

9.11 Let H be the Hilbert transform. Prove that H : L2(〈x〉θ dx) → L2(〈x〉θ dx) is
continuous if and only if θ ∈ (− 1/2, 1/2).

Remark 9.1. Compare this result with that of Exercise 3.19 in Chapter 3.
9.12 Let u ∈ C([0, T ] : H 1(R)∩L2(|x|2 dx)) be a “strong” solution of the Benjamin-

Ono equation. Assuming that
∫

u(x, 0) dx = 0, prove the identity

d

dt

∫

x (u2 + (Hu)2)(x, t) dx = 4 ‖D1/2
x u(·, t)‖2

2.

9.13 (i) Show that the following quantities are conserved by the BO solution flow:

I1(u) =
∫

R

u(x, t) dx,

I2(u) =
∫

R

u2(x, t) dx,

I3(u) =
∫

R

(

u∂xHu + u3

3

)

(x, t) dx =
∫

R

(

|D1/2
x u|2 + u3

3

)

(x, t) dx

and

I4(u) =
∫

R

(

2(∂xu)2 + 3

2
u2H∂xu + u4

4

)

(x, t) dx.
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(ii) Prove that a solution u ∈ C([0, T ] : H 3(R) ∩ L2(|x|4 dx)) of the BO
equation satisfies

(a)
∫

R

x u(x, t) dx =
∫

R

x u0(x) dx + t

2
‖u0‖2

2.

(b)
∫

R

x u2(x, t) dx =
∫

R

x u2
0(x) dx + 2t I3(u0).

(c)
∫

R

x2 u(x, t) dx =
∫

R

x2 u0(x) dx + t

∫

R

x u2
0(x) dx + t2I3(u0).

9.14 Consider the KPI(−) and KPII(+) equations,

∂tu + u∂xu + ∂3
xu ∓ ∂−1

x ∂2
yu = 0. (9.100)

Prove that if u = u(x, y, t) is a solution then

(i) uλ(x, y, t) = λ2 u(λx, λ2y, λ5t), λ > 0 (scaling) is also a solution.
(ii) uc(x, y, t) = u(x− cy± c2t , y∓ 2ct , t) (Galilean invariance) is also a solution

of the KPI and KPII, respectively.

9.15 Show that

u(x, y, t) = 3c sech2
(1

2
(
√
cx + l y − θ t)

)

, θ = c3/2 + lc−1/2, c > 0, l ∈ R,

is a solution of the Eqs. (9.100) with + sign, i.e. the KPII equation.
Hint: Use that uc(x, t) = 3c sech2(

√
c

2 (x − ct)) is the soliton solution of the
KdV equation with speed c.

9.16 Prove that the function

φc(x − ct , y) = 24c(3 − c(x − ct)2 + c2y2)

(3 + c(x − ct)2 + c2y2)2

is a finite energy (φc, ∂xφc, ∂−1
x ∂yφc ∈ L2(R2)) solitary wave solution of the

KPI.
9.17 Consider the linear IVP associated to (9.84)

{

∂tw + ∂
2j+1
x w = 0,

w(x, 0) = w0(x),
(9.101)

x, t ∈ R, j = 0, 1, . . . . Denote by

w(x, t) = Vj (t) w0(x) = e−t ∂
2j+1
x w0(x) (9.102)

its solution.
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(i) Prove that for any j = 0, 1, . . . there exists cj > 0 such that for any
x, t ∈ R one has that

cj

∞
∫

−∞
|∂j

x w(x, s)|2 ds =
∞
∫

−∞
|w(y, t)|2 dy = ‖w0‖2

2. (9.103)

Hint: Follow the argument given in the proof of Lemma 7.1.
(ii) Prove that for any j = 0, 1, . . . there exists c′j > 0 such that for any

x, t ∈ R,

‖∂2j
x

t
∫

0

Vj (t − t ′)F (·, t ′) dt ′‖L2
t
≤ c′j‖F‖L1

xL
2
t
. (9.104)

Hint: Follow the argument given in the proof of Theorem 4.4 (estimate
(4.28)).

(iii) Show that for any k = 0, 1, . . . , j there exists c = c(k; j ) > 0 such that
for any x ∈ R,

(

T
∫

0

|∂j+k
x

t
∫

0

Vj (t − t ′)F (·, t ′) dt ′|2 dt
)1/2

≤ c T (j−k)/2j
∥

∥

∥

T
∫

0

|F (·, t)|2 dt
∥

∥

∥

2j/(j+k)
. (9.105)

Hint: Combine (i) and Minkowski’s integral inequality to obtain (9.105)
for k = 0. Interpolate between this result and (9.104).

(iv) Combining the identity (9.103) and the (unsharp) estimate
∥

∥ sup
0≤t≤T

|Vj (t)u0|
∥

∥

2 ≤ c (1 + T )‖u0‖2j+1,2 (9.106)

to prove Theorem 9.4 with s ! 1 and m = 0 (no weight) in the case where

P = P (u, . . . , ∂j
x u)

with P (·) as in (9.85) (nonlinear terms at least quadratic) using a fixed point
argument.
Hint: Consider the integral equation equivalent form of the corresponding
IVP

Φ(u)(t) = Vj (t)u0 +
t
∫

0

Vj (t − t ′)P (u, . . . , ∂j
x u)(·, t ′) dt ′. (9.107)
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(v) Combining (9.103), (9.104) and (9.106) prove Theorem 9.4 with s ! 1
and m = 0 (no weight) in the case where

P = P (u, . . . , ∂2j−1
x u) (9.108)

with P : R
2j → R being a polynomial such that

P (x) =
l1
∑

|α|=3

aαx
α. (9.109)

i.e. the nonlinear terms are at least cubic.

Note: Parts (iv) and (v) show that the IVP (9.84) can be solved via contraction
principle in Hs(R) (without weight) with s ! 1 if either

(i) P = P (u, . . . , ∂j
x u) with P as in (9.85), i.e., the nonlinear terms are at least

quadratic or
(ii) P = P (u, . . . , ∂2j−1

x u) with P as in (9.108) and (9.109).

This is optimal. More precisely, it was established in [Pd] that the IVP (9.84)
cannot be solved in Hs(R) for any s > 0 with an argument based solely on the
contraction principle if P = ∂

2j−1
x (u2).

9.18 (Cole–Hopf transformation) Let w = w(x, t) be a positive C3-solution of the
heat equation

∂tw = ∂2
x w, (9.110)

(i) x ∈ R, t > 0. Prove that u(x, t) = −2 ∂x( ln w(x, t)) satisfies the viscous
Burgers’ equation (7.105).

(ii) Prove that if u = u(x, t) is a C2-solution of the viscous Burg-
ers’ equation (7.105) with u ∈ L∞(R+ : L1(R)), then w(x, t) =
exp
(− 1

2

x
∫

−∞
u(s, t) ds

)

is a positive solution of the heat equation (9.110).

9.19 (i) [BM] Consider the logarithmic Schrödinger equation

i∂tu +Δu + u ln |u|2 = 0, x ∈ R
n, t ∈ R. (9.111)

(a) Prove that ϕ(x) = π−n/4 e−|x|2/2 satisfies the elliptic equation

−Δϕ − ϕ ln ϕ2 = n(1 + ln
√
π )ϕ. (9.112)

(b) Prove that

u(x, t) = e−i n(1+ln
√
π )ϕ(x)

is a (standing wave) solution of (9.111).
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(ii) [JP] Consider the logarithmic Korteweg-de Vries equation

∂tu + ∂3
xu + ∂x(u ln |u|) = 0, (9.113)

x, t ∈ R.

Prove that for any c,α ∈ R

u(x, t) = ec
√
e e−(x−ct−α)2/4

is a (Gaussian solitary wave) solution of (9.113).

9.20 [X] Consider the Burgers-Korteweg-de Vries equation

∂tu + u∂xu − β ∂2
xu + α∂3

xu = 0, (9.114)

α, β > 0, x ∈ R, t > 0.
(i) Prove that for β = 0 the equation (9.114) has a traveling wave solution of

the form uc(x, t) = φc(x − ct), c > 0, with

φc(x) = 3c sech2
(

√
c

2
√
α
x
)

.

(ii) Prove that for α = 0 the equation (9.114) has a traveling wave solution of
the form

uc(x, t) = c − ϕc(x − ct), c > 0,

with
ϕc(x) = βc tanh

( c

2
x
)

.

(iii) Check that if α, β > 0, then the equation (9.114) has traveling wave
solutions of the form

uc(x, t) = 1

2
c sech2

( 1√
24α

√
c(x ∓ ct)

)− c tanh
( 1√

24α

√
c(x ∓ ct)

)± c

with c = 6β2

25α > 0.



Chapter 10
General Quasilinear Schrödinger Equation

10.1 The General Quasilinear Schrödinger Equation

In this chapter, we shall study the local solvability of the initial value problem (IVP)
associated with the general quasilinear Schrödinger equation:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂tu = iajk(x, t , u, ū,∇xu,∇x ū) ∂2
xj xk

u

+bjk(x, t , u, ū,∇xu,∇x ū) ∂2
xj xk

ū

+−→
b1 (x, t , u, ū,∇xu,∇x ū) · ∇xu

+−→
b2 (x, t , u, ū,∇xu,∇x ū) · ∇x ū

+c1(x, t , u, ū) u + c2(x, t , u, ū) ū + f (x, t),

u(x, 0) = u0(x)

(10.1)

(using summation convention).
One may think of this equation as a nonlinear Schrödinger equation, where the

operator modeling the dispersion relation is nonisotropic and depends also on the
unknown function, its conjugate, and its space gradient.

Equations of this form arise in several fields of physics (plasma, fluids, classical
and quantum ferromagnetic, laser theory, etc.)

A well-studied model is

∂tu = iΔu − 2iu h′(|u|2)Δh(|u|2) + iu g(|u|2), (10.2)

where h and g are given functions, n ≥ 1. When n = 1, 2, 3, Bouard, Hayashi and
Saut [BHS] proved local well-posedness of the associated IVP in H 6(Rn), for small
data. This was extended by Colin [Cl] to data of arbitrary size in Hs(Rn), s ≥ s(n)
for all n.

Problems of this type also arise in Kähler geometry, where the “Schrödinger flow”
is defined as follows:

Let (M , g) be a Riemannian manifold and (N , J ,h) be a complete Kähler manifold
with complex structure J and Kähler metric h. Then given

u0 : M �→ N (10.3)
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one seeks for

u : M × [0, T ] �→ N (10.4)

such that
{

∂tu = J (u(x, t)) · τ (u(x, t)),

u(x, 0) = u0(x),
(10.5)

where τ (u) the tension field of u is given in local coordinates by

τα(u) = Δguα + gjk Γ α
βγ (u)

∂uβ

∂xj

∂uγ

∂xk
, (10.6)

whereΓ α
βγ represents the Christoffel symbol for the target manifoldN . These systems

have been studied in [DW], [CSU], [MG], [NSU], [NSVZ], among others. For the
minimal regularity problem, i.e., to determinate the minimal Sobolev index that
guaranties (local or global) well-posedness see [IK2], [BIK] and references therein.

Before considering nonlinear models, it is convenient to study the IVP for the
linear equation involving first-order terms. More precisely, we review the results
mentioned at the end of Chapter 4. This will be helpful in understanding the hy-
potheses and the arguments of the proof of the nonlinear result to be discussed later
in this chapter.

Consider the linear IVP,
{

∂tu = iAu +−→
b (x) · ∇u + d(x)u + f (x, t),

u(x, 0) = u0(x) ∈ L2(Rn),
(10.7)

x ∈ R
n, t ∈ R, with A = ∂xj (ajk(x)∂xk ) a second-order elliptic operator,

−→
b =

(b1, . . . , bn), bj : R �→ C, j = 1, 2, . . . , n, and f ∈ C(R : L2(Rn)). To simplify
the exposition, assume bj ∈ C∞

0 (Rn) and f ≡ 0. Concerning the L2-local well-
posedness of (10.7) one has:

(i) If b = b(x) is a real-valued function, the result follows by integrating by parts.
(ii) If n ≥ 1, ajk(x) = δjk , i.e., A = Δ and bj (x) = i c0, c0 ∈ R for some j , then

problem (10.7) is ill-posed.
(iii) If n = 1 and A = ∂2

x , define v = φ u, with φ real-valued to be determined (φ
and 1/φ bounded) so

∂tv = i ∂2
x v + i

(

2
∂xφ

φ
+ Imb(x)

)

∂xv + Re b(x)∂xv

+ terms of order zero inv.
(10.8)

Then to eliminate the term which cannot be handled by integration by parts
one takes

ln φ(x) = −1

2

x
∫

0

Imb(s) ds. (10.9)
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In [Ta1], Takeuchi proved in case, n = 1 and A = ∂2
x , and general b( · ) in

(10.7), that the condition

sup
l∈R

∣

∣

∣

l
∫

0

Im b(s) ds
∣

∣

∣ < ∞

is sufficient for the L2-well-posedness of (10.7).
(iv) If n ≥ 2, and A = Δ one can reapply the argument above to find φ = φ(x,̂ξ ),

̂ξ ∈ S
n−1, which should solve the equation

2
∇φ

φ
+ Im −→

b (x) = 0. (10.10)

Hence, if μ = ln φ,

2∂̂ξμ = −Im −→
b (x) ·̂ξ , for all ̂ξ ∈ S

n−1.

Thus,

μ(x,̂ξ ) = −1

2

0
∫

−∞
Im −→

b (x + ŝξ ) ·̂ξ ds, ̂ξ ∈ S
n−1, (10.11)

and

φ(x,̂ξ ) = e
− 1

2

0
∫

−∞
Im

−→
b (x+ŝξ )·̂ξ ds

, ̂ξ ∈ S
n−1. (10.12)

In [Mz], Mizohata showed that if n ≥ 1 and A = Δ, the condition

sup
̂ξ∈Sn−1

sup
x∈Rn

l∈R

∣

∣

∣

l
∫

0

Im bj (x + ŝξ ) ds
∣

∣

∣ < ∞ (10.13)

is necessary for the L2-local well-posedness (10.7). Notice that (10.11) is an
integrability condition on the coefficients

−→
b = (b1, . . . , bn) of the first-order

term along the bicharacteristics.
(v) Consider now n ≥ 1 and A = ∂xj (ajk(x) ∂xk · ) a general elliptic operator

(see (3.25)). In this case, we apply an invertible pseudo-differential operator
C(x,D) with real symbol c(x, ξ ) to the equation in (10.7) to get

∂tC = iACu + i [C;A]u + iC(Im −→
b (x) · ∇u) + Re

−→
b (x) · ∇Cu

+ terms of order zero in u and Cu. (10.14)

To cancel the bad first-order term one solves the equation:

i[C;A] + i C(Im −→
b (x) · ∇) = 0, (10.15)
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up to operators of order zero. So, using their symbols one has

{c(x, ξ ); a(x, ξ )} + c(x, ξ )Im−→
b (x) · ξ = −Ha(c) + c(x, ξ )Im−→

b (x) · ξ = 0,

i.e., (see Lemma 3.1),

d

ds
c(X(s, x, ξ ),Ξ (s, x, ξ )) = (10.16)

c(X(s, x, ξ ),Ξ (s, x, ξ ))Im−→
b (X(s, x, ξ )) ·Ξ (s, x, ξ ).

Therefore,

c(x, ξ ) = e

0
∫

−∞
Im

−→
b (X(s,x,ξ ))·Ξ (s,x,ξ ) ds

,

where s → (X(s, x, ξ )),Ξ (s, x, ξ )) is the bicharacteristic flow associated to
the symbol of A (see (3.28)).
In [I], Ichinose extended the Mizohata condition (10.13) to the case of elliptic
variable coefficients deducing that

sup
̂ξ∈Sn−1

sup
x∈Rn

l∈R

∣

∣

∣

l
∫

0

Im bj (X(s, x,̂ξ ) ·Ξj (s, x,̂ξ ) ds
∣

∣

∣ < ∞ (10.17)

is a necessary condition for the L2-well-posedness of (10.7).
Notice that the notion of nontrapping for the bicharacteristic flow associated
to the symbol of A is essential for (10.17) to hold even for bj ∈ C∞

0 (Rn).
Also, asymptotic flatness conditions in the coefficients ajk(x) (see for instance
(4.66)) guarantee an appropriate behavior at infinity of the bicharacteristic
flow.

Returning to the nonlinear problem consider the case of the Schrödinger equation,
with the constant coefficients semilinear case, i.e.,

∂tu = iΔu + f (u, ū,∇xu,∇x ū), x ∈ R
n. (10.18)

If f is smooth, integration by parts yields the estimate

∣

∣

∣

∑

|α≤s

∫

Rn

∂α
x f (u, ū,∇xu,∇x ū)∂α

x u dx
∣

∣

∣ ≤ c (1 + ‖u‖ρs,2) ‖u‖2
s,2, (10.19)

for any u ∈ Hs+1(Rn), s > n/2 + 1, and ρ = ρ(f ) ∈ Z
+, then energy estimates

lead to the desired local well-posedness.
Another technique used to overcome the “loss of derivatives” introduced by the

nonlinearity f in (10.18) involving ∇xu relies on an analytic function approach (see
[H5]).
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Local well-posedness for small data and general smooth function f : C
2n+2 �→ C

was established by Kenig, Ponce and Vega [KPV3]. In [KPV3], the authors consider
the integral equation associated to (10.18):

u(t) = eitΔu0 +
t
∫

0

ei(t−t ′)Δ f (u, ū,∇xu,∇x ū)(t ′) dt′ (10.20)

and use the inhomogeneous version of the local smoothing effect (see (4.30)) of the
group {eitΔ}∞t=−∞, i.e.,

∥

∥

∥∇x

t
∫

0

ei(t−t ′)Δg(t ′) dt′
∥

∥

∥

 ∞α (L2(Qα×[0,T ]))
≤ c ‖g‖ 1

α (L2(Qα×[0,T ])), (10.21)

(where the {Qα}α is the family of unit cubes with disjoint interiors such that ∪
α
Qα =

R
n), to overcome the “loss of derivatives” introduced by the nonlinearity f (·) in

(10.18), which depends up to first-order derivatives of the unknown. Briefly, one
needs to estimate u in the  ∞α (L2(Qα× [0, T ]))-norm, which cannot be made “small”
by taking T → 0, so it is here where the conditions on the size of the data appear.

The smallness assumption on the data was removed by Hayashi and Ozawa [HO]
in the one-dimensional case (n = 1). To do so they introduced a change of variables.
To illustrate their argument, let us consider the equation:

∂tu = i∂2
xu + u∂xu + u∂x ū. (10.22)

When performing standard energy estimates, one sees that the “bad” term in (10.22)
is u ∂xu, i.e., the one involving ∂xu. This term cannot be handled by integration by
parts except when it has a real coefficient, for instance, |u|2 ∂xu. Hence, the idea is to
eliminate it. First, take the derivatives of (10.22) up to order 3, and use the notation
∂
j
x u = uj+1 to rewrite equation (10.22) as the system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tu1 = i∂2
xu1 + u1 u2 + u1ū2,

∂tu2 = i∂2
xu2 + u2 u2 + u1 u3 + u2ū2 + u1ū3,

∂tu3 = i∂2
xu3 + 3u2u3 + u1 u4 + u3ū2 + 2u2ū3+ u1ū4,

∂tu4 = i∂2
xu4+ u1∂xu4 + u1∂x ū4 +Q(u1, ū1, . . . , u4, ū4).

(10.23)

The first three equations in (10.23) are semilinear as well as the term Q( · ) in the
fourth one. One then considers “u4 φ” instead of “u3” with φ to be determined.

So we substitute u4 by φ−1 (u4 φ) except in the main part of the fourth equation,
i.e.,

∂tu4 = i∂2
xu4 + u1 ∂xu4 + u1 ∂x ū4. (10.24)

Here, multiplying by φ we rewrite (10.24) as

∂t (u4 φ) − u4∂tφ = i∂2
x (u4 φ) − 2i∂xu4 ∂xφ − iu4 ∂

2
xφ + u1 φ ∂xu4 (10.25)
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+ φ
−1

φ u1 ∂x(u4 φ ) + φu1(u4 φ )∂xφ
−1

.

We now choose φ to eliminate the terms involving ∂x u4, i.e.,

−2i∂xu4 ∂xφ + u1 φ ∂xu4 = 0 or − 2i∂xφ + u1 φ = 0, (10.26)

that is,

φ(x, t) = exp
(

− i

2

x
∫

0

u1(θ , t) dθ
)

. (10.27)

In the new variables (u1, u2, u3, u4 φ) for the system (10.23), the standard energy
estimates can be performed to obtain the desired local existence and uniqueness
result.

Later, Chihara [Ch2] removed the smallness assumption on the data in any di-
mension. The change of variables used in [HO] in higher dimensions leads to an
“exotic” class of pseudodifferential operators (ψ .d.o.) studied by Craig, Kappeler
and Strauss [CKS].

Consider the symbol in (10.11), i.e.,

μ(x, ξ ) = −1

2

0
∫

−∞
Im −→

b
(

x + s
ξ

|ξ |
)

· ξ

|ξ | ds (10.28)

with ξ ∈ R
n, and

−→
b = (b1, . . . , bn), bj ∈ C∞

0 (Rn). One has that for |ξ | ≥ 1
∣

∣

∣∂
α
x ∂

β

ξ μ(x, ξ )
∣

∣

∣ ≤ cα,β 〈x〉|α||ξ |−|β| ∀α,β ∈ (Z+)n, (10.29)

where 〈x〉2 = 1 + |x|2.
Roughly speaking, the function space for the local well-posedness was Hs(Rn),

s > s(n) in the case where f is at least cubic, and where it was F s
n = Hs(Rn) ∩

L2(|x|n dx), s ≥ s(n) when f is just quadratic. This is a clear necessary condition
in the light of the integrability (10.12).

In [KPV3], Kenig, Ponce and Vega showed that this local result can be proved by
a Picard iteration, so the mapping data solution, u0 �→ u, is not only continuous but
also analytic. A crucial step in this proof was to establish a “local smoothing” effect
(see 4.23) for solutions of (10.18), i.e., if u0 ∈ Hs0 (Rn), then

T
∫

0

∫

1

〈x〉2
|Λs0+1/2u(x, t)|2 dx dt < ∞, (10.30)

where 〈x〉2 = (1 + |x|2)1/2 and Λs = (I −Δ)s/2 is the operator with symbol 〈ξ〉s .
This might seem like a technical device but Molinet, Saut and Tzvetkov [MST3]

showed that for the IVP:
{

∂tu = i∂2
xu + u∂xu,

u(x, 0) = u0(x)
(10.31)
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the map data-solution, u0 �→ u, cannot be C2 at u0 ≡ 0 for u0 in any Sobolev space
Hs(R). Hence, in order to use Picard iteration, the weights are needed.

Returning to our IVP (10.1), we have that in the one-dimensional case (n = 1)
Poppenberg [Pp] established local well-posedness for coefficients independent of
(x, t) under the following conditions:

Ellipticity. a( ·) is real-valued and for |(z1, z2, z3, z4)| < R, there exists λ(R) > 0
such that

a(z1, z2, z3, z4) − |b(z1, z2, z3, z4)| ≥ λ(R). (10.32)

Degree of nonlinearity:
{

∂z a(0, 0, 0, 0) = ∂z b(0, 0, 0, 0) = 0,

b1, b2 vanishing quadratically at (0, 0, 0, 0).
(10.33)

Poppenberg showed local well-posedness in H∞(R)= ∩
s≥0

Hs(R). His proof is based

on the Nash–Moser techniques.
In [LmPo], Lim and Ponce showed, in the (x, t)-dependent setting, that under Pop-

penberg’s hypotheses one has local well-posedness inHs(R), s ≥ s0, s0 large enough,
and if b1, b2 vanish linearly at (0, 0, 0, 0) and ∂za(0, 0, 0, 0) �= 0 or ∂zb (0, 0, 0, 0) �= 0
in the weighted space F s

m = Hs(R) ∩ L2(|x|m dx).
To clarify the elliptic condition notice that when b ≡ 0, this is the usual condition

and in general, it says that ∂2
xu “dominates” ∂2

x ū. This is certainly needed, as Exercise
4.14 shows.

Moreover, if the nontrapping condition fails dramatically, i.e., all orbits are peri-
odic, ill-posedness in semilinear problems occurs, as Chihara [Ch3] has shown. He
proved that for the IVP,

{

∂tu = iΔu + div (
−→
G (u)),

u(x, 0) = u0(x),
(10.34)

x ∈ T
n, t ∈ [0, T ], where

−→
G = (G1, . . . ,Gn) �= 0, Gj holomorphic, is ill-posed on

any Sobolev space Hs(Tn).
Now we turn to the positive results in [KPV10] concerning the local well-

posedness of the IVP (10.1). To simplify the exposition, we shall consider only
the case bjk ≡ 0.

We shall assume the following:

(H1) Ellipticity. Given M > 0 there exists γM > 0 such that

〈ajk(x, t ,−→z )ξ , ξ〉 ≥ γM ∀ ξ ∈ R
n, for all−→z ∈ C

2n+2 (10.35)

with |−→z | ≤ M .
(H2) Asymptotic flatness. There exists c > 0 such that for any (x, t) ∈ R

n × R,

|∂xl ajk(x, t ,
−→
0 )| + |∂2

xlxr
ajk(x, t ,

−→
0 )| ≤ c

〈x〉2
, (10.36)
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where l = 0, 1, . . . , n, r = 1, . . . , n with ∂x0 = ∂t .
(H3) Growth of the first-order coefficients. There exist c, c1 > 0 such that for any

x ∈ R
n and (x, t) ∈ R

n × R,

|−→bm (x, 0,
−→
0 )| ≤ c1

〈x〉2
, |∂t −→bm (x, 0,

−→
0 )| ≤ c

〈x〉2
, m = 1, 2. (10.37)

(H4) Regularity. For any N ∈ N and M > 0 the coefficients ajk ,
−→
b1 ,

−→
b2 , c1, c2 are

in

CN
b (Rn × R × (|−→z | ≤ M)).

(H5) Nontrapping condition. The data u0 ∈ Hs(Rn), s > n/2 + 2, are such that
the Hamiltonian flow Hh(u0) associated to the symbol

h(u0) = hu0 (x, ξ ) = −ajk(x, 0, u0, ū0,∇u0,∇ū0)ξj ξk (10.38)

is nontrapping.

The main result in this chapter is the following theorem:

Theorem 10.1. Under the hypotheses (H1) – (H4) there exists N = N (n) ∈ Z
+

such that for any u0 ∈ Hs(Rn) with

〈x〉2 ∂α
x u0 ∈ L2(Rn), |α| ≤ s1,

and

f ∈ L1(R : Hs(Rn)) and 〈x〉2∂α
x f ∈ L1(R : L2(Rn)), |α| ≤ s1,

where s, s1 ∈ Z
+ with s1 ≥ n/2 + 7, s = max{s1 + 4,N + n+ 3} and u0 satisfying

the hypothesis (H5). There exists T0 > 0 depending only on

‖u0‖s,2 +
∑

|α|≤s

‖〈x〉2 ∂α
x u0‖2

+
∞
∫

−∞
‖f (t)‖s,2dt + ∑

|α|≤s1

∞
∫

−∞
‖〈x〉2 ∂α

x f (t)‖2dt ≡ λ,

(10.39)

so that the IVP (10.1) is locally well-posed in [0, T0) with the solution:

u ∈ C([0, T0] : Hs(Rn)), 〈x〉2 ∂α
x u ∈ C([0, T0] : L2(Rn))

for |α| ≤ s1.

Remark 10.1.

(i) When n = 1, the ellipticity hypothesis (H1) implies the nontrapping one (H5).
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(ii) One can also prove that the solution possesses the “local smoothing” effect

Λs+1/2u ∈ L2(Rn × [0, T0] : 〈x〉−2 dx dt).

(iii) In the above statements, 〈x〉2 can be replaced by 〈x〉1+ε , ε > 0.
(iv) Koch and Tataru [KTa1] have noticed that the map data-solution, u0 �→ u, is

not C2, hence the result in Theorem 10.1 cannot be established by using only
Picard iteration.

(v) The proof of this theorem is based in the so-called artificial viscosity method,
which was explained in details in Chapter 9 (Section 9.4).

(vi) The proof sketched below only uses classical pseudodifferential operators.

To apply the “artificial viscosity method,” we first consider the IVP:

⎧

⎪

⎨

⎪

⎩

∂tu = −ε Δ2u + iajk(x, t) ∂2
xj xk

u +−→
b1 (x, t) · ∇u +−→

b2 (x, t) · ∇ū

+c1(x, t)u + c2(x, t)ū + f (x, t),

u(x, 0) = u0(x)

(10.40)

under the following assumptions:

(Hl1) Ellipticity. A(x, t) = (ajk(x, t))nj ,k=1 is a real symmetric matrix and there
exists γ ∈ (0, 1) such that for any ξ ∈ R

n and (x, t) ∈ R
n × [0,∞),

γ |ξ |2 ≤ 〈A(x, t) ξ , ξ〉 ≤ γ−1|ξ |2. (10.41)

(Hl2) Asymptotic flatness. There exists c > 0 such that for any (x, t) ∈ R
n×[0,∞),

|∂xl ajk(x, t)| + |∂2
xlxr

ajk(x, t)| ≤ c

〈x〉2
(10.42)

with l = 0, 1, . . . , n, r = 1, . . . , n, and ∂x0 = ∂t .

(Hl3) Growth of the first-order coefficients. There exists c > 0 such that

| Im−→
b1 (x, 0)| + | Im∂t

−→
b1 (x, t)| ≤ c

〈x〉2
(10.43)

for all (x, t) ∈ R
n × [0,∞).

(Hl4) Regularity. The coefficients ajk , b1j , b2j , c1, c2 are in CN
b (Rn × [0,∞))

with
−→
bl = (bl1, . . . , bln), l = 1, 2, for N = N (n) sufficiently large.

(Hl5) Nontrapping condition. Let A0(x) = A(x, 0)=(a
jk

(x, 0)
n

)
j ,k=1

,

h(x, ξ ) = −ajk(x, 0)ξj ξk , (10.44)

and Hh be the corresponding Hamiltonian flow. Then Hh is nontrapping.
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The following a priori estimate for solutions of the linear IVP (10.40) is the key in
the proof of the nonlinear result for the IVP (10.1), Theorem 10.1.

Lemma 10.1. Under the hypotheses (Hl1)–(Hl5) above there exist N = N (n), c0

and T0 > 0 (depending both c0, T0 on the nontrapping condition (Hl5) and on the
coefficients at t = 0), so that for any T ∈ (0, T0) and any ε ∈ (0, 1) we have that the
solution of (10.40) satisfies

sup0≤t≤T ‖ u(t)‖2 +
⎛

⎝

T
∫

0

〈x〉−2|Λ1/2u|2 dx dt

⎞

⎠

1/2

≤ c0

⎡

⎢

⎣‖u0‖2 +
⎛

⎝

T
∫

0

〈x〉2|Λ−1/2 f (x, t)|2 dx dt

⎞

⎠

1/2
⎤

⎥

⎦ ,

(10.45)

and

sup0≤t≤T ‖u(t)‖2 +
⎛

⎝

T
∫

0

〈x〉−2|Λ1/2u|2 dx dt

⎞

⎠

1/2

≤ c0

⎡

⎢

⎣‖u0‖2 +
⎛

⎝

T
∫

0

|f (x, t)|2 dx dt

⎞

⎠

1/2
⎤

⎥

⎦ .

(10.46)

In fact, the constant c0 depends only on the nontrapping condition for h(x, ξ ) (Hl5),
on the bounds at t = 0 of 〈x〉2 −→bj (x, 0), j = 1, 2, and on size estimates for the
coefficients and their derivatives at t = 0. Thus, in the nonlinear case, c0 depends
only on the data u0. Assuming the result in Lemma 10.1, we shall prove Theorem 10.1.

We introduce the notations (v = v(x, t), u = u(x, t)) for

L(v)u = iajk(x, t , v, v̄,∇v,∇ v̄) ∂2
xj xk

u

+−→
b1 (x, t , v, v̄,∇v,∇ v̄) · ∇u +−→

b2 (x, t , v, v̄,∇v,∇ v̄) · ∇ū (10.47)

+ c1(x, t , v, v̄) u + c2(x, t , v, v̄) ū,

XT ,M0 =
{

v : R
n × [0, T ] → C | v ∈ C([0, T ] : Hs(Rn)),

〈x〉2 ∂α
x v ∈ C([0, T ] : L2(Rn)), |α| ≤ s1, v(x, 0) = u0(x)

}

,
(10.48)

with the norm

|||v|||T = sup
[0,T ]

‖v(t)‖s,2 +
∑

|α|≤s1

sup
[0,T ]

‖〈x〉2 ∂α
x v(t)‖2 ≤ M0. (10.49)
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For u ∈ XT ,M0 , we study the linear IVP:
{

∂tv = −ε Δ2v + L(u)v + f (x, t), ε ∈ (0, 1)

v(x, 0) = u0(x),
(10.50)

and its integral equation version

v(t) = e−εt Δ2
u0 +

t
∫

0

e−ε(t−t ′)Δ2
(L(u)v + f )(t ′) dt′. (10.51)

One defines the operator Φ(u)(t) as the right-hand side of (10.51). Using that

‖e−εt Δ2
g‖2 ≤ ‖g‖2 and ‖Δe−εt Δ2

g‖2 ≤ 1

ε1/2t1/2
‖g‖2,

it is easy to check that the operator Φ(·) is a contraction on XTε ,M0 with Tε = O(ε).
One needs standard commutator identities to estimate the weighted norms in XT ,M .
Thus, there exists uε ∈ XTε ,M0 (the fixed point of Φ) solution of the IVP:

{

∂tu = −ε Δ2u + L(u)u + f (x, t), ε ∈ (0, 1),

u(x, 0) = u0(x),
(10.52)

on the time interval [0, Tε].
Now we will use Lemma 10.1 to extend all solutions {uε}ε∈(0,1) to the time interval

[0, T0] with T0 independent of ε ∈ (0, 1), with |||uε |||T0
uniformly bounded.

The first step is to show that if |||uε |||T ≤ M0 = 20 c0 λ (see (10.39)), the co-
efficients of the linear equation for Λ2muε = (I − Δ)muε , 2m ≤ s, and x2

l Λ
2mu

with 2m ≤ s1 (assuming s, s1 even integers) can be written so that the constants in
(Hl1)–(Hl5) are uniform for all these equations in a time interval [0,˜T ] independent
of ε.

The equations for Λ2muε are obtained by applying the operator Λ2m to the
equation (10.52), which can be written as

∂tΛ
2mu =− ε Δ2Λ2mu + iL2m(u)Λ2mu (10.53)

+ f2m(x, t , (∂βu)|β|≤2m−1, (∂β ū)|β|≤2m−1)+Λ2mf (x, t),

where

L2m(u)v = iajk(x, t , u, ū,∇u,∇ū)∂2
xj xk

v

+ b2m,2,j (x, t , (∂βu)|β|≤2m−1, (∂β ū)|β|≤2m−1)Rj∂xj v

+ b2m,2,j (x, t , (∂βu)|β|≤2m−1, (∂β ū)|β|≤2m−1) ˜Rj∂xj v̄ (10.54)

+ c1,2m(x, t , (∂βu)|β|≤2m−1, (∂β ū)|β|≤2m−1)R2m,1 v

+ c2,2m(x, t , (∂βu)|β|≤2m−1, (∂β ū)|β|≤2m−1)R2m,2 v̄,
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where Rj , ˜Rj , R2m,1, R2m,2 are ψ .d.o. of order zero.
We observe that the principal part of L2m(u) is independent of m. Moreover, the

first-order coefficients b2m,1,j , b2m,2,j depend on 2m as a multiplicative constant, and
on the original coefficients ajk ,

−→
b1 ,

−→
b2 and their first derivatives and they verify the

asymptotic flatness assumptions (Hl2). The term f2m(·) involves derivatives that have
been previously estimated in L∞

T L2
x , and so putting it on the right-hand side in the

L1
T L

2
x-norm they appear with a factor T in front.

Similar remarks hold for the equation for x2
l Λ

2m u after using some simple
commutator identities.

Collecting this information, we can also show that there exists a Q(·) increasing
function such that, for any ω ∈ XT ,M0 with T > 0 solution of the IVP (10.52),

sup
[0,T ]

∑

|α|≤s1−4

‖〈x〉2∂α
x ∂t ω‖2 ≤ Q(M0) (10.55)

holds.
All these facts will allow us to apply Lemma 10.1 to get the a priori estimate

|||uε ||| ≤ c0(λ+ ˜T R(M0)) ≤ M0/4 (10.56)

for ˜T small, but uniform in ε, where R( ·) is a fixed increasing function. Thus, we
can reapply the local existence theorem (originally on [0, Tε]) to extend the local
solution uε to the time interval [0,˜T ], with

|||uε ||| ≤ M0 = 20c0 λ. (10.57)

Once (10.57) has been established (as in the viscosity method for the BO explained
in Chapter 9), we consider the equation for the difference uε − uε′ , ε > ε′ > 0,
and reapply the argument to obtain the existence as ε → 0 and the uniqueness of
the solution. The continuous dependence is based on Bona–Smith regularization
argument [BS] (see Step 5 in the proof of Theorem 9.2).

Now we turn our attention to the proof of Lemma 10.1. One of the main ingredients
in the proof is the following lemma due to Doi [Do1].

Lemma 10.2 [Do1]. Assume that h in (10.38) verifies the assumptions (Hl5) (non-
trapping), (Hl4) (regularity) and (Hl2) (asymptotic flatness). Then, there exists a
real-valued zeroth-order classical symbol p ∈ S0 (see (3.18)) whose seminorm is
bounded in terms of the “nontrapping character” of h, the ellipticity constant γ in
(Hl1), and the bound for the smoothness norm at t = 0, c1, and a constant β ∈ (0, 1)
(with the same dependence) such that

Hh p = {h, p} ≥ β
|ξ |
〈x〉2

− 1

β
(10.58)

for all (x, ξ ) ∈ R
n × R.

Remark 10.2. The seminorm bounds for the symbol p and the constant β above are
the quantitative way in which the “nontrapping” character of h enters into the proof.
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We recall that

Hh p = {h, p} = ∂ξj h ∂xj p − ∂xj h ∂ξj p. (10.59)

Observe that, if h̃ is only “approximately nontrapping” and we use the p cor-
responding to Ha , for Hh̃, we get a lower bound of Hh̃ p by β|ξ |/2〈x〉2 −
2/β.

To apply Doi’s lemma, we need the sharp Garding inequality (see [Ho2]).

Lemma 10.3 (Sharp Garding’s inequality). Let q ∈ S1 be a classical symbol
of order 1 such that Re q(x, ξ ) ≥ 0 for |ξ | ≥ R, then there exist j0 = j0(n) and
c = c(n,R) such that

Re 〈Ψqf , f 〉 ≥ −c ‖q‖(j0)
S1 ‖f ‖, (10.60)

where Ψq denotes the ψ .d.o. with symbol q, i.e.,

Ψq f (x) =
∫

eixξ q(x, ξ )̂f (ξ ) dξ. (10.61)

Assuming Lemmas 10.2 and 10.3 we shall divide the proof of Lemma 10.1 into
several steps.

Step 1. Write equation (10.40) as a system. Using

−→w =
⎛

⎝

u

ū

⎞

⎠ ,
−→
f =

⎛

⎝

f

f̄

⎞

⎠ , −→w 0 =
⎛

⎝

u0

ū0

⎞

⎠ ,

one has the system
{

∂t
−→w = −εΔ2I−→w + (iH + B + C)−→w +−→

f ,
−→w (x, 0) = −→w 0(x),

where

H =
⎛

⎝

L 0

0 −L

⎞

⎠ , C =
⎛

⎝

c1 c2

c̄2 c̄1

⎞

⎠ , (10.62)

B =
⎛

⎝

−→
b1 · ∇ −→

b2 · ∇
−→
b2 · ∇ −→

b1 · ∇

⎞

⎠ =
⎛

⎝

B11 B12

B21 B22

⎞

⎠ , (10.63)

and L = iajk(x, t)∂2
xj xk

.

Step 2. Diagonalization of the first-order terms. (To simplify the exposition take
ε = 0).
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Notice that L is elliptic, with ellipticity constant γ /2 for t ∈ [0, T ] for T

sufficiently small since

ajk(x, t)ξj ξk = ajk(x, 0)ξj ξk + [ajk(x, t) − ajk(x, 0)]ξj ξk ≥ γ |ξ |2 − c T |ξ |2
(10.64)

(by using the bound of ∂tajk(x, t) in (Hl2)).
This type of argument shall be used repeatedly.
Next we write

B = Bdiag + Banti =
⎛

⎝

B11 0

0 B22

⎞

⎠+
⎛

⎝

0 B12

B21 0

⎞

⎠ . (10.65)

Our goal is to eliminate Banti . To do this we set

Λ = I − S, with S =
⎛

⎝

0 S12

S21 0

⎞

⎠

where S12, S21 are ψ .d.o. of order −1 to be determined.
We want to write the system in the new variable

−→z = Λ−→w (10.66)

for an appropriate choice of S, so that Banti is eliminated.
We will use that S is a matrix of ψ .d.o. of order −1, to have that Λ is invertible

in L2 and so the estimates on −→z are equivalent to the estimates on −→w .
We calculate
⎛

⎝

L 0

0 −L

⎞

⎠Λ−Λ

⎛

⎝

L 0

0 −L

⎞

⎠

= −
⎛

⎝

L 0

0 −L

⎞

⎠

⎛

⎝

0 S12

S21 0

⎞

⎠+
⎛

⎝

0 S12

S21 0

⎞

⎠

⎛

⎝

L 0

0 −L

⎞

⎠

=
⎛

⎝

0 −LS12 − S12 L
LS21 + S21 L 0

⎞

⎠ .

Since

|h(x, ξ )| = |ajk(x, t)ξj ξk| ≥ γ |ξ |2 for |ξ | ≥ R (10.67)

uniformly in t , choosing ϕ ∈ C∞
0 (Rn) with ϕ(y) = 1 if |y| ≤ 1 and ϕ(y) = 0 if

|y| ≥ 2 we define

˜h(x, t , ξ ) = (h(x, ξ ))−1(1 − ϕ(ξ/R)) (10.68)
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and ˜L = Ψh̃, i.e., the ψ .d.o. of order −2 with symbol˜h. Notice that

˜L L = I + Ψ 1 (10.69)

with  1 ∈ S−1 (uniformly in t). Define

S12 = 1

2
iB12

˜L, S21 = −1

2
iB21

˜L (10.70)

and

S =
⎛

⎝

0 S12

S21 0

⎞

⎠ . (10.71)

Notice that the entries of S are ψ .d.o of order −1, whose S0 seminorms tend to zero
as R ↑ ∞ (see (10.68)). Thus, for R large enough Λ is invertible in Hs(〈x〉2 dx),
Hs(〈x〉−2 dx), and Hs(Rn) with operator norm in the interval (1/2, 2). Also if Λ−1

denotes the inverse of Λ, the entries of Λ−1 are ψ .d.o. of order zero.
Finally, from our construction

{

−L S12 − S12 L = −B12 + order 0,

L S21 − S21 L = −B21 + order 0.
(10.72)

We then observe that

ΛBdiag = (I − S)Bdiag = Bdiag − S Bdiag

= BdiagΛ+ Bdiag S − S Bdiag (10.73)

= BdiagΛ+ [(Bdiag S − S Bdiag)Λ−1]Λ,

(notice that [ · ] is an operator of order zero).
Similarly,

ΛBanti = Banti Λ+ C Λ, (10.74)

by (10.70), (10.71), (10.72) with C a matrix of ψ .d.o. of order zero.
Thus, our system in −→z = Λ−→w becomes

{

∂t
−→z = iH−→z + Bdiag

−→z + C−→z +−→g ,
−→z (x, 0) = −→z0 (x),

(10.75)

where −→g = Λ
−→
f , −→z 0 = Λ−→w 0, H , Bdiag as before with B11 = −→

b1 · ∇,

B22 = −→
b1 · ∇ and C is a matrix of ψ .d.o. of order zero whose symbols have
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seminorm estimates controlled by c (not c1).

Step 3. Energy estimates for a “gauged” system. We recall that L = ajk(x, t) ∂2
xj xk

has symbol ajk(x, t) ξj ξk , and our “nontrapping” assumption is on

h(x, ξ ) = ajk(x, 0)ξj ξk. (10.76)

Let p ∈ S0 be the symbol associated to h as in Lemma 10.2 so that

Hh p = {h,p} ≥ β
|ξ |
〈x〉2

− 1

β
.

Let

h1(x, t , ξ ) = ajk(x, t)ξj ξk. (10.77)

So

Hh1 p = ∂h1

∂ξl

∂p

∂xl
− ∂h1

∂xl

∂p

∂ξl

= ∂h

∂ξl

∂p

∂xl
− ∂h

∂xl

∂p

∂ξl
+ (ajk(x, t) − ajk(x, 0))

∂

∂ξl
(ξj ξk)

∂p

∂xl

−
( ∂

∂xl

(

ajk(x, t) − ajk(x, 0)
)

)

ξj ξk
∂p

∂ξl
.

Thus, by “asymptotic flatness,” assumption (Hl2), we see that for small T

Hh1 p ≥ β

2

|ξ |
〈x〉2

− 2

β
, (10.78)

for the same p. We now consider the ψ .d.o. of order 0, Ψr1 , whose symbol is
eMp(x,t) for an M large to be determined depending only on c1, and the “nontrapping
character.” Notice that the seminorms of r1 depend only on c1, and the nontrapping
character: it is elliptic. The same holds for Ψ −1

r1
(modulo order −2 errors). Also

Hh1 r1 = M(Hh1 p) r1 ≥
{

M
β

2

|ξ |
〈x〉2

− 2M

β

}

r1 (10.79)

and that modulo 0th-order operators the symbol of i{LΨr1 − Ψr1L} = Hh1 r1, for
each t .

We also consider Ψr2 , whose symbol is e−Mp(x,ξ ) so that symbol-wise we have

i{LΨr2 − Ψr2L} = Hh1r2 = −M(Hh1p)r2 ≤ −
{

M
β

2

|ξ |
〈x〉2

− 2M

β

}

r2.

Now we define

−→α =
⎛

⎝

Ψr1 0

0 Ψr2

⎞

⎠
−→z ,
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and obtain a new system for −→α , in which for M chosen appropriately we will be
able to perform energy estimates. For simplicity, let

Ψ =
⎛

⎝

Ψr1 0

0 Ψr2

⎞

⎠ .

We want to obtain the system for −→α

i{ΨH −HΨ } = i

⎛

⎝

Ψr1L − LΨr1 0

0 LΨr2 − Ψr2 L

⎞

⎠

=
⎛

⎝

ΨHh1 r1 0

0 ΨHh1 r2

⎞

⎠ + 0th order.

Recalling that −Hh1r1 = −M(Hh1p)r1, Hh1 r2 = −M(Hh1 p) r2, and using that

⎛

⎝

ΨHh1 r1 0

0 ΨHh1 r2

⎞

⎠ =
⎛

⎝

−MΨHh1p
0

0 −MΨHh1p

⎞

⎠

⎛

⎝

Ψr1 0

0 Ψr2

⎞

⎠+ 0th order

we get

i{ΨH −HΨ } =
⎛

⎝

−MΨHh1p
0

0 −MΨHh1p

⎞

⎠Ψ + 0th order.

Next,

Ψ Bdiag =
⎛

⎝

B11 0

0 B22

⎞

⎠Ψ + 0th order

and

Ψ C = (Ψ CΨ −1)Ψ.

Thus, the system for −→α is:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂t
−→α = iH−→α + Bdiag

−→α −M

⎛

⎝

ΨHh1p
0

0 ΨHh1p

⎞

⎠
−→α + C−→α +−→

F ,

−→α (x, 0) = −→α0 (x),
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where −→α0 = Ψ−→z0 and
−→
F = Ψ−→g . It suffices to find M (see definition of Ψr1 )

depending only on c1 and the nontrapping character so that we can estimate −→α . To
do this we consider

〈−→α ,
−→
β 〉 =

∫

α1β̄1 + α2β̄2

and calculate

d

dt
〈−→α ,−→α 〉 = i

[〈H−→α ,−→α 〉 − 〈−→α ,H−→α 〉]+ 〈Bdiag
−→α ,−→α 〉 + 〈−→α ,Bdiag

−→α 〉

−M
[〈

⎛

⎝

ΨHh1p
0

0 ΨHh1p

⎞

⎠
−→α ,−→α

〉

+
〈−→α ,

⎛

⎝

ΨHh1p
0

0 ΨHh1p

⎞

⎠
−→α
〉]

+ 〈C−→α ,−→α 〉 + 〈−→α ,C−→α 〉 + 〈−→F ,−→α 〉 + 〈−→α ,
−→
F 〉

= i
[〈H−→α ,−→α 〉 − 〈−→α ,H−→α 〉]+ 2Re 〈Bdiag

−→α ,−→α 〉

− 2MRe
〈

⎛

⎝

ΨHh1p
0

0 ΨHh1p

⎞

⎠
−→α ,−→α

〉

+ 2Re 〈C−→α ,−→α 〉

+ 2Re 〈−→F ,−→α 〉.
We recall that

H =
⎛

⎝

L 0

0 −L

⎞

⎠ ,

with

L = ajk(x, t)∂2
xj xk

= ∂xj (ajk(x, t)∂xk ) − ∂xj a(x, t)∂xk = L0 −−→
b3 (x, t) · ∇.

So

i
[〈H−→α ,−→α 〉 − 〈−→α ,H−→α 〉] = i[〈H0

−→α ,−→α 〉 − 〈−→α ,H0
−→α 〉]

+ 〈i(−→b3 (x, t) · ∇)−→α ,−→α 〉 + 〈−→α ,−i(
−→
b3 (x, t) · ∇)−→α 〉

= [〈H0
−→α ,−→α 〉 − 〈−→α ,H0

−→α 〉]+ 2Re 〈B1
diag

−→α ,−→α 〉,
where

H0 =
⎛

⎝

L0 0

0 −L0

⎞

⎠ , B1
diag =

⎛

⎝

i
−→
b3 (x, t) · ∇ 0

0 −i
−→
b3 (x, t) · ∇

⎞

⎠ .

Note that our asymptotic flatness assumption implies that

˜Bdiag = Bdiag + B1
diag =

⎛

⎝

˜B11 0

0 ˜B11,

⎞

⎠ ,
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where the symbols of ˜Bjj , l = 1, 2 satisfy

|∂t˜Bjj (x, t , ξ )| ≤ c
|ξ |
〈x〉2

,

and

|˜Bjj (x, 0, ξ )| ≤ c1
|ξ |
〈x〉2

.

As a consequence, for t small (depending on c) we have that

|˜Bjj (x, t , ξ )| ≤ 2c1
|ξ |
〈x〉2

,

and

d

dt
〈−→α ,−→α 〉 = i[〈H0

−→α ,−→α 〉 − 〈−→α ,H0
−→α 〉]

+ Re 〈˜Bdiag
−→α ,−→α 〉 − 2M Re

〈

⎛

⎝

ΨHh1p
0

0 ΨHh1p

⎞

⎠
−→α ,−→α

〉

+ 2Re 〈C−→α ,−→α 〉 + 2Re 〈−→F ,−→α 〉. (10.80)

Now it is easy to see that

〈H0
−→α ,−→α 〉 − 〈−→α ,H0

−→α 〉 ≡ 0.

For the next two terms in (10.80), we get

Re 〈˜B11α1,α1〉 −M 〈ΨHh1p
α1,α2〉 + similar terms in α2.

We recall that

|˜B11(x, t , ξ )| ≤ c1
|ξ |
〈x〉2

and

Hh1 p ≥ β

2

|ξ |
〈x〉2

− 2

β
.

We now choose M so large such that

M Hh1 p ± ˜B11(x, t , ξ ) ≤ β − β̃
〈ξ〉
〈x〉2

,

then the sharp Garding inequality (Lemma 10.3) gives

Re 〈˜B11α1,α1〉 −M Re 〈ΨHh1p
α1,α1〉 ≤ c‖α1‖2

2 − 〈Ψβ̃ 〈ξ〉/〈x〉2α1,α1〉.
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Using that

Ψc̃ 〈ξ〉/〈x〉2 = 1

〈x〉2
Ψc̃ 〈ξ〉 + Ψe0 ,

with e0 of order 0,
Ψc̃ 〈ξ〉 = c̃Λ1/2Λ1/2,

and
1

〈x〉2
Λ1/2Λ1/2 = Λ1/2 1

〈x〉2
Λ1/2 + Ψe1

0
,

with e1
0 of order 0, we see that

〈Ψβ̃ 〈ξ〉/〈x〉2α1,α1〉 = β̃

∫ |Λ1/2α1|2
〈x〉2

(x, t)dx +O(‖α1‖2).

So we pick t0 ∈ [0, T ] such that

‖−→α (t0)‖2
2 ≥

1

2
sup
[0,T ]

‖−→α (t)‖2
2,

to get that

sup
[0,T ]

‖−→α (t)‖2
2 + β̃

∫ T

0

∫ |Λ1/2α1|2
〈x〉2

(x, t)dx dt ≤ 2

t0
∫

0

d

dt
〈−→α ,−→α 〉 dt + 2‖−→α0 ‖2

2

≤ c

t0
∫

0

‖−→α ‖2
2 dt + 2

t0
∫

0

‖−→F ‖2‖−→α ‖2 dt + 2‖−→α0 ‖2
2

≤ CT sup
[0,T ]

‖−→α (t)‖2
2 + 2 sup

[0,T ]
‖−→α (t)‖2

2

T
∫

0

‖−→F ‖ dt + 2‖−→α0 ‖2
2,

which, upon choosing CT < 1/2 yields the desired estimate (10.46).

10.2 Comments

The main result in this chapter, Theorem 10.1, was obtained in [KPV10]. As it was
seen, the proof is based on the artificial viscosity method (it cannot be established
by a solely Picard argument; see [KT]) and uses only classical pseudodifferential
operators. In this regard, the ellipticity assumption is crucial.

It was displayed in Chapter 9 that dispersive models of the form

∂tu = i(∂2
x1
+ · · · + ∂2

xk
− ∂2

xk+1
− · · · − ∂2

xn
)u + f (u, ū,∇xu,∇x ū) (10.81)
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arise in the physical (for instance, wave propagation) and in the mathematical context,
for example, related to higher-order models which can be solved by inverse scattering
method.

In [KPV14], local well-posedness of the IVP associated to the equation (10.81)
was obtained. The method of proof, among other arguments, employs pseudodiffer-
ential operators in the Calderón–Vaillancourt class. This approach does not seem to
apply to the variable coefficient class

∂tu = i∂xk (ajk(x)∂xj u) + (
−→
b1 (x) · ∇)u + (

−→
b2 (x) · ∇)ū

+c1(x)u + c2(x)u + f (u, ū,∇xu,∇x ū),
(10.82)

where (ajk(x)) is a symmetric nondegenerate (invertible) matrix.
The local well-posedness of the IVP associated to equation (10.82) was studied

in the massive work [KPRV1]. For that purpose, a new class of pseudodifferential
operators was introduced, which takes into consideration the “geometry” of the
nonelliptic operator. Under asymptotic flatness hypothesis of the coefficient ajk(x),
b1j , b2j , k, j = 1, . . . , n, and nontrapping assumptions of the bicharacteristic flow
associated to the symbol ajk(x)ξkξj it was proved in [KPV14] that the IVP for (10.82)
is locally well-posed in weighted Sobolev spaces F s

2k = Hs(Rn) ∩ L2(|x|2k dx) for
large enough values of s, k ∈ Z

+ (s > k). The results in [KPRV1] were extended
in [KPRV2] to the case where the coefficients ajk( · ), b1j ( · ), b2j ( · ) depend on
(x, t , u, ū,∇xu,∇x ū), k, j = 1, . . . , n, and c1(·), c2(·) on (x, t , u, ū).

In [MMTa2] and [MMTa3], the problem of finding the minimal regularity assump-
tions required to guarantee local well-posedness was considered. In these works, the
setting was restricted to the small data regime. In [MMTa2], for the quadratic case, a
translation invariant space was used instead of the weighted one. One should remark
that in the small data case the crucial step in the proof presented here, the use of the
integrating factor, is not necessary. Similarly, in the small data case the nontrapping
condition is not relevant and the proof follows by applying the contraction mapping
principle which cannot be the case for data of arbitrary size (see [KT]).

10.3 Exercises

10.1 Fill out the details of the results discussed in (i)–(v) regarding the IVP (10.7).

10.2 Prove that f = f (u, ū,∇ū), n ≥ 1, and f = ∂x(|u|2 u), n = 1, satisfy the
inequality (10.19).

10.3 Assuming that f (u, ū,∇u,∇ū ) satisfies the inequality (10.19), sketch a local
existence proof for the IVP:

{

∂tu = iε Δu + f (u, ū,∇u,∇ū ),

u(x, 0) = u0(x) ∈ Hs(Rn), s > n/2 + 1,
(10.83)
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for ε ≥ 0. This shows that under the hypothesis (10.19) the dispersion is not
needed for a local theory.

10.4 Consider the IVP:
{

∂tu = iΔu + P (u, ū,∇u,∇ū),

u(x, 0) = u0(x),
(10.84)

x ∈ R
n, t ∈ R, where P : C

n �→ C is a polynomial such that

P (z) =
N
∑

|α|=3

aα zα.

Prove that there exists δ > 0 (small) and s ! 1 such that for any u0 ∈ Hs(R)
with δ0 ≡ ‖u0‖s,2 ≤ δ the IVP (10.84) has a unique solution:

u ∈ C([0, T ] : Hs(Rn)), Ds+1/2u ∈ L2
loc(Rn × [0, T ]) (10.85)

(with T = T (δ0) ↑ ∞ as δ0 ↓ 0) which can be obtained by a fixed-point
argument. Hint: Consider the equivalent integral equation form of the IVP
(10.84) and prove that the operator

Φu0 (u)(t) = eitΔu0 +
∫ t

0
ei(t−t ′)ΔP (u, ū,∇u,∇ū)(·, t ′) dt′

has a unique fixed point in an appropriate space

Xs
T ↪→ C([0, T ] : Hs(Rn))

by using the estimates in Theorems 4.2 and 4.3.
10.5 (i) Prove that the symbol in (10.28) for |ξ | ≥ 1 satisfies the estimate (10.29).

(ii) Prove that in addition, for |ξ | ≥ 1 one has

|(xj∂xj )γ ∂α
x ∂

β

ξ μ(x, ξ )| ≤ cαβγ 〈x〉|α| |ξ |−|β|, (10.86)

γ ∈ Z
+,α,β ∈ (Z+)n, where 〈x〉 = (1 + |x|2)1/2.



Appendix A
Proof of Theorem 2.8

Definition A.1. For k ∈ Z let Qk be the collection of cubes in R
n which are

congruent to [0, 2−k)n and whose vertices lie on the lattice (2−k
Z)n.

The cubes in

Q∗ =
⋃

k∈Z

Qk (A.1)

are called the dyadic cubes.

A.4 Proof of Theorem 2.8

As it was mentioned after the statement of Theorem 2.8 it suffices to show that the
operator Tm is of weak type (1,1), that is, there exists c1 > 0 such that for every
f ∈ L1(Rn)

sup
α>0

α |{x ∈ R
n : |Tmf (x)| > α}| ≤ c1 ‖f ‖1. (A.2)

To establish (A.2) we need the Calderón–Zygmund decomposition of L1-
functions.

Lemma A.1 (Calderón–Zygmund lemma). Let f ∈ L1(Rn). For any α > 0, f
can be decomposed as

f = g + b = g +
∞
∑

j=1

bj (A.3)

such that

|g(x)| ≤ 2n α a.e x ∈ R
n, (A.4)

bj supported in Qj , Qj a dyadic cube with
∫

Qj

bj dx = 0, (A.5)
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the Q′
j s are disjoint,

∞
∑

j=1

|Qj | ≤ α−1 ‖f ‖1, (A.6)

and

‖g‖1 +
∞
∑

j=1

‖bj‖1 ≤ 6 ‖f ‖1. (A.7)

Proof. Assume f ≥ 0 (otherwise f = f + − f − and decompose each part). Since
f ∈ L1(Rn) there exists l such that |Q|−1

∫

Q

f dy < α for any cube of side length l.

Fix k0 ∈ Z such that

2k0n‖f ‖1 < α.

We start with the family of cubes in Qk0 . Let Q0 be one of them. Divide each side
of Q0 in two to get 2n new dyadic cubes of side length 2−(k0+1). Let Q1 be such a
cube; there are two possibilities:

(a)
1

|Q1|
∫

Q1

f dy < α or (b)
1

|Q1|
∫

Q1

f dy ≥ α.

In case (b) one stops the subdivision, noticing that

α ≤ 1

|Q1|
∫

Q1

f dy ≤ 2n

|Q0|
∫

Q0

f dy ≤ 2nα, (A.8)

and collecting it in a sequence Qj .
In case (a) the subdivision process continues. Thus, if x /∈ ⋃

j

Qj it follows from

the Lebesgue differentiation theorem (Exercise 2.6 (ii)) that

f (x) ≤ α a.e. x ∈ R
n \ ∪

j
Qj . (A.9)

Finally, we define

g(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

|Qj |
∫

Qj

f dy if x ∈ Qj ,

f (x) if x /∈ Qj ,

(A.10)

and

bj (x) = (f (x) − g(x))χQj
(x), j ∈ Z

+, (A.11)
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which yields the result. �

We shall denote by Q∗
j the cube having the same center as Qj and twice its side

length as

Ω = ∪
j
Qj and Ω∗ = ∪

j
Q∗

j (A.12)

with

|Ω∗| ≤
∑

j

|Q∗
j | = 2n

∑

j

|Qj |. (A.13)

Proof of inequality (A.2). First we notice that using Calderón–Zygmund lemma

|{x ∈ R
n : |Tm f (x)| > α}|

≤ |{x ∈ R
n : |Tm g(x)| > α/2}| + |{x ∈ R

n : |Tm b(x)| > α/2}| (A.14)

≤ |{x ∈ R
n : |Tm g(x)| > α/2}| + |{x /∈ Ω∗ : |Tm b(x)| > α}| + |Ω∗|

= E1 + E2 + E3.

From (A.13) and (A.6) in Calderón–Zygmung lemma we have that

E3 = |Ω∗| ≤ 2n
∑

j

|Qj | ≤ 2n α−1‖f ‖1. (A.15)

Tchebychev’s inequality and (A.4) in the Calderón–Zygmund lemma yield

E1 = |{x ∈ R
n : |Tm g(x)| > α/2}| ≤ c

(‖Tm g‖2

α/2

)2

≤ c
‖g‖2

2

α2

≤ c

α2
‖g‖1 ‖g‖∞ ≤ c

α
‖g‖1 ≤ c

α
‖f ‖1.

(A.16)

Hence, it remains to prove that

E2 = |{x /∈ Ω∗ : |Tm b(x)| > α/2}| ≤ cα−1 ‖f ‖1. (A.17)

It will suffice to show that
∫

x /∈Q∗
j

|Tm bj (x)| dx ≤ c‖bj‖1, j ∈ Z+. (A.18)

To establish (A.18) we follow the argument in [BeL].
Let ϕ ∈ C∞

0 ({ξ : |ξ | < 2}), such that ϕ(ξ ) = 1 for |ξ | ≤ 1. Let β(ξ ) =
ϕ(ξ ) − ϕ(2ξ ). Thus

∞
∑

l=−∞
β(2−lξ ) = 1 for ξ �= 0. (A.19)
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If ml(ξ ) = β(ξ )m(2lξ ), then by hypothesis (2.18)
∫

|(1 −Δ)s/2ml(ξ )|2 dξ < c. (A.20)

Thus, by Plancherel’s identity using the notation Kl(x) = m̂l(x), one gets that
∫

(1 + |x|2)s |Kl(x)|2 dx < c, (A.21)

which, combined with the Cauchy–Schwarz inequality yields the estimate
∫

{x: max
m

|xm|>R}
|Kl(x)| dx < c Rn/2−s , (A.22)

which is a good estimate for R >> 1.
Reapplying the estimates (A.20) and (A.21) for ξk ml(ξ ) instead of ml(ξ ) one finds

that
∫

|∇Kl(x)| dx < c. (A.23)

Consequently, it follows that
∫

|Kl(x + y) −Kl(x)| dx < c|y|. (A.24)

We observe that as a temperate distribution,

K(x) =
∞
∑

l=−∞
2nlKl(2

lx) =
∞
∑

l=−∞
m̂l(2

−lx). (A.25)

Assume that Qj is a cube of side R centered at the origin. From (A.22) one has
that

∫

x /∈Q∗
j

|2nlKl(2
l ·) ∗ bj | dx ≤

∫

Qj

∫

x /∈Q∗
j

|2nlKl(2
l(x − y))||bj (y)| dxdy

≤ ‖bj‖1

∫

{x: max
m

|xm|≥2lR}
|Kl(x)| dx (A.26)

≤ c (2lR)n/2−s ‖bj‖1.

Now using that
∫

Qj

bjdy = 0 it follows that

∫

x /∈Q∗
j

2nl

∫

y∈Qj

Kl(2
l(x − y))bj (y) dydx (A.27)
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=
∫

x /∈Q∗
j

2nl

∫

y∈Qj

(

Kl(2
l(x − y)) −Kl(2

lx)
)

bj (y) dydx.

Therefore, (A.24) yields
∫

x /∈Q∗
j

|2nlKl(2
nl ·) ∗ bj | dx

≤
∫

y∈Qj

∫

x /∈Q∗
j

2nl|Kl(2
l(x − y)) −Kl(2

lx)||bj (y)| dxdy (A.28)

≤ c (2lR)‖bj‖1.

Adding in l in (A.26) for 2lR > 1 and in (A.28) for 2lR ≤ 1 one gets that
∫

x /∈Q∗
j

|Tm bj (x)| dx ≤ c ‖bj‖1, (A.29)

which completes the proof. �



Appendix B
Proof of Lemma 4.2

B.1 Proof of Lemma 4.2

Let

Ω = {(x, y) ∈ [0, 1] × [0, 1] | x < y} = ∪
j
Qj , (B.1)

and

A ≡ {Qj }j (B.2)

where the Qj ’s are disjoint dyadic cubes (see Definition A.1) such that if Q̄j =
Īj × J̄j , (Ij , Jj intervals), then

(i) # (Q̄j ∩ {(x, x) | x ∈ [0, 1]}) = 1.
(ii) # {Qj ⊆ Ω | length side of Qj = 2−k} = 2k−1, k ∈ Z

+.

Without loss of generality assume ‖f ‖r = 1 and define

F (t) =
t
∫

−∞
|f (s)|r ds, (B.3)

so F : R → [0, 1] is a nondecreasing continuous function.
Notice that if s < t , then either

F (s) < F (t)

or

f ≡ 0, a.e. in[s, t].

For I = [a, b] ⊆ [0, 1] one has that

F−1([a, b]) = [A,B] with F (A) = a and F (B) = b. (B.4)
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Hence

B
∫

A

|f (s)|r ds = F (B) − F (A) = b − a, (B.5)

and

‖f ‖Lr (F−1(I )) = |I |1/r . (B.6)

Defining

B(f , g) =
∞
∫

−∞

∞
∫

−∞
K(t , s)f (s)g(t) dsdt (B.7)

and

B̃(f , g) =
∫ ∫

s<t

K(t , s)f (s)g(t) dsdt (B.8)

it will suffices to see that there exists c > 0 such that

|B̃(f , g)| ≤ c ‖f ‖r‖g‖l′ , 1

l
+ 1

l′
= 1. (B.9)

We take ‖f ‖r = ‖g‖l′ = 1, thus

|B̃(f , g)| = |
∫ ∫

s<t

K(t , s)f (s)g(t) dsdt |

= ∣∣
∑

Qj=Ij×Jj

Qj∈A

B(χF−1(Ij )f ,χF−1(Jj )g)
∣

∣

≤
∑

Qj∈A
c ‖f ‖Lr (F−1(Ij ))‖g‖Ll′ (F−1(Jj )) (B.10)

≤ c
∑

k∈Z+
(2−k)1/r

∑

|Jj |=2−k

‖g‖Ll′ (F−1(Jj ))

≤ c
∑

k∈Z+
(2−k)1/r‖g‖l′

(
∑

|Jj |=2−k

1
)1/l

≤ c
∑

k∈Z+
(2−k)1/r (2k−1)1/l .

Since by hypotheses −1

r
+ 1

l
< 0, this finishes the proof. �
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