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3.8 Initial data in Ḣ1 for d ≥ 3 . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Initial data in H1(Rd) . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



vi Contents

4 Functions of bounded p-variation 41
4.1 Functions of bounded p-variation and the spaces Up and V p . . . . 43
4.2 Duality and the Riemann–Stieltjes integral . . . . . . . . . . . . . 49
4.3 Step functions are dense . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Convolution and regularization . . . . . . . . . . . . . . . . . . . . 53
4.5 More duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Consequences of Minkowski’s inequality . . . . . . . . . . . . . . . 59
4.7 The bilinear form as integral . . . . . . . . . . . . . . . . . . . . . 60
4.8 Differential equations with rough paths . . . . . . . . . . . . . . . . 62
4.9 The Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.10 Adapted function spaces . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10.1 Strichartz estimates . . . . . . . . . . . . . . . . . . . . . . 68
4.10.2 Estimates by duality . . . . . . . . . . . . . . . . . . . . . . 70
4.10.3 High modulation estimates . . . . . . . . . . . . . . . . . . 71

5 Convolution of measures on hypersurfaces, bilinear estimates, and local
smoothing 73

6 Well-posedness for nonlinear dispersive equations 87
6.1 Adapted function spaces approach for a model problem . . . . . . 87
6.2 The (generalized) KdV equation . . . . . . . . . . . . . . . . . . . 89
6.3 The derivative nonlinear Schrödinger equation . . . . . . . . . . . . 103
6.4 The Kadomtsev–Petviashvili II equation . . . . . . . . . . . . . . . 106

7 Appendix A: Young’s inequality and interpolation 111
7.1 Complex interpolation: The Riesz–Thorin theorem . . . . . . . . . 119

8 Appendix B: Bessel functions 123

9 Appendic C: The Fourier transform 127
9.1 The Fourier transform in L1 . . . . . . . . . . . . . . . . . . . . . . 127
9.2 The Fourier transform of Schwartz functions . . . . . . . . . . . . . 128
9.3 Tempered distributions . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography 135



Contents vii

Geometric Dispersive Evolutions 139
Daniel Tataru

1 Introduction 141

2 Maps into manifolds 143
2.1 The tangent bundle and covariant differentiation . . . . . . . . . . 143
2.2 Special targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.3 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.4 S2 and targets: homotopy classes and equivariance . . . . . . . . . 147
2.5 Frames and gauge freedom . . . . . . . . . . . . . . . . . . . . . . . 148

3 Geometric pde’s 151
3.1 Harmonic maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.2 The harmonic heat flow . . . . . . . . . . . . . . . . . . . . . . . . 153
3.3 Wave maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.4 Schrödinger maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4 Wave maps 161
4.1 Small data heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.2 A perturbative set-up . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.2.1 The Strichartz norms . . . . . . . . . . . . . . . . . . . . . 162
4.2.2 The null structure . . . . . . . . . . . . . . . . . . . . . . . 162
4.2.3 The null frame spaces . . . . . . . . . . . . . . . . . . . . . 165
4.2.4 The paradifferential equation and renormalization . . . . . 167

4.3 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.3.1 Frequency envelopes . . . . . . . . . . . . . . . . . . . . . . 170
4.3.2 Linear analysis in the S and N spaces . . . . . . . . . . . . 171
4.3.3 Multilinear estimates . . . . . . . . . . . . . . . . . . . . . . 172

4.4 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.5 The small data result . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.5.1 The a priori estimate . . . . . . . . . . . . . . . . . . . . . . 177
4.5.2 Global existence and regularity . . . . . . . . . . . . . . . . 178
4.5.3 Weak Lipschitz dependence on the initial data . . . . . . . 179
4.5.4 Rough solutions and continuous dependence on the initial

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.6 Energy dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.6.1 Energy dispersion and multilinear estimates . . . . . . . . . 181
4.6.2 Compare the initial data of φ and φ̃ . . . . . . . . . . . . . 183
4.6.3 Compare the low frequencies of φ and φ̃. . . . . . . . . . . . 183
4.6.4 Compare the high frequencies . . . . . . . . . . . . . . . . . 183

4.7 Energy and Morawetz estimates . . . . . . . . . . . . . . . . . . . . 184
4.7.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



viii Contents

4.7.2 The energy-momentum tensor . . . . . . . . . . . . . . . . . 185
4.7.3 Energy estimates . . . . . . . . . . . . . . . . . . . . . . . . 186
4.7.4 The energy of self-similar maps . . . . . . . . . . . . . . . . 187
4.7.5 Morawetz estimates . . . . . . . . . . . . . . . . . . . . . . 188

4.8 The threshold theorem . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.9 Further developments . . . . . . . . . . . . . . . . . . . . . . . . . 197

5 Schrödinger maps 201
5.1 Frames and gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.2 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.3 The small data result . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.3.1 Bounds for the harmonic heat flow . . . . . . . . . . . . . . 210
5.3.2 Bounds for the Schrödinger map flow . . . . . . . . . . . . . 212
5.3.3 Rough solutions and continuous dependence. . . . . . . . . 212

5.4 Further developments . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.4.1 Other targets . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.4.2 Large data . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.4.3 Near soliton behavior . . . . . . . . . . . . . . . . . . . . . 216

Bibliography 219

Dispersive Equations 223
Monica Vişan
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Preface

Nonlinear wave equations are ubiquitous in physics and applied sciences; for exam-
ple, they appear as effective equations in general relativity and elasticity, for water
waves, nonlinear optics and superconductivity, in gauge theory and the motion of
Bose-Einstein condensates. Despite encompassing a large class of equations, there
are recurrent themes: dispersion, solitons and their stability, blow up and scatter-
ing. In these notes we want to pursue different coordinated threads: the nonlinear
Schrödinger equation and generalized KdV, critical wave and Schrödinger equa-
tions, and geometric dispersive equations. Our goal is to introduce the equations
and to describe an array of ideas and techniques used in their study, leading up
to the current results and remaining open problems.

The first part is devoted to the nonlinear Schrödinger equation, the general-
ized Korteweg-de Vries equation, and the Kadomtsev-Petviashvili II equation. It
introduces basic techniques, stationary phase and Strichartz estimates, the space
of functions of bounded p-variation and their adaptation to dispersive equations,
convolutions and bilinear estimates. The nonlinear Schrödinger equation and the
(generalized) Korteweg-de Vries equation exhibit a fascinating and rich structure.
They provide the simplest but nevertheless nontrivial context for many important
techniques, as well as the simplest framework for open challenging questions. The
last section of the first part describes a scheme for constructing solutions to dis-
persive equations, often in scale-invariant function spaces; this is demonstrated in
the context of the generalized Korteweg-de Vries equation and the Kadomtsev-
Petviashvili II equation.

Over the last decade, the induction on energy paradigm has grown into a
powerful tool for the large-data analysis of evolution equations. It continues to de-
velop in both depth and breadth, and has already proven useful over a wide range
of equations, from semilinear wave and Schrödinger equations to fluid equations
and geometric flows. While enjoying many parallels to the calculus of variations
and often using its terminology, this new approach requires an independent set of
techniques. In these notes we use the energy-critical nonlinear Schrödinger equa-
tion as a model to demonstrate these methods and their application to the question
of large-data global well-posedness.

Within the field of nonlinear dispersive equations, a special role is played
by the so-called geometric dispersive equations, which arise from the standard

xi



xii Preface

Lagrangian or Hamiltonian formalism, but applied in a geometric context. The
two simplest examples of such equations are the wave map and Schrödinger map
equations. These are discussed in the third part. The emphasis is on wave maps,
where even the small-data problem poses new challenges, both of technical nature
(function spaces) and conceptually (renormalization). In addition, the large-data
problem brings back techniques such as induction on energy and Morawetz esti-
mates. All of this happens on top of a differential geometry layer which needs to
be understood first. The corresponding elliptic and parabolic analogues, namely,
harmonic maps and the harmonic map heat flow, also play a role. The last section
concludes with a discussion of the small-data problem for Schrödinger maps; there
the large-data problem is still open.

These notes grew out of an Oberwolfach seminar held in the fall of 2012
where each of the authors gave five 90 minutes lectures. We want to thank the
Mathematisches Forschungsinstitut at Oberwolfach for the opportunity to organize
this workshop, and the participants for lively discussions. H. Koch acknowledges
the support of the Hausdorff Center of Mathematics and the SFBs 611 and 1060.
D. Tataru was supported by the NSF grants DMS-0801261 and DMS-1266182, as
well as by a Simons Fellowship and a Simons Investigator award from the Simons
Foundation. M. Visan was supported by the Sloan Foundation and NSF grants
DMS-0901166 and DMS-1161396.
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Chapter 1

Introduction

Nonlinearly interacting waves are often described by asymptotic equations. The
derivation typically involves an ansatz for an approximate solution where higher
order terms – the precise meaning of higher order term depends on the context
and the relevant scales – are neglected. Often a Taylor expansion of a Fourier
multiplier is part of that process.

There is an immediate consequence: This type of derivation leads to a huge
set of asymptotic equations, and one should search for a general understanding of
interacting nonlinear waves by asking for precise results for specific equations.

The most basic asymptotic equation is probably the nonlinear Schrödinger
equation, which describes wave trains or frequency envelopes close to a given
frequency, and their self-interactions. The Korteweg–de-Vries equation typically
occurs as first nonlinear asymptotic equation when the prior linear asymptotic
equation is the wave equation. It is one of the amazing facts that many generic
asymptotic equations are integrable in the sense that there are many formulae for
specific solutions, conserved quantities, Lax Pairs and Bi-Hamiltonian structures.

This text will focus on adapted function spaces and their recent application
to a number of dispersive equations. They are build on functions of bounded p-
variation, and their companion, the atomic space Up. Combined with stationary
phase resp. Strichartz estimates and bilinear refinements thereof, they provide an
alternative to the Fourier restriction spaces Xs,b which is better suited for scaling
critical problems.

We discuss the method of stationary phase and dispersive estimates in Section
2, the application to the nonlinear Schrödinger equation in Section 3, the spaces Up

and V p in Section 4, bilinear estimates in Section 5, and applications to nonlinear
dispersive equations in Section 6.

In order to make these notes reasonably self-contained there are three appen-
dices on Young’s inequality, real and complex interpolation, on Bessel functions,
and on the Fourier transform.

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,
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Chapter 2

Stationary phase and dispersive
estimates

We begin with the evaluations of several integrals. Let md be the d-dimensional
Lebesgue measure and define

Id =

∫
Rd

e−|x|2dmd(x).

Then, with Fubini,

Id1+d2
=

∫
Rd1×Rd2

e−|x1|2−|x2|2dmd1+d2(x)

=

∫
Rd1+d2

e−|x1|2e−|x2|2dmd1+d2(x)

=

∫
Rd1

e−|x1|2
∫
Rd2

e−|x2|2dmd2dmd1

= Id2

∫
Rd1

e−|x1|2dmd1

= Id1
Id2

,

hence

Id = Id1 .

Applying Fubini twice, we get

Id = md+1({(x, t) : 0 < t < e−|x|2})

=

∫ 1

0

md({x : e−|x|2 > t})dt

=

∫ 1

0

md(B(− ln(t))1/2(0))dt

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,

DOI 10.1007/978-3-0348-0736-4_2, © Springer Basel 2014
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6 Chapter 2. Stationary phase and dispersive estimates

= md(B1(0))

∫ 1

0

(− ln(t))d/2dt

= md(B1(0))

∫ ∞

0

sd/2e−sds

= md(B1(0))Γ(
d

2
+ 1)

and hence I2 = π, I1 =
√
π, Id = πd/2,

md(B1(0)) =
πd/2

Γ(d2 + 1)
,

and

Γ(
1

2
) = 2Γ(

3

2
) =

√
π.

We proceed with

I(τ) :=

∫ ∞

−∞
e−

τ
2 x

2

dx

for Re τ > 0. Then

d

dt

√
t+ isI(t+ is) =

1

2(t+ is)

√
t+ isI(t+ is)− 1

2

√
t+ is

∫ ∞

−∞
e−

t+is
2 x2

x2dx

=

√
t+ is

2(t+ is)

(
I(t+ is) +

∫ ∞

−∞

d

dx
e−

t+is
2 x2

xdx

)
=

√
t+ is

2(t+ is)

(
I(t+ is)−

∫ ∞

−∞
e−

t+is
2 x2

dx

)
= 0

and similarly

d

ds

√
t+ isI(t+ is) = 0

Thus √
τI(τ) =

√
2I(2) =

√
2π

and hence ∫
e−

τ
2 x

2

dx =

√
2π

τ
. (2.1)

Now we fix τ and study ∫
e−

τ
2 x

2

xkdx.
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This vanishes when k is odd, since then the integrand is an odd function. Let

J(k) =

∫
e−

τ
2 x

2

x2kdx =
2k − 1

τ
J(k − 1)

= 1 ∗ 3 ∗ · · · ∗ (2k − 1)τ−k

√
2π

τ

=
1

2kk!

(
τ−1 d

2

dx

)k

x2k
∣∣∣
x=0

√
2π

τ
,

where the second equality follows by an integration by parts. Let p be a polynomial.
It is a sum of monomials and hence∫

e−
τ
2 x

2

p(x)dx =

√
2π

τ

∞∑
k=0

1

2kk!

(
τ−1 d

2

dx

)k

p(x)
∣∣∣
x=0

The higher-dimensional case is contained in the following lemma. Let A =
A0 + iA1 be a real symmetric d × d matrix with A0 positive definite. This is
equivalent to all eigenvalues λj being in {λ : Reλ > 0}. Let (aij) be the inverse.
By an abuse of notation, we set

det(A)−1/2 =
∏

λ
−1/2
j ,

where the λj are the eigenvalues of A.

Lemma 2.1. Let p be a polynomial. Then∫
e−

1
2x

TAxp(x) dx = (2π)d/2(detA)−1/2
∞∑
k=0

1

2kk!

( d∑
i,j=1

aij∂
2
ij

)k

p(x)
∣∣∣
x=0

. (2.2)

The sum contains only finitely many non-vanishing terms.

Proof. We begin with a fact from linear algebra and claim that there exist a real
d× d matrix B and a diagonal matrix D such that

A = BDBT .

By the Schur decomposition, there exist an orthogonal matrix O and a diagonal
matrix D0 with non-negative entries such that

A0 = OD0O
T .

We set B0 = O
√
D0. Then

A0 + iA1 = B0(1 + iB−1
0 A1B

−T
0 )BT

0

Again by the Schur decomposition, there exist an orthogonal matrix U and a
diagonal matrix D1 such that

B−1
0 A1B

−T
0 = UD1U

T ,

Chapter 2. Stationary phase and dispersive estimates



8 Chapter 2. Stationary phase and dispersive estimates

hence

A0 + iA1 = B(1 + iD1)B
T ,

with B = B0U . We set D = 1Rd + iD1.
We change coordinates to y = BTx. Then∫

e−
xT Ax

2 p(x)dmd(x) = (detB)−1

∫
e−

yT (1+iD1)y
2 p(B−T y)dmd(y),

and by Fubini and the previous calculations,∫
e−

yT (1+iD1)y
2 yαdmd(y) = 0

if one of the indices is odd, and otherwise, with dj denoting the diagonal entries
of D1,∫

e−
yT Dy

2 y2αdmd(y) = (2π)d/2 det(D)−1/2 1

2|α|α!

∏
((1 + idj)

−1∂2
yjyj

)αjy
2αj

j

∣∣∣
y=0

= (2π)d/2 det(D)−1/2 1

2|α||α|!
[ d∑
j=1

(1 + idj)
−1∂2

j

]|α|
yα

∣∣∣
y=0

.

Thus, for any polynomial q,∫
e−

yT Dy
2 q(y)dmd(y) = (2π)d/2 det(D)−1/2

∞∑
k=0

1

2kk!

[ d∑
j=1

(1 + idj)
−1∂2

j

]k
q(y)

∣∣∣
y=0

.

We complete the calculation by

(detA)1/2 = (detD)1/2| detB|

and, by the chain rule,

∑
aij∂

2
xixj

p(x) =
[ d∑
j=1

(1 + idj)
−1∂2

j

]
p(B−T y). �

Observe that the right-hand sides of the formulas have a limit as A tends to
a purely imaginary invertible matrix. We call the integral on the left-hand side
oscillatory integral in that limit.

Oscillatory integrals play a crucial role when studying dispersive equations.
We consider

I(τ) =

∫
Rs

a(ξ)eiτφ(ξ)dξ,

where a and φ are smooth functions. The simplest result is
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Lemma 2.2. Suppose that a ∈ C∞
0 (Rd), φ ∈ C∞(Rd) with Imφ ≥ 0 and

|∇φ|+ Imφ > 0

on supp a. Given N > 0, there exists cN such that

|I(τ)| ≤ cNτ−N .

The constant c depends only on N , the lower bound above, and derivatives up to
order N .

Proof. By compactness, there is κ > 0 such that

|∇φ|+ Imφ > κ

on supp a(ξ). Using a partition of unity we may restrict to the two cases:

(1) Imφ > κ/2 on supp a, in which case we get a bound Ce−κτ/2;

(2) |∇φ| ≥ κ/2 on supp a, which we consider now.

We write∫
a(ξ)eiτφ(ξ)dξ =(iτ)−1

∫
a(ξ)|∇φ|−2∇φ∇eiτφ(ξ)dξ

=− (iτ)−1

∫ (
∇ ·

(a(ξ)∇φ

|∇φ|2
))

eiτφ(ξ)dξ

which is again an integral of the same type. Induction implies the full statement.
�

In many cases these bounds hold even for non-compactly supported a.

Lemma 2.3. Suppose that A = A0+iA1 is invertible with A0 positive semi-definite.
Let η ∈ C∞

0 (Rd) be identically 1 in a ball of radius 1, and supported in B2(0), and
let a be a smooth function with uniformly bounded derivatives of order M ≥ N− d

2
for some M,N > 0 and 0 < s < 1

2 . Then∣∣∣∣∫ e−
τ
2 x

TAxe−ε|x|2a(x)(1− η(xτ s))dmd(x)

∣∣∣∣ ≤ cNτ−N ,

with cN depending only on N , the norm of A and its inverse, and derivatives up
to some order M of a, but not on ε > 0. The limit ε → 0 exists.

We will use the formula with ε = 0.

Proof. We argue similarly as above. Each integration by parts adds a factor of size
(τ |x|)−1 if the derivative falls on a, a factor of size (τ |x|2)−1 if the derivative falls
on Ax

|Ax|2 , and τ s if the derivative falls on η. On the support of ∇η

τ−1|x|−2 + τ s−1|x|−1 ≤ τ2s−1.

Chapter 2. Stationary phase and dispersive estimates



10 Chapter 2. Stationary phase and dispersive estimates

We integrate by parts (and split the summands) until either

(1) M derivatives fall on a, or

(2) N
1−2s + d derivatives fall on the other terms.

The integrand (after the integrations by parts) converges pointwise, with a majo-
rant as above. This implies the statement on the limit as ε → 0. �

Similar statements hold for more general phase functions if

|∇φ| ≥ c|x|δ for |x| ≥ R

and

|∂αφ| ≤ |x|−δ|∇φ| for |x| ≥ R

some R and δ, and |α| ≥ 2.

Lemma 2.4. Let A be invertible, symmetric, with real part positive semi-definite,
and ψ ∈ C∞ with bounded derivatives of order ≥ M . Given N with 0 ≤ N ≤
(M + d)/3, there exist cn > 0 such that for τ > 0 and L ≥ N − d

2 ,∣∣∣∣∣∣
∫

e−
τ
2 x

TAxψ(x)dx− (2π)d/2τ−d/2(detA)−1/2
L∑

k=0

τ−k 1

2kk!

(∑
ij

aij∂
2
)k

ψ
∣∣∣
x=0

∣∣∣∣∣∣
≤ cNτ−N .

(2.3)

Proof. We subtract the Taylor expansion p of ψ at 0 up to some order L. We
choose 0 < s = 1

3 < 1
2 and decompose the integral into∫

e−
1
2x

TAx [p(x) + η(xτ s)(ψ(x)− p(x)) + [1− η(xτ s)](ψ(x)− p(x))] dx.

The integral of the first summand has been evaluated in Lemma 2.1 The integral
of the third summand is small by Lemma 2.3, and the one of the second summand
is bounded by

τ−(d+L)/3,

by a direct estimate. This gives estimate (2.3) for an L which may be too large.
Inspection of the sum shows that we may omit terms which are smaller than the
right-hand side. �
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Now we consider

I(τ) =

∫
eiτφ(x)ψ(x)dx,

where ψ is compactly supported, 0 is the only point in the support where the
imaginary part of φ and ∇φ vanish, the imaginary part of φ is non-negative, and
the Hessian of φ at 0 is invertible.

Lemma 2.5. Let 1
3 < s < 1

2 . Then, with η as above, ψ ∈ C∞
0 and N > 0,∣∣∣∣∫ eiτφ(x)(1− η(xτ s))ψ(x)dx

∣∣∣∣ ≤ cNτ−N .

Proof. The proof is the same as for the quadratic phase. Again in this formula the
compact support assumption on ψ can be weakened. �

We write

φ(x) = φ0 +
i

2
xTAx+ ψ(x),

where A is invertible and ψ is smooth, with ψ(x) = O(|x|3).
Theorem 2.6 (Stationary phase). Let a be a smooth compactly supported function
on Rd, and φ a phase function as above. Given N > 0 there exists cN such that
for τ > 1∣∣∣∣∣
∫

eiτφa(x)dx−(2π)d/2τ−d/2(detA)−1/2eiτφ0

N∑
k=0

1

2kk!τk
[(aij∂

2)keiτψ(x)a(x)]x=0

∣∣∣∣∣
≤ cNτ−d/2−N+1

3 .

Proof. We assume that the real part of A is positive definite. The general statement
follows then by an obvious limit.

We chooseM large and write eiτψψ = pM (x)+rM (x), where pM is the Taylor
polynomial of degree M , and rM is the remainder term. Clearly pM depends on τ
with typical terms being polynomials in τxα, where α is a multi-index of length at
least 3, and xj . We write the term in the brackets as a sum of three terms, using
that the second term on the left-hand side in Theorem 2.6 is a Gaussian integral
evaluated in Lemma 2.1.∫

eiτφψ(x)(1− η(xτ s))dmd(x),∫
e−

τ
2 x

TAxpM (x)(1− η(xτ s))dmd(x),

and ∫
η(xτ s)

[
eiτφψ(x)− e−

τ
2 x

TAxpM (x)
]
dmd(x).

Lemma 2.3 and Lemma 2.5 control the first and the second term.

Chapter 2. Stationary phase and dispersive estimates



12 Chapter 2. Stationary phase and dispersive estimates

The integrand of the third term is bounded by

τ
M
3 τ−Ms,

and hence the third term is bounded by a constant times

τ−ds+M( 1
3−s).

We choose s between 1
3 and 1

2 and M large. Finally, we omit the small terms in
the sum. �

In the one-dimensional setting the situation of the van der Corput Lemma
provides an extremely useful and simple estimate.

Lemma 2.7. Suppose that d = 1, ψ is of bounded variation with support in [c, d],
φ ∈ Ck(R) with k ≥ 1, φ real, and φ(k)(ξ) ≥ τ for ξ ∈ [c, d]. If k = 1 we assume
in addition that φ′ is monotone. Then

I =

∣∣∣∣∣
∫ d

c

ψ(x)eiφ(x)dx

∣∣∣∣∣ ≤ 3kτ−1/k

∫ d

c

|ψ′|dx.

Proof. We begin with k = 1, assuming that φ′ is monotone. Then∣∣∣∣∣
∫ d

c

ψeiφdx

∣∣∣∣∣ =
∣∣∣∣∣
∫ d

c

ψ/φ′ d
dx

eiφdx

∣∣∣∣∣
=

∣∣∣∣∣
∫ d

c

eiφ
d

dx
(ψ/φ′)dx+ eiφ(d)ψ(d)/φ′(dx)− eiφ(c)ψ(c)/φ′(c)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ d

c

ψ′

φ′ dx

∣∣∣∣∣+ sup |ψ|
(∣∣∣∣∣

∫ d

c

d

dx

1

φ′ dx

∣∣∣∣∣+ 2

τ

)

≤ 1

τ

(∫ d

c

|ψ′|dx+ 3 sup |ψ|
)
.

We use induction on k on the inequality∣∣∣∣∣
∫ d

c

ψ(x)eiφ(x)dx

∣∣∣∣∣ ≤ 1

τ1/k
(‖ψ′‖L1 + 3k sup |ψ|) .

Suppose that the estimate holds for k − 1 ≥ 1 and we want to prove it for k.
Suppose that there is point ξ0 with φ(k−1)(ξ0) = 0. We decompose the interval
[c, d] into [c, ξ0 − δ], [ξ0 − δ, ξ0 + δ], and [ξ0 + δ, d]. Then, by induction,

|I| ≤ 2δ‖ψ‖sup(δτ)−1/(k−1)(‖ψ′‖L1 + 3(k − 1)‖ψ‖sup).
We choose δ = τ−

1
k to complete the induction. The argument is easier if there is

no such point ξ0. If ψ is supported in [c, d], the fundamental theorem of calculus
implies ‖ψ‖sup ≤ 1

2 |ψ′‖L1 , which gives the desired inequality. �
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2.1 Examples and dispersive estimates

2.1.1 The Schrödinger equation

We consider the linear Schrödinger equation

i∂tu+Δu = 0.

A Fourier transform (see Appendix C), which we denote by Fx), gives

i∂tFxu− |ξ|2Fxu = 0

and hence the unique solution in the space of tempered distributions is given by
its Fourier transform as

Fxu(t, ξ) = e−it|ξ|2Fxu(0, ξ).

Then
1

(2π)d/2

∫
e−it|ξ|2dξ =

1
√
2it

d
.

Moreover, a change of coordinates shows that

1

(2π)d/2

∫
e−i(t|ξ|2−xξ)dξ = ei

x2

4t

∫
eitξ

2

dξ =
1

√
2it

d
ei

x2

4t . (2.4)

Again we omit the approximation by a positive definite real part, and the
corresponding limit. We obtain the dispersive estimate

‖u(t, .)‖sup ≤ 1

|4πt|d/2 ‖u(9, .)‖L1 .

2.1.2 The Airy function and the Airy equation

We consider the Airy equation

ut + uxxx = 0.

The Fourier transform transforms it into

Fxut = (ik)3Fxu,

and hence, as above,

Fxu(t, ξ) = eitξ
3Fxu(0)(ξ).

The Airy function is defined by

Ai(x) =
1

2π

∫
ei

1
3 ξ

3+ixξdξ,



14 Chapter 2. Stationary phase and dispersive estimates

where the right-hand side has to be understood (as usual) as

lim
ε→0

1

2π

∫
ei

1
3 ξ

3−ε|ξ|2+ixξdξ.

As above for the quadratic phase function, we see that the limit exists at every
point.

The phase function is

φ(ξ) =
1

3
ξ3 + xξ

and has as critical points the ξ which satisfy

ξ2 = −x.

If x is negative, there are two real critical points.
We choose ρ ∈ C∞(R), supported in [−1,∞) and identically 1 in [1,∞], with

ρ(ξ) + ρ(−ξ) = 1. Then Ai(x) is the real part of

1

2π

∫
ρ(ξ)ei(

1
3 ξ

3+xξ)dξ.

There is no harm from the non-compact interval of integration and we to ap-
ply the stationary phase, Theorem 2.6, for x → −∞. The Hessian at the stationary
points is 2τ := 2(−x)1/2 and we write

φ(ξ) = τφ0(ξ − (−x)1/2),

where

φ0(η) =
1

3τ
η3 +

1

2
η2,

which satisfies

φ′
0(0) = 0, φ′′

0(0) = 1, φ′′′
0 (0) = 2[−x]−1/2.

We write the integral as

1

2π
e−i 2

3 |x|
3
2

∫
ρ(η + (−x)1/2)eiτφ0(η)dη.

The application of the stationary phase Theorem 2.6 gives∣∣∣∣Ai(x)− 1√
π
|x|−1/4 cos(

2

3
|x| 32 − π

4
)

∣∣∣∣ ≤ c|x|− 7
4 ,

and there is even an asymptotic series. To see the error term we compute the next
term, the sixth derivative of eiφ0(η), evaluated at 0. It gives an additional factor
τ−3 = |x|− 3

2 .
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For large positive x we need a different idea. For positive x there is fast decay
and we want to determine the leading term. In this case the two critical points are
purely imaginary, and we shift the contour of integration to

ξ + i
√
x.

To be more precise we define

Aiσ(x) =
1

2π

∫
ei[

1
3 (ξ+iσ)3+x(ξ+iσ)]dξ.

We expand

i
[1
3
(ξ + iσ)3

]
+ x(ξ + iσ) = i

(1
3
ξ3 + xξ − ξσ2

)
− σ

(
ξ2 + x− 1

3
σ2

)
.

We calculate, using the Cauchy–Riemann equations,

d

dσ
Aiτ (x) =

1

2π
=

∫
i
∂

∂ξ
ei(

1
3 ξ

3+xξ−ξσ2)−σ(ξ2+x− 1
3σ

2)dξ = 0,

and hence, with σ =
√
x,

Ai(x) =
1

2π

∫
ei

1
3 ξ

3−√
xξ2− 2

3x
3
2 dξ

with the critical point ξ = 0, at which point the Hessian is 2
√
x. We argue as

above and obtain ∣∣∣∣Ai(x)− 1

2
√
π
|x|−1/4e−

2
3x

3
2

∣∣∣∣ ≤ c|x|− 7
4 e−

2
3x

3
2 . (2.5)

The van der Corput Lemma ensures that the function Ai is bounded. More
is true: About half a derivative of the Airy function is bounded in the following
sense:

Lemma 2.8. ∣∣∣∣∫ |ξ|1/2ei( 1
3 ξ

3+xξ)dξ

∣∣∣∣ ≤ C.

This is left as an exercise.
The Airy function is the inverse Fourier transform of

Âi(ξ) = (2π)−1/2ei
1
3 ξ

3

.

Clearly

(ξ2 + i∂ξ)e
i 1
3 ξ

3

= 0,

and hence
Ai′′ +xAi = 0.
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This however implies

(∂t + ∂3
xxx)((t/3)

−1/3 Ai(x(t/3)−1/3)) = 0

and (as oscillatory integral) ∫
Ai(x)dx = (2π)−1/2.

The convolution by the Airy function gives a solution to the initial value problem

ut + uxxx = 0, u(0, x) = u0(x),

namely

u(t, x) = (2π)1/2
∫
(t/3)−1/3 Ai((x− y)(t/3)−1/3)u0(y)dy.

Again the equation defines unitary operators S(t) which satisfy

‖S(t)u0‖sup ≤ ct−1/3‖u0‖L1

and, in the sense of Lemma 2.8,

‖|D| 12S(t)u0‖sup ≤ ct−
1
2 ‖u0‖L1 . (2.6)

2.1.3 Laplacian and related operators

Let d > 2. Then, by Lemma 9.5,

|̂x|2−d =
1

2(d−4)/2Γ(d−2
2 )

|ξ|−2

and

−Δ
(4π)d/2

Γ(d−2
2 )

∫
|x− y|2−df(y)dy = f(y).

The Fourier transform transforms higher partial derivatives into multiplica-
tion by monomial functions. For example

F(u−Δu) = (1 + |ξ|2)û

and hence

û = (1 + |ξ|2)−1f̂

is the Fourier transform of a Schwartz function u (if f is a Schwartz function)
which satisfies

−Δu+ u = f.
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Here (1+|ξ|2)−1 is a smooth function with bounded derivatives, but not a Schwartz
function. Its inverse Fourier transform k allows to define a solution for a given
function f by

u = (2π)d/2k ∗ f.
We compute k in one space dimension:∫ ∞

−∞
eixξ(1 + ξ2)−1dξ = πe−|x| (2.7)

using the residue theorem: The singular points are the zeroes of the polynomial
1 + ξ2, which are ±i. Consider the case x > 0 first. By the residue theorem∫

CR

eixξ(1 + ξ2)−1d�ξ = πe−|x|,

where CR is the union of the path from −R to R and the upper semi-circle. The
limit R → ∞ implies the statement.

2.1.4 Gaussians, heat and Schrödinger equation

Lemma 2.9. Let A = A0+ iA1 be an invertible symmetric matrix (A0 and A1 real)
with A0 positive semi-definite. Then

Fe−
1
2x

TAx(ξ) = det(A)−1/2e−
1
2 ξ

TA−1ξ.

Proof. The formula is correct at ξ = 0 by Lemma 2.1 . We assume first that A0 is
positive definite. The general statement follows then by continuity of both sides.
By definition,

∇e−
1
2x

TAx + e−
1
2x

TAxAx = 0.

The Fourier transform g is a Schwartz function which then satisfies

gξ +A∇g = 0.

This is an ordinary differential equation on lines through the origin. There is a
unique solution with the given value at ξ = 0, which has to coincide with the
function on the right-hand side. �

With A = 2t1Rd we obtain the formula for the fundamental solution to the
heat equation. The inverse Fourier transform of e−it|ξ|2 is, as computed twice,

(2it)d/2e−
|x|2
4it

The solution to the Schrödinger equation

iut +Δu = 0



18 Chapter 2. Stationary phase and dispersive estimates

with initial data u0 is given by

u(t, x) =

∫
Rd

(4iπt)−d/2e−
|x−y|2

4it u0(y)dy. (2.8)

We denote the map u(0, ·) → u(t, ·) by S(t). It is defined via the Fourier
transform by

Ŝ(t)u0 = e−it|ξ|2 û0(ξ).

It is a unitary operator:

‖S(t)u0‖L2 = ‖Ŝ(t)u0‖L2 = ‖e−it|ξ|2 û0‖L2 = ‖û0‖L2 = ‖u0‖L2 ,

and it satisfies the so-called dispersive estimate

‖S(t)u0‖sup ≤ |4πt|−d/2‖u0‖L1 .

2.1.5 The half-wave equation

The solution to the wave equation

utt −Δu = 0

with initial data

u(0, x) = u0(x), ut(0, x) = u1(x)

is given for d = 3 by Kirchhoff’s formula:

u(t, x) =
1

4πt2

∫
∂Bt(x)

u0dH2 +
1

4πt

∫
∂Bt(x)

∂νu0dH2 +
1

4πt

∫
∂Bt(x)

u1dH2.

There are similar formulas in odd dimensions, and slightly more complicated ones
in even dimensions.

The Fourier transform transforms the PDE to the ODE

ûtt + |ξ|2û = 0

which factorizes as

(∂t − i|ξ|)(∂t + i|ξ|)û = 0.

This motivated the study of the half-wave equation

(i∂t + |ξ|)û(t, ξ) = 0,

which can easily be solved in the form

û(t, ξ) = eit|ξ|û(0, ξ).
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As above, we restrict to t = 1. Since eit|ξ| is radial,∫
ei(|ξ|+xξ)dξ = dmd(B1(0))|x|−

d−2
2

∫ ∞

0

rd/2eirJ d−2
2
(|x|r)dr

provided the integrals exist as oscillatory integrals. They do, as we will see. By
Lemma 8.1, we can write

z
d−1
2 J(z) = Re(e−izφ(z))

for z ≥ 1, with φ satisfying
|φ(k)(z)| ≤ ckz

−k.

We begin by considering the case |x| ≥ 2. We decompose the integral above into
two parts with a smooth cutoff function, one over r ≥ |x|−1, and one over 2|x|−1.
In the first integral we can integrate by parts as often as we like:∫ ∞

0

(1− η(r|x|))eir(1±|x|)p(rx)dx =
i

1± x

∫ ∞

0

eir(1±|x|)(
d

dr
((1− η(r|x|))p(rx))dx

which gains a factor r in the integration, as well as a power |x|−1. We repeat this
as often as necessary. The second integral is bounded by |x|d.

The same arguments apply as for |x| �= 1, given bounds which depend only
on |x| − 1. A careful calculation gives the first part of the following estimate.

Lemma 2.10. There exist cd > 0 and c ∈ R such that for |x| �= 1∣∣∣∣∫ ei|ξ|+ixξdξ

∣∣∣∣ ≤ {
cd|1− |x||− d+1

2 , if |x| ≤ 2,
cd|x|−d, if |x| ≥ 2 and d even,

and ∣∣∣∣∫ |ξ|− d+1
2 ei|ξ|+ixξdξ − c ln |1− |x||

∣∣∣∣ ≤ cd,

if |x| ≤ 2 and ∣∣∣∣∫ |ξ|− d+1
2 ei|ξ|+ixξdξ

∣∣∣∣ ≤ cd|x|−
d−1
2 ,

for |x| ≥ 2.

Proof. Only the second part remains to be shown. There is no difference in the
argument for |x| ≤ 2, unless |x| is close to 1. In that case we decompose the
integral into r ≤ 2, 1 ≤ r ≤ |x| − 1, and r ≥ |x| − 1. The last part is bounded by
the previous arguments. The first part is bounded because of the size r ≤ 1. The
second part is ∫ ||x|−1|

1

r−1dr = ln r

plus something bounded. �
There is an important difference compared to the previous two examples: the

group velocity ∇|ξ| depends only on the direction of ξ, not on the amplitude.
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2.1.6 The Klein-Gordon half wave

Let

g(t, x) =

∫
eit

√
1+|ξ|2+ixξdξ.

We report the analogue of Lemma 2.10. There is almost no change in the
argument.

Lemma 2.11. The following estimates hold for t ≥ 1,

|g(t, x)| ≤ c

⎧⎪⎨⎪⎩
t−d/2(1− |x|/t)− d+1

2 , if |x| < t,

t−d(|x|/t− 1)−
d+1
2 , if t < |x| ≤ 2t,

1
|x|dtd−1 , if |x| ≥ 2t,

and if 0 < t < 1,

|g(t, x)| ≤ c

⎧⎨⎩
t−d, if |x| < t,

t−d(|x|/t− 1)−
d+1
2 , if t < |x| ≤ 2t,

1
|x|dtd−1 , if |x| ≥ 2t.

Moreover,

h =

∫
|ξ|− d+1

2 eit
√

1+|ξ|2+ixξdξ

satisfies for t ≥ 1 and |x| ≥ 2t,

|h(t, x)| ≤ C
1

|x| d−1
2 t

d
2−3

,

∣∣∣h(t, x)− ct
1
2 | ln ||1− |x|/t||

∣∣∣ ≤ ct
1
2 ,

for 1 ≤ t, |x| ≤ 2t. Finally, if 0 < t ≤ 1, then∣∣∣∣∫ |ξ|− d+1
2 eit|ξ|+ixξdξ − ct−

d−1
2 ln |1− |x||

∣∣∣∣ ≤ cdt
− d−1

2 ,

if |x| ≤ 2t, and ∣∣∣∣∫ |ξ|− d+1
2 ei|ξ|+ixξdξ

∣∣∣∣ ≤ cd
1

|x| d−1
2 t

d
2−3

,

for |x| ≥ 2.
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2.1.7 The Kadomtsev–Petviashvili equation

The linear parts of the Kadomtsev–Petviashvili equations are

ut + uxxx ± ∂−1
x uyy = 0,

where + is the linear KP II equation and − the linear KP I equation. The equation
should be understood as

∂xut + uxxxx ± uyy = 0.

We denote the Fourier variables by ξ (of x) and η (of y). As above (for +, the
argument for − is very similar),

Fx,yu(t, ξ, η) = eit(ξ
3−ξ−1η2)Fx,yu(0, ξ, η)

and ∫
ei[(ξ

3−ξ−1η2)+xξ+yη]dξdη = (4π)−1/2

∫
(−iξ)

1
2 ei[ξ

3+ξx+ξy2/4]dξ.

The stationary points of the phase function satisfy

3ξ2 + x+ y2/4 = 0,

with zeroes
ξ = ±

√
−(x+ y2/4)/3,

provided

x < −1

4
y2.

The contribution from the Hessian compensates the factor (−iξ)
1
2 . A rigorous

proof uses a smooth partition of unity, which decomposes the integral into one
around ξ = 0, one over ξ ≥ 1, and one with ξ ≤ −1. The first integral is handled
by the van der Corput Lemma, and the other two by stationary phase.

Otherwise, by the non-degeneracy of the phase∣∣∣∣∫ ei[(ξ
3−ξ−1η2)+xξ+yη]dξdη

∣∣∣∣ ≤ ck|x+ y2/4|−k.

The t dependence below is obtained by scaling.

Lemma 2.12.∣∣∣∣∫ eit(ξ
3∓η2/ξ)+ixξdξdη

∣∣∣∣ ≤ ck|t|−1
(
1 +

( x

t
1
3

± y2

t
2
3

)
+

)−k

.

There is an interesting interpretation:

• waves move to left for Kadomtsev–Petviashvili II,
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• and to both sides for Kadomtsev–Petviashvili I (with respect to x)

This makes the study of Kadomtsev–Petviashvili I considerably harder than
the study of Kadomtsev–Petviashvili II.

We define
ρ(x, y) = 2πF−1(ei(ξ

3−η2/ξ)).

Since u(λ3t, λx, λ2y) satisfies the linear KP equation for λ > 0 if and only if u
does, we obtain the representation

u(t, x, y) = gt ∗ u(0, ·, ·)(x, y)

where
gt(x, y) = t−1ρ(x/t1/3, y/t2/3).

Hence, with S(t) denoting the evolution operator,

‖S(t)u0‖L2 = ‖u0‖L2

and
‖S(t)u0‖sup ≤ c|t|−1‖u0‖L1(R2).



Chapter 3

Strichartz estimates and small data for
the nonlinear Schrödinger equation

3.1 Strichartz estimates for the Schrödinger equation

We return to the linear Schrödinger equation

i∂tu+Δu = 0

and the unitary operators S(t) : u(0) → u(t). They form a group: for s, t ∈ R,

S(t+ s) = S(t)S(s).

We claim that for 2 ≤ p ≤ ∞ and p′ with 1
p + 1

p′ = 1

‖S(t)‖Lp ≤ (4π|t|)− d
2 (1− 2

p )‖u0‖Lp′ , (3.1)

which follows by complex interpolation from

‖S(t)u0‖L2 = ‖u0‖L2

and the dispersive estimate

‖S(t)u0‖L∞ ≤ (4π|t|)− d
2 ‖u0‖L1 .

Let us be more precise. We put p0 = q0 = 2 and p1 = 1, q1 = ∞, 2 < p̃ < ∞ and
determine λ so that

1− λ

2
=

1

p
,

i.e.,

λ = 1− 2

p
.

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,
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Define
1− λ

2
+ λ =

1

q
.

We check easily
1

p
+

1

q
= 1,

and now (3.1) follows by the Riesz–Thorin interpolation Theorem 7.6.
The variation of constants formula resp. Duhamel’s formula

u(t) = −i

∫ t

−∞
S(t− s)f(s)ds

defines a solution to

i∂tu+Δu = f,

at least for Schwartz functions f in d+ 1 variables.
From the Lp′

to Lp estimate (3.1) one obtains

‖u(t)‖Lp ≤ (4π)−
d
2 (1− 2

p )

∫ t

−∞
|t− s| d2− d

p ‖f(s)‖Lp′ds.

The right-hand side is a convolution h ∗ g where

h(t) =

{
0, if t ≥ 0,

|4πt|−d( 1
2− 1

p ), if t < 0,

and

g(t) = ‖f(t)‖Lp′ (Rd).

An immediate calculation gives |t|−1/r ∈ Lr
w(R), and by the weak Young inequality

of Proposition 7.2

‖g ∗ h‖Lq(R) ≤ c‖g‖Lq′ ‖h‖Lr
w
, (3.2)

where
1

r
= d

(1
2
− 1

p

)
, r > 1,

and (p, q) are strict Strichartz pairs, i.e., numbers which satisfy

2

q
+

d

p
=

d

2
, (3.3)

and 2 < q ≤ ∞, 2 ≤ p ≤ ∞. The left-hand side of (3.2) controls

‖u‖Lq
tL

p
x
:=

(∫
‖u(t)‖q

Lp(Rd)
dt
)1/q
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with the obvious modification if q = ∞, and we obtain

‖u‖Lq
tL

p
x
≤ c‖f‖

Lq′
t Lp′

x

for all strict Strichartz pairs. Here Lq
tL

p
x consists of all equivalence classes of mea-

surable functions such that the integral expression for the norm is finite.

It is not hard to see that u measurable implies

t �→ ‖u(t, ·)‖Lp

is measurable, the expression for the norm actually defines a norm, and the space
is closed and hence a Banach space. The duality of the Lebesgue spaces extends
to duality of this mixed norm spaces: The map

Lq′
t L

p′
x 
 f �→ (g �→

∫
fgdmddt) ∈ (Lq

tL
p
x)

∗

is an isometry if 1 ≤ p, q ≤ ∞ and surjective if p, q < ∞. Complex interpolation
extends to the mixed norm spaces – this is quite evident from the definition.

We claim

Theorem 3.1. The variation of constants formula defines a function u which sat-
isfies

i∂tu+Δu = f, u(0) = u0.

Let (q, p) be a strict Strichartz pair. Then

‖u‖Cb(R,L2) + ‖u‖Lq
tL

p
x
≤ c

(
‖u(0)‖L2 + ‖f‖

Lq′
t Lp′

x

)
.

We will later improve this statement in several directions. Denote by T ,

L2 
 v �→ Tv ∈ C([0,∞), L2),

the operator that maps the initial datum to the solution. Let (p, q) be Strichartz
pairs. Then, with L(X,Y ) denoting the bounded linear operators from Banach
space X to Banach space Y ,

‖T‖2
L(L2,Lq′

t Lp′
x )

= ‖T ∗‖2L(Lq
tL

p
x,L2) = ‖TT ∗‖

L(Lq
tL

p
x,L

q′
t Lp′

x )

and

TT ∗f(t) =
∫ ∞

0

S(t+ s)f(s)ds =

∫ 0

−∞
S(t− s)f(−s)ds

and the bound follows as above.
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3.2 Strichartz estimates for the Airy equation

This section follows Kenig, Ponce, and Vega [16]. Scaling shows that the solution
to the Airy equation satisfies

u(t, x) =
1

(t/3)1/3

∫
Ai((x− y)/(t/3)

1
3 )u(0, y)dy

and we obtain the estimates

‖u(t)‖L2 = ‖u0‖L2 ,

‖u(t)‖L∞ ≤ ct−1/3‖u0‖L1

and

‖|D| 12u(t)‖L∞ ≤ ct−
1
2 ‖u0‖L1 .

The Strichartz estimate is more complicated. Here we use complex interpo-
lation to see for 2 < p ≤ ∞ that

‖D 1
2− 1

pS(t)v‖Lp ≤ c|t| 1p− 1
2 ‖v‖Lp′ , (3.4)

where Ds is defined through the Fourier multiplier. The multiplication on the
Fourier side commutes with the evolution, and hence this estimates is equivalent
to

‖D 1
q S(t)v‖Lp(R) ≤ c|t|− 2

q ‖D− 1
q v‖Lp′ .

The Strichartz estimates take the following form.

Theorem 3.2. The variation of constants formula defines a function u which sat-
isfies

∂tu+ uxxx = f, u(0) = u0

and

‖u‖Cb(R,L2) + ‖|D| 1q u‖Lq
tL

p
x
≤ c

(
‖u(0)‖L2 + ‖|D|− 1

q f‖
Lq′

t Lp′
x

)
for all Strichartz pairs (q, p).

Proof. It remains to prove (3.4).
We claim that it follows from∣∣∣∣∫ |ξ| 12+iσeiξ

3+iξxdξ

∣∣∣∣ ≤ C(1 + |σ|) (3.5)

uniformly in x. The integral has to be understood as oscillatory integral. We apply
then complex interpolation with the family of operators

T̂λu0 = eλ
2 |D|λ2 Ŝ(t)u0,
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for which we easily see that

‖Tiσu0‖L2 = e−σ2‖u0‖L2

and
‖Ti+σu0‖L∞ ≤ ct−1/2(1 + |σ|)e−σ2‖u0‖L1 .

Now (3.4) follows by complex interpolation. We next turn to (3.5).
There are three cases: |x| ≤ 10, x ≥ 10, and x ≤ −10. The last one is the

hardest, since there are large critical points ±ξc =
√−x/3 in the phase, and we

restrict to it. We split the integration domain into the intervals

(−∞,−ξc − |x|−1/4), (−ξc − |x|−1/4, ξc + |x|−1/4), (−ξc + |x|−1/4,−1), (−1, 1),

(1, ξc − |x|−1/4), (ξc − |x|−1/4, ξc + |x|−1/4), (ξc + |x|−1/4,∞).

The argument is immediate for the second, the fourth and the sixth integral, which

we estimate by 3ξ
1/2
c |x|−1/4. Now∫ −ξc−|x|−1/4

−∞
|ξ| 12+iσeiξ

3+ixξdξ = i

∫ −ξc−|x|−1/4

−∞
eiξ

3+ixξ d

dξ

|ξ| 12+iσ

3ξ2 + x
dξ

+
(ξc + |x|−1/4)

1
2+iσ

3(ξc + |x|−1/4)2 + x
e−i(ξc+|x|−1/4)3−i(ξc+|x|−1/4)x

and the direct estimate as for stationary phase gives the result. The largest term
(in terms of σ) occurs when the derivative falls on |ξ| 12+iσ; all the others are
estimated as when σ = 0. We recall that

3(ξc + |x|−1/4)2 + x ∼ |x| 14 . �

3.3 The Kadomtsev–Petviashvili equation

The symbol is ξ3−η2/ξ (for KP II, with similar arguments for KP I), with gradient(
3ξ2 + η2/ξ2

−2η/ξ

)
,

Hessian matrix (
6ξ − 2η2/ξ3 2η/ξ2

2η/ξ2 −2/ξ

)
,

and Hessian determinant −12.

Lemma 3.3. The following Strichartz estimate holds:

‖u‖L∞
t L2

x
+ ‖u‖Lp

tL
q
x
≤ c

(
‖u0‖L2 + ‖f‖

Lp′
t Lq′

x

)
.

The proof is the same (since the same dispersive estimate holds) as for the
Schrödinger equation.
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3.4 The (half-) wave equation and the Klein–Gordon
equation

Here we only state the result. The proof requires a sharpening of complex inter-
polation, replacing L∞ by BMO. The estimates for the wave equation (for σ = 0,
with similar estimates for σ ∈ R, compare the Airy equation) imply that

‖|D|− d+1
2 +iσ‖BMO ≤ c(1 + |σ|)|t| d−1

2 ‖v‖L1(Rd),

which in turn yields

‖|D|− d+1
2 (1− 2

p )S(t)v‖Lp ≤ ct−
d−1
2 (1− 2

p )‖v‖Lp′ ,

where the half-wave evolution operator S(t) is defined by

S(t)v = F−1(eit|ξ|v̂).

As a consequence we obtain

Theorem 3.4. Let d ≥ 2. The variation of constants formula defines a function u
which satisfies

i∂tu+ |D|u = f, u(0) = u0,

and

‖u‖Cb(R,L2) + ‖|D|− d+1
4 (1− 2

p )u‖Lq
tL

p
x
≤ c‖u(0)‖L2 + ‖|D| d+1

4 (1− 2
p )f‖

Lq′
t Lp′

x
,

where q satisfies 2 < q < ∞, 2 ≤ p ≤ ∞, and

1

q
+

d− 1

p
=

d− 1

2
.

3.5 The endpoint Strichartz estimate

Here we will prove the endpoint Strichartz estimate for the Schrödinger equation

iut +Δu = f, u(0) = u0

for d ≥ 3. The argument is due to Keel and Tao [15] and applies to much more
general situations.

Theorem 3.5. The solution defined by the variation of constants formula satisfies

‖u‖L∞
t L2

x
+ ‖u‖

L2
tL

2d
d−2
x

≤ c

(
‖u0‖L2 + ‖f‖

L2
tL

2d
d+2
x

)
. (3.6)

Before we prove the statement we need a robust estimate for integral opera-
tors.
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Lemma 3.6 (Schur’s lemma). Let μ and ν be measures, and

Tf(x) =

∫
K(x, y)f(y)dμ(y),

where K satisfies

sup
x

∫
|K(x, y)|dμ(y) ≤ Cx, sup

y

∫
|K(x, y))dν(x) ≤ Cy.

Then

‖Tf‖Lp(ν) ≤ C
1− 1

p
x C

1
p
y ‖f‖Lp(μ).

Proof. By duality, the claim is equivalent to∣∣∣∣∫ f(x)g(y)K(x, y)dμ(y)dν(x)

∣∣∣∣ ≤ C
1− 1

p
x C

1
p
y ‖f‖Lp′ (μ)‖g‖Lp(μ).

This is obvious for p = ∞ and p = 1. Hence the operator satisfies the desired
bounds on L1 and L∞. The general claim follows by complex interpolation. �
Proof. We denote by S(t) the Schrödinger group. We first prove∣∣∣∣∫

s<t

〈S(−t)f(t), S(−s)g(s)〉
∣∣∣∣ ≤ c‖f‖

L2
tL

2d
d−2
x

‖g‖
L2

tL
2d

d−2
x

(3.7)

which by duality implies∥∥∥ ∫ t

−∞
S(t− s)f(s)

∥∥∥
L2

tL
2d

d−2
x

≤ c‖f‖
L2

tL
2d

d+2
x

and, by the TT ∗ argument, the full statement.
We define

Tj =

∫
t−2j+1<s≤t−2j

〈S(−s)f(s), S(−t)g(t)〉dsdt

and claim that
|Tj | ≤ C2−jβ(p,p̃)‖f‖

L2
tL

p′
x
‖g‖

L2
tL

p̃′
x

(3.8)

for j ∈ Z, p and p̃ in a neighborhood of 2d
d+2 , and

β(p, p̃) = 1− d

2
+

d

2p
+

d

2p̃
;

β(p, p̃) vanishes for p = p̃ = 2d
d−2 , as it should.

We set t̃ = t2−j , s̃ = s2−j , x̃ = 2−j/2x, and ỹ = 2−j/2y. This transformation
of coordinates (which reflects the symmetry) reduces the estimate to the case
j = 0.
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The estimate for j = 0

|T0| ≤ C‖f‖
L2

tL
p′
x
‖g‖

L2
tL

p̃′
x

(3.9)

holds for

1. p = p̃ = 1 by the dispersive estimate,

2. p̃ = 2 and 2d
d+2 < p′ ≤ 2,

3. p = 2 and 2d
d+2 ≤ p̃′ ≤ 2.

Then the estimate (3.8) follows by complex interpolation and duality. It is conve-
nient to draw a diagram:

1/p̃′

1/p′

(1, 1)

1/2

1/2

d+2
2d

d+2
2d

Convex interpolation, this time for L2,p′
spaces, gives the convex envelope,

which contains the point (d+2
2d , d+2

2d ) in its interior.
For the first case (which corresponds to (1, 1)) observe that by the dispersive

estimate, if t− 2 < s < t− 1, then

|〈S(t− s)g(s), f(t)| ≤ C‖f(t)‖L1‖g(s)‖L1 .

Let hf (t) = ‖f(t)‖L1 and hg(t) = ‖g(t)‖L1 . Then

|T0(f, g)| ≤ C

∫ ∫
K(t, s)hg(s)dshf (t)dt,

where K(t− s) = 1 if t− 2 < s < t− 1, and 0 otherwise. The first estimate follows
by Schur’s lemma.
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For the second estimate (which corresponds to the horizontal line) we use
non-endpoint Strichartz estimate and finally Hölder’s inequality to bound∣∣∣∣∫ s+2

s+1

〈f(t), S(t− s)g(s)〉dt
∣∣∣∣ ≤ ‖f‖

Lq′
t Lp′

x ([s+1,s+2]×Rd)
‖S(t− s)g(s)‖Lq

tL
p
x

≤ C‖f‖
L2

tL
p′
x ([s+1,s+2]×Rd)

‖g(s)‖L2 ,

where (q, p) is a strict Strichartz pair.
Thus∣∣∣∣∣

∫ k+1

k

∫ t−1

t−2

〈S(−t)f(t), S(−s)g(s)〉dsdt
∣∣∣∣∣≤c‖f‖

L2
tL

p′
x ([k,k+1]×Rd)

‖g‖L2
tL

2
x([k−2,k]×Rd).

The statement follows by summation with respect to k, and the Cauchy–Schwarz
inequality with respect to k.

The third estimate follows by the same argument. This completes the esti-
mate (3.8) for (p, p̃) close to ( 2d

d−2 ,
2d
d−2 ).

To make use of the flexibility we have, we decompose f =
∑

fk, g =
∑

gk
with

fk(t, x) = ck(t)χt,k(x), gk(t, x) = dk(t)χ̃t,k(x).

We define the decomposition as follows. Given f : Rd → R, we define its distribu-
tion function for s > 0

λ(s) = md{x : |f(x)| > s}.
It is monotonically decreasing and finite for f ∈ Lp. Let sk be the infimum of all
s such that λ(s) < 2k (we allow s = 0). We set ck = 2k/psk and

χk(x) = c−1
k

{
f, if sk < |f | < sk+1,
0, otherwise .

Then
f =

∑
ckχk

and, for some C > 0,

C−1‖f‖Lp ≤ ‖(ck)‖lp ≤ C‖f‖Lp

which can be seen by comparing to

‖f‖pLp = p

∫
md({|f | > s})sp−1ds.

By definition
md( supp χk) ≤ 2k, |χk| ≤ 2k/p.

We apply this decomposition at every time t with p = 2d
d+2 . Then

f =
∑

fk,
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where at most one is not 0.
We apply the first estimate (3.8):

|Tj(fk, gk′)| ≤ c2−β(p,p̃)‖fk‖L2
tL

p′
x
‖gk′‖

L2
tL

p̃′
x

≤ c2−j( 2−d
2 + d

2p+
d
2p̃ )−k( 2−d

2d + 1
p )−k′( 2−d

2d + 1
p̃ )‖fk‖

L2
tL

2d
d+2
x

‖gk′‖
L2

tL
2d

d+2
x

≤ c2−( j
2− k

d )(2−d+ d
p )−( j

2− k′
d )(2−d+ d

p̃ )‖fk‖
L2

tL
2d

d+2
x

‖gk′‖
L2

tL
2d

d+2
x

,

where the second inequality follows from

‖χt,k‖Lp′ ≤ c2
−k( 1

p′ − 2d
d+2 ).

Given k, k̃ and j we choose (p, p̃) so that the factor becomes (almost) minimal.
Then there exists ε > 0 so that

|Tj(fk, gk′)| ≤ c2−ε(| jd2 −k|+| jd2 −k′|)‖fk‖
L2

tL
2d

d+2
x

‖gk′‖
L2

tL
2d

d+2
x

.

We sum with respect to j.∑
j

|Tj | ≤ C
∑
k

∑
k′

(1 + |k − k′|)2−ε|k−k′|‖fk‖
L2

tL
2d

d+2
x

‖gk‖
L2

tL
2
d d+2x

.

≤ C

(∑
k

‖fk‖2
L2

tL
2d

d+2
x

)1/2 (∑
k

‖gk‖2
L2

tL
2d

d+2
x

)1/2

,

by Schur’s lemma. By Minkowski’s inequality

∑
k

∫ (∫
Rd

|gk| 2d
d+2 dmd

) d+2
d

dt =

∫ ∑
k

(∫
Rd

|gk| 2d
d+2 dmd

) d+2
d

dt

≤
∫ (∫

Rd

∑
k

|gk| 2d
d+2 dmd

) d+2
2

dt

= ‖g‖2
L2L

2d
d+2

,

and hence we obtain (3.7). �

3.6 Small data solutions to the nonlinear Schrödinger
equation

Most of this section can be found in [4].
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We study the initial value problem with initial data u0 ∈ L2 for

iut +Δu = ±|u|σu, (3.10)

where 0 ≤ γ ≤ 4
d−2 . The case of the plus sign is called defocusing and the case of

the minus sign is called focusing. At least formally

M =

∫
Rd

|u|2dx,

called mass, ∫
Rd

iu∂xj ūdx,

called momentum,

E =

∫
R

1

2
|∇u|2 ± 1

σ + 2
|u|σ+2dx,

called energy, are conserved.

The argument will rely on the Strichartz estimates with p = q = 2(d+2)
d and

p′ = q′ = 2(d+2)
d+4 .

The sign of the coefficients is of almost no importance in this section, and
we choose + to cover both signs, indicating differences whenever necessary. This
section establishes basic schemes that will be used over and over again. Simultane-
ously it provides a warm up, the set up, and the consequences of the key multilinear
estimate. Later on we will often restrict ourselves to giving the estimates of the
nonlinearity, and stating the properties.

The section also provides a playground for stability estimates, qualitative
properties, criticality and subcriticality.

3.7 Initial data in L2

Our approach will be based on the Strichartz estimates of Theorem 3.1 with p =

q = (2(d+2)
d :

‖v‖
L

2(d+2)
d (R×Rd)

+ ‖v‖Cb(R;L2(Rd)) � ‖v(0)‖L2(Rd) + ‖i∂tv +Δv‖
L

2(d+2)
d+4 (R×Rd)

.

(3.11)
In order to prepare for variants and improvements we assume that there is a

space X with

X ⊂ C(R;L2(Rd)) ∩ L
2(d+2)

d (R× Rd) (3.12)

and
sup
t

‖v(t)‖L2 + ‖v‖
L

2(d+2)
d (R×Rd)

≤ c‖v‖X
and

‖v‖X ≤ c

(
‖v(0)‖L2 + ‖i∂tv +Δv‖

L
2(d+2)
d+4 (R×Rd)

)
.
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Clearly such a space exists: we could define X as the intersection in (3.12),
and then the Strichartz estimates ensure that it has the desired properties. The
choice of the function space is an important and nontrivial part of studying so-
lutions to many different dispersive equations. Even though we do not need this
flexibility here, and even though it complicates the notation a bit, we prefer to do
it here to indicate possible modifications later on.

In the sequel we denote by v the solution to the homogeneous equation

i∂tv +Δv = 0, v(0) = u0,

which we can write by using the unitary Schrödinger group S(t) as

v(t) = S(t)u0.

To approach the question of existence and uniqueness, we make the ansatz
u = v + w, where v satisfies the linear Schrödinger equation with initial data u0,
and w satisfies w(0) = 0 and

iwt +Δw = χ(0,T )(t)|v + w|σ(v + w) in R× Rd,

w(0, x) = 0 in Rd,
(3.13)

where T ∈ (0,∞] will be chosen later. We will construct a unique w in X by a
fixed point argument. It is obvious that u = v + w is the unique solution up to
time T . Then u = v + w is the searched for solution on the time interval (0, T ).

We rewrite the problem as a fixed point problem: Given w̃, we write w =
J(w̃), where J maps w̃ to the function w which satisfies

iwt +Δw = χ(0,T )(t)|v + w̃|σ(v + w̃), w(0) = 0. (3.14)

Suppose first that 2(d+2)
d+4 (1 + σ) ≥ 2 and σ ≤ 4

d . By Hölder’s inequality,

‖f‖1+σ

L
(1+σ)

2(d+2)
d+4 (Rd)

≤ ‖f‖
4−dσ

2

L2(Rd)
‖f‖

d+2
2 σ−1

L
2(d+2)

d (Rd)

Observe that the exponent of ‖f‖L2 is non-negative if σ < 4
d and vanishes if σ = 4

d .

If 0 < 2(d+2)
d+4 (1 + σ) ≤ 2 we estimate again by Hölder’s inequality:

‖f‖1+σ
L(1+σ)2(Rd)

≤ ‖f‖1− dσ
4

L2(Rd)
‖f‖(1+ d

4 )σ

L
2(d+2)

d (Rd)
.

In the first case we obtain the space-time estimate

‖χ(0,T )|u|1+σ‖
L

2(d+2)
d+4

≤ T 1− dσ
4 ‖u‖

4−dσ
2

L∞
t L2

x
‖u‖

d+2
2 σ−1

L
2(d+2)

d

, (3.15)

and in the second case

‖χ(0,T )|v|1+σ‖L1
tL

2
x(R

d) ≤ T 1− dσ
4 ‖u‖1− dσ

4

L∞L2‖u‖(1+
d
4 )σ

L
2(d+2)

d ([0,T ]×Rd)
. (3.16)
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If σ < 4
d , T carries a positive power and we call this situation L2 subcritical.

This power becomes zero if σ = 4
d , which we call L2 or mass critical.

In the both cases

‖J(w̃)‖X ≤ cT 1− dσ
4 (‖w̃‖X + ‖v‖X)1+σ

which we complement by the similar estimate

‖J(w)− J(w̃)‖X ≤ cT 1− dσ
4 (‖w̃‖X + ‖w‖X + ‖v‖X)σ‖w − w̃‖X .

We set up the problem for an application of the contraction mapping principle
Let R = ‖v‖X . If ‖w̃‖X ≤ R then, for some c > 0,

‖w‖X ≤ cT 1− dσ
4 (2R)1+σ ≤ R,

where the last inequality holds provided

T ≤ (2c(2R)σ)−
4

4−dσ := T0,

which we assume in the sequel. Moreover, if w and w̃ have norm at most R, then

‖J(w)− J(w̃)‖X ≤ cT 1− dσ
4 Rσ‖w − w̃‖X

We obtain a contraction after decreasing T if necessary.

The critical case requires slightly different arguments, and it yields different
conclusions. This time we cannot gain a small power of T and the smallness must
have a different source.

In the mass critical case we assume that ‖χ(0,T )v‖
L

2(d+2)
d

t L
2(d+2)

d
x

≤ ε for some

small ε.

This is true for all T by Lemma 3.11 if ‖u0‖L2 is sufficiently small. Moreover,
for all initial data u0 ∈ L2 we have by dominated convergence

‖χ(0,T )v‖LqLp → 0 as T → 0 (3.17)

for all Strichartz pairs with q < ∞.

It is obvious from the argument above (where we replace

‖χ(0,T )v‖X by ‖χ(0,T )v‖
L

2(d+2)
2

for the mass critical case) that the iteration argument applies if ε is sufficiently
small. We obtain local existence under the smallness assumption, and hence global
existence provided the initial data are sufficiently small.

We collect the results in a theorem.
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Theorem 3.7. There exists ε > 0 such that the following is true. Suppose that
0 < σ ≤ 4

d , u0 ∈ L2, and

T 1− dσ
4 ‖χT v‖σX < ε,

resp. σ = 4
d and

‖χT v‖σ
L

2(d+2)
2d (R×Rd)

< ε.

Then there is a unique solution in X up to time T which satisfies

‖χT (u− v)‖X ≤ ‖u− v‖X � T 1− dσ
4 ‖v‖1+σ

X (3.18)

resp., if σ = 4
d ,

‖χT (u− v)‖X ≤ ‖u− v‖X � T 1− dσ
4 ‖v‖1+σ

L
2(d+2)

d

. (3.19)

There is a unique global solution

u ∈ L
2(d+2)

d ((−T, T )× Rd) ∩ C((−T, T );L2(Rd))

for all T if either 0 ≤ σ < d
4 , or, if ‖u0‖L2 ≤ ε and σ = d

4 . In the last case we
have (3.19) with T = ∞. If 0 ≤ k < 1 + σ, then

(u0 → u) ∈ Ck(L2(Rd);X)

There is a stability estimate. Suppose that ũ ∈ X satisfies

T 1− dσ
4 ‖ũ‖X < ε

‖ũ− u0‖L2 + ‖i∂tũ+Δũ− |ũ|σũ‖
L

2(d+2)
d+4

< ε.

Then there exists a unique solution up to time T with

‖u− ũ‖X ≤ c
(
‖ũ− u0‖L2 + ‖i∂tũ+Δũ− |ũ|σũ‖

L
2(d+2)
d+4

)
. (3.20)

If σ = 4
d , it suffices to replace ‖u‖X < ε by

‖χ(0,T )ũ‖
L

2(d+2)
d

< ε.

Proof. Local existence in the subcritical case has been shown above. The fixed
point formulation leads, via the contraction mapping theorem, to existence on a
time interval whose length depends only on ‖u0‖L2 . We claim that the L2 norm
(mass) is conserved. Indeed, for sufficiently regular and decaying ũ = v + w̃ and
u = v + w with w = J(w̃) we have

1

2
‖u(t)‖2L2 =

1

2
‖u0‖2L2 + Re i

∫
(0,t)×Rd

|ũ|σũū dxdt,
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which remains true for general ũ and initial data by an approximation argument.
By then it also holds for the fixed point, for which the second term on the right-
hand side is the real part of something purely imaginary.

Thus we can extend the solution to a global solution in the subcritical case.
It follows from the construction by the contraction mapping principle that

the solution depends Lipschitz continuously on the initial data.
The map

L
2(d+2)

d (R× Rd) 
 w �→ χ(0,T )|w|σw ∈ L
2(d+2)
d+4 (R× Rd)

is k times continuously differentiable for k < 1 + σ, and σ ≤ 4
d .

Thus J is k times continuously Fréchet differentiable. Moreover, by the very
same estimates as for the contraction, the derivative of J with respect to w̃ is
invertible, and by the implicit function theorem, the map from the initial data to
the solution is k times continuously differentiable. Checking the norms implies the
stability estimate. �

We also have
lim

T→∞
‖χ(T,∞)v‖

L
2(d+2)

d (R×Rd)
= 0.

Suppose that u ∈ X is a solution for T = ∞ and σ = 4
d . One can deduce that the

limit
lim
t→∞S(−t)u(t)

exists in L2. Let w0 be this limit, and w the solution to the homogeneous equation
with initial data w0. Then the convergence statement can be formulated as

lim
t→∞ ‖u(t)− w(t)‖L2 = 0.

This is called scattering. The map u0 → w0 is called wave operator.

3.8 Initial data in Ḣ1 for d ≥ 3

Consider
iut +Δu = ±|u|σu (3.21)

with initial data u0 ∈ Ḣ1, by which we mean the space with the norm ‖ |∇u0| ‖L2 .
We want to use Strichartz spaces for the derivative and we define the function
spaces X by

‖u‖X := sup
t

‖∇u(t)‖L2 + ‖∇u‖
L

2(d+2)
d

.

Then the Strichartz estimate (3.11) combined with Sobolev’s estimate gives

‖u‖X ≤ c
(
‖∇u0‖L2 + ‖∇f‖

L
2(d+2)
d+4

)
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for a solution u to the inhomogeneous linear problem.
Then, if σ ≤ 4

d−2 , by Hölder’s and Sobolev’s inequality

‖∇|f |σf‖
L

2(d+2)
d+4 (Rd)

� ‖f‖
4−(d−2)σ

2

LL
2d

d−2 (Rd)

‖∇f‖−1+ 4−d
2 σ

L
2(d+2)

d (Rd)
,

provided σ is not too small. For small σ we argue as for the case of L2. We obtain
in both cases

‖J(w)‖X � T 1− (d−2)σ
4 (‖v‖X + ‖w‖X)

1+σ
, (3.22)

and, checking the same argument for differences,

‖J(w2)− J(w1)‖
L

2(d+2)
d

+ ‖J(w2)− J(w1)‖L∞L2

� T 1− (d−2)σ
4

(‖v‖X + ‖w1‖X + ‖w2‖X
)σ

× (‖w2 − w1‖
L

2(d+2)
d

+ ‖w2 − w1‖L∞L2)

(3.23)

Theorem 3.8 (Local existence and uniqueness in energy space). Suppose that 0 <
σ ≤ 4

d−2 . There exists ε > 0 such that the following is true. Let v be the solution
to the homogeneous linear Schroedinger equation. Suppose that

T 1− (d−2)σ
4 ‖v‖σX ≤ ε.

Then there exists a unique solution u = v + w with

‖∇w‖L∞L2 + ‖∇w‖
L

2(d+2)
d

� T 1− (d−2)σ
4 ‖v‖1+σ

X .

Again we may replace ‖v‖X by ‖χ0,T∇v‖
L

2(d+2)
d

. In the defocusing case, the so-

lution is global if σ < 4
d−2 . In the energy critical case σ = 4

d−2 , there is global

existence for small data, and local existence for all data in Ḣ1.

Proof. Again we characterize the solution as the fixed point of the same map as
above, but now with respect to the norm X. By (3.22), we obtain a map of a closed

ball in X to itself, but a contraction only in the metric of L
2(d+2)

d in a ball in X,
at least for large space dimensions and small σ. We change the space X slightly
by replacing C(R;L2) by L∞(R;L2). We claim that sequences that are bounded

in X and converge in L
2(d+2)

d have a limit in X. There is a weak* converging
subsequence in X, and the limits have to coincide.

It is not hard to complete the argument for initial data additionally in L2(Rd):

then v ∈ L
2(d+2)

2 , and this remains true for the fixed point map. In general, we
define iteratively vj+1 = J(vj). We claim that there exists j so that

vj+1 − vj ∈ L
2(d+2)

d (R× Rd).
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The contraction argument then completes the proof. This argument gives unique-
ness in the set

vj +X ∩ L
2(d+2)

d (R× Rd).

The proof of the claim is technical and omitted.
The remaining arguments are adaptations of similar arguments in Theorem

3.7. �

3.9 Initial data in H1(Rd)

In this case we combine the arguments. We obtain global well-posedness in the
defocussing subcritical case σ < 4

d−2 , local existence in the subcritical and the

critical case (σ ≤ 4
d−2 ), and global existence in the critical case σ = 4

d−2 and small
initial data.



Chapter 4

Functions of bounded p-variation

The study of p-variation of functions of one variable has a long history. Function
of bounded p-variation have been studied by Wiener in [33]. The generalization
of the Riemann–Stieltjes integral to functions of bounded p-variation against the
derivative of a function of bounded q-variation, 1/p + 1/q > 1, is due to Young
[34]. Much later Lyons developed his theory of rough paths [23] and [24], building
on Young’s ideas, but going much further.

In parallel D. Tataru realized that the spaces of functions of bounded p-
variation, and their close relatives, the Up spaces, allow a powerful sharpening
of Bourgain’s technique of function spaces adapted to the dispersive equation at
hand. These ideas were applied for the first time in the work of the author and
Tataru in [18]. Since then there have been a number of questions in dispersive
equations where these function spaces have been used. For example, they play
a crucial role in [19], but there they could probably be replaced by Bourgain’s
Fourier restriction spaces Xs,b. On the other hand, for well-posedness for the
Kadomtsev–Petviashvili II in a critical function space (see [12]) the Xs,b spaces
seem to be insufficient. The theory of the spaces Up and V p and some of their
basic properties like duality and logarithmic interpolation have been worked out
for the first time in [12]. The developments in stochastic differential equations and
dispersive equations have been largely independent.

We will introduce and study functions from an interval (a, b) to R, Rn, a
Hilbert space, or a Banach space X, and spaces of such functions which are in-
variant under continuous monotone reparametrizations of the interval. For the
most part of this section there are no more than the obvious modifications when
considering Banach space valued functions. We allow a = −∞ and b = ∞.

We call a function f ruled function if at every point (including the end-
points, which may be ±∞) left and right limits exist. The set of ruled functions is
closed with respect to uniform convergence. We denote the Banach space of ruled
functions equipped with the supremum norm by R.

A step function is a function f for which there exists a partition so that f
is constant on every interval (a, t1), (ti, ti+1), and (tn, b). We do not require that

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,
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the value at a point coincides with the limit from either side. Step functions are
dense in R (Aumann [1], Dieudonné [6]). We denote the set of step functions by
S.

Let Rrc ⊂ R be the closed subspace of right continuous functions f with
limt→a f(t) = 0. Similarly, if A ⊂ R we denote by Arc the intersection with Rrc.

Let X be a Banach space and X∗ its dual. We consider functions with values
in X, resp. X∗, and we denote the corresponding spaces by R(X), resp. S(X).

There is a bilinear map B from S(X)rc ×R(X∗) to R resp. C, defined by

B(u, v) =
n∑

i=1

v(ti)(u(ti)− u(ti−1)), (4.1)

where a = t0 < t1 < · · · < tn < b is the partition. In the sequel we will omit the
space X and X∗ from the notation unless there is some ambiguity. Similarly, the
formula above defines a bilinear map on R(X∗)× S(X).

It will be convenient to extend every function on [a, b) by zero to [a, b], i.e.
we will always set f(b) = 0, even if a = −∞ or b = ∞. Similarly, we extend every
function by 0 to R whenever this is convenient.

Definition 4.1. For u ∈ R and a partition

τ = (t1, t2, . . . , tn), a < t1 < t2 < t3 · · · < tn < b,

we define (denoting the limit from the right by f(t+))

uτ (t) =

⎧⎪⎪⎨⎪⎪⎩
u(t), if t = tj for a j,

u(a+), if a < t < t1,
u(ti+), if ti < t < ti+1,
u(tn+), if tn < t.

We observe that uτ is a step function, and it is right continuous if u is right
continuous.

Lemma 4.2. Let u ∈ Rrc and v ∈ R. Then

B(uτ , v) = B(uτ , vτ ).

Moreover, if in addition v is left continuous, then

B(u, vτ ) = B(uτ , vτ ).

If u, v ∈ Src, then, with ti a partition containing all points of discontinuity of u
and v,

B(u, v) +B(v, u) =
∑
i

(v(ti)− v(ti−)(u(ti)− u(ti−)) + lim
t→b

v(t)u(t).

Proof. This follows immediately from the definitions. �
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4.1 Functions of bounded p-variation and the spaces Up

and V p

Unless explicitly stated otherwise, we consider p ∈ (1,∞).

In later chapters we use Up and V p to study well-posedness questions for
several dispersive PDEs, where we select a number of relevant and representative
problems.

A partition τ of (a, b) is a strictly increasing finite sequence

a < t1 < t2 < · · · < tn+1 < b,

where we allow b = ∞ and a = −∞.

Definition 4.3. Let I be an interval, X a Banach space, 1 ≤ p < ∞, and f : I → X.
We define

ωp(v, I) := sup
τ

(
n−1∑
i=1

‖v(ti+1)− v(ti)‖pX
)1/p

∈ [0,∞].

There are obvious properties. The function t �→ ωp(v, [a, t)) is monotonically
increasing. The same is true if we consider closed or open intervals.

Lemma 4.4. Suppose that a < b < c. Then

ωp(v, [a, b)) ≤ ωp(v, [a, c)) ≤ 21−1/p
(
ωp(v, [a, b]) + ωp(v, [b, c))

)
.

Proof. Consider a partition τ . If b is a point of τ , then the p-th power of the
τ -variation in the large interval is the sum of the p powers of the parts. If not, we
add the point b. The factor 21−1/p follows from

|a+ b|p ≤ 2p−1(|a|p + |b|p). �

The p-variation can sometimes be explicitly estimated.

Lemma 4.5. For bounded monotone functions we have

ωp(v, [a, b)) = sup v − inf v.

We denote by Ċs(I) the homogeneous Hölder norm:

‖f‖Ċs(I) = sup
t 	=τ

|u(t)− u(τ)|
|t− τ |s .
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Lemma 4.6. We have

ωp(v, (a, b)) ≤ ‖v‖Ċ1/p(b− a)1/p. (4.2)

Suppose that
ωp(v, (a, b)) < ∞.

Then v has left and right limits at every point. Moreover

ωp(λv, (a, b)) = |λ|ωp(v, (a, b)),

ωp(v + w, (a, b)) ≤ ωp(v, (a, b)) + ωp(w, (a, b)).

Proof. Let t0 < t1 < · · · < tN . Then∑
j

‖v(ti+1)− v(ti)‖pX ≤
∑
i

(ti+1 − ti)‖v‖pĊ1/p
.

The other statement follow from a straightforward calculation. �
The p-variation is continuous at points where v is continuous, provided the

p-variation is finite.

Lemma 4.7. Suppose that ωp(v, [a, b)) < ∞ and v is continuous at c ∈ [a, b). Then

lim
t→c

ωp(v, [a, t)) = ωp(v, [a, c]).

Proof. Suppose that

lim
t↓c

ω(v, (a, t))− ω(v, (a, c)) = 2δ > 0.

Then there is a sequence of points c < t1 < t2 · · · < tn < b with∑
‖v(ti+1)− v(ti)‖pX ≥ δp

pωp(v, [a, b))p−1
.

Similarly, there is such a sequence in (c, t1) and recursively we get an arbitrarily
large number of such sequences. Putting N of them together, we see that

ωp(v, (c, b)) ≥ Ncδ,

which would bound N . This is a contradiction. We argue similarly for the limit
from below. �
Definition 4.8. Let X be a Banach space , 1 ≤ p < ∞, and v : (a, b) → X. We
define

‖v‖V p((a,b),X) = max{‖v‖sup, ωp(v, (a, b))}.
Let V p = V p((a, b)) = V p(X) = V p((a, b);X) be the set of all functions for which
this expression is finite. We omit the interval and/or the Banach space in the
notation when this seems appropriate.
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The interval will usually be of minor importance. The following properties
are immediate:

1. V p(I) is closed with respect to this norm and hence V p(I) is a Banach sub-
space of R. Moreover, V p

rc(I) is a closed subspace.

2. We set V ∞ = R with ‖.‖V ∞ = ‖.‖sup.
3. If 1 ≤ p ≤ q ≤ ∞, then

‖v‖V q ≤ ‖v‖V p .

4. Let Xi be Banach spaces, T : X1 × X2 → X3 a bounded bilinear operator,
v ∈ V p(X1), and w ∈ V p(X2). Then T (v, w) ∈ V p(X3) and

‖T (v, w)‖V p(X3) ≤ 2‖T‖‖v‖V p(X1)‖w‖V p(X2).

5. We embed V p((a, b)) into V p(R) by extending v by 0.

6. The space V 1 has some additional structure: every bounded monotone func-
tion is in V 1, and functions in V 1 can be written as the difference of two
bounded monotone functions.

The space of bounded p-variation is build on the sequence space lp. We may
also replace it by the weak space lpw, with

‖(aj)‖lpw = sup
λ>0

λ(#{j : |aj | > λ}) 1
p .

This does not satisfy the triangle inequality, but if p > 1, there is an equivalent
norm, which makes lpw a Banach space. We set l∞w = l∞.

Definition 4.9. Let 1 ≤ p < ∞. The weak V p
w space consists of all functions such

that
‖v‖V p

w
= max

{
sup

t1<···<tn

‖(v(ti+1)− v(ti))1≤i≤n−1‖lpw , ‖v‖sup
}

is finite.

By Tschebycheff’s inequality

‖v‖V p
w
≤ ‖v‖V p .

The spaces of bounded p-variation are of considerable importance in proba-
bility and harmonic analysis. We shall see that V p is the dual space of a space Uq,
1/p + 1/q = 1, 1 < p < ∞, with a duality pairing closely related to the Stieltjes
integral, and its variant, the Young integral [34].

Definition 4.10. A p-atom a is a step function in Src,

a(t) =

n∑
i=1

φiχ[ti,ti+1)(t),
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where τ = (t1, . . . , tn) is a partition, tn+1 = b, with
∑ |φi|p ≤ 1. A p-atom a is

called a strict p-atom if
max

i
‖φi‖X(#τ)1/p ≤ 1.

It is important that atoms are right continuous, zero in a neighborhood of a, but
the limit as t → b may be different from 0.

Let aj be a sequence of atoms and let λj be a summable sequence. Then

u =
∑

λjaj

is a Up function. This is well defined, since the right-hand side converges in R.
We define Up as the set of functions having such a representation and give it the
norm

‖u‖Up := inf
{∑

|λj | : u =
∑

λjaj

}
.

The strict space Up
strict is defined in the same fashion using strict p-atoms.

We collect a number of elementary properties.

1. If a is a p-atom, then ‖a‖Up ≤ 1. The norm of an atom may be less than 1.
Determining the norm of an atom is a difficult task.

2. Functions in Up are continuous from the right. The limit as t → a vanishes.

3. The expression ‖.‖Up defines a norm on Up, and Up is closed with respect to
this norm. Moreover Up ⊂ Rrc is a subspace with ‖.‖sup ≤ ‖.‖Up .

4. If p < q, then Up ⊂ U q and

‖u‖Uq ≤ ‖u‖Up .

5. If 1 ≤ p < ∞, then for all u ∈ Up we have u ∈ V p
rc and

‖u‖V p ≤ 21/p‖u‖Up .

6. Let Y be a Banach space, and let the linear operator T : Src → Y satisfy

‖Ta‖Y ≤ C (4.3)

for every p-atom. Then T has a unique extension to a bounded linear operator
from Up to Y which satisfies

‖Tf‖Y ≤ C‖f‖Up . (4.4)

7. Let Xi be Banach spaces, T : X1 × X2 → X3 a bounded bilinear operator,
v ∈ Up(X1), and w ∈ Up(X2). Then T (v, w) ∈ Up(X3) and

‖T (v, w)‖Up(X3) ≤ ‖T‖‖v‖Up(X1)‖w‖Up(X2).
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8. We consider Up([a, b)) as a subset of Up(R) by extending the function u by
zero to the left, and by limt→b u(t) to the right.

The following decomposition is crucial for most of the following. It is related
to Young’s generalization of the Stieltjes integral, and it deals with a crucial point
in the theory. We denote the number of points in a partition τ by #τ .

Lemma 4.11. There exists δ > 0 such that for v right continuous with v(a+) = 0
and ‖v‖V p

w
= δ there are strict p-atoms ai with

‖aj(t)‖sup ≤ 21−j and #τj ≤ 2jp,

such that in the sense of uniform convergence

v =
∑

aj .

Proof. We set v0 = v, and we search for a recursive decomposition with

vj = aj + vj+1,

such that

‖vj‖sup ≤ 2−j , ‖aj‖sup ≤ 2−j

and, with τj the partition related to aj ,

#τj ≤ 2pj .

Suppose we have constructed vi for i ≤ j and ai for i ≤ j − 1. We construct
the aj , which also defines vj+1. We choose the unique partition τ so that

sup
t

‖vj(t)‖X < 2−1−j in [a, t1), ‖vj(t1)‖X ≥ 2−1−j ,

‖vj(t)− vj(ti)‖X < 2−1−j in t ∈ [ti, ti+1),

and

‖vj(ti+1)− vj(ti)‖X ≥ 2−1−j .

We define aj as the step function adapted to the partition τj (recall Definition
4.1)

aj = (vj)τ

Then, by construction,

‖aj‖sup ≤ ‖vj‖sup ≤ 2−j ,

‖vj+1‖sup ≤ 2−1−j ,
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and since either (tj , tj+1] contains no points of an earlier partition, in which case
we estimate the number of such points using the V p

w norm of v, or it does, and
then we simply add the number of those terms, and iterate, we get

#τj ≤ 2p‖v‖p
V p
w
2jp +

j−1∑
i=0

#τi

≤ 2p‖v‖p
V p
w

j∑
i=0

(j + 1− i)2ip

≤ cp‖v‖pV p
w
2jp

(4.5)

We choose δ = c
−1/p
p . �

There are a number of simple interesting and useful consequences.

Lemma 4.12. Let 1 < p < q < ∞. There exists κ > 0, depending only on p and q,
such that for all v ∈ V p

w,rc and M ≥ 1 there exist u ∈ Up
strict and w ∈ Uq

strict with

v = u+ w

and
κ

M
‖u‖up

strict
+ eM‖w‖Uq

strict
≤ ‖v‖V p

w
.

Observe that we may replace Up
strict by Up (since Up

strict ⊂ Up) and V p
w by

V p (since V p ⊂ V p
w).

Proof. Multiplying v by δ/‖v‖V p
w,rc

we may assume that ‖v‖V p
w
= δ as in Lemma

4.11, and setting ũ =
∑m

j=1 aj for some m to be chosen later, we have

‖ũ‖Up
strict

≤ m.

By construction, 2j(1−p/q)aj is a strict q-atom and hence, with w̃ =
∑∞

j=m+1 aj ,

‖w̃‖Uq
strict

≤
∞∑

j=m+1

‖aj‖Uq
strict

≤ cp,q2
( p
q−1)m,

hence, with u =
‖v‖V

p
w

δ ũ and w =
‖v‖V

p
w

δ w̃,

u+ w = v

and, with δ = − ln 2(pq − 1), there exists c depending only on p and w such that

1

m
‖u‖Up + eδm‖v‖Uq ≤ c‖v‖V p

rc
.

We choose m = (M + ln 2c)/δ and, for M ≥ ln 2c, κ = δ/2 to obtain the claimed
estimate. �
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We obtain the following embedding

Lemma 4.13. Let 1 < p < q < ∞. Then

V p
rc ⊂ V p

w,rc ⊂ U q
strict ⊂ U q.

Proof. Apply Lemma 4.12 with M = 1. �

4.2 Duality and the Riemann–Stieltjes integral

The Riemann–Stieltjes integral defines∫
fdg =

∫
fgtdt

for f ∈ R and g ∈ V 1. If g ∈ Src then, with the obvious partition,∫
fgtdt =

∑
f(ti)(g(ti)− g(ti−1)). (4.6)

This formula was the definition of the bilinear map B. We shall see that it uniquely
defines an ‘integral’ for f ∈ V p and g ∈ Uq, for 1/p + 1/q = 1, p > 1. Results
become much cleaner when we use an equivalent norm in V p,

‖v‖V p = sup
a<t1<···<tn<b

⎛⎝n−1∑
j=1

|v(tj+1)− v(tj)|p + |v(tn)|p
⎞⎠1/p

(4.7)

which we do in the sequel. We also set v(b) = 0 and, for any partition, tn+1 = b.

Theorem 4.14. The bilinear map B defines a unique continuous bilinear map

B : Uq(X)× V p(X∗) → R

which satisfies (with t0 = a and u(t0) = 0)

B(u, v) =
n∑

i=1

v(ti)(u(ti)− u(ti−1))

for v ∈ V p and u ∈ Src, with associated partition (t1, . . . , tn) and v(ti)(.) the
evaluation of v(ti) ∈ X∗ on the argument in X. It satisfies

|B(u, v)| ≤ ‖u‖Uq(X)‖v‖V p(X∗). (4.8)

The map
V p(X∗) 
 v �→ (u �→ B(u, v)) ∈ (Uq(X))∗
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is a surjective isometry if 1 ≤ q < ∞. Moreover

‖v‖V p(X∗) = sup
u∈Uq(X),‖u‖Uq(X)=1

B(u, v) = sup
a is a q-atom

B(a, v). (4.9)

The same statements up to constants are true if we replace Up by Up
strict and V q

by V q
w.

Proof. Let v ∈ V p. The expression

Fv(u) =

n∑
i=1

v(ti)(u(ti)− u(ti−1)) = −
n∑

i=1

(v(ti+1)− v(ti))u(ti)

is clearly defined for v ∈ V q and u ∈ Src with partition τ = (ti). The product is
an abuse of notation for the duality pairing between X and X∗ which we suppress
in the notation. The map is linear in v and u and satisfies for every atom (by
Hölder’s inequality, and using the right-hand side of the equation for Fv(u))

|Fv(a)| ≤
n∑

i=1

‖v(ti+1)− v(ti)‖X∗‖a(ti)‖X

≤
(

n∑
i=1

‖v(ti+1)− v(ti)‖pX∗

)1/p ( n∑
i=1

‖a(ti)‖qX
)1/q

.

The first factor is bounded by ‖v‖V p , and the second, by the definition of a q-atom,
by 1.

Existence of a unique extension to U q follows from this estimate and (4.4).
Linearity in v and estimate (4.8) are immediate consequences. Clearly B defines a
map from V p to the dual of Uq with norm at most 1. Let us prove that it defines
an isometry and choose v ∈ V p, ε > 0, and a partition t0 < t1 < · · · < tn with

‖v‖V p ≤
⎛⎝ n∑

j=1

‖v(tj+1)− v(tj)‖pX∗

⎞⎠1/p

+ ε.

Here we set again tn+1 = b and v(b) = 0. We choose xi ∈ X of norm 1 with

(v(ti+1)− v(ti))(xi) ≥ (1− ε)‖‖v(ti+1)− v(ti)‖X∗

and
φj := μ‖v(tj+1)− v(tj)‖p−1

X∗ xj ,

where μ = ‖v‖1−p
V p . Then

n∑
j=1

‖φj‖p′
x ≤ μ−p

n∑
j=1

‖v(tj+1)− v(tj)‖pX∗ ≤ 1.
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Thus the partition and the φj define a q-atom a, and

‖v‖V p ≥ B(a, v)− Cε.

The map is an isometry since ε is arbitrary. We turn to surjectivity. Let F ∈ (Uq)∗

and define the element v(t) ∈ X∗ by

v(t)(x) := F (xχ[t,∞)) for x ∈ X.

Let a be an atom. Then

F (a) =
∑
i

F (φiχ[ti,b))− F (φiχ[ti+1,b)) = −
∑

φi(v(ti+1)− v(ti))

=
∑

v(ti)(a(ti)− a(ti−1)) = B(a, v).

By the previous estimate,
‖v‖V p ≤ ‖F‖(Uq)∗ .

Hence both sides coincide on Uq. The remaining claims are simple consequences.
�

The previous results show that Up ⊂ V p
rc, and that the two spaces are very

close. They are, however, not equal. The following example goes back to Young
[34] with the same intention, but in a slightly different context.

Lemma 4.15. Let φ be a smooth function with compact support, 1 < q < ∞. Then

uq(t) = φ(t)

∞∑
j=1

2−j/q cos(2jt) ∈ V q
rc,

but not in Uq.

Proof. Let p be the Hölder dual exponent of q and

vNp (t) = φ

N∑
j=1

2−j/p sin(2jt),

where we allow N = ∞. Then, with M = [ln2(|t− s|)] ≤ N , [ ] the Gauss bracket,

|vNp (t)− vNp (s)| ≤
M∑
j=1

2−j/p|φ(t) sin(2jt)− φ(s) sin(2js)|+ c1

N∑
j=M+1

2−j/p

≤ c2

⎛⎝ M∑
j=1

2−j/p+j |t− s|+ 2−j/M

⎞⎠
≤ c3

(
2−M/p+M |t− s|+ 2−j/M

)
≤ c4|t− s| 1p
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and hence, by Lemma 4.6
sup
N

‖vNp ‖V p < ∞,

and similarly uq ∈ V q
rc. Now, assuming that uq ∈ U q, with 1/p+1/q = 1, we claim

‖uq‖Up‖vNp ‖V q ≥
∣∣∣∣∫ (uq)

′vNp dx

∣∣∣∣ = N/2

∫
φ2dx+O(1) (4.10)

which is unbounded, hence a contradiction, and so V q
rc 
 u∞

q /∈ Uq. It remains
to verify (4.10). The first inequality is a consequence of the duality theorem. We
expand both factors in the integral and claim for j �= l that, by stationary phase,∣∣∣∣∫ φ(t)2−j/p−l/q cos(2jt)(φ(t) sin(2lt))′dt

∣∣∣∣ ≤ cM2−j |2j − 2l|−M

for every M ∈ N. Thus

∑
j 	=l,l≤N

∣∣∣∣∫ φ(t)2−j/p−l/q cos(2jt)(φ(t) sin(2lt))′dt
∣∣∣∣ ≤ c

∞∑
j=1

2−j
N∑

l=1,l 	=j

2−l,

which is bounded independent of N . Next∣∣∣∣∫ φ(t)2−j/p−j/q sin(2jt) cos(2jt)φ′(t))dt
∣∣∣∣ ≤ c12

−j

and ∣∣∣∣∫ φ2(t)2−j/p−j/q+j cos2(2jt)dt

∣∣∣∣ = ∣∣∣∣∫ φ2(t)
1

2
(1 + cos(2j+1t))dt

∣∣∣∣
=

1

2

∫
φ2(t)dt+ c−j

2 .

We expand (4.10). Only the diagonal terms contribute. This completes the proof.
�

4.3 Step functions are dense

Lemma 4.16. For all v ∈ V p and all partitions τ we have (recall Definition 4.1)

‖vτ‖V p ≤ ‖v‖V p , (4.11)

and for all u ∈ Up

‖uτ‖Up ≤ ‖u‖Up . (4.12)

For v ∈ V p and ε > 0 there is a partition τ so that

‖v − vτ‖V p < ε. (4.13)
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Given u ∈ Up and ε > 0, there exists τ with

‖u− uτ‖Up < ε. (4.14)

In particular, the step functions S are dense in V p and Src is dense in Up.

Proof. When we take the supremum over partitions for vτ we may restrict to
subsets of τ and the first statement becomes obvious. For Up it suffices to check
p-atoms a,

‖aτ‖Up ≤ 1.

Density of step functions in Up follows from the atomic definition of the space:
Let u ∈ Up and ε > 0. By definition, there exists a finite sum of atoms (which is
a right continuous step function ustep) such that

‖u− ustep‖Up < ε/2.

Let τ be the partition associated to ustep. Then

‖u− uτ‖Up ≤ ‖ustep − uτ‖Up + ‖u− ustep‖Up

< ‖(ustep − u)τ‖Up + ε/2

< ε,

which is the claim for Up. Let Ṽ p be the closure of the step functions in V p.
Suppose there exists v ∈ V p with distance > 1 to Ṽ p, and ‖v‖V p < 1 + ε. Such
a function exists when Ṽ p is not V p. Let D ⊂ Uq be the subset such B(u, v) = 0
whenever u ∈ D and v ∈ Ṽ p. Then u is continuous. Since the dual space of D is
naturally given by D∗ = V p/Ṽ p, and since v defines an element in D∗ of norm
> 1 there exists u ∈ D with B(u, v) = 1, and a partition τ so that ‖u−uτ‖Up < ε.
However,

0 = B(u, vτ ) = B(uτ , v) = B(u, v) +B(uτ − u, v) ≥ 1− ε(1 + ε),

which is a contradiction if ε < 1
2 . Hence the step functions are dense in V p and,

given v ∈ V p and ε > 0, there is a step function vstep with ‖v − vstep‖V p < ε and
partition τ . Then

‖v − vτ‖V p ≤ ‖vstep − vτ‖V p + ‖v − vstep‖V p

< ‖(vstep − v)τ‖V p + ε/2

< ε,

which is the density assertion. �

4.4 Convolution and regularization

Convolution by an L1 function defines a bounded operator on Up and V p. Ruled
functions are in L∞ and hence the product of a function in Up or V p with an L1

function can be integrated. In particular, the convolution of a ruled function and
an L1 function is well defined.
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Lemma 4.17. Let a = −∞ and b = ∞, v ∈ V p and φ ∈ L1. Then

‖v ∗ φ‖V p(X) ≤ ‖φ‖L1‖v‖V p(X)

and
‖u ∗ φ‖Up(X) ≤ ‖φ‖L1‖u‖Up(X).

Proof. Let τ be a partition. It suffices to consider φ non-negative and with integral
1. Then, by convexity and Jensen’s inequality,∑

|φ ∗ v(ti+1)− φ ∗ v(ti)|p ≤
∫

|φ(h)|
∑
i

|v(ti+1 + h)− v(ti + h)|pdh ≤ ‖v‖pV p .

The statement for Up follows by duality: We have

B(φ ∗ a, v) = B(a, φ̃ ∗ v)
with φ̃(t) = φ(−t). �

The first part of the next result it due to Hardy and Littlewood [13]. The
Besov spaces of the lemma will be explained in the proof. We include the third
statement for completeness, but it will not be used later on.

Lemma 4.18. Let I = R, h > 0 and v ∈ V p. Then

‖v(.+ h)− v(.)‖Lp ≤ (2h)1/p‖v‖V p . (4.15)

In particular, if 1 < p < ∞,

‖v‖
Ḃ

1/p
p,∞

≤ c‖v‖V p

and
‖u‖Up ≤ c‖u‖Ḃ1

p,1
.

Proof. Let Ij = [jh, (j + 1)h] where

|v(t+h)−v(t)| ≤ max{ sup
[jh,(j+1)h]

v− inf
[(j+1)h,(j+2)h]

v, sup
[(j+1)h,(j+2)h]

v− inf
[jh,(j+1)h]

v}.

For ε > 0 there exist two points tj,0 ∈ Ij and tj,1 ∈ Ij+1 with

sup
t∈Ij

|v(t+ h)− v(t)| ≤ (1 + ε)|v(tj+1)− v(tj)|.

For simplicity we assume that v is continuous, in which case we may choose ε = 0,
which is the only use we will make of the continuity assumption. Hence∫

|v(t+ h)−v(t)|pdt ≤ h
(∑

j

|v(t2j+1,1)−v(t2j+1,0)|p +
∑
j

|v(t2j,1)−v(t2j,0)|p
)

≤ 2h‖v‖pV p .
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All partial sums on the right-hand side are bounded by 2h‖v‖pV p and hence
the same is true for the sum. There are many equivalent norms on the homogeneous
Besov space, one of them being

‖v‖
Ḃ

1/p
p,∞

= sup
h>0

h−1/p‖v(.+ h)− v‖Lp ,

and the bound follows from the estimate for the difference. The last statement
follows by duality: the bilinear map

Ḃ
1
p
p,∞ × Ḃ

1− 1
p

p
p−1 ,1


 (f, g) �→
∫

fdg

defines an isomorphism Ḃ
1
p
p,∞ →

(
Ḃ

1− 1
p

p
p−1 ,1

)∗
. Here for 0 < s < 1 and 1 ≤ q < ∞

‖v‖Ḃs
p,q

=

(∫ ∞

0

(h−1‖v(.+ h)− v‖Lp)q
dh

h

)1/q

.

See Triebel [32] for the theory of these spaces. �

Let φ ∈ C∞
0 with

∫
φ = 0. Then it is an immediate consequence that

‖v ∗ φ‖Lp = ‖
∫
(v(t+ h)− v(t))φ(h)dh‖Lp

≤ sup
h

h−1/p‖v(t+ h)− v(t)‖Lp

∫
h1/p|φ(h)|dh

≤ c‖v‖V p

(4.16)

and, by duality, for φ ∈ C∞
0 ,

‖u ∗ φ‖Up ≤ sup
‖v‖V q≤1

B(φ ∗ u, v)

= sup
‖v‖V q≤1

∫
φ′ ∗ uvdt

= sup
‖v‖V q≤1

∫
uφ̃′vdt

≤ sup
‖v‖V q≤1

‖u‖Lp‖φ̃′ ∗ v‖Lq

≤ C‖u‖Lp .

(4.17)

Clearly C∞
0 ⊂ V 1

rc. Let Ṽ p ⊂ V p be the closed subspace of functions with
f(t) = 1

2 (limh→0(f(t + h) + f(t − h))). We consider functions on R. If v ∈ V p is
continuous, then

B(φh ∗ a, v) → B(a, v) as h → 0
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for all atoms a. Here φ ∈ L1 with
∫
φdx = 1 and φh(x) = h−1φ(x/h). If, moreover,

φ is symmetric, then

φh ∗ v → v

pointwise for all v ∈ Ṽ p and B(φh ∗u, v) = B(u, φh ∗ v) for all u ∈ U q and v ∈ V p.

Lemma 4.19. We have

B(φh ∗ u, v) → B(u, v)

for u ∈ Up(R) and v ∈ V q ∩ C, and

φh ∗ v → v

in the weak ∗ topology for v ∈ Ṽ p(R) for 1 ≤ p < ∞.

Proof. Only the last statement needs a proof. By definition and the pointwise
convergence, B(u, φh ∗ v) → B(u, v) for all u ∈ Rrc. This implies weak star
convergence. �

4.5 More duality

The space Uq ∩ C(X) is a closed subspace of U q.

Lemma 4.20. The bilinear map B defines a surjective isometry

Ṽ p(X∗)rc → (Uq ∩ C(X))∗,
1

p
+

1

q
= 1, 1 < p, q < ∞.

Proof. The kernel of the duality map composed with the inclusion (Up ∩C) ⊂ Up

consists exactly of those elements of V q which are nonzero at at most countably
many points. We claim that the duality map is an isometry. Let v ∈ Ṽ p, and let
a be an atom such that

‖v‖V p ≤ (1 + ε)B(a, v).

If φh is a symmetric mollifier, then, if h is sufficiently small,

B(a, φh ∗ v) = B(φh ∗ a, v),

which shows that the duality map is an isometry.
It remains to prove surjectivity. Let L : Up ∩ C(X) → R be linear and

continuous. By the Hahn–Banach theorem, there is a extension with the same
norm to Up, and by duality there is v ∈ V q with ‖v‖V q = ‖L‖ and L(u) = B(u, v)
for all u ∈ Up. Changing v on a countable set does not change the image in
(Up ∩ C(X))∗, hence we may choose v ∈ V p

rc. �

In the sequel we identify u(a), resp. u(b), with the limit from the right, resp.
the left.
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Lemma 4.21. Let u ∈ Uq and v ∈ Up, 1/p+ 1/q = 1 and let (tj)j→1 be the points
where both v and u have jumps, and denote the size of the jumps by Δu(tj). Then

B(u, v) +B(v, u) =
∑
j

Δu(tj)Δv(tj) + u(b)v(b). (4.18)

Proof. The right-hand side of (4.18) is continuous with respect to u ∈ V q and
v ∈ V p, with the jump understood as the difference between the limit from the
right and the left; the sum over the jumps to the power p is bounded by the V p

norm. The left-hand side is continuous with respect to u ∈ Uq and v ∈ V p, and
it suffices to verify the formula for u, v ∈ Src with joint partition (where we add
t0 = a) a = t0 < t1 < · · · < tN < b. Then the statement follows from Lemma
4.2. �

Lemma 4.22. Test functions are weak* dense in V p.

Proof. Step functions are dense in V p, and it suffices to verify that step functions
can be approximated by C∞

0 functions in the weak∗ sense. Moreover it suffices
to consider test functions with a partition consisting of a single point, which we
choose to be 0. Hence we reduce the problem to a proof for three functions. We
fix φ ∈ C∞

0 (R), identically 1 in [−1, 1], and η ∈ C∞(R) supported in (0,∞) and
identically 1 for t ≥ 1. Then for u ∈ Src checking the definition shows

B(u, φ(t/j)) → B(u, 1),

and with v(t) = 0 for t �= 0 and v(0) = 1,

B(u, φ(jt)) → B(u, v),

and, with v(t) = 0 for t ≤ 0 and 1 for t > 0,

B(u, φ(t/j)η(jt)) → B(u, v)

when j → ∞. �

We define

V q
C = {v ∈ V q(a, b) ∩ C(a, b) : lim

t→a
v(t) = lim

t→b
v(t) = 0}. (4.19)

Lemma 4.23. The map

Up(X∗) → (V q
C(X))∗,

u �→ (v → B(u, v)),

is a surjective isometry.



58 Chapter 4. Functions of bounded p-variation

Proof. By the duality estimates the duality map is defined, and it is an isometry
since the space V q

C is weak star dense in V q. Let L : V q
C → R be linear and

continuous. By Hahn–Banach, L can be extended to a continuous linear form on
L̃ ∈ (V q)∗. Since U q ⊂ V q

rc, by an abuse of notation L ∈ (Uq)∗ and there exists
ũ ∈ V p such that

B(w,−ũ) = L̃(w)

for all w ∈ U q. We define (with t± the limit from the left resp. the right)

u(t) = ũ(t+)− ũ(a).

Then u ∈ ⋂
p̃>p U

p̃, and by Lemma 4.21, for all v ∈ V p
C ,

L(v) = B(v,−ũ)

= B(v,−u)− ũ(a)B(v, 1)

= B(u, v)− ũ(a)(v(b))

= B(u, v),

where we used that v(b) = 0 and that v is continuous.
For every partition we have uτ ∈ Up, with

‖uτ‖Up ≤ sup
v∈V p

C ,‖v‖V p≤1

B(v, uτ ) = sup
‖vτ‖V p=1

L(vτ ).

Since u ∈ V p
rc, there is a sequence of partitions τi so that uτi → u ∈ V p and hence

the sequence converges uniformly. Thus for every step function v

B(uτi , v) → B(u, v).

Since step functions are dense in V q even

B(uτi , v) = B(u, vτi) → B(u, v)

for all v ∈ V q. Let Up∗∗ be the bidual space of Up , which we consider as isometric
closed subspace of X∗∗. By an abuse of notation, we consider u as element of Up∗∗.
Then

B(uτi , v) → u(v)

for all v ∈ V q and the distance between u and Up in Up∗∗ is zero, and hence
u ∈ Up. �
Corollary 4.24. We have

‖u‖Up(X) = sup{B(u, v) : v ∈ C∞
0 (X), ‖v‖V q(X∗) = 1}.

and
‖v‖V p

rc(X) = sup{B(u, v) : u ∈ C∞
0 , ‖u‖Uq(X∗)} = 1}.
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Proof. Clearly C∞
0 is weak dense in V p(X∗). This implies the first statement.

Given ε > 0, there exists a q-atom in Uq(X∗) with

B(a, v) ≥ ‖v‖V p − ε.

Since
B(xχ[t,b), v) → 0

as t → a, we may assume that a(b) = 0. A standard regularization implies the full
statement. �

4.6 Consequences of Minkowski’s inequality

For a Banach space Y , we denote by Lp(Y ) the weakly measurable maps with
values in Y , for which the norm is p-integrable.

Lemma 4.25. We have for 1 < p ≤ q < ∞,

‖u‖Lq
x(Up) ≤ ‖u‖Up(Lq

x) (4.20)

and
‖v‖V p(Lq

x) ≤ ‖v‖Lq
x(V p). (4.21)

Proof. It suffices to verify the first inequality for a p-atom

a(t, x) =
∑

χ[ti,ti+1)(t)Φi(x)

with values in Lq. This is a function of x and t. Then t �→ a(t, x) is a step function.
Let

f(x) =

(∑
i

|Φi(x)|p
)1/p

.

Then

‖a‖Lq
x(Up) =

(∫
f(x)qdx

)1/q

=

⎛⎜⎝∫ ⎛⎝∑
j

|Φj(x)|p
⎞⎠q/p

⎞⎟⎠
1/q

≤
⎛⎝∑

j

‖Φj‖pLq

⎞⎠1/p

≤ 1,

where we use Minkowski’s inequality for the first inequality. The argument for the
space V p is similar. �
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The argument works the same way if we consider Banach space valued func-
tions in UpLq etc.

4.7 The bilinear form as integral

Here we consider scalar-valued functions. We consider functions on different inter-
vals and denote the quadratic form on the interval (s, t) by Bs,t.

Definition 4.26. Let v ∈ V p(a, c) and u ∈ Uq(a, c). We define for a ≤ s < t ≤ b∫ t

s

vdu := Bs,t(u− u(s), v) + (u(t)− u(t−))v(t) (4.22)

and∫ t

s

udv :=−
∫ t

s

vdu+
∑
j

(u(tj)− u(tj−))(v(tj)− v(tj−))

+ u(t−)v(t−)− u(s)v(s+) + u(t)(v(t+)− v(t−)) + v(t)(u(t)− u(t−)),

(4.23)

where the sum is taken over all joint jumps in (s, t).

The second definition is partly motivated by

1. The integration by parts formula (4.18). It should reduce to integration by
parts if v ∈ U q, and if there are no jumps at t.

2. The desire to have a certain symmetry with respect to time reversal if v is
continuous from the left and u is continuous from the right. In general the
notation is ambiguous, and one has to pay attention whether the integrand
is supposed to be in V p or Up.

3. We want the integral to be additive in the interval.

Lemma 4.27. For u ∈ Uq and v ∈ V p, 1/p+ 1/q = 1 and a < b < c, we have∫ c

a

vdu =

∫ b

a

vdu+

∫ c

b

vdu

and ∫ c

a

udv =

∫ b

a

udv +

∫ c

b

udv.

With the obvious notation,∥∥∥ ∫ t

a

udv
∥∥∥
V p(a,t)

≤ ‖u‖Uq(a,t)‖v‖V p(a,t) (4.24)

and ∥∥∥ ∫ t

a

vdu
∥∥∥
Uq(a,t)

≤ ‖u‖Uq(a,t)‖v‖V p(a,t). (4.25)
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Proof. It suffices to check the first formula for atoms u. Suppose that tj < b ≤ tj+1.
On both sides we have a sum of terms of the form

v(tj+1)(u(tj+1)− u(tj)).

For the second formula we see from the definition that∫ c

a

udv =

∫ b

a

udv +

∫ c

b

udv,

where we have to check the contribution at t = b.
Formally, for smooth functions

B(

∫ t

a

vdu,w) =

∫ b

a

w(t)v(t)u′(t)dt

= B(u, vw)

≤ ‖vw‖V q‖u‖Up

≤ 2|v‖V q‖w‖V q‖u‖Up ,

(4.26)

which formally implies (4.25).
For a rigorous proof we verify the formula in the case when u is an atom, and

v and w are step functions; with a common partition the proof is done for general
functions. Then

∫ t

a
vdu is a right continuous step function and∑

j

(v(tj)(u(tj)− u(tj−1))w(tj) =
∑
j

[v(tj+1)w(tj+1)− v(tj)w(tj)]u(tj),

where we neglect the boundary terms. We apply Hölder’s inequality to bound the
expression by(∑

|v(tj+1)w(tj+1)− v(tj)w(tj)|q
)1/q (∑

|u(tj)|p
)1/p

.

Again formally for smooth functions

B(w,

∫ t

a

udv) = −
∫ b

a

vwu′dt+ (w(b)− w(a))

∫ b

a

uv′dt

=

∫ b

a

v(uw)′dt− (w(b)− w(a))

∫ b

a

vu′dt

− u(b)v(b)w(b) + u(a)v(a)w(a)

+ (w(b)− w(a))(u(b)v(b)− u(a)v(a))

= B(uw, v)− (w(b)− w(a))B(v, u)

(4.27)
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if u(a) = w(a) = 0. This formally implies (4.25). For a rigorous proof we apply
integration by parts several times. First∫ t+

t−
udv = (u(t)− u(t−))(v(t)− v(t−)) + u(t)v(t+)− u(t−)v(t−)

− v(t)(u(t)− u(t−))

= u(t)(v(t+)− v(t−))

and ∫ t+

t

udv = u(t)(v(t+)− v(t)),

and hence the lp sum over the jumps is bounded. Thus the bound reduces to the
bound for

B(w,

∫ t

a

vdu),

and by the same token to

B(

∫ t

a

vdu,w)

which we have proven above. �
Sometimes it is convenient to have a notation for spaces of derivatives of

functions in Up, resp. V p.

Definition 4.28. We define dUp as the space of all distributions f for which there
exists an antiderivative in Up, equipped with the norm in Up. Similarly, let dV p

be the space of all distributions which have an antiderivative in Ṽ p
rc, equipped with

the obvious norm.

4.8 Differential equations with rough paths

This type of study was initiated by Lyons [23]. We will only scratch the surface.
We observe that the duality mapping extends the Young integral.

We consider the differential equation

ẏ = F (y, x)ẋ, y(0) = y0,

where x ∈ U2 and F is a bounded Lipschitz function continuously Fréchet differ-
entiable with respect to y, and dyF is uniformly Lipschitz continuous. To simplify,
we denote the bound for F by ‖F‖sup, the Lipschitz bound with respect to y by
‖DY F‖sup, and the homogeneous Hölder bound with respect to y by ‖F‖Cs(Y ).

Suppose that y is a solution, i.e.,

y(t) = y(a) +

∫ t

a

F (y, x)dx.
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Then, by (4.25),

‖y(t)− y(a)‖U2 ≤ ‖F (y, x)‖V 2‖x‖U2

≤ (‖F‖sup + ‖DyF‖sup‖y‖V 2) + ‖DxF‖sup‖x‖V 2)‖x‖U2 .
(4.28)

It is trivial that there is a unique solution if x is a step function in Src – for that
we consider a finite number of differences. We shall construct a solution to the
initial value problem for ‖x‖Up small. This implies existence of a unique solution,
since we may first approximate x by a step function, and then solve the differential
equation on each of the intervals of the step function.

We want to construct a solution as a fixed point of

y(t) = y0 +

∫ t

0

F (y(s), x(s))ẋds.

We claim that there is a unique solution y with y − y(a) ∈ U2 provided

‖x‖U2 < ε,

with ε sufficiently small. Let

y(t) = y0 +

∫ t

0

F (ỹ(s), x(s))ẋds.

Now, by (4.28),

‖y − y(a)‖U2 ≤ (‖F‖sup + ‖DyF‖sup‖ỹ‖V 2 + ‖DxF‖sup‖x‖V 2)‖x‖U2

and we obtain a uniform bound R on the iteration provided ‖DyF‖sup‖x‖U2 ≤ 1
4 .

If ỹ1, ỹ2 ∈ U2 and yi is defined by the Young integral above, we get, by considering
scalar-valued functions to simplify the notation,

‖y2 − y1‖U2 ≤ 2‖F (ỹ2, x)− F (ỹ1, x)‖V 2‖x‖U2

≤
(
‖DyF‖sup‖ỹ2 − ỹ1‖V 2 + ‖D2

yyF‖sup‖ỹ2 − ỹ1‖sup‖ỹ2 − ỹ1‖V 2

+ ‖D2
yxF‖sup‖ỹ1 − ỹ1‖sup‖x‖U2

)
‖x‖U2 .

We easily construct a unique solution by a standard contraction argument provided(‖DyF‖sup + ‖D2
yyF‖sup‖R+ ‖D2

xy‖x‖U2

) ‖x‖U2 <
1

2
,

where R is the uniform bound from above.
The modifications for Up, p < 2, are as follows. The differentiability require-

ments on F are weaker: Let 1 < p < 2 and 1
p+

1
q = 1. The apriori estimate requires

few changes and we concentrate on the contraction, for which we consider

‖F (ỹ2, x)− F (ỹ1, x)‖V q ≤ ‖DyF‖sup‖ỹ2 − ỹ1‖V q + ‖DyF‖Cp/q

(
‖y2 − ỹ1‖p/qV p

+ ‖x‖p/qV p

)
‖ỹ2 − ỹ1‖sup.

We recall that p− 1 = p/q. We obtain the contraction as above.
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Theorem 4.29. Let 1 < p ≤ 2, F : X × Y → Y be bounded, uniformly Lipschitz
continuous, Frechet differentiable with respect to X and Y , and such that dF is
Hölder continuous with respect to y with Hölder exponent p− 1. We study

dy = F (x, y)dx, y(a) = y0.

Then there exists a unique solution y ∈ Up(Y ) if x ∈ Up if 1 ≤ p ≤ 2 and y ∈ V p

if x ∈ V p and dF is Hölder continuous with exponent p− 1 < s ≤ 1.

4.9 The Brownian motion

The Brownian motion is almost surely in V p for p > 2. We denote by Bt(ω) the
path of the Brownian motion as a function of t and the element of the probability
space ω. If the Brownian motion would be in U2 with positive probability we
could solve stochastic differential equations in a pointwise sense. The 2-variation
however is almost certainly infinite.

The regularity of the Brownian motion is characterized by the following fairly
sharp result of Taylor [31] , see also [8].

Theorem 4.30. Let

ψ2,1(h) =

{
h2, if h ≥ e−e,
h2

ln ln(1/h) , if h < e−e.

There exists η > 0 such that

E
(
exp

( η

T
‖B‖2ψ2,1;[0,T ]

))
< ∞,

where

‖B‖ψ2,1;[0,T ] = inf{M > 0 : sup
τ

∑
ψ2,1(|Bti+1

−Bti |/M) ≤ 1}.

Moreover, if
h2

ψ(h) ln ln(1/h)
→ 0 as h → 0,

then
sup
τT

∑
ψ(|Bti+1

−Bti |) = ∞.

See Theorem 13.15 and Theorem 13.69 in [8]. This result deviates from the
V p spaces by an iterated logarithm.

Let (Ω, μ) be a probability space with a filtration μt, t ∈ R, f ∈ Lp and
ft = E(f, μt). Then

‖ft‖Lp(Ω,V 2
w) ≤ cp‖f‖Lp (4.29)

is a consequence of Doob’s oscillation lemma for martingales [25], see also Bour-
gain’s proof of p-variation estimate [2]. A weaker version is due to Lepingle [21].

For the Brownian motion Bt we obtain
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Theorem 4.31.

‖Bt‖Lp(Ω,V 2
w([0,1))) ≤ cp.

This has been a motivation to introduce V p
w .

4.10 Adapted function spaces

Given a distribution T , we want to construct an element in Up or V p which has
T as derivative. This is done in the next lemma. Again 1

p + 1
q = 1.

Lemma 4.32. Suppose that T is a distribution supported in [0,∞) so that

sup{T (φ) : φ ∈ C∞
0 , ‖φ‖Uq ≤ 1} = C1 < ∞.

Then there exists a unique v ∈ V p
rc with

T (φ) = −B(φ, v),

C1 ≤ ‖v‖V p ≤ 2C1,

and vt = T in the sense of distributions. Suppose that T is a distribution supported
in [0,∞) so that

sup{T (φ) : φ ∈ C∞
0 , ‖φ‖V q ≤ 1} = C2 < ∞.

Then there exists a unique u ∈ Up with

T (φ) = B(u, φ),

‖u‖Up = C2,

and ut = T in the sense of distributions.

Proof. There exists a unique distribution V supported in [0,∞) with ∂tV = T
which is defined as follows. We fix a function η ∈ C∞ supported in [−2,∞) and
identically 1 in [−1,∞). Then

V (φ) := T (η

∫ ∞

t

φ),

which does not depend on the choice of η. Then

V (∂tφ) = −T (ηφ) = −T (φ)

by definition. The difference of two such distributions has zero derivative, hence
it is constant, and by the assumption on the support it is unique.
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Next we choose a function ψ ∈ C∞
0 (R) supported in (−1, 1) and satisfying∫

ψdx = 1, and define for h > 0 and s ∈ R

φ(t) = η(t)h−1

∫ ∞

t

ψ((x− s)/h)dx.

Then by the support property,

V (h−1ψ((t− s)/h)) = V (∂tφ) = T (φ)

and, since, for nonnegative ψ
‖φ‖Uq ≤ 1

and hence
|V (h−1ψ((t− s)/h)| ≤ C1,

we have
sup
s

|V ∗ h−1ψ((.− s)/h)| ≤ C1.

Thus, there exists a bounded and measurable function v with

V (φ) =

∫
vφdt,

and moreover v is supported in [t0,∞). At Lebesgue points

|V (h−1ψ((t− s)/h))| = h−1

∫
v(t)ψ((t− s)/h)dt → v(s)

as h → 0. Similarly, if τ is partition for which all points are Lebesgue points, and
arguing as for duality, we see that(∑

|v(tj)− v(tj−1)|p
) 1

p ≤ C1.

In particular, left and right limits at t ∈ R exist if we restrict the approach to
Lebesgue points. Hence we may assume that v is a right continuous ruled function,
supported in [0,∞). But then the very same argument shows (since we have to
include the supremum in the norm) that

‖v‖V p
rc

≤ 2C.

By construction, the weak derivative of v is T . We conclude that T defines an
element of (Uq)∗ which is represented by some function which is v. This completes
the argument in this case.

In the second part we construct the function u as above. Then

T (φ) = −
∫

u∂tφ = −B(φ, u) = B(u, φ).
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In particular, for every partition, since C∞
0 is weak star dense,

‖uτ‖Up ≤ C

We conclude, as for the duality, that

‖u‖Up ≤ C. �

We observe that only obvious changes are required when we consider Hilbert
spaces valued functions, and if we replace the product by the inner product.

We briefly survey constructions going back to Bourgain, which have become
standard. The following situation will be of particular interest. Let t → S(t) be a
continuous unitary group on a Hilbert space H. We define Up

S and V p
S by

‖v‖V p
S (H) = ‖S(−t)v(t)‖V p(H),

or, to put it differently, we say that v ∈ V p
S if S(−t)v ∈ V p. Similarly we define

Up
S . Alternatively, we could define Up

S by Up
S atoms. Such an atom is given by a

partition t1 < t2 < · · · < tn and n elements φj ∈ H, with
∑ ‖φj‖p ≤ 1, and

a(t) = 0 if t < t1, and a(t) = S(t − tj)φj if tj ≤ t < tj+1, with the obvious
modification if t ≥ tn.

By Stone’s theorem, unitary groups are in one-one correspondence with self-
adjoint operators, in the sense that

i∂tu = AU

with a self-adjoint operator A defines unitary a group S(t) and vice versa. At least
formally

i∂t(S(−t)u(t)) = S(−t)(i∂tu−Au),

and hence the duality assertion is

‖u‖Uq
S
= sup

‖v‖V
p
S
≤1

B(S(−t)u(t), S(−t)v(t)).

Now suppose, that again formally

i∂tu+Au = f.

Then, if we use Duhamel’s formula, the solution is given by

u(t) =

∫ t

−∞
S(t− s)f(s)ds.

A related construction goes back to Bourgain. He defines

‖u‖X0,b
S

= ‖S(−t)u(t)‖HbL2 , (4.30)
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where the Sobolev space Hb is defined by the Fourier transform

‖f‖Hb = ‖(1 + |τ |2)b/2f̂‖L2 .

Clearly,

X0,b
S ⊂ X0,b′

S

whenever b ≥ b′. We may use a Besov refinement of the right-hand side of (4.30),
i.e.,

‖u‖Ẋs,b,q =

( ∑
N∈2Z

Nsq‖uN‖q
Hb(L2)

)1/q

,

where we choose a disjoint partition AN = {(τ, ξ) : 2N ≤ |τ + φ(ξ)| ≤ 21+N} and
define uN by the Fourier multiplication by the characteristic function of AN .

Then

Ẋ
0, 12 ,1

S ⊂ U2
S ⊂ V 2

S,rc ⊂ Ẋ0, 12 ,∞

follows from Lemma 4.18.
There is an obvious generalization to the case of time dependent operators

A(t). Definitions are simple, but this often leads to technical questions.
Now consider A given by a Fourier multiplier −φ(ξ).

Ft,x(S(−t)u)(τ, ξ) = Fte
−itφ(ξ)û(t, ξ) = Ft,xu(τ + φ(ξ), ξ),

and hence by the Plancherel formula and a translation in the τ variable,

‖u‖X0,b = ‖(1 + τ2)b/2Ft,x(u)(τ + tφ(ξ), ξ)‖L2 = ‖(1 + (τ − φ(ξ))2)b/2Ft,x(u)‖L2 .

4.10.1 Strichartz estimates

We want to use this construction for dispersive equations. There A is often defined
by a Fourier multiplier, most often even by a partial differential operator with
constant coefficients.

We consider the Schrödinger equation

i∂tu+Δu = 0 in [0,∞),

u(0) = u0 on Rd.

Let u(t) = 0 for t < 0 and the solution otherwise. Then

‖u‖U1
S
= ‖u0‖L2(Rd).

One of the Strichartz estimates states that

‖u‖Lp
tL

q
x
≤ ‖u0‖L2 (4.31)
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whenever
2

p
+

d

q
=

d

2
, 2 ≤ p, q, (p, q, d) �= (2,∞, 2).

We claim that this implies
‖u‖Lp

tL
q
x
≤ c‖u‖Up .

It suffices to verify this if S(−t)u is an atom with partition (t1, t2, . . . , tn). Then,
with tn+1 = ∞, by the Strichartz estimate,

‖u‖Lp
t ((tj ,tj+1);L

q
x) ≤ c‖u(tj)‖L2 .

We raise this to the pth power, and sum over j. Then

‖u‖Lq
tL

q
x
≤ c

(∑
‖u(tj)‖pL2

)1/p

≤ c,

since S(−t)u is a p-atom.

Consider v(t) =
∫ t

−∞ S(t− s)f(s)ds and let τ = (tj) be a partition. Then

v(tj)− S(tj − tj−1)v(tj−1) =

∫ tj

tj−1

S(tj − t)f(t)dt

and by the Strichartz estimate,

‖S(−tj)v(tj)− S(−tj−1)v(tj−1)‖L2 ≤ c‖f‖
Lp′

t Lq′
x

and
t �→ S(−t)v(t)

is continuous.
We take the power p′ and sum over j to reach the conclusion

‖v‖
V p′
S

≤ c‖f‖
Lq′

t Lp′
x

This implies the dual estimate to (4.31). If p > 2 we can combine the estimates
with an embedding to obtain the full Strichartz estimate. In particular we arrive
at the asymmetric improvement of the Strichartz estimate:

‖u‖L∞(L2) + ‖u‖Lq0,p0 ≤ c
(
‖u0‖L2 + ‖f‖

Lq′1p′1

)
if both (q1, p1) and (q0, p0) are Strichartz pairs, but not necessarily the same ones.

We prove this estimate over the interval (0,∞) and extend u by 0 to negative
t. Then

‖u‖L∞(L2) + ‖u‖Lq0
t L

p0
x

≤ c‖u‖Up0 ≤ c‖u‖
V p′1 ≤ c‖u0‖L2 + ‖f‖

L
q′1
t L

p′1
x

.

Lemma 4.33. The following estimates hold for Strichartz pairs:

‖u‖Lq
tL

p
x
≤ c‖u‖Up

and ∥∥∥∥S(t)u0 +

∫ t

0

S(t− s)f(s)ds

∥∥∥∥
V p′

≤ c(‖u0‖L2 + ‖f‖
Lq′

t Lp′
x
).
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4.10.2 Estimates by duality

We return to duality questions and calculate formally

‖u‖Uq
S
= sup

‖v‖V
p
S
≤1

|B(S(−t)u(t), S(−t)v(t))|

= sup
‖v‖V

p
S
≤1

∣∣∣∣∫
R

〈∂tS(−t)u(t), S(−t)v(t)〉dt
∣∣∣∣

= sup
‖v‖V

p
S
≤1

|−i〈S(−t)(i∂tu−Au), S(−t)v〉dt|

= sup
‖v‖V

p
S
≤1

∫
R

〈f, v〉dt,

(4.32)

with a similar statement for V p
S . This observation will be crucial for nonlinear

dispersive equations.

Lemma 4.34. Let φ ∈ C∞(Rd) be a real polynomial and let S be the unitary group
defined by the Fourier multiplier eitφ(ξ). Let 1 < p, q < ∞ and 1

p + 1
q = 1. Let T

be a tempered distribution in (a, b)× Rd which satisfies

sup{|T (ū)| : u ∈ C∞
0 ((a, b)× Rd), ‖u‖Up

S
≤ 1} = C1 < ∞

Then there is a unique v ∈ V q
S,rc(a, b) with

T (ū) =

∫
(a,b)×R

v iut + φ(D)u dxdt

and ‖v‖V q = C1. Let T be a distribution in space time which satisfies

sup{|T (v̄)| : v ∈ C∞
0 ((a, b)× Rd), ‖v‖V p

S
} = C2 < ∞

Then there is a unique u ∈ Uq
S with

T (v̄) =

∫
(a,b)×R

u ivt + φ(D)v dxdt

and ‖u‖Uq = C2.

Proof. This is a consequence of Lemma 4.32. �
The theorem implies existence of a weak solution to

i∂tu+ φ(D)u = f, u(a) = 0,

together with an estimate for u.
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4.10.3 High modulation estimates

We denote by f(D) the Fourier multiplier defined by a function f . Let

f = 1− χ(τ/Λ),

where τ is the Fourier variable corresponding to t and χ is an approximate char-
acteristic function, i.e., χ is supported on a ball of radius 2, and identically 1 on
a ball of radius 1.

Lemma 4.35. The following estimate holds:

‖f(D)v‖L2 ≤ cΛ−1/2‖v‖V 2 .

Suppose the group S(t) is defined by the Fourier multiplier eitφ(ξ). Then, with

f(D) = 1− χ((τ − φ(ξ))/Λ),

‖f(D)u‖L2 ≤ cΛ−1/2‖v‖V 2
S
.

Proof. We have
Ft(e

−itφ(ξ)û(t, ξ)) = Fx,tu(τ − φ(ξ), ξ)

and the second claim follows from the first one. Let

g = F−1χ(ξ/Λ).

Then
g(t) = Λ−1(F−1χ)(Λξ)

and ∥∥∥∥∫ (v(t+ h)− v(t))g(h)dh

∥∥∥∥
L2

≤ sup
h

|h|−1/2‖v(t+ h)− v(t)‖L2

∫
|h|1/2Λ−1/2|F−1χ(hΛ)|dh

≤ c‖u‖V 2Λ−1/2

∫
|h|1/2|F−1χ|dh. �



Chapter 5

Convolution of measures on
hypersurfaces, bilinear estimates, and
local smoothing

The contents of this section developed in discussions with S. Herr, T. Schottdorf
and J. Li. Related results have been proven by Foschi and Klainerman [7] and by
Grünrock for the Airy equation [10] and the Kadomtsev–Petviashvili II equation
[11]. The bilinear estimates for the Kadomtsev–Petviashvili equation have been
influenced by the careful work of M. Hadac. Bilinear estimates are standard tools
in dispersive equations. Here we attempt to streamline arguments and sharpen the
results. In particular, the bilinear estimates for the KP II seem to be new.

The transformation formula for a diffeomorphism φ : U → V U, V ⊂ Rd,
states ∫

V

fdmd =

∫
U

f ◦ φ| detDφ|dmd.

Its relative, the area formula for n ≥ d,

φ : U → S ⊂ Rn,

φ continuously differentiable and injective, reads∫
S

fdHd =

∫
U

f ◦ φ(detDφTDφ)1/2dmd,

where Hd denotes the Hausdorff measure. The coarea formula deals with the op-
posite situation d ≥ n and

φ : U → V ⊂ Rn

surjective. It states that for f : U → R measurable∫
V

∫
φ−1(y)

fdHd−ndmn(y) =

∫
U

f det(DφDφT )1/2dmd.
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Often it is useful to write it in the form∫
V

∫
φ−1(y)

det(Dφ(x)DφT (x))−1/2f(x)dHd−n(x)dmn(y) =

∫
U

fdmd. (5.1)

The Fourier transform maps a product into a convolution, and vice versa.
Let Σ1 and Σ2 be two (d − 1)-dimensional hypersurfaces in Rd such that for all
xi ∈ Σi the tangent spaces of Σi at xi are transverse, for i = 1, 2.

Let Σ1 and Σ2 be non degenerate level sets of functions φ1 and φ2. Let h be
a continuous function. Then, by the coarea formula,∫

Rd

f(x)h ◦ φ1(x)dm
d(x) =

∫
R

h(s)

∫
φ−1
1 (s)

f(x)|∇φ1|−1(x)dHd−1(x)ds.

This motivates the notation

δφ = |∇φ|−1dHd−1
∣∣∣
φ=0

.

We study the convolution of two measures supported on the hypersurfaces
Σ1 and Σ2.

Theorem 5.1. Let Σi ⊂ Rd be hypersurfaces and φi be as above, and fi be square
integrable functions on Σi with respect to δφi

. Then

‖f1δφ1
∗ f2δφ2

‖L2(Rd) ≤ L‖f1|∇φ1|−1/2‖L2(Σ1)‖f2|∇φ2|−1/2‖L2(Σ2),

where with the notation Σ(x, y) = {y + Γ1} ∩ {x+ Γ2},
L = sup

x∈Σ1,y∈Σ2

L(x, y),

and where L(x, y) is the square root of∫
Σ(x,y)

[|∇φ1(z − y)|2|∇φ2(z − x)|2 − 〈∇φ1(z − x),∇φ2(z − y)〉2]−1/2
dHd−2.

Proof. Let fi be measurable functions in a neighborhood of Σi, let h be continuous
and non-negative, and gi = h ◦ φi. Then, by Cauchy–Schwarz and Fubini,

‖f1g1 ∗ f2g2‖2L2

=

∫
Rd

(∫
Rd

f1(x)g
1
2
1 (x)g

1
2
2 (z − x)f2(z − x)g

1
2
1 (x)g

1
2
2 (z − x)dmd(x)

)2

dmd(z)

≤
∫
Rd

∫
Rd

|f1(x)|2g1(x)g2(z − x)dmd(x)

∫
Rd

|f2(y)|2g2(y)g1(z − y)dmd(y)dmd(z)

=

∫
R2d

|f1(x)|2g1(x)|f2(y)|2g2(y)
∫

g2(z − x)g1(z − y)dmd(z)dm2d(x, y).
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By the coarea formula,∫
g2(z − x)g1(z − y)dmd =

∫
R2

h(s)h(t)I(s, t)dsdt,

where, with the notation

Σs,t = {z : φ1(y + z) = s, φ2(x+ z) = t}

and

ρ(s, t, z) =
∣∣|∇φ1(z − y)|2|∇φ2(z − x)|2 − (∇φ1(z − y) · ∇φ2(z − x))2

∣∣−1/2
,

we have

I(s, t) =

∫
Σs,t

ρ(s, t, z)dHd−2(z).

Here we suppress the dependence on x and y, but we set

γ(x, y) = I(0, 0).

Using again the coarea formula, we get∫
Rd

|f1(x)|2g1(x)dmd(x) =

∫
R

h(s)

∫
φ−1
1 (s)

|f1(x)|2 |∇φ1(x)|−1dHd−1(x)ds.

There is a similar formula for the second integral. We assume that fi is continu-
ous and choose a Dirac sequence for h to obtain the estimate. The statement for
measurable functions on the surfaces follows by a standard approximation argu-
ment. �

Using the coarea formula we obtain a more explicit formula for the convolu-
tion:

f1h ◦ φ1 ∗ f2h ◦ φ2(z) =

∫
(f1h ◦ φ1)(z − y)(f2h ◦ φ2)(y)dm

d(y)

=

∫
R

∫
R

h(s)h(t)

∫
Σ(s,t)

f1(z − y)f2(y)ρ(s, t, z)dHd−2(y)dsdt.

Hence,

f1δφ1
∗ f2δφ2

(x)

=

∫
Γ1∩(x−Γ2)

∣∣|∇φ1(y)|2|∇φ2(x− y)|2 − (∇φ1(y) · ∇φ2(x− y))2
∣∣−1/2

dHd−2(y).

(5.2)

Chapter 5. Convolution of measures on hypersurfaces
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The following is a trivial and useful improvement of the convolution estimate
of Theorem 5.1:∥∥∥ ∫

Γ1∩(z−Γ2)

γ−1/2(x, y)ρ(0, 0, z)f1(x)f2(y)dHd−2
∥∥∥
L2

≤ ‖f1‖L2(Σ1,δφ1
)‖f2‖L2(Σ2,δφ2

).

(5.3)

It follows from the same arguments as Theorem 5.1. Here L2(Σi, δφi) denotes
the space of square integrable functions on the hypersurface with respect to the
measure δφi

.
We use the convolution estimate to bound products of solutions to dispersive

equations. Consider
iut + ψ(D)u = 0,

where the operator ψ(D) is defined as the multiplication of the Fourier transform
by the real function ψ. The characteristic surface Σ is defined in Rd+1 as the zero
level set of the function

φ(τ, ξ) = τ − ψ(ξ).

Let u be the solution with initial data u0. Then

Fxu(t, ξ) = eitψ(ξ)Fxu0(ξ)

and, for any Schwartz function f ∈ S(Rd+1) with Fourier transform g, by Planche-
rel ∫

R×Rd

ufdmd+1(t, x) =

∫
R

∫
Rd

Fxu(t, ξ)Fxf(t, ξ)dm
d(ξ)dt

=

∫
R

∫
Rd

eitψ(ξ)û0(ξ)Fxf(t, ξ)dm
d(ξ)dt

=

∫
Rd

û0(ξ)

∫
e−itψ(ξ)Fxf(t, ξ)dtdm

d(ξ)

=
√
2π

∫
Rd

û0(ξ)g(ψ(ξ), ξ)dξ

=
√
2π

∫
τ=ψ(ξ)

|∇τ,ξφ(τ, ξ)|−1u0(ξ)ḡ(τ, ξ)dHd(τ, ξ)

=:
√
2π

∫
ḡ(τ, ξ)û0(ξ)δφ.

This calculation implies the following lemma.

Lemma 5.2. Let Fxu(t, x) = eitψFxu0. Then the space-time Fourier transform of
u is the the measure

√
2πû0δφ.

Let ψ1 and ψ2 be real smooth functions and, as above,

φ1(τ, ξ) = τ − ψ1(ξ), resp. φ2(τ, ξ) = τ − ψ1(ξ).
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The product uv of two solution of the linear equations

iut + ψ1(D)u = 0, ivt + ψ2(D)v = 0

is the convolution of the Fourier transforms in Lemma 5.2, which in turn can be
estimated by Theorem 5.1. We identify the terms occurring in Theorem 5.1.

The integration set for given ξj is

M = {(τ, ξ) : τ = ψ2(ξ2) + ψ1(ξ − ξ2) = ψ1(ξ1) + ψ2(ξ − ξ1)}.
The most important case will be ψi = ψ. We express the integrand in terms of
∇ψi using

|∇τ,ξφ1|2|∇τ,ξφ2|2 − (∇τ,ξφ1 · ∇τ,ξφ2)
2

= |∇ψ1 −∇ψ2|2 + |∇ψ1|2|∇ψ2|2 − (∇ψ1 · ∇ψ2)
2.

(5.4)

The first term is the square of the distance of the gradients, and the second is the
square of product of length multiplied by sin2 of the angle between them. Here we
did not write the arguments. With them the integrand reads[

|∇ψ1(ξ − ξ2)−∇ψ2(ξ − ξ1)|2 + |∇ψ1(ξ − ξ2)|2|∇ψ2(ξ − ξ1)|2

− (∇ψ1(ξ − ξ2) · ∇ψ2(ξ − ξ1))
2
]− 1

2

.

(5.5)

The proof of bilinear estimates reduces to bounding the integral of this expression
over M .

We first consider the case of one space dimension, where the sum of the
second and the third term on the right-hand side of (5.4) vanishes. The set (x +
Σ1)∩(y+Σ2) consists generically of a discrete set of points and we obtain a sum of
|ψ′

1(z−x)−ψ′
2(z−y)|−1 over the points of the intersection. Often the intersection

consists of one point, as for the Schrödinger equation, or up to two points, as for
the Airy equation. We consider the more general case of ψ(ξ) = ξN for an even
integer N . Then the equation

ξN1 + (ξ − ξ1)
N = ξN2 + (ξ − ξ2)

N

has the obvious and unique solution ξ = ξ2 + ξ1, unless ξ1 = ξ2. If N is odd there
are the exactly two solutions, ξ = ξ1 + ξ2 and ξ = 0, unless ξ2 = ξ1.

At these points

|ψ′(ξ − ξ1)− ψ′(ξ − ξ2)| = |ψ′(ξ1)− ψ′(ξ2)|
and we obtain from inequality (5.3):

Theorem 5.3. With the notation introduced above∥∥∥ ∫
|N [(ξ − η)N−1 − ηN−1]|1/2eit(ξ−η)N+itηN

û0(ξ − η)û1(η)dη
∥∥∥
L2(Rt×Rξ)

≤ 2π‖u0‖L2(R)‖u1‖L2(R),

(5.6)

Chapter 5. Convolution of measures on hypersurfaces
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if N is even, and∥∥∥ ∫
|N [(ξ − η)

N−1
2 − η

N−1
2 ]|1/2eit(ξ−η)N+itηN

û0(ξ − η)û1(η)dη
∥∥∥
L2(Rt×Rξ)

≤
√
2 2π‖u0‖L2(R)‖u1‖L2(R),

(5.7)

if N is odd.

We will use this estimate often via the following corollary. Given λ ∈ (0,∞),
we define

u>λ = F−1(χ|ξ|>λû),

and similarly for u<λ.

Corollary 5.4. Let 0 < μ < λ and u(t, x) = S(t)u0(x), v(t, x) = S(t)v0(x), where
S is the unitary group defined by φ = ξN . Then

‖u<μv>λ‖L2(R2) ≤ 4π[
N |λN−1 − μN−1|] 1

2

‖u0‖L2(R)‖v0‖L2(R)

and

‖(u>λv>λ)>μ‖L2 ≤ 4π[
N |λN−1 − (λ− μ)N−1|] 1

2

‖u0‖L2(R)‖v0‖L2(R).

There is an interesting special case of the bilinear estimate: Local smoothing
corresponds to Σ1 = {(ξN , ξ)} and Σ0 given by τ = 0.

Theorem 5.5. Let ψ(ξ) = ξN be as above. Then

‖|NDN−1|1/2S(t)u0‖L∞
x L2

t
≤ 4π2‖u0‖L2(R),

if N is odd, and

‖|NDN−1|1/2S(t)u0‖L∞
x L2

t
≤

√
2 4π2‖u‖L2(R),

if N is even.

Proof. We apply the convolution estimate with ψ1(ξ) = ξN and ψ0 = 0. The set
M is given by

τ = (ξ − ξ0)
N = ξN1

which has the unique solution ξ = ξ1− ξ0 if N is odd, and ξ = ξ0± ξ1 if N is even,
and the integrand is

|ψ′(ξ − ξ0)|−1 = N |ξ1|1−N .

Thus, if N is odd, then

√
N

∫
|(|D|N−1

2 S(t)u0)v(x)|2dxdt ≤ 2π‖u0‖2L2(R)‖v‖2L2(R)

and we choose v so that |v|2 is a Dirac sequence. Only obvious adaptations are
needed if N is even. �
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In particular, if u satisfies the Airy equation, then

‖∂xu‖L∞
x L2

t (R)
≤ 2π‖u0‖L2 (5.8)

and u has locally square integrable derivatives for almost all t.

We continue with a case by case study of several linear dispersive equations
in several space dimensions. The first is the Schrödinger equation in higher space
dimensions. Here the characteristic set Σ is a standard parabola. The set

{(τ1, ξ1) + Σ} ∩ (τ2, ξ2) + Σ}
is the intersection of two paraboloids, and hence a paraboloid of dimension d− 1.
It is given by the equations

τ = |ξ1|2 + |ξ − ξ1|2 = |ξ2|2 + |ξ − ξ2|2.
The first equality determines τ , which is of minor importance, and the second

is equivalent to
〈ξ, ξ2 − ξ1〉 = |ξ2|2 − |ξ1|2,

resp.
〈ξ − (ξ2 + ξ1), ξ2 − ξ1〉 = 0 (5.9)

which describes a hyperplane with normal ξ2 − ξ1, if ξ2 �= ξ1. We restrict to this
non-degenerate situation. This suffices for the estimate.

Let w be the closest point of the hyperplane defined by (5.9) to ξ1, resp. ξ2.
With this notation the intersection is given by

{(τ, w+v) : τ = ξ21+ |w−ξ1|2+ |v|2 = ξ22+ |w−ξ2|2+ |v|2, 〈v, ξ2−ξ1〉 = 0}. (5.10)

If we integrate with respect to v, we obtain by the coarea formula an integral∫
. . .

√
1 + 4|v|2dv.

For ξ = w + v,
∇|ξ − ξ1|2 = 2v + 2(w − ξ1),

and similarly
∇|ξ − ξ2|2 = 2v + 2(w − ξ2).

Thus the square of the difference is given by

4|ξ2 − ξ1|2

and

(|v|2 + |w − ξ1|2)(|v|2 + |w − ξ2|2)− (|v|2 + (w − ξ1)(w − ξ2))
2 = |v|2|ξ2 − ξ1|2

and the integrand is
(|ξ2 − ξ1|

√
4 + 4|v|2)−1.

We will choose Σ1 to be the part of the parabola above |ξ| ≥ λ and Σ2 the
part of the parabola above the ball of radius μ.

Chapter 5. Convolution of measures on hypersurfaces



80 Chapter 5. Convolution of measures on hypersurfaces

Lemma 5.6 (Schrödinger, d dimensions). Let d ≥ 2, u(t, x) = S(t)u0, v(t) =
S(t)v0, where S denotes the Schrödinger group. Let μ ≤ 1

2λ. Then

‖u>λv<μ‖L2 ≤ cdμ
d−1
2 λ−1/2‖u0,>λ‖L2‖v0,<μ‖L2

and
‖(uv)<μ‖L2(R2) ≤ cdμ

d−2
2 ‖u0‖L2‖v0‖L2 .

Proof. In the first case |ξ2 − ξ1| ≥ λ/2, and we integrate over a ball of radius μ.
The factor from the area formula cancels the one from the integrand, hence the
first estimate. It is not difficult to determine the constant cd.

The second estimate could probably be proven with the arguments here. We
derive it from the Strichartz estimate

‖u‖
L4

tL
2d

d−1
x

≤ c‖u0‖L2(Rd).

We combine it with Bernstein’s inequality for p ≤ q,

‖v<μ‖Lq ≤ cμ
d
p− d

q ‖v<μ‖Lp .

With a smooth truncation (instead of the Fourier multiplication by a characteristic
function) we obtain for fixed t

‖(uv)<μ(t)‖L2(Rd) ≤ cμ
d−2
2 ‖uv‖

L
d

d−1
≤ cμ

d−2
2 ‖u‖

L
2d

d−1 (Rd)
‖v‖

L
2d

d−1 (Rd)
,

and we complete the argument by taking the L2 norm with respect to t. �
The case of the Kadomtsev–Petviashvili II equation is considerably more

intricate. We study
ut + uxxx + ∂−1

x uyy = 0.

The symbol resp. Fourier multiplier is

ψ(ξ, η) = ξ3 − η2/ξ.

Here the formal notation ∂−1
x has to be understood as Fourier multiplier. Here

is it useful to first apply Fubini’s theorem for the integration over Σ((τ1, ξ1, η1),
(τ2, ξ2, η2)), or more precisely in its derivation, and to integrate first with respect
to ξ.

For fixed ξ the intersection consists of at most two points η and the consid-
erations in one space dimension show that the integrand for the integration with
respect to ξ is the following to the power −1/2:∣∣∂η[(ξ − ξ1)

3 − (η − η1)
2/(ξ − ξ1)− (ξ − ξ2)

3 − (η − η2)
2/(ξ − ξ2)]

∣∣
= 2

∣∣∣∣η − η1
ξ − ξ1

− η − η2
ξ − ξ2

∣∣∣∣ . (5.11)
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The integration curve is described by the equations

τ = ξ31 − η21
ξ1

+ τ − ξ31 + (ξ − ξ1)
3 − (η − η1)

2

ξ − ξ1
= ξ32 − η22

ξ2
+ (ξ − ξ2)

3 − (η − η2)
2

ξ − ξ2
.

We reorganize the second identity to

ξ31 − η21
ξ1

+

[
(ξ2 − ξ1)

3 − (η2 − η1)
2

ξ2 − ξ1

]
− ξ32 +

η22
ξ2

=

[
(ξ − ξ2)

3 − (η − η2)
2

ξ − ξ2

]
+

[
(ξ2 − ξ1)

3 − (η2 − η1)
2

ξ2 − ξ1

]
−

[
(ξ − ξ1)

3 − (η − η1)
2

ξ − ξ1

]
and use the algebraic resonance relation

(ξ1+ξ2)
3− (η1 + η2)

2

ξ1 + ξ2
−(ξ31−η21/ξ1)−(ξ32−η22/ξ2) = ξ1ξ2(ξ1+ξ2)

⎡⎢⎣3 +
∣∣∣η1

ξ1
− η2

ξ2

∣∣∣2
|ξ1 + ξ2|2

⎤⎥⎦
(5.12)

to arrive at

ω := ξ1ξ2(ξ1 − ξ2)

⎛⎜⎝3 +

∣∣∣η1

ξ1
− η2

ξ2

∣∣∣2
(ξ2 − ξ1)2

⎞⎟⎠
= (ξ − ξ2)(ξ − ξ1)(ξ1 − ξ2)

⎛⎜⎝3 +

∣∣∣η−η1

ξ−ξ1
− η−η2

ξ−ξ2

∣∣∣2
|ξ2 − ξ1|2

⎞⎟⎠ .

(5.13)

Here we used the elementary identities which show a high degree of symmetry:∣∣∣η1

ξ1
− η2

ξ2

∣∣∣2
|ξ1 + ξ2|2 =

|ξ1η2 − ξ2η1|2
(ξ1ξ2(ξ1 + ξ2))2

=
|(ξ1 + ξ2)η2 − ξ2(η1 + η2)|2

(ξ1ξ2(ξ1 + ξ2))2
=

∣∣∣η1+η2

ξ1+ξ2
− η2

ξ2

∣∣∣2
|ξ1|2 .

The left-hand side of (5.13) is the called modulation. Assuming neither ξ1 =
0, nor ξ2 = 0, nor ξ1 = ξ2, there is only a solution if ξ1ξ2 has the same sign as
(ξ− ξ2)(ξ− ξ1). Below we neglect the question whether there is a solution and we
rewrite the identity (5.3) as∣∣∣∣η − η1

ξ − ξ1
− η − η2

ξ − ξ2

∣∣∣∣2 =
ξ2 − ξ1

(ξ − ξ1)(ξ − ξ2)
(ω−3(ξ−ξ1)(ξ−ξ2)(ξ2−ξ1)) = f(ξ), (5.14)

which is useful for determining η as a function of ξ. The left-hand side coincides
with (5.11) and allows us to determine the integrand as a function of ξ.

Chapter 5. Convolution of measures on hypersurfaces
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Algebraic manipulation allow a fairly explicit determination of the solutions
to the polynomial equation (5.13). To shorten the notation, we write ξ̃ = ξ2 − ξ1
in the sequel. Then

0 = 3ξ̃2(ξ−ξ1)
2(ξ−ξ2)

2+
(
(η−η1)(ξ−ξ2)− (η−η2)(ξ−ξ1)

)2
+ωξ̃(ξ−ξ1)(ξ−ξ2),

(5.15)
which we rewrite in terms of

ξ̂ = ξ − 1

2
(ξ1 + ξ2)

and

η̂ = (η − η1)(ξ − ξ2)− (η − η2)(ξ − ξ1)

= η(ξ1 − ξ2) + ξ(η2 − η1) + η1ξ2 − η2ξ1.

We observe that

f(ξ) =
η̂2

ξ̂2 − 1
4 ξ̃

2
, (5.16)

since

(ξ − ξ1)(ξ − ξ2) = ξ̂2 −
(
ξ1 − ξ2

2

)2

,

and we obtain from (5.3)

3ξ̃2
(
ξ̂2 − 1

4
ξ̃2
)2

+ ωξ̃
(
ξ̂2 − 1

4
ξ̃2
)
+ η̂2 = 0. (5.17)

We arrive at [√
3ξ̃(ξ̂2 − 1

4
ξ̃2) +

ω

2
√
3

]2
+ η̂2 =

ω2

12
. (5.18)

It remains to partly undo and interpret the formulas and transformations. For
simplicity, we assume that ξ1 < ξ2. All solutions of the polynomial equation satisfy∣∣∣∣√3ξ̃(ξ̂2 − 1

4
ξ̃2) +

ω

2
√
3

∣∣∣∣ ≤ |ω|
2
√
3
,

resp.
1

6
(ω − |ω|) ≤ (ξ2 − ξ1)(ξ − ξ1)(ξ − ξ2) ≤ 1

6
(ω + |ω|), (5.19)

which we could have read from (5.13). Clearly,

|ξ1 − ξ2|(ξ1 − ξ)(ξ − ξ2) ≤ 1

4
|ξ1 − ξ2|3

with equality if ρ = 0 resp. ξ = ξ1+ξ2
2 . This set always contains the points ξ = ξ1,

η = η1 and ξ = ξ2, η = η2. We list the geometric cases.
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1. If ξ1ξ2 < 0 and, for simplicity, ξ1 < 0 < ξ2, then (5.19) describes two inter-
vals, the length of which is at least min{|ξ1|, |ξ2|} The set is a union of two
topological circles contained in {ξ ≤ ξ1} ∪ {ξ ≥ ξ2}. The size of the circles is
given by ω.

2. If ξ1ξ2 > 0 and, for simplicity, 0 < ξ1 < ξ2 and

|ω| < 4

3
|ξ1 − ξ2|3,

then there are again two topological circles, but this time contained in {ξ1 ≤
ξ < ξ2+ξ1

2 } and { ξ1+ξ2
2 < ξ ≤ ξ2}. Again their size is at least min{|ξ1|, |ξ2|}.

3. If ξ1ξ2 > 0 and

|ω| = 4

3
|ξ1 − ξ2|3,

then the intersection is a topological figure 8 contained in ξ1 ≤ ξ ≤ ξ2. The
center of the figure 8 is at ξ = ξ1+ξ2

2 and η = η1+η2

2 .

4. If |ω| > 4
3 |ξ1−ξ2|3, then the intersection is a topological sphere in ξ1 < ξ < ξ2.

In this case

f(ξ) ∼ ξ2 − ξ1
(ξ − ξ1)(ξ − ξ2)

ω.

The set expressed in terms of η̂ and ξ is always symmetric with respect to the
reflection at ξ1+ξ2

2 and η̂ = 0. We choose various subsets of the characteristic
surface. Let μ ≤ λ, Σ1 = Σ ∩ {μ/2 ≤ |ξ| ≤ μ}, and Σ2 = Σ ∩ {λ ≤ |ξ|}.

If μ ≤ λ/10, then we obtain only the parts of the curves with |ξ2 − ξ| ∼ μ

and η ∼ η2. In particular, we stay away from ξ = ξ1+ξ2
2 . If

∣∣∣η1

ξ1
− η2

ξ2

∣∣∣ ≥ 5λ, then

|f | ≥ ω
μ , the ξ integral is over an interval of length μ, and∫

I

|f |− 1
2 dξ ∼ μ

3
2√
ω
. (5.20)

If μ ∼ λ and
∣∣∣η1

ξ1
− η2

ξ2

∣∣∣ ≤ 5λ we apply the L4 Strichartz estimate. In the

opposite case we argue as above.
Let

Aμ,Λ,k =
{
(ξ, η) : μ ≤ |ξ| ≤ 2μ, kμ− Λ

μ
≤ η

ξ
< kμ+

Λ

μ

}
.

We use the Strichartz estimate for μ ∼ λ.

Theorem 5.7. The following estimate holds with suggestive notation and if μ ≤ λ:∥∥∥∥∥∥
∫ ∣∣∣(3 + ∣∣η1

ξ1
− η2

ξ2

∣∣2
|ξ1 − ξ2|2

)∣∣∣1/4û<μ(t, ξ1)v̂>λ(t, ξ2)

∥∥∥∥∥∥
L2

≤ c
(μ
λ

) 1
2 ‖vμ(0)‖L2‖uλ(0)‖L2

(5.21)

Chapter 5. Convolution of measures on hypersurfaces
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where the inner integral is a two-dimensional integral with respect to ξ1 and η1,
and ξ2 = ξ − ξ1, resp. η2 = η − η1. Similarly,∥∥∥∥∥∥
∫ ∣∣∣(3 + ∣∣η1

ξ1
− η2

ξ2

∣∣2
|ξ1 − ξ2|2

)∣∣∣1/2ûAμ,Λ,k
(t, ξ1)v̂>λ(t, ξ2)

∥∥∥∥∥∥
L2

≤ c

√
Λ

λ
‖vμ(0)‖L2‖u>λ(0)‖L2 .

(5.22)

Proof. The first estimate follows from the previous estimates. If |μ| ∼ |λ| and
|ω| ≤ cλ3, the first estimate follows from the L4 Strichartz estimate.

Only the second estimate remains to be shown. We prove the estimate first
for k = 0. The curve described by (5.18) lies on one side of ξ1, resp. ξ2, and hence
it is vertical there. Assuming η1 = 0, we expand equation (5.18) to

3(ξ2 − ξ1)
2(ξ − ξ1)

2(ξ − ξ2)
2 + ω(ξ2 − ξ1)(ξ − ξ1)(ξ − ξ2)

+ η2(ξ2 − ξ1)
2 − 2ηη2(ξ − ξ1)(ξ − ξ2) + η22(ξ − ξ1)

2.

We consider the situation where Λ ≤ μ
1
2ω

1
2 ; in the complementary case estimate

(5.21) is stronger.
The dominant terms are the second and the third term and hence in that

range

|ξ − ξ1| ≤ C
η2

ω
. (5.23)

This bounds the interval of integration in (5.20) and implies the estimates.
The bound (5.23) follows from our discussion above, which controls the global

geometry, and a continuity argument from ξ = ξ1 and η = η1:

3(ξ2−ξ1)
2(ξ−ξ1)

2(ξ−ξ2)
2 =

(
(ξ2 − ξ1)(ξ − ξ1)(ξ − ξ2)

ω

)
ω(ξ2−ξ1)(ξ−ξ1)(ξ−ξ2)

where the bracket is small compared to the next term provided |ξ − ξ1| << μ|ω|.
Similarly,

η22(ξ − ξ1)
2 =

(
η22(ξ − ξ1)

ω(ξ2 − ξ1)(ξ − ξ2)

)
ω(ξ2 − ξ1)(ξ − ξ1)(ξ − ξ2)

is small by a continuity argument. The restriction k = 0, resp. η1 = 0 is possible
due to the Galilean symmetry

(t, x, y) → (t, x+ ct+ cy, y + 2ct)

which is a symmetry of the linear and nonlinear KP II equation, and it respects
the bilinear estimate. On the Fourier side, this corresponds to

(τ, η, ξ) → (τ − 2cη + cξ, η − cξ, ξ).
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If we neglect τ , then the lines through the origin in the (ξ, η)-plane are mapped
into such lines, and the lines ξ = c are preserved.

The center of the figure 8 never plays a role unless μ ∼ λ and |η1

ξ1
− η2

ξ2
| ≤ λ,

but then its contribution is not hard to control. �
We conclude this section by explaining the relation to U2 spaces. Let, as

above, uA resp. uB be the projection on the Fourier side to sets A resp. B.

Theorem 5.8. Suppose that

‖S(t)u0,AS(t)v0,B‖L2 ≤ cA,B‖u0,A‖L2‖u0,B‖L2 .

Then with the same constant we have

‖uAvB‖L2 ≤ cA,B‖uA‖U2
S
‖uB‖U2

S
.

Proof. As for the Strichartz estimates, the assertion reduces to the assumption
and a summation for 2-atoms. We first write the second term as a sum of atoms
to obtain the statement when the first factor is a an atom, and the second factor
is in U2, and then we expand the first factor to obtain the full statement. �

Chapter 5. Convolution of measures on hypersurfaces



Chapter 6

Well-posedness for nonlinear
dispersive equations

In this section we will study local and global well-posedness for a number of differ-
ent equations where the techniques developed so far are relevant. The first example
describes the interaction of three waves of different velocities. It is elementary and
displays the role of adapted function spaces on an elementary level. The limitations
of our current understanding become obvious as well: The result should remain
true under small perturbations of the system, but I have no idea how to approach
perturbed equations.

Next we turn to generalized KdV equations and establish global well-posed-
ness and scattering in a large scale invariant Besov space for the quartic and the
quintic equation, and local existence for modified KdV and KdV in the spaces

B
1
4
2,∞ and B

− 3
4

2,∞ using the U2-V 2 spaces, bilinear estimates, Strichartz estimates
and, for KdV, modulation arguments. This is basically well known, but for KdV
and mKdV slightly stronger than available results in the literature. Going from

H− 3
4 to B

− 3
4

2,∞ for the initial data for Korteweg–de-Vries requires a new technique,
which also allows to treat low frequencies similarly to high frequencies.

Next we turn to higher dimensional non-resonant derivative Schrödinger
equations, following the dissertation of T. Schottdorf, and conclude with a dis-
cussion of the two-dimensional Kadomtsev–Petviashvili II equation.

6.1 Adapted function spaces approach for a model
problem

To motivate the relevance of adapted function spaces, we begin with a self-con-
tained study of a simple toy problem, where a nonstandard choice of adapted
function spaces leads to global well-posedness for small data in L2, and where I
know of no other technique which allows to prove this result. Consider the three

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,

DOI 10.1007/978-3-0348-0736-4_6, © Springer Basel 2014
, Oberwolfach Seminars 45,Nonlinear Schrödinger, Wave and Schrödinger Maps
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wave interaction

ut + ux = vw,

vt + vy = uw,

wt = −2uv.

(6.1)

It is easy to solve the linear equation for given initial data. We define the
evolution operator

S(t)[u0, v0, w0](x, y) = [u0(x− t, y), v0(x, y − t), w(x, y)]

and the operator-adapted function space with norm

‖[u, v, w]‖X = max
{‖ sup

t
|u(t, x+ t, y)|‖L2(R2), ‖ sup

t
|v(t, x, y + t)|‖L2(R2),

‖ sup
t

|w(t, x, y)|‖L2(R2)

}
or, written differently, with the equivalent norm

‖[u, v, w]‖X ∼ ‖ sup
t

S(−t)[u(t, x, y), v(t, x, y), w(t, x, y)]‖L2(R2).

Theorem 6.1. If

max{‖u0‖L2 , ‖v0‖L2 , ‖w0‖L2} ≤ 1

4
,

then there exists a unique global solution [u, v, w] ∈ X which satisfies

‖[u, v, w]− S(t)[u0, v0, w0]‖X ≤ 2max{‖u0‖L2 , ‖v0‖L2 , ‖w0‖L2}2.

Proof. The assertion follows by an easy duality argument from the trilinear esti-
mate∣∣∣∣∫ uvw dx dy dt

∣∣∣∣≤‖ sup
t

|u(t, x+t, y)|‖L2‖ sup
t

|v(t, x+y+t)|‖L2‖ sup
t

|w(t, x, y)|‖L2 .

(6.2)
To prove this estimate we denote

ũ(x, y) = sup
t

|u(t, x+ t, y)|, ṽ = sup
t

|v(t, x+ y + t)|, w̃(x, y) = sup
t

|w(t, x, y)|.

Then∫
|uvw|dxdydt ≤

∫
ũ(x− t, y)ṽ(x, y − t)w̃(x, y)dtdxdy ≤ ‖ũ‖L2‖ṽ‖L2‖w̃‖L2 ,

by a multiple application of the Cauchy–Schwarz inequality.
It is not difficult to set up an iteration argument to construct a global solution

for small data, which depends analytically on the initial datum. �



6.2. The (generalized) KdV equation 89

6.2 The (generalized) KdV equation

For integers p ≥ 1 we consider the initial value problems

ut + uxxx + (upu)x = 0, (6.3)

u(0) = u0; (6.4)

(the case p = 1 is the Korteweg–de-Vries equation, p = 2 yields the modified
Korteweg–de-Vries equation) and

ut + uxxx + (|u|pu)x = 0, (6.5)

u(0) = u0, (6.6)

for positive real p.
Both equations have soliton solutions

u(x, t) = c
1
pQ(c1/2(x− ct)),

with

Qp =

(
p+ 1

2

)2/p

cosh2/p
(
2

p
x

)
.

The equation is invariant with respect to scaling: λ2/pu(λx, λ3t) is a solution
if u satisfies the equation. The mass

∫
u2dx and energy

∫
( 12u

2
x − 1

p+2u
p+2)dx for

(6.5) are conserved. The energy, however, is not bounded from below.

The space Ḣ
1
2− 2

p (with norm ‖u‖Ḣs = ‖|ξ|sû‖L2) is invariant with respect
to scaling and it is not hard to see that the generalized KdV equation is globally
well posed in H1 if p < 4. For p ≥ 4 one expects blow-up. This has been proven
in series of seminal papers by Martel, Merle and Martel, and Merle and Raphael.

Using the Fourier transform we see that

vt + vxxx = 0, v(0, x) = v0(x)

defines a unitary group on L2. We denote

S(t)v0 = v(t)

for t ≥ 0 and v(t) = 0 otherwise, and define the adapted function spaces by

‖u‖Up
KdV

= ‖S(−t)u(t)‖Up , ‖u‖V p
KdV

= ‖S(−t)u(t)‖V p .

The Strichartz estimates are

‖u‖Lp
tL

q
x
≤ c‖|D|−1/pu0‖L2 (6.7)
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for p ≥ 4 and
2

p
+

1

q
=

1

2
.

We have seen in Sections 2.1.2 and 4.10.1 that they imply the embedding estimates

‖|D|1/pu‖Lp
tL

q
x
≤ c‖u‖Up

KdV
(6.8)

in the same range.

For λ > 0 we denote

uλ = χλ≤|ξ|≤1.01λ(D)u,

the projection of the Fourier transform. Then the Strichartz embedding applied

to g(D)u, g(ξ) = |ξ|− 1
p gives

‖uλ‖Lp
tL

q
x
≤ cλ−1/p‖u‖Up

KdV
(6.9)

(checking atoms one sees that Fourier multipliers act nicely on Up and V p).

The bilinear estimates for μ ≤ 9
10λ,

‖S(t)u0,λS(t)v0,μ‖L2 ≤ cλ−1‖u0,λ‖L2‖v0,μ‖L2 ,

are a direct consequence of the bilinear estimate of the last section. Hence

‖uλvμ‖L2 ≤ cλ−1‖uλ‖U2
KdV

‖vμ‖U2
KdV

. (6.10)

After these preparations we turn to the cases p = 4 and p = 3. There is a
number of aspects which are the same for both cases, and also for many other
equations. We discuss them in detail for the case p = 4 and only sketch them for
other p later.

We begin with the L2 critical case

ut + uxxx + u5
x = 0, (6.11)

and choose the norm

‖u0‖Ḃ0
2,∞

= sup
λ∈1.01Z

‖u0,λ‖L2(R)

for the initial data, and, with I = [0, T ), T ∈ (0,∞],

‖u‖X = sup
λ∈1.01Z

‖uλ‖V 2
KdV(I).

We will usually omit I in the notation.
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Theorem 6.2. There exists ε > 0 such that if

‖u0‖Ḃ0
2,∞

< ε

there is a unique global weak solution u in X with

‖u− S(t)u0‖X ≤ c‖u0‖5Ḃ0
2,∞

.

We need Bernstein’s inequality for the proof. For q ≥ p,

‖uλ‖Lq(R) ≤ λ
1
p− 1

q ‖uλ‖Lp(R). (6.12)

Bernstein’s inequality is easy to prove. Scaling reduces the question to λ = 1. So
we consider u with Fourier transform supported in [−2, 2]. We choose a Schwartz
function η with η̂(ξ) = 1 for |ξ| ≤ 2. Then

η ∗ u1 = u1

and Young’s inequality gives the bound.

Proof of Theorem 6.2. We consider T = ∞ and claim that the assertion follows
from the estimate∫

u1u2u3u4u5∂xvλdxdt ≤ c

5∏
i=1

‖ui‖X‖vλ‖V 2
KdV

. (6.13)

Suppose that this estimate is true. We search for a solution u = S(t)u0+w, where

wt + wxxx + (S(t)u0 + w)4x = 0,

with initial value w(0) = 0, which we formulate as a fixed point problem for the
map w �→ w̃, where

w̃t + w̃xxx = −(S(t)u0 + w)5x.

This equation has to be understood as follows: w̃λ satisfies

w̃λ,t + w̃λ,xxx = (−(S(t)u0 + w)5x)λ

in the sense of Lemma 4.34 with a = 0 and b = ∞. The derivative can be replaced
by the multiplication by λ after the frequency localization.

By Lemma 4.34, there exists a unique such w̃λ ∈ U2
KdV with

‖w̃λ‖U2
KdV

≤ c‖S(t)u0 + w‖5X
and, for the difference for two different data,

‖w̃2
λ − w̃1

λ‖U2
KdV

≤ c
(‖S(t)u0 + w1‖X + ‖S(t)u0 + w2‖X

)4‖w2 − w1‖X .
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We take the supremum with respect to λ and arrive at, denoting the map from w
to w̃ by J ,

‖J(w)‖X ≤ c
(‖w‖X + ‖u0‖Ḃ0

2,∞

)5
,

‖J(w2)− J(w1)‖X ≤ c
(‖w2‖X + ‖w1‖X + ‖u0‖Ḃ0

2,∞

)4‖w2 − w1‖X .

Thus J maps a ball of radius R to a ball of radius

c
(
R+ ‖u0‖Ḃ0

2,∞

)4
< R

provided

max
{
R3, ‖u0‖3Ḃ0

2,∞

}
<

1

16c
.

Then

‖J(w2)− J(w1)‖X ≤ 1

2
‖w2 − w1‖X

provided ‖wj‖X ≤ R, ‖u0‖ < c1/3

10 , and R < 1
10c1/3

. We choose R = δ = 1
10c1/3

.
Then J defines a contraction on the closed ball of radius R in X. The contraction
mapping theorem implies existence of a unique fixed point, which by Lemma 4.34 is
the unique weak solution inX. The map J is a polynomial, and hence analytic. The
map J is a contraction, and this implies that its derivative is invertible. Now the
analytic implicit function theorem in Banach spaces implies analytic dependence
on the initial data.

These arguments remain valid, with small differences, for most dispersive
equations, some wave equations, parabolic equations, and even ordinary differen-
tial equations.

It remains to prove (6.13). We expand the terms and claim that∫ 6∏
i=1

ui,λi
dxdt ≤ cλ

−1+ 1
10

6 λ
1
2− 1

10
1 (λ3λ4λ5)

− 1
6

∏
‖ui,λi

‖V 2
KdV

(6.14)

for λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6.
Let us check that this gives (6.13) by summation. We break the sum according

to the relative size of λ compared to λi. We begin with the case λ = λ6. Then
necessarily λ6 ∼ λ5, otherwise the frequencies cannot add up to 0, and it remains
to sum over λi for fixed λ, taking into account that the derivative contributes a
factor λ: ∑

λ1≤λ2≤λ3≤λ4≤λ

λ
1
2− 1

10
1 λ

− 1
6

3 λ
− 1

6
4 λ− 1

6+
1
10

and to verify that this is uniformly bounded. This is done by summing first over
λ1, then λ2, λ3, and λ4.

Next consider λ = λ4, which leads to the sum∑
λ1≤λ2≤λ3≤λ≤λ6

λ
1
2− 1

10
1 λ

− 1
6

3 λ
5
6λ

− 7
6+

1
10

6 .
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We obtain a uniform bound by first summing with respect to λ1, then λ2, λ3, and
λ5 ∼ λ6.

If λ = λ3, we are led to∑
λ1≤λ2≤λ≤λ4≤λ6

λ
1
2− 1

10
1 λ

5
6λ

− 1
6

4 λ
− 7

6+
1
10

6 ,

if λ = λ2, we get ∑
λ1≤λ≤λ3≤λ4≤λ6

λ
1
2− 1

10
1 λλ

− 1
6

3 λ
− 1

6
4 λ

− 7
6+

1
10

6 ,

and finally, if λ = λ1, ∑
λ≤λ2≤λ3≤λ4≤λ6

λ
3
2− 1

10
1 λ

− 1
6

3 λ
− 1

6
4 λ

− 7
6+

1
10

6 .

None of the summations poses difficulties. We observe that λ ∼ λ6 has been the
most difficult case, and in later proofs we often point out the most difficult case,
and neglect the others. This has to be done with care.

We turn to the proof of (6.14). The Strichartz estimate (6.8) gives∫ 6∏
j=1

uj,λjdxdt ≤
∏

λ
−1/6
j ‖uj,λj‖U6

KdV
.

The product
∏6

j=1 λ
1/6
j compensates for the derivative if the output frequency

is λ1, which in particular is the case if all frequencies are of the same size.
Now suppose that λ1 is much smaller than λ6. Then the integral vanishes

unless

λ6 − λ2 ≥ 1

5
λ6

since otherwise no frequencies in the Fourier supports can add up to zero. We
assume that this inequality holds and estimate using Bernstein’s inequality on the
first factor and the bilinear estimate (6.10) for the second and third factor:∫ 6∏

j=1

uj,λj
dxdt ≤ ‖u2,λ2

u6,λ6
‖L2‖u1,λ1

‖L∞

5∏
j=3

‖uj,λj
‖L6

≤ λ
1/2
1 (λ3λ4λ5)

−1/6λ−1
6 ‖u2,λ2‖U2

KdV
‖u6,λ6‖U2

KdV
‖u1,λ1‖V ∞

KdV

5∏
j=3

‖uj,λj‖U6
KdV

.

We recall the embedding Up ⊂ V 2
rc if p > 2. This is almost good enough, upon

replacing U2 by V 2. Let μ ≤ 9
10λ. Then

‖S(t)u0,μS(t)v0,λ‖
L

25
12

≤ c‖S(t)u0,μS(t)v0,λ‖
21
25

L2‖S(t)u0,μ‖
4
25

L6‖S(t)v0,λ‖
3
25

L6

≤ cλ− 21
25λ− 2

75μ− 2
75 ‖u0,μ‖L2‖v0,λ‖L2
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and hence, if μ ≤ 9
10λ, then

‖uμvλ‖
L

25
12

≤ cλ− 61
75μ− 2

75 ‖uμ‖V 2
KdV

‖vλ‖V 2
KdV

. (6.15)

Consequently,∫ 6∏
j=1

uj,λj
dxdt ≤‖u2,λ2

u6,λ6
‖
L

25
12
‖u1,λ1

‖L50

5∏
j=3

‖uj,λj
‖L6

≤ λ
22
50
1 ‖u1‖

L50
t L

50
23 x

λ
− 61

75
6 λ

− 2
75

2 (λ3λ4λ5)
−1/6

6∏
i=2

‖ui,λi
‖V 2

KdV

≤ λ
21
50
1 λ

− 2
75

2 λ
− 61

75
6 (λ3λ4λ5)

−1/6
6∏

i=1

‖ui,λi‖V 2
KdV

This is slightly stronger than the claimed estimate. It completes the proof. �

A variant yields local existence for large data. There are two key observations.
First we may expand∏

(S(t)u0 + w)λj =
∏

(S(t)u0)λj + · · ·+
∏

wλj ;

there is one term without w, a term linear in w, and higher order terms in w. If w
is small, then the higher order terms are even smaller. So we need some smallness
of the first and the second term. We do not want to assume that the initial data
are small, but we are willing to choose a small time.

Theorem 6.3. There exists δ > 0 such that, if R > 0,

‖u0‖Ḃ0
2,∞

≤ R

and with v = S(t)u0,

(1 +R3) sup
λ

λ− 1
6 ‖vλ‖L6([0,T ]×R) ≤ δ, (6.16)

then there is a unique solution u to

ut + uxxx + ∂x(χ[0,T ](t)u
5) = 0

with initial data u0 which satisfies

‖u− S(t)u0‖X ≤ cR3 sup
λ

λ− 1
6 ‖vλ‖2L6([0,T ]×R)

and which depends analytically on the initial data.
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Proof. By the discussion above it suffices to consider integrals∫ T

0

∫
R

(S(t)u0)
5vdxdt.

and ∫ T

0

∫
R

(S(t)u0)
4wvdxdt.

We observe that here we may always estimate two S(t)u0 factors in L6. Thus

‖w‖X ≤ cR3δ2

which is small provided δ is sufficiently small. The rest of the proof works with
virtually no change in the argument. �

The assumptions and statement of Theorem 6.3 are uniform with respect to
T . Here T = ∞ is allowed even for large initial data. In that case the solution is
in U2

KdV and hence
wλ = limS(−t)uλ(t)

exists, since all one-sided limits exist. Equivalently,

uλ(t)− S(t)wλ → 0

in L2 and the solution to the nonlinear equation is for large t close to a solution
to the linear equation. This is called scattering.

Suppose that
lim
λ→∞

‖u0,λ‖L2 = 0. (6.17)

Since, by dominated convergence,

lim
T→0

λ−1/6‖vλ‖L6([0,T ]×R) = 0

whenever vλ ∈ L6, there exists T such that

sup
λ≥1

λ−1/6‖vλ‖L6([0,T ]×R) < δ.

Trivially
‖vλ‖L6([0,T ];L2) ≤ cT 1/6‖u0,λ‖L2

and, together with Bernstein’s inequality for the case λ ≤ 1,

‖vλ‖L6([0,T ]×R) ≤ λ
1
2T

1
6 (λ− 1

6 ‖u0,λ‖L2),

which is much stronger than needed to ensure the smallness assumption (6.16)
for sufficiently small time. As a consequence we obtain existence of unique local
solutions provided (6.17) is satisfied.
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Since there are solitons, in general solutions are not in L6 of space-time.
Solitons clearly do not scatter. This version of well-posedness has been proven by
Strunk [28]. The result in L2 is due to Kenig, Ponce, and Vega.

We next turn to
ut + uxxx + u4

x = 0. (6.18)

Here Ḣ−1/6 is the critical Sobolev space. We choose a slightly larger space,

‖u‖X = sup
λ∈1.01Z

λ−1/6‖uλ‖V 2
KdV(0,∞)

for the solution and use

‖u0‖Ḃ−1/6
2,∞

= sup
λ∈1.01Z

λ−1/6‖u0,λ‖L2 .

Then
sup
λ

λ−1/6‖S(t)u0,λ‖V 2
KdV

∼ sup
λ

λ−1/6‖u0,λ‖L2 .

Theorem 6.4. There exists δ > 0 such that for all u0 with

‖u0‖
Ḃ

− 1
6

2,∞
< δ.

there is a unique global solution u which satisfies

‖u− S(t)u0‖X ≤ c‖u0‖4Ḃ−1/6
2,∞

and which depends analytically on the initial data.

Proof. We claim that∣∣∣∣∫ u1u2u3u4vλdxdt

∣∣∣∣ ≤ λ− 5
6

∏
‖ui‖X‖vλ‖V 2 . (6.19)

The theorem follows from this estimate in the same fashion as for p = 4. As in
that case, (6.19) follows from∣∣∣∣∫ u1u2u3u4vλdxdt

∣∣∣∣ ≤ λ− 5
6

∏
‖ui‖X‖vλ‖V 2 . (6.20)

To prove it we expand the left-hand side into a dyadic sum and we try to bound

I =

∣∣∣∣∣
∫ 5∏

i=1

ui,λidxdt

∣∣∣∣∣
where (by symmetry) λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5. We claim that∣∣∣∣∣

∫ 5∏
i=1

ui,λi
dxdt

∣∣∣∣∣ ≤ cελ
−1
5 (λ2λ3λ4)

−1/6(λ5/λ1)
ε
∏

‖ui,λi
‖V 2 . (6.21)
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We assume that (6.21) holds. The integral with respect to x vanishes unless
there are frequencies in the support of the Fourier transform which add up to
zero. Since, if |ξ1| ≤ |ξ2| ≤ · · · ≤ |ξ5|, the frequencies can only add up to zero,
ξ1 + ξ2 + ξ3 + ξ4 + ξ5 = 0, if |ξ5| − |ξ1| ≥ 1

10 |ξ5|, which we restrict to in the sequel.
We observe that we may restrict to λ4 ≥ λ5/8 – otherwise the integral vanishes.
The summations is done as for p = 4.

It remains to prove (6.21). We have seen that we may assume that λ1 ≤ 4λ5/5
and λ4 ≥ λ5/8. The first attempt is

I ≤ ‖u1,λ1u5,λ5‖L2

4∏
j=2

‖uj,λj‖L6

≤ (λ2λ3λ4)
−1/6λ−1

5 ‖u1,λ1
‖U2

KdV
‖u5,λ5

‖U2
KdV

4∏
j=2

‖uj,λj
‖U6

KdV
,

(6.22)

where we used Hölder’s inequality for the first inequality, the bilinear estimate for
the first factor, and the L6 Strichartz embedding for the remaining factors. This
is almost what we need – we still have to replace the norm U2

KdV by V 2
KdV.

The Strichartz estimates imply

‖S(t)u0,λS(t)u0,μ‖L3 ≤ c(λμ)−1/6‖u0,μ‖L2‖u0,λ‖L2

and the bilinear estimate is, for μ ≤ λ/1.03,

‖S(t)u0,λS(t)u0,μ‖L2 ≤ cλ−1‖u0,μ‖L2‖u0,λ‖L2 .

Thus, for 2 ≤ p ≤ 3,

‖S(t)u0,λS(t)u0,μ‖Lp ≤ cλ−6( 1
p− 1

3 )(λμ)−( 1
2− 1

p )‖u0,μ‖L2‖u0,λ‖L2 ,

and hence, by Hölder’s inequality,

‖uλuμ‖Lp ≤ cλ2− 5
pμ

1
p− 1

2 ‖uμ‖Up
KdV

‖uλ‖Up
KdV

.

With this argument we may replace the U2 by V 2 norms, but now the remaining
terms are no longer square integrable. We use this modified bilinear estimate twice
if there are two pairs of λi with ratio at least ≥ 1.012. Oversimplifying slightly
this leaves us with λ2 = λ3 = · · · = λ5 and λ1 = λ2 = λ3 = λ4 and λ5 ∼ 3λ1. The
second case is easier, and we focus on the first. We again turn our attention to

ξ1 + ξ2 + ξ3 + ξ4 + ξ5 = 0,

assuming |ξ1| ≤ |ξ2| ≤ |ξ3| ≤ |ξ4| ≤ |ξ5|. We have already seen that |ξ1| ≤ 0.9|ξ5|.
We decompose the set {ξ : λj ≤ |ξ| < 1.01λj} for 2 ≤ j ≤ 5 into symmetric unions



98 Chapter 6. Well-posedness for nonlinear dispersive equations

of intervals of length λ1/100. We label these intervals by μij with 2 ≤ i ≤ 5 and
j ≤ λ5/λ1, omit the index i for simplicity and expand:∫

u1,λ1u2,λ5u3,λ5u4,λ5u5,λ5dxdt =
∑

90≤
∣∣∣ 5∑

j=2
μj

∣∣∣≤110

∫
u1,λ1u2,μ2u3,μ3u4,μ4u5,μ5dxdt;

the sum contains at most ∼ (λ5/λ1)
4 terms. We fix μj and assume that they are

ordered. Then μ5 − μ2 ≥ 2 and we estimate∣∣∣∣∫ u1,λ1
u2,μ2

u3,μ3
u4,μ4

u5,μ5
dxdt

∣∣∣∣ ≤ ‖uλ1
u4,μ4

‖Lp‖uμ2
uμ5

‖Lq‖uλ3
‖L6 ,

and hence (changing indices if necessary, or summing over similar terms)∣∣∣∣∫ u1,λ1
u2,μ2

u3,μ3
u4,μ4

u5,μ5
dxdt

∣∣∣∣ ≤ cλ−1
5 (λ2λ3λ4)

−1/6(λ5/λ1)
∏

‖ui,λi
‖Up ,

(6.23)
since p is the smallest exponent. This is almost good, but (λ5/λ1)

5 is too big.
We recall Lemma 4.12, which allows us to write for M ≥ 1,

u = v + w,

with
κ

M
‖w‖U2

KdV
+ eM‖v‖Up

KdV
≤ ‖u‖V 2

KdV
.

We expand all the ui. This yields, by (6.22),∣∣∣∣∫ v1,λ1
v2,μ2

v3,μ3
v4,μ4

v5,μ5
dxdt

∣∣∣∣ ≤ cM5λ−1
5 (λ2λ3λ4)

− 1
6

∏
‖ui,λi‖V 2

KdV

and ∣∣∣∣∫ w1,λ1v2,λ2v3,λ3v4,λ4v5,λ5dxdt

∣∣∣∣
≤ cλ−1

5 (λ2λ3λ4)
−1/6(λ5/λ1)

5‖w1,λ1
‖up

KdV

5∏
i=2

‖vi,λi
‖Up

KdV

≤ e−Mλ−1
5 (λ2λ3λ4)

−1/6(λ5/λ1)
5
∏

‖ui,λi
‖V 2

KdV
.

Similarly we estimate all the other terms in the expansion. Then∣∣∣∣∫ u1,λ1u2,μ2u3,μ3u4,μ4u5,μ5dxdt

∣∣∣∣ ≤ c(M5 + e−M (λ5/λ1)
5)λ−1

5 (λ2λ3λ4)
−1/6

×
∏

‖ui,λi
‖V 2

KdV
.

≤ c ln(1 + (λ5/λ1))
5λ−1

5 (λ2λ3λ4)
−1/6

∏
‖ui,λi‖V 2

KdV
.

if we choose M = 5 ln(λ5/λ1). This completes the proof of estimate (6.19), and
hence the proof of the theorem. �
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Again there are similar refinements, as for the critical gKdV equation. Well-
posedness in slightly smaller spaces has been proven by Grünrock [10] and Tao
[30] based on a modification of the Fourier restriction spaces of Bourgain at the
critical level.

The statement and proof are based on [20], where it was one step in proving

stability of the soliton in Ḃ
−1/6
2,∞ , and scattering, which is probably the first stability

result of solitons for gKdV which is not based on Weinstein’s convexity argument.

Next we turn to the modified KdV equation

ut + uxxx + u3
x = 0. (6.24)

The space Ḣ−1/2 is scaling invariant, but we are not able the reach the critical
space. Instead we construct global in time solutions to

ut + uxxx + ∂x(χ[0,T ]u
3) = 0

for given initial data u0 and T > 0. We aim for a scale invariant formulation.

Given T > 0, we define the equivalent norms on B
1
4
2,∞,

‖u0‖E = max
{
T

1
6 ‖u

0,<T− 1
3
‖L2 , sup

λ≥T− 1
3

(λT )
1
4 ‖u0,λ‖L2

}
and

‖u‖X = max
{
T

1
6 ‖u

<T− 1
3
‖V 2

KdV
, sup
λ≥T− 1

3

(λT )
1
4 ‖uλ‖V 2

KdV

}
.

Well-posedness by different arguments has been shown by [17] in a slightly
smaller space of initial data.

Theorem 6.5. There exists ε > 0 such that for u0 ∈ B
1
4
2,∞ with

‖u0‖E ≤ ε

there is a unique weak solution u ∈ X with

‖u− S(t)u0‖X ≤ c‖u0‖3E .
Proof. We want to construct a fixed point of

v =

∫ t

0

S(t− s)χ[0,T ](s)∂x(w + v)3ds.

The key estimate (for small data) is

λ
1
4

∣∣∣∣∫
R×R

χ[0,T ]u1u2u3∂xvλdxdt

∣∣∣∣ ≤ c
3∏

j=1

‖uj‖X‖vλ‖V 2
KdV

. (6.25)
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The theorem follows from it by repeating the arguments for the L2 critical case.
To prove (6.25) we expand the left-hand side into a dyadic sum. The pieces

are estimated by∣∣∣∣∣∣
∫ T

0

∫
R

4∏
j=1

ui,λidxdt

∣∣∣∣∣∣ ≤ cT
1
2

4∏
j=1

λ
−1/8
j ‖uj,λj‖U8

KdV
(6.26)

if λ1 ≥ 2 using the Strichartz embedding of Theorem 3.2

‖uj,λj
‖L8

tL
4
x
≤ cλ

−1/8
j ‖uj,λj

‖U8
KdV

.

This is good enough if λ1 ∼ λ4 and λ1 ≥ 2. If μ ≤ λ/4, one has the bilinear
estimate

‖S(t)u0,μS(t)v0,λ‖
L

8
3
t L2

x

≤ ‖S(t)u0,μS(t)v0,λ‖
1
2

L4
tL

2
x
‖S(t)u0,μS(t)v0,λ‖

1
2

L2
tL

2
x

≤ cλ− 9
8μ− 1

16 ‖u0,μ‖L2‖v0,λ‖L2

and hence, if λ1 ≤ λ3/4 and λ2 ≤ λ4/4,∣∣∣∣∣∣
∫ T

0

∫ 4∏
j=1

ui,λi
dxdt

∣∣∣∣∣∣ ≤ cT
1
4 ‖u1,λ1

u3,λ3
‖
L

8
3
,2‖u2,λ2

u4,λ4
‖
L

8
3
,2

≤ cT
1
4λ

− 9
8

4 λ
− 1

16
1 λ

− 1
16

2

∏
j

‖uj,λj
‖V 2

KdV
.

(6.27)

If λ4 ≤ 2T
1
3 , we estimate∫ T

0

∫
R

4∏
i=1

ui,λi
dxdt ≤ T‖u1,λ1

‖L∞‖u2,λ2
‖L∞‖u3,λ3

‖L∞L2‖u4,λ4
‖L∞L2

≤ c
∏

‖ui,λi
‖V ∞

KdV
.

Checking the support we see that the integral vanishes unless either λ1 ≥ λ4/16
or λ1 ≤ λ3/4 and λ2 ≤ λ4/4 or λ ≤ 16.

We turn to the summation.

1. λ > λ4/16, λ4 ≥ 16T− 1
3 . The sum can be bounded using (6.26) for λ1 ≥

λ4/16 and (6.27) for λ1 ≤ λ4/16 and λ4 ≥ 16, where the sum takes the form( ∑
1≤λ1≤λ2≤λ4/4

(T
1
3λ1)

− 5
16 (T

1
3λ2)

− 5
16 (T

1
3λ4)

− 1
8

× (Tλ1)
1
4 ‖u1,λ1

‖V 2
KdV

(Tλ2)
1
4 )‖u2,λ2

‖V 2
KdV

)
‖u4,λ4

‖V 2
KdV

‖vλ‖V 2
KdV

.

The bound is obvious.
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2. max{T− 1
3 , λ} ≤ λ4/16. Here we use (6.27). The uniform bound for the sum

is immediate.

3. λ4 ≤ 16T−1/3. Now the estimate follows from the last estimate.

The proof is complete. �
The proof could easily be simplified by first rescaling to T = 1. The advantage

of the presented proof above is that it makes the behavior of all terms with respect
to scaling transparent.

Finally, we study the Korteweg–de-Vries equation

ut + uxxx + u2
x = 0.

The well-posedness result in H− 3
4 is due to Christ, Colliander, and Tao [5], who

also prove that below − 3
4 some sort of ill-posedness must occur. Despite this there

are uniform global a-priori estimates in H−1, see [3]. Uniqueness between − 3
4 and

−1 is entirely open.
We seek a solution u to

ut + uxxx + ∂x(χ[0, 1](t)u
2) = 0

with the given initial data. We again make the ansatz

u = v + w,

where v = S(t)u0 and

wt + wxxx + ∂x(χ(t)(v + w)2) = 0.

The identity
(ξ1 + ξ2)

3 − ξ31 − ξ32 = 3ξ1ξ2(ξ1 + ξ2)

describes the vertical distance of the sum of two points (τj , ξj) from the char-
acteristic set. We will make use of this property through ‘high modulation’ L2

estimates. For this purpose we fix a smooth function φ supported in [−2, 2], and
identically 1 in [−1, 1], and define uΛ(t) by the Fourier multiplier 1 − φ(τ/Λ).
The Fourier multiplier φ(τ/Λ) defines a convolution. Let ψ be the inverse Fourier
transform. Then up to a power of

√
2π,

(1− φ(τ/Λ))u = u− Λψ(Λt) ∗ u
and hence, by Lemma 4.17,

‖uΛ‖Up ≤ c‖u‖Up ,

‖uΛ‖V p ≤ c‖u‖V p .
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Theorem 6.6. There exists δ > 0 such that for all initial data satisfying

‖u0‖
B

− 3
4

2,∞
< δ

there is a unique function u ∈ X where X will be defined below, with

‖χTu− S(t)u‖X ≤ c‖u‖2
B

− 3
4

2,∞

which solves the equation up to time 1. It depends analytically on the initial data.

Proof. We define the sets

A(0) = {(τ, ξ)||ξ| ≤ 1, |τ − ξ3| ≤ 1},

A(λ) = {(τ, ξ)|λ ≤ |ξ| ≤ 2λ, |τ − ξ3| ≤ λ3},
B(λ) = {(τ, ξ)||ξ| ≤ λ, 1 ≤ |τ − |ξ|3| ≤ |ξ|λ2}.

Then, denoting the Fourier projections to a set D simply by an index D,∥∥∥|Dx| 12
∫

S(t− s)ρ(s)∂x(uA(λ)uA(λ))dtB(λ)

∥∥∥
L2

≤ λ−2‖|Dx| 12uA(λ)uA(λ)‖L2

≤ λ− 5
2 ‖uA(λ)‖2U2

KdV
,

which is scale invariant. Alternatively, we may estimate∥∥∥|Dx|− 1
2

∫
S(t− s)ρ(s)∂x(uA(λ)uA(λ))dtμ,B(λ)

∥∥∥
L2

≤ λ−1
∥∥∥ ∫

S(t− s)ρ(s)uA(λ)uA(λ)dsμ,B(λ)

∥∥∥
V 2
KdV

≤ λ−2‖uA(λ)‖U2
KdV

‖uA(λ)‖U2
KdV

.

Observe that the two terms are of the same size for μ = λ−1/2. More precisely,
the L2 norm is of unit size:∥∥∥ ∫

S(t− s)ρ(s)∂x(uA(λ)uA(λ))λ−1/2,B(λ)

∥∥∥
L2

≤ cλ− 3
4

(
λ− 3

4 ‖uA(λ)‖U2
KdV

)2
.

There is nothing to loose, and hence we need to control uA(λ) in U2
KdV. Similarly∥∥∥ ∫

S(t− s)ρ(s)∂x(uA(λ)uB(λ))A(λ)ds
∥∥∥
V 2
KdV

≤ cλ
1
2 ‖uA(λ)‖U2

KdV
‖|Dx|− 1

2uB(λ)‖L2

and∥∥∥ ∫
S(t− s)ρ(s)∂x(uA(λ)uμ,B(λ))A(λ)ds

∥∥∥
U2

KdV

≤ c‖uA(λ)‖U2
KdV

‖|Dx| 12uμ,B(λ)‖L2 .
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This is the only place which does not allow us to go beyond B
− 3

4
2,∞.

We define the function space X by the norm

‖u‖X = sup
λ≥1

{λ− 3
4 ‖uA(λ)‖U2

KdV
, λ3/4‖(λ− 1

2 |Dx|+ λ
1
2 |D|−1)

1
4uB(λ)‖L2}

+ ‖uA(0)‖L2
xL

∞
t
.

We only sketch the estimates, and choose the most instructive ones, using dyadic
decompositions on the Fourier side, bilinear estimates and modulation estimates.
We have chosen the most instructive estimates for a sketch of the proof. We used
a dyadic decomposition on the Fourier side, bilinear estimates and modulation
estimates. Similarly,∥∥∥∥∥

(∫ ∞

0

S(t− s)χ(s)∂x(uA(λ)uB(λ))ds

)
A(λ)

∥∥∥∥∥
V 2
KdV

≤ cλ1/2‖|Dx|−1/2uB(λ)‖L2‖uA(λ)‖U2
KdV

and for μ ≤ λ,∥∥∥∥∥
(∫ ∞

0

S(t− s)χ(s)∂x(uA(λ)uB(λ),μ)ds

)
A(λ)

∥∥∥∥∥
U1

KdV

≤ cλ‖uA(λ)uB(λ),μ‖U2
KdV

≤ c‖uB(λ),μ‖L2‖uA(λ)‖U2
KdV

,

hence, by summation and logarithmic interpolation∥∥∥∥∥
(∫ ∞

0

S(t− s)χ(s)∂x(uA(λ)uB(λ))ds

)
A(λ)

∥∥∥∥∥
U2

KdV

≤ c‖uA(λ)‖U2
KdV

λ−1/8‖D−1/4uB(λ)‖L2 .

There are many more terms, but they are easier to deal with, which we omit. �

The interest in this setup is twofold: First it shows how to go beyond H− 3
4 .

Second, X is not a subset of L∞(R;B
− 3

4
2,∞), and one has to use energy estimates to

see that the solution is bounded and weakly continuous as a map to B
− 3

4
2,∞. This

difficulty is related to the classical ill-posedness results: the flow map does not
extend to a differentiable map from the initial data to u(t) ∈ S below − 3

4 .

6.3 The derivative nonlinear Schrödinger equation

We consider
iut +Δu = ū∂1ū. (6.28)
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This equation has no significance for applications as far as I know. The choice of
the non-linearity is crucial. If u satisfies (6.28) then the same is true for

λu(λ2t, λx)

and the underlying critical space is Ḣ
d−2
2 .

The Strichartz with 2
4 + d

p = d
2 and Bernstein give for d ≥ 2

‖uλ‖L4(R×Rd) ≤ λ
d−2
4 ‖ui,λi

‖L4
tL

p
x(Rd) ≤ λ

d−2
4 ‖ui,λi

‖U4
iΔ
. (6.29)

The corresponding bilinear estimates are

‖uλvμ‖L2 ≤ cμ
d−1
2 λ−1/2‖uλ‖U2

iΔ
‖vμ‖U2

iΔ
(6.30)

and
‖(uλvλ)μ‖L2 ≤ cμ

d−2
2 ‖uλ‖U4

iΔ
‖vλ‖U4

iΔ
(6.31)

if μ < λ/4.
This time we need the complex inner product. The modulation relation is

ξ21 + ξ22 + (−ξ1 − ξ2)
2 ≥ ξ21 + ξ22 ,

which is a particularly pleasant situation.
The dyadic estimates become, for λ1 � λ2 ∼ λ3, with uh denoting the part

with modulation at least (|ξ1|2 + |ξ2|2 + |ξ3|2)/10,∣∣∣∣∫ uh
λ1
uλ2uλ3dx dt

∣∣∣∣ ≤ cλ−1
3 λ

d−2
2

1 ‖u1,λ1‖V 2
iΔ
‖u2,λ2‖V 2

iΔ
‖u3,λ3‖V 2

iΔ
(6.32)

and ∣∣∣∣∫ uλ1
uh
λ2
uλ3

dx dt

∣∣∣∣ ≤ cλ
− 3

2
3 λ

d−1
2

1 ‖u1,λ1
‖U2

iΔ
‖u2,λ2

‖V 2
iΔ
‖u3,λ3

‖U2
iΔ
, (6.33)

whence ∣∣∣∣∫ ∏
u1,λ1

uh
2,λ2

u3,λ3
dxdt

∣∣∣∣ ≤ cλ
− 3

2
3 λ

d−1
2

1 (λ3/λ1)
ε

3∏
i=1

‖ui,λi
‖V 2

iΔ
.

Theorem 6.7. Let d = 2. There exists ε > 0 such that if

‖u0‖L2 < ε,

then there is a unique solution to

iut +Δu = ū∂x1
ū
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with

‖u‖X :=

(∑
λ∈2Z

‖uλ‖2U2
iΔ

)1/2

≤ c‖u0‖L2 .

If d ≥ 3, there exists ε > 0 such that if

‖u0‖
Ḃ

d−2
2

2,1

=
∑
λ

λ
d−2
2 ‖u0,λ‖L2 < ε,

then there is a unique weak solution with

‖u‖X :=
∑
λ

λ
d−2
2 ‖uλ‖U2 ≤ c‖u0‖

Ḃ
d−2
2

2,1

.

Proof. The key estimates are again∣∣∣∣∫
R×Rd

(∂x1 ū1)ū2v̄dxdt

∣∣∣∣ ≤ ‖u1‖X‖u2‖X
(∑

λ

‖vλ‖2V 2
KdV

)1/2

,

resp. ∣∣∣∣∫
R×Rd

(∂x1
ū1)ū2v̄dxdt

∣∣∣∣ ≤ ‖u1‖X‖u2‖X sup
λ

λ− d−2
2 ‖vλ‖V 2

KdV

if d ≥ 3. We abuse the notation and set λ2 = λ3 = λ and compute for d = 2∑
μ<λ

λ

∣∣∣∣∫ ūh
μū2,λv̄λdxdt

∣∣∣∣ ≤ ∑
μ≤λ

λ‖uh
μ‖L2‖(u2,λvλ)μ‖L2

≤
⎛⎝∑

μ≤λ

‖u1,μ‖V 2
iΔ
)2

⎞⎠1/2

‖uλvλ‖L2(R2)

≤ ‖u1‖X‖uλ‖U4
iΔ
‖vλ‖U4

iΔ
.

The factor λ−1 compensates for the derivative. The summation with respect
to λ is trivial. The estimate is easier if the high modulation falls on other terms:∑

μ<λ

λ
∣∣∣ ∫ ūμū

h
2,λv̄λdxdt

∣∣∣ ≤ ∑
μ≤λ

λ‖uh
2,λ‖L2‖u1,μvλ‖L2

≤ μ1/2‖u1,μ‖V 2
iΔ
λ−1/2‖u1,μ‖U2

iΔ
‖vλ‖U2

iΔ
.

By logarithmic interpolation (Lemma 4.12),∑
μ<λ

λ

∣∣∣∣∫ ūμū
h
2,λv̄λdxdt

∣∣∣∣ ≤∑
μ≤λ

λ‖uh
2,λ‖L2‖u1,μvλ‖L2

≤
∑
μ≤λ

(μ/λ)
1
2−ε‖u1,μ‖V 2

iΔ
λ−1/2‖u1,μ‖V 2

iΔ
‖vλ‖V 2

iΔ
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and the summation is straightforward.
The modification for d ≥ 3 is simple: We give up orthogonality and sum for

the first estimate∑
μ<λ

λ

∣∣∣∣∫ ūh
μū2,λv̄λdxdt

∣∣∣∣ ≤∑
μ≤λ

λ‖uh
μ‖L2‖(u2,λvλ)μ‖L2

≤
∑
μ≤λ

μ
d−2
2 ‖u1,μ‖V 2

iΔ
‖uλ‖V 2

iΔ
‖vλ‖V 2

iΔ
.

For the second estimate we put in powers of μ resp. λ. �

6.4 The Kadomtsev–Petviashvili II equation

The Kadomtsev–Petviashvili II (KP II) equation

∂x(∂tu+ ∂3
xu+ u∂xu) + ∂2

yu = 0 in (0,∞)× R2,

u(0, x, y) = u0(x, y), (x, y) ∈ R2,
(6.34)

has been introduced by B.B. Kadomtsev and V.I. Petviashvili [14] to describe
weakly transverse water waves in the long wave regime with small surface tension.
It generalizes the Korteweg–de Vries equation, which is spatially one-dimensional
and thus neglects transversal effects. The KP II equation has a remarkably rich
structure.

Here we describe a setup leading to global well-posedness and scattering for
small data. The Hilbert space will be denoted by Ḣ− 1

2 ,0, and is defined by the
norm

‖u0‖
Ḣ− 1

2
,0 = ‖|ξ|−1/2û0‖L2 ,

where ξ is the Fourier multiplier with respect to x. The Fourier multiplier |ξ|− 1
2

defines an isomorphism from L2 to Ḣ− 1
2 ,0.

For λ > 0 we define the projection to the range 1 ≤ |ξ|/λ < 2 by

F(uλ) = χλ≤|ξ|≤2λFu,

where F denotes the Fourier transform. Usually we choose λ ∈ 2Z, the set of
integer powers of 2.

Let u(t) = S(t)u0. The Strichartz estimate is

‖u‖L4(R3) ≤ c‖u(0)‖L2

which implies the embedding U4
KP ⊂ L4(R3) and the inequalities (see Section 3.3)

‖u‖L4(R3) ≤ c‖u‖U4
KP

≤ c‖u‖V 2
KP

. (6.35)
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One has the bilinear improvement of Theorem 5.7 which implies

‖uλvμ‖L2 ≤ c(λ/μ)1/2‖uλ(0)‖L2‖vμ(0)‖L2 , (6.36)

thus,
‖uλvμ‖L2 ≤ c(μ/λ)1/2‖uλ‖U2

KP
‖vμ‖U2

KP
, (6.37)

and together with the logarithmic interpolation of Lemma 4.12 one gets

‖uλvμ‖L2 ≤ c(μ/λ)1/2(ln(2 + λ/μ))2‖uλ‖V 2
KP

‖vμ‖V 2
KP

. (6.38)

Formally the L2 norm is constant.
We use the norm

‖u‖X =

(∑
λ∈2Z

‖uλ‖2V 2
KP

)1/2

.

Theorem 6.8. There exists ε > 0 such that for u0 ∈ Ḣ−1/2,0(R2) there exists a
unique solution u ∈ X with

‖u‖X ≤ c‖u0‖H−1/2,0(R2).

If u0 ∈ L2, then there is a unique solution in C(R;L2) with

‖χ[k,k+1](t)u‖U2
KP

< C(‖u0‖L2).

Proof. By definition,
‖S(t)u0‖X ≤ c‖u0‖Ḣ−1/2 .

We claim that

‖
∫ t

0

S(t− s)∂x(uv)ds‖X ≤ c‖u‖X‖v‖X . (6.39)

With this information we set up the fixed point argument and obtain a unique
fixed point which is the solution. By duality, (6.39) follows from∣∣∣∣∫ uvw dxdydt

∣∣∣∣ ≤ c‖u‖X‖v‖X‖w‖X . (6.40)

We expand all factors and consider∫
uλ1

vλ2
wλ3

dxdydt.

The integral is symmetric with respect to the factors and we may assume that
λ1 ≤ λ2 ≤ λ3. If there are no λ1 ≤ |ξ1| ≤ 2λ1, λ2 ≤ |ξ2| ≤ 2λ2, and λ3 ≤ |ξ3| ≤ 2λ3

which add up to zero, then the integral vanishes. Thus

λ3 ≤ 4λ2
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The integral vanishes unless there are such ξi, ηi, and τi which add up to
zero. Now, if 0 = ξ1 + ξ2 + ξ3 = η1 + η2 + η3, then

ξ31 + ξ32 + ξ33 − η21
ξ1

− η22
ξ2

− η23
ξ3

= 3ξ1ξ2ξ3

(
1 +

|η1ξ2 − η2ξ1|2
ξ1ξ2ξ3

)
.

We define QH by the Fourier multiplier χ|τ−ξ3+η2/ξ|>|ξ1||ξ2||ξ1+xi2|/10 and QL =
1−QH . Then by the consideration of the supports∫

QLuλ1QLvλ2QLwλ3dxdydt = 0.

It follows from Lemma 4.35 that

‖QHu‖L2 ≤ c(|ξ1||ξ2||ξ1 + ξ2|)−1/2‖u‖V 2
KP

and
‖QHu‖V 2

KP
≤ c‖u‖V 2

KP
.

We estimate∣∣∣∣∫ (uλ1
)vλ2

QHwλ3
dxdydt

∣∣∣∣
≤ ‖uλ1vλ2‖L2‖QHwλ3‖L2

≤ c

(
λmin

λmax

)1/2

(1 + ln(λ2/λ1))
2λ−1

maxλ
−1/2
min ‖vλ1‖V 2

KP
‖vλ2‖V 2

KP
‖wλ3‖V 2

KP

≤ c

(
λmin

λmax

)1/2

(1 + ln(λ2/λ1))‖vλ1‖X‖vλ2‖X‖wλ3‖X .

This is easy to sum with respect to all indices. Th case with QHuλ1
is different

since we don’t gain a factor for the summation over the small frequencies. Here
we need some orthogonality:∣∣∣∣∣ ∑

λ1<λ2

∫
QHuλ1uλ2wλ3dxdydt

∣∣∣∣∣ ≤
( ∑

λ1<λ2

‖QHuλ1‖2L2

)1/2

‖vλ2wλ3‖L2

≤
(∑

λ−1
1 ‖uλ1‖V 2

KP

) 1
2

λ−1
max‖vλ2‖V 2

KP
‖wλ3‖V 2

KP

which can be summed.
Now consider data in u0 ∈ L2 with ‖u0‖L2 ≤ 1. Let v be the solution to

linear KP with initial data u0. We seek a solution in the form u = v+w. We need
in addition the following two estimates. The arguments are simpler than in the
homogeneous case, and we leave them to the reader. Observe that the L2 norm is
formally conserved.

‖χ[0,1]

∫ t

0

S(t− s)∂x(uv)ds‖U2 ≤ c‖u>1‖U2
KP

‖v>1‖U2
KP
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and

‖χ[0,1]

∫ t

0

S(t− s)∂x(u<1v>1)ds‖U2 ≤ c‖u‖U2
KP

‖v‖U2
KP

. �



Chapter 7

Appendix A: Young’s inequality and
interpolation

Young’s inequality bounds convolutions in Lebesgue spaces. It is part of the state-
ment that the integral exists for almost all arguments of the convolution. Let md

denote the d-dimensional Lebesgue measure.

Lemma 7.1. Let 1 ≤ p, q, r ≤ ∞ satisfy

1

p
+

1

q
+

1

r
= 2,

and let

f ∈ Lp(Rd), g ∈ Lq(Rn), h ∈ Lr(Rd).

Then ∫
Rd×Rd

f(x)g(x− y)h(y)dm2d(x, y) ≤ ‖f‖Lp‖g‖Lq‖h‖Lr .

We assume that the Lemma holds and choose f(x) = e−|x|2 ∈ Lr(Rd). It
follows by Fubini’s theorem that g(x − y)h(y) is integrable with respect to y for
almost all x. The estimate of the lemma shows that

Lp(Rd) 
 f �→
∫
Rd

(∫
Rd

h(y)g(x− y)dmd(y)

)
f(x)dmd(x) ∈ R

defines a linear form on Lr of norm ≤ ‖g‖Lq‖g‖Lr . Thus

‖g ∗ h‖Lp′ ≤ ‖g‖Lq‖h‖Lr

for
1

q
+

1

r
= 1 +

1

p′
.
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Proof of Lemma 7.1, as in [22]. Set

1

γ1
= 1− 1

p
,

1

γ2
= 1− 1

q
,

1

γ3
= 1− 1

r
.

Then 1 ≤ γ1 ≤ ∞,

1

γ2
+

1

γ3
=

1

p
,

1

γ1
+

1

γ3
=

1

q
,

1

γ1
+

1

γ2
=

1

r

and
1

γ1
+

1

γ2
+

1

γ3
= 1.

Let

a(x, y) = |f(x)|p/γ3 |g(x− y)|q/γ3 , b(x, y) = |g(x− y)|q/γ1 |h(y)|r/γ1 ,

c(x, y) = |f(x)|p/γ2 |h(y)|r/γ2 .

Then
|f(x)g(x− y)h(y)| = a(x, y)b(x, y)c(x, y)

and, by applying Hölder’s inequality twice,∫
|f(x)g(x− y)h(y)|dm2d ≤ ‖a‖Lγ3 ‖b‖Lγ1 ‖c‖Lγ2 = ‖f‖Lp‖g‖Lq‖h‖Lr . �

There is an improvement: the weak Young inequality. Let (X,μ) be a measure
space. We will often omit space and measure in the notation. The weak Lp spaces
are defined by the quasi-norm

‖f‖Lp
w
= sup

t>0
t (μ({x : |f(x)| > t}))1/p .

If 1 < p < ∞, then there is an equivalent norm on Lp
w:

‖f‖Lp
w
∼ sup

t>0
t

(∫
{x:|f(x)|>t}

|f(y)|dμ(y)
)1/p

.

It is not hard to see the equivalence, and that the term on the right-hand side
defines a norm.

Proposition 7.2. Suppose that

1 < p, q, r < ∞,
1

p
+

1

q
= 1 +

1

r
,

f ∈ Lp and g ∈ Lq
w. Then f(x)g(x − y) is integrable with respect to x for almost

all y and
‖f ∗ g‖Lr ≤ cp,q‖f‖Lp‖g‖Lq

w
.
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This is a consequence of the Marcinkiewicz interpolation theorem. We state
and prove the following version.

Let X and Y be normed linear spaces. We denote by L(X,Y ) the normed
space of bounded linear operators from X to Y .

Lemma 7.3 (Marcinkiewicz interpolation). Let (X,μ) and (Y, ν) be measure spaces
and 1 ≤ p1 < p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞, q1 �= q2, 0 < λ < 1,

1

p
=

λ

p1
+

1− λ

p2
,

1

q
=

λ

q1
+

1− λ

q2
.

Suppose that
T ∈ L(Lp1(μ), Lq1

w (ν)) ∩ L(Lp2(μ), Lq2
w (ν)).

Then T ∈ L(Lp
w(μ), L

q
w(ν)), and

‖T‖L(Lp
w(μ),Lq

w(ν)) ≤ c‖T‖λ
L(Lp1 (μ),L

q1
w (ν))

‖T‖1−λ
L(Lp2 (μ),L

q2
w (ν))

and, if p ≤ q, then T ∈ L(Lp(μ), Lq(ν)) and

‖T‖L(Lp(μ),Lq(ν)) ≤ c‖T‖λ
L(Lp1 (μ),L

q1
w (ν))

‖T‖1−λ
L(Lp2 (μ),L

q2
w (ν))

with a constant c depending only on the exponents.

Proof of Proposition 7.2. Let f ∈ Lp and Tg : Lq → Lr be the convolution with
g. We interpolate the estimate with p1 = 1, p2 = p′, q1 = q, and q2 = ∞ to get
the estimate in weak spaces:

‖f ∗ g‖Lr
w
≤ ‖g‖Lq

w
‖f‖Lp .

Now we fix g and consider T : f �→ f ∗ g, and get

‖f ∗ g‖Lr ≤ c‖f‖Lp‖g‖Lq
w

by the second part of the Lemma. �
It is useful to generalize and sharpen the Marcinkiewiecz interpolation esti-

mates before proving them.

Definition 7.4 (Lorentz spaces). Let (A, μ) be a measure space and 1 ≤ p, q ≤ ∞.
We define

‖f‖Lp,q(μ) =

(
q

∫ ∞

0

(
μ({x : |f(x)| > t})1/pt

)q dt

t

)1/q

,

with the obvious modification for q = ∞. We denote by Lpq(μ) the set of all
measurable functions f for which ‖f‖Lpq(μ) < ∞.

Properties:

Chapter 7. Appendix A: Young’s inequality and interpolation
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1. Since

{x : |f(x) + g(x)| > t} ⊂ {x : |f(x)| > t/2} ∪ {x : |g(x)| > t/2},
it follows that

μ({x : |f(x) + g(x)| > t}) ≤ μ({x : |f(x)| > t/2}) + μ({x : |g(x)| > t/2}),
and hence

‖f + g‖Lpq ≤ c (‖f‖Lpq + ‖g‖Lpq ) .

2. For q1 ≤ q2
‖f‖Lpq2 ≤ c‖f‖Lpq1 .

We begin the proof with

μ({|f | ≥ t})tq = q

∫ t

0

μ({|f | ≥ t})sq−1ds ≤ q

∫ t

0

μ({|f | ≥ s})sq−1ds ≤ ‖f‖qLpq .

Now, if q1 < q2,

q2

∫ ∞

0

[μ({|f | ≥ t})1/pt]q2 dt
t

≤ q2
q1

‖f‖q2−q1
Lp,∞ ‖f‖q1Lp,q1 ≤ q2

q1
‖f‖q2Lp,q1 .

3. If 1 < p < ∞ and 1
p + 1

p′ =
1
q + 1

q′ = 1, then there exists c > 0 such that∣∣∣∣∫ fgdμ

∣∣∣∣ ≤ c‖f‖Lpq‖g‖Lp′q′ .

For the proof we define f∗ : (0,∞) → R+ to be the unique function with

m1({τ : f∗(τ) > t}) = μ({x : f(x) > t})
for all t > 0. Then, using Fubini several times (with the Lebesgue measure
μ = md for definiteness, but the argument holds for general measures)∫

|fg|dmd = md+2({(x, s, t) ∈ Rd × R× R : 0 < s < |f(x)|, 0 < t < |g(x)|})

=

∫
R+×R+

md({x : |f(x)| > s} ∩ {x : |g(x)| > t})dsdt

≤
∫
R+×R+

min{md({x : |f(x)| > s}),md({x : |g(x)| > t})}dsdt

=

∫
R+×R+

m1({σ : |f∗(σ)| > s} ∩ {τ : |g∗(τ)| > t})dsdt

=

∫ ∞

0

f∗(τ)g∗(τ)dτ.
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Therefore,∫
fgdμ ≤

∫ ∞

0

f∗(t)g∗(t)dt

=

∫ ∞

0

(t1/pf∗)(t1/p
′
g∗(t))dt/t

≤
(∫ ∞

0

t(q/p)−1(f∗)qdt
)1/q (∫ ∞

0

t(q
′/p′)−1(g∗)q

′
dt

)1/q′

.

The last inequality is an application of Hölder’s inequality. The proof of the
third part is completed by the equality

q

p

∫ ∞

0

t(q/p)−1(f∗(t))qdt = q

∫ ∞

0

(μ(|f(x)| > s))q/psq−1ds (7.1)

in one-dimensional calculus. We observe that

s �→ m1({τ : f∗(τ) > s})

is the inverse of f∗. Both functions are monotonically decreasing.

Let f and f−1 be mutually inverse non-negative monotonically decreas-
ing functions, and g and h non-negative monotonically increasing functions
with antiderivatives G and H with

H(t)G ◦ f(t) → 0

as t → ∞ and t → 0. Then, by an integration by parts and one substitution∫ ∞

0

hG ◦ fdt == −
∫ ∞

0

Hg ◦ ff ′dt =
∫ ∞

0

H ◦ f−1(s)g(s)ds.

This specializes to (7.1). Moreover, checking the inequalities shows that

‖f‖Lpq ≤ c sup{
∫

fgdμ : ‖g‖Lp′q′ ≤ 1}.

4. This pairing defines a duality isomorphism if 1 < p < ∞ and 1 ≤ q < ∞:

Lp′q′ 
 g �→ (f �→
∫

fgdμ) ∈ (Lpq)∗.

In particular all spaces Lpq with 1 < p are Banach spaces. To prove this
we choose B to be a measurable set of positive finite measure. There exists
p̃ > p so that Lp̃(B) ⊂ Lpq. If l is a bounded linear functional on Lpq, then it
defines a bounded linear functional on Lp̃, which in turn is represented by a

Chapter 7. Appendix A: Young’s inequality and interpolation
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function g ∈ Lp̃′
(μ). The previous step gives a bound for ‖gχB‖Lp′q′ in terms

of l.

We order the measurable subsets of A by inclusion up to sets of mea-
sure zero. This defines a partial order on the subsets on which the duality
statement holds. Every chain has an upper bound, the union of the chain.
By the Zorn lemma there is a maximal element. The procedure above allows
to show that the maximal set is necessarily the full space.

In particular, duality allows one to define an equivalent norm on Lpq(μ)
for 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. Completeness of dual spaces is obvious.
Completeness of Lp1(μ) is left as an exercise.

Lemma 7.5. Suppose that 1 ≤ p1, p2, q1, q2 ≤ ∞,

T ∈ L(Lp11(μ), Lq1∞(ν)) ∩ L(Lp21(μ), Lq2∞(ν)),

p1 �= p2, q1 �= q2, 0 < λ < 1, and

1

p
=

1− λ

p1
+

λ

p2
,

1

q
=

1− λ

q1
+

λ

q2
,

and 1 ≤ r ≤ ∞.
Then the operator T can be continuously extended to T ∈ L(Lpr(μ), Lqr(ν)).

Moreover,

‖T‖L(Lpr(μ),Lqr(ν)) ≤ c‖T‖λ
L(Lp1 (μ),L

q1
w (ν))

‖T‖1−λ
L(Lp2 (μ),L

q2
w (ν))

.

Proof. An easy calculation shows that

1− p
p2

1− p
p1

=
λ− 1

λ
. (7.2)

This will be useful later on. Let t > 0 and

ft(x) =

{
f(x), if |f(x)| ≤ t,

tf(x)/|f(x)|, if |f(x)| > t,

and let f t = f − ft. Then
f = ft + f t

and, if p1 < p < p2, which we assume in the sequel, then

‖f t‖Lp1 ≤ (p− p1)
1/p1t1−

p
p1 ‖f‖

p
p 1

Lp
w

and

‖ft‖Lp2 ≤ (p2 − p)1/p2t1−
p
p2 ‖f‖

p
p 2

Lp
w
,

with obvious modifications if p2 = ∞.
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Moreover, by the triangle inequality,

{|Tf | > t} ⊂ {Tfs > t/2} ∪ {Tfs > t/2}.
Let

a1 = ‖T‖L(Lp1 ,L
q1
w ) a2 = ‖T‖L(Lp2 ,L

q2
w ),

τ =
q2 − q1

q2(1− p
p2
)− q1(1− p

p1
)

and

s = tτa

(1−λ)
q
q1

−1

1− p
p1

1 a

λ
q
q2

−1

1− p
p2

2 .

Step 1. The bound in weak Lp space. We want to prove

λν({|Tf(x)| > t})1/q ≤ ca1−λ
1 aλ2

for ‖f‖Lp
w
= 1, with c depending only on the exponents. We estimate

λqμ({|Tf | > t}) ≤ c
(
tq−q1‖Tfs‖q1

L
q1
w

+ tq−q2‖Tfs‖q2Lq2
w

)
≤ c

(
tq−q1aq11 ‖fs‖q1Lp1 + tq−q2aq22 ‖fs‖q2Lp2

)
= c

(
tq−q1sq1−q1p/p1‖f‖pq1/p1

Lp
w

+ tq−q2sq2−q2p/p2‖f‖pq2/p2

Lp
w

)
= c

(
t
q−q1− q1(q2−q1)

q2
1−λ
λ

+q1 + t
q−q2− q2(q1−q2)

q1
λ

1−λ
+q2

)
a
q(1−λ)
1 aqλ2

= c
(
tq1[

q
q1

−1−( q
q1− q

q2
)λ]+tq2[

q
q2

−1−( q
q2

− q
q1

)(1−λ)]
)
a
q(1−λ)
1

× aqλ2

= ca
q(1−λ)
1 aqλ2 .

This completes the proof of the weak type estimate.

Step 2: The endpoints L(Lp1, Lq1) and L(Lp∞, Lq∞). We assume that 1 <
p1, p2, q1, q2 < ∞, which can be achieved by the first step.

By duality, with constant changing from line to line

‖Tf‖Lqr ≤ c sup{
∫
(Tf)gdν : ‖g‖Lq′r′ ≤ 1}

= c sup{
∫

fT ∗gdν : ‖g‖Lq′r′ ≤ 1}
= c‖f‖Lpq‖T ∗‖L(Lq′,r′ (ν),Lp′,q′ (μ))

and hence, for 1 < p < ∞,

‖T‖L(Lpr,Lqr) ≤ c‖T ∗‖L(Lq′r′ ,Lp′r′ ).

Chapter 7. Appendix A: Young’s inequality and interpolation
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We apply this with Lp11 → Lq1∞ to see that

‖T ∗‖
L(Lq′

i
1,Lp′

i
∞)

≤ c‖T‖L(Lpi1,Lqi∞)

for i = 1, 2. From Step 1
‖T ∗‖L(Lq′∞,Lp′∞)

satisfies the desired bounds. Duality again gives the statement for r = 1.

Step 3: Interpolation in Lp. Suppose that T ∈ L(L1(μ), L1(ν))∩L(L∞(μ), L∞(μ))
with norm ≤ 1

2 . Then

‖Tf‖Lp(ν) ≤
(

p

p− 1

)1/p

‖f‖Lp(μ).

We begin the proof by observing that

{|Tf | > t} ⊂ {Tft > t/2} ∪ {Tf t > t/2}.
The first set is empty by the assumption on the norm of T . Hence

p

∫
ν({|Tf | > t})tp−1dt ≤ p

∫
ν({Tf t > t/2)tp−1dt

≤ p

∫ ∞

0

‖f t‖L1tp−2dt

= p

∫ ∞

0

∫ ∞

t

μ({|f | ≥ s})dstp−2dt

= p

∫ ∞

0

∫ s

0

tp−2dtμ({|f | ≥ s})ds

=
p

p− 1
‖f‖pLp .

Step 4: Conclusion. We have proven the bounds for ‖T‖L(Lp,∞,Lq,∞) and for
‖T‖L(Lp,1,Lq,1). We will argue similarly to the previous step. We decompose

fj(x) =

{
f(x) if 2j ≤ |fj(x)| < 2j+1

0 otherwise

and define Aj as the set where fj is not zero. Then f is the sum over the fj . Let
t > 0,

Bt = {j ∈ Z : (μ(Aj))
1/p2j < t}.

We define
A(t) =

⋃
j∈Bt

Aj ,

ft(x) =

{
f(x) if x ∈ A(t)

0 otherwise
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and f t = f − ft. Then,

{x : |ft| > s} ⊂
⋃

j∈Bt,2j+1≥s

Aj

and hence

‖ft‖Lp,∞ ≤ t sup
s>0

s

⎛⎝ ∑
j≥ln2 s

2−jp

⎞⎠1/p

≤ 2t.

It suffices to consider T with ‖T‖L(Lp,∞,Lp,∞) <
1
4 . With

g(t) := m1({s : ν({|Tf(y)| > s})1/qs > t})
we obtain as in Step 3

g(t) ≤ m1({s : ν({|Tf t/2(y)| > s})1/qs > t})
≤ ct−1‖Tf t/2‖Lq,1 ≤ ct−1‖f t/2‖Lp,1 .

We define h(t) = #(Z\At). Then

‖f t/2‖Lp,1 ≤
∫ ∞

t/2

h(s)ds

and we conclude for 1 < r < ∞ as in Step 3. �

7.1 Complex interpolation: The Riesz–Thorin theorem

The Riesz–Thorin interpolation theorem states the following. For notational sim-
plicity we omit the measures in the notation.

Theorem 7.6. Let 1 ≤ p1, p2, q1, q2 ≤ ∞. Let Tλ, 0 ≤ Reλ ≤ 1, be an operator
from L1 ∩ L∞ → L1 + L∞. Suppose that

λ �→
∫

Tλfg

is continuous in 0 ≤ Reλ ≤ 1 and holomorphic inside the strip, for all f ∈ L1∩L∞

and g ∈ L1 ∩ L∞. Suppose that

sup
Reλ=0

‖Tλ‖L(Lp0 ,Lq0 ) = C0 < ∞

and
sup

Reλ=1
‖Tλ‖L(Lp1 ,Lq1 ) = C1 < ∞.

Then
‖Tλ‖L(Lp,Lq) ≤ C1−Reλ

0 CReλ
1
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if
1− Reλ

p0
+

Reλ

p1
=

1

p
,

1− Reλ

q0
+

Reλ

q1
=

1

q
.

The proof relies on the three lines theorem in complex analysis:

Lemma 7.7 (Three lines theorem). Suppose that v is a bounded holomorphic func-
tion on the strip C = {z = x + iy : 0 < x < 1} and that it is continuous on the
closure. Then

|v(x)| ≤ (sup
y

|v(iy)|)1−x(sup
y

|v(1 + iy)|)x.

Proof. By the maximum principle for harmonic functions, any harmonic function
on a bounded open set which is continuous on the closure, assumes the maximum
of the modulus at the boundary. This is true for

uε(x, y) = eε(x+iy)2u(x, y)

on C ∩BR(0) for every R. This function tends to 0 as y → ∞ hence

|uε(x+ iy)| ≤ max{(sup
y

|u(iy)|)1−x, (sup
y

|u(1 + iy)|)x}

and letting ε → 0 gives the result. �
Proof of Theorem 7.6. Let f ∈ L1(μ) ∩ L∞(μ) and g ∈ L1(ν) ∩ L∞(ν). Then, by
assumption,

v(λ) =

∫
Tλfgdν

is a bounded analytic function. By the three lines theorem 7.7 we have

|v(λ)| ≤ sup
t

max{|v(it)|, |v(1 + it)|}.

Now ∣∣∣∣∫ Titfgdν

∣∣∣∣ ≤ ‖Titf‖Lq0 ‖g‖
Lq′0 ≤ C0‖f‖Lp0 ‖g‖

Lq′0

and ∣∣∣∣∫ T1+itfgdν

∣∣∣∣ ≤ ‖T1+itf‖Lq1 ‖g‖
Lq′1 ≤ C0‖f‖Lp1 ‖g‖

Lq′1 .

Thus, ∣∣∣∣∫ (Tλf)gdμ

∣∣∣∣ ≤ max{C0, C1}
(
‖f‖Lp0 ‖g‖

Lq′0 + ‖f‖Lp1 ‖g‖
Lq′1

)
and we could derive that

‖T‖L(Lp0∩Lp1 ,Lq0+Lq1 ) ≤ max{C0, C1},
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but we will avoid this step. Let f ∈ Lp and g ∈ Lq′ . We want to prove that∣∣∣∣∫ gTλf

∣∣∣∣ ≤ ‖f‖Lp‖g‖Lq′ sup
y

‖Tiy‖1−λ
L(Lp1 ,Lq1 ) sup

y
‖T1+iy‖λL(Lp2 ,Lq2 ) (7.3)

for f ∈ Lp and g ∈ Lq′ . The theorem follows then by an duality argument.
Moreover, it suffices to consider a dense set of functions, which are measurable,
bounded, and for which there is ε > 0 such that either the functions vanish at a
point, or else they are at least of size ε. Also, we may restrict to f and g with
‖f‖Lp = ‖g‖Lq′ = 1.

Let

fz(x) =
f(x)

|f(x)| |f(x)|
(1−z) p

p 0
+z p

p 1 ,

gz(x) =
g(x)

|g(x)| |g(x)|
(1−z) q′

q′0
+z q′

q′1

and

v(z) =

∫
gz(y)Tzfz(y)dν(y).

This is a bounded holomorphic map from the strip to L1 ∩ L∞ with values in C.
We claim that it is continuous on the closure of the strip. Let λ be an arbitrary
point of the closure. We write

v(z)− v(λ) =

∫
gλ(Tz − Tλ)fλdν +

∫
[(gz − gλ)Tzfλ + gzTz(fz − fλ)]dν.

The first term tends to zero as z → λ by assumption. Then

gz − gλ → 0 and gz − fλ → 0 as z → λ

in L1 ∩ L∞. Continuity follows by the uniform bound above.
We turn to complex differentiability at an arbitrary point λ in the interior.

Indeed

v(z)− v(λ)

z − λ
=

∫
gλ(Tz − Tλ)fλdν

z − λ
+

∫
gz − gλ
z − λ

Tzfλdν +

∫
gzTz

fz − fλ
z − λ

dν.

The first term converges to a complex number by assumption. Moreover,

gz − gλ
z − λ

converges to a function g′λ in L1 ∩ L∞ as z → λ. Let g̃ denote the difference
between the difference quotient and g′λ. Then∫

gz − gλ
z − λ

Tzfλdν =

∫
g′Tλfλdν +

∫
g̃Tzfλdν +

∫
g′(Tz − Tλ)fλdν.
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The second term tends to zero since g̃ tends to zero in L1 ∩ L∞ and the third
one by the continuity assumption as z → λ. Similarly we deal with the remaining
term.

We turn to the behavior at the boundary:

|v(it)| =
∫

Titfitgitdν ≤ ‖Tit‖L(Lp0 ,Lp1 )‖fit‖Lp0 ‖git‖Lq0

and
‖f‖Lp0 = ‖f‖p0/p

Lp = 1 = ‖git‖Lq′0 = ‖g‖q′0/q′
Lq′ .

We apply the three lines theorem 7.7. This yields

|v(z)| ≤ sup
y

‖Tiy‖1−x
L(Lp1 ,Lq1 ) sup

y
‖T1+iy‖xL(Lp2 ;Lq2 ).

Evaluated at z = λ, this gives inequality (7.3). �
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Appendix B: Bessel functions

The Bessel functions are confluent hypergeometric functions. They are solutions to
confluent hypergeometric differential equations. Here is a very brief introduction.
Consider a complex differential equation

x(n) =

n−1∑
j=0

aj(z)z
(j)

with initial data
x(j)(z0) = yj

for j = 0, 1, . . . , n − 1 and given complex numbers z0 and yj . If the coefficients
are holomorphic in a neighborhood of z0, then there is a unique solution which is
holomorphic in z and the yj .

Consider the scalar equation

ẋ =
λ

z − z0
x.

The space of solutions is at most one-dimensional. Formally, a solution is given by
x = (z − z0)

λ, which, unless z is an integer, is only defined in a set of the type
C\(−∞, z0], called slit domain. Similarly, if

ẋ =
( λ

z − z0
+ φ(z)

)
x,

with a holomorphic function φ near z0, then there is a unique solution of the type

(z − z0)
λ

[
1 +

∞∑
k=1

ak(z − z0)
k

]
,

again defined in the slit domain as above unless λ is an integer. The number λ
is called characteristic number. It is not hard to see that there is a unique such
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solution, and the power series can be defined iteratively. The point z0 is called
a regular singular point. A point is called irregular singular point if the Laurent
series of the coefficients contains terms of order below (z − z0)

−1.
We call ∞ regular point, resp. regular singular, resp. irregular singular point

for

ẋ = a(z)x

if, when we express z in terms of z−1, 0 is a regular, resp. regular singular, resp.
irregular singular point of

ẋ = −z−2a(z−1)x.

We use the same notation for systems of equations. The eigenvalues of A in

ẋ =
1

z − z0
A(z)x+ f(z)x

are called characteristic values. They play a very similar role as for scalar equa-
tions. Multiple characteristic values and/or resonances (a resonance refers to the
situation when eigenvalues of A are linearly dependent over the integers) may lead
to logarithmic terms.

We are interested in second-order scalar equations

a(z)ẍ+ b(z)ẋ+ c(z)x = 0

with meromorphic functions a, b, and c. We may rewrite them as a 2× 2 system,
which we use to define the notion of a regular, regular singular, and irregular
singular point. The point z0 is regular if b(z)/a(z) and c(z)/a(z) have a holomor-
phic extension near z0. It is a regular singular point if the Laurent expansion of
b(z)/a(z) begins with c0z

−1 and the one of c(z)/a(z) begins with c1z
−2 + c2z

−1.
The characteristic numbers can be calculated in terms of the Laurent series. If
they are independent over the integers then there are unique solutions of the type

zλ
∑

ajz
j ,

where λ is one of the characteristic numbers.
Of particular importance is the case when there are only regular singular

points. In that case there are exactly three of them, and applying a Moebius
transform we may choose them to be 0, 1, and ∞. Moreover, multiplying by
zλ(1 − z)μ we can ensure that one of the characteristic values at 0 and at 1 is 0.
Then we are in the case of hypergeometric differential equations

z(1− z)
d2

dz2
w + [c− (a+ b+ 1)z]

dw

dz
− abw = 0.

The characteristic numbers at z = 0 are 0 and 1− c, the ones at z = 1 are 0 and
c− a− b, and the ones at infinity are −a and −b.
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The regular solution near 0 with value 1 at zero is the hypergeometric function

2F1(a, b; c; z).

The Bessel differential equation is

z2ẅ + wẇ + (z2 − ν2)w = 0.

It has a regular singularity at z = 0 with indices ±ν, and an irregular singularity
at z = ∞. The Bessel function of the first kind is

Jν =
(1
2
z
)ν ∞∑

k=0

(−1)k
(
1
4z

2
)k

k!Γ(ν + k + 1)
.

We have, unless ν is a negative integer,

Jν(z)−
(1
2
z
)ν

/Γ(ν + 1) = O(|z|Re ν+1) near 0,

Jν(z)−
√

2

πz
cos

(
z − 1

2
νπ − 1

4
π
)
+ e| Im z|o(1)

for z → ∞ and ν ∈ R.
There are integral representation for ν > − 1

2 :

Jν(z) =
2( 12z)

ν

π1/2Γ(ν + 1
2 )

∫ 1

0

(1− t2)ν−
1
2 cos(zt)dt

=
( 12z)

ν

π1/2Γ(ν + 1
2 )

∫ π

0

cos(z cos(θ)) sin(θ)2νdt

and if the absolute value of the argument of z is bounded by 1
2π, the Schläfli–

Sommerfeld formulas hold:

Jν(z) =
1

2πi

∫ ∞+πi

−∞−πi

ez sinh t−νtdt,

Jν(z) =
2( 12z)

ν

π1/2Γ(ν + 1
2 )

∫ 1

0

(1− t2)ν−
1
2 cos(zt)dt

=
( 12z)

ν

2πi

∫ 0+

−∞
exp(t− z2

4t
)t−ν+1dt.

The Bessel functions satisfy(
d

xdx

)m

(xνJν) = xν−mJν−m.

Chapter 8. Appendix B: Bessel functions
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See [26] for more information. We want to evaluate (with the Hausdorff measure
of dimension s denoted by Hs)

H(ξ) =

∫
Sd−1

eixξdHd−1 =

∫ π

0

Hd−2(Sd−2) sind−2(θ)ei|x| cos(θ)dθ

= J d−2
2
(|x|)π d−1

2 (
1

2
|x|)− d−2

2 .

This is seen by a substitution reducing the one-dimensional integral to the formula
of Schläfli–Sommerfeld. The function H(ξ) is real and radial. We choose a real
function η ∈ C∞(R), supported in [− 1

2 ,∞), with η(x) + η(−x) = 1. Then H(ξ) is
the real part of ∫ π

−π

Hd−2(Sd−2)η(cos θ) sind−2(θ)ei|x| cos(θ)dθ

An application of stationary phase gives

Lemma 8.1. For all r, H(r) is the real part of a function e−irφ which satisfies∣∣∣( d

dr

)k

φ
∣∣∣ ≤ ckr

− d−1
2 −k.

Proof. Exercise. �



Chapter 9

Appendic C: The Fourier transform

Let f be an integrable complex-valued function. We define its Fourier transform
by

f̂(ξ) =
1

(2π)d/2

∫
e−ix·ξf(x)dmd(x). (9.1)

9.1 The Fourier transform in L1

Properties are

1) The Fourier transform of an integrable function is a bounded continuous
function which converges to 0 as |ξ| → ∞. It satisfies

‖f̂‖sup ≤ (2π)−d/2‖f‖L1 .

The estimate is obvious, as is the continuity if f is compactly support. The
limit as |ξ| → ∞ follows by an integration by parts if the integrand is com-
pactly supported and differentiable. Those functions are dense, and we obtain
continuity and vanishing of the limit for compactly supported functions. The
limit

lim
R→∞

∫
BR(0)

e−ix·ξf(x)dmd(x)

is uniform, and hence the Fourier transform is continuous and converges to
0 as |ξ| → ∞.

2) For all η and y in Rd,

f̂(ξ + η) = ̂e−iη·xf (9.2)

and
̂f(·+ y) = eiyξ f̂(ξ). (9.3)

This follows by an simple calculation.
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3) For f, g ∈ L1(R)
f̂ ∗ g(ξ) = (2π)n/2f̂(ξ)ĝ(ξ).

This follows by application of Fubini’s theorem:

1

(2π)d/2

∫
e−ixξ

∫
f(y)g(x− y)dmd(y)dmd(ξ)

=
1

(2π)d/2

∫ ∫
e−iyξf(y)e−i(x−y)ξg(x− y)dmd(y)dmd(x)

=
1

(2π)d/2

∫ ∫
e−iyξf(y)e−izξg(z)dmd(z)dmd(y)

= (2π)d/2f̂(ξ)ĝ(ξ).

4) For f and g ∈ L1, ∫
fĝdmd(x) =

∫
f̂ gdmd. (9.4)

This is seen by applying Fubini to∫ ∫
e−iyξf(y)e−i(x−y)ξg(y)dmd(y)dmd(x).

5)

ê−
1
2 |x|2 = e−

1
2 |ξ|2 .

We calculate, as for the Airy function,

(2π)−d/2

∫
e−ixξ− 1

2 |x|2dmd(x) = (2π)−d/2

∫
e−i(x−iη)ξ− 1

2 (x−iη)2dmd(x)

for η ∈ Rn. We set η = ξ and get

(2π)−d/2e−
|ξ|2
2

∫
e−

1
2 |x|2dx = e−

|ξ|2
2 .

9.2 The Fourier transform of Schwartz functions

Definition 9.1. We say f ∈ C∞(Rd) is a Schwartz function, and write f ∈ S(Rd),
if for all multi-indices α and β

‖xα∂βf‖sup < ∞.

We say that fj → f in S if for all multi-indices α and β

xα∂βfj → xα∂βf

uniformly.
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We collect below a number of elementary properties.

1) f ∈ S if and only if xα∂βf ∈ S for all α and β.

2) f ∈ S implies f integrable.

3) f ∈ S and g ∈ C∞ with bounded derivatives implies fg ∈ S.
4) f ∈ S and A an invertible d× d matrix implies f ◦A ∈ S.
5) f ∈ S and x0 ∈ Rd implies f(·+ x0) ∈ S.
6) We say that a distribution T has compact support, if there exists a ball

BR(0) such that for all functions f in C∞
0 (Rd) with support disjoint from

BR(0), Tf = 0. We can easily extend such distributions to Schwartz functions
(exercise).

We define the convolution with a Schwartz function by

T ∗ f(x) = T (f(x− ·))

This is well defined and T ∗f is a Schwartz function whenever f is a Schwartz
function. To see this we recall that, by the definition of a distribution, there
exist C > 0 and N > 0 such that (since f has compact support)

|T (f)| ≤ cN‖f‖CN .

Taking difference quotients shows that x �→ T ∗ f(x) is differentiable and

∂iT ∗ f = T ∗ ∂if.

Recursively we see that Tf ∈ C∞. Morever

‖f(x− ·)‖CN (BR(0)) ≤ cM (1 + |x|)−M

for Schwartz functions, and hence T ∗ f is a Schwartz function.

7) f, g ∈ S implies f ∗ g ∈ S and

f̂ ∗ g = (2π)d/2f̂ ĝ. (9.5)

If f ∈ S and S is a distribution with compact support, then

S ∗ f(x) := S(f(x− ·)) ∈ S.

8) All the operations above are continuous.

Theorem 9.2. If f ∈ S, then f̂ ∈ S, and vice versa,

x̂jf = −i∂ξj f̂ ,



130 Chapter 9. Appendic C: The Fourier transform

−̂i∂xjf = ξj f̂ ,

and the Fourier inversion formula

f(x) = (2π)−d/2

∫
eixξ f̂(ξ)dmd(ξ)

and the Plancherel formula∫
f̂ ĝdmd(ξ) =

∫
f gdmd(x)

hold. If A is a real invertible d× d matrix, then

f̂ ◦A(ξ) = (det |A|)−1f̂(A−T ξ).

Proof. The first two formulas formally follow from a simple calculation. According
to property 1)

xα∂βf ∈ S,
and hence xα∂βf is integrable. With the first calculation

F(xα(−iββf)) = −i∂αξβ f̂ ,

which is bounded by property 2). Thus f̂ ∈ S. We calculate

F((2π)−d/2τd/2e−
τ
2 x

2 ∗ f) = e−
1
2τ ξ2 f̂(ξ)

and, letting τ → ∞,

f(0) = (2π)−d/2

∫
f̂dξ.

Together with the formulas (9.3) we obtain the inversion formula

f(x) = (2π)−d/2

∫
eixξ f̂(ξ)dξ.

The Plancherel formula follows by (9.4). The last formula follows from

(2π)−d/2

∫
e−ix·ξf(Ax)dmd(x) = (2π)−d/2| detA|−1

∫
e−i(A−1y)·ξf(y)dmd(y).

�

9.3 Tempered distributions

Definition 9.3. A tempered distribution T is a linear map

T : S → C
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which is continuous, i.e., fj → f ∈ S implies

Tfj → Tf.

We denote the set of tempered distributions by S∗. We say that Tj converges to T
if Tjf → Tf for all f ∈ S.

We list a number of properties.

1) We call T bounded if there exists N such that

|Tf | ≤ C sup
|α|+|β|≤N

sup
x

|xα∂β
xf |.

The linear T : S → C is bounded if and only if it is continuous.

2) Distributions with compact support are tempered distributions.

3) Let T ∈ S∗ and φ ∈ C∞ with bounded derivatives. We define

φT (f) = T (φf).

4) The derivative of a tempered distribution ∂jT is defined by

∂jT (f) = −T (∂jf).

5) Let T ∈ S∗ and φ ∈ S. Then

T ∗ φ ∈ C∞(Rd),

where we define T ∗ φ as for distributions with compact support.

6) Let T ∈ S∗ and S be a distribution with compact support. We define

S ∗ T (f) = T (S̃ ∗ f),

where S̃(f) = S(f̃), f̃(x) = f(−x). Then S ∗ T ∈ S∗.

7) Let g ∈ Lp for one 1 ≤ p ≤ ∞. Then g defines a unique distribution by

Tg(f) =

∫
gfdmd.

The operations commute with this representation. We have for the Schwartz
functions φ:

Tφg = φTg,

and we identify Lp with its image via the embedding.
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8) We define the Fourier transform T̂ ∈ S∗ by

T̂ (f) = T (f̂).

The inverse Fourier transform is defined similarly.

This is compatible with the interpretation for functions.

9)

δ̂0 = (2π)d/2

and

1̂ = (2π)d/2δ0.

The Euler relation

x · ∇f = mf

holds for every homogeneous function of degreem. We want to define homogeneous
distributions.

Definition 9.4. A tempered distribution is called homogeneous of degree m ∈ C if

T (φ) = λd+mT (φ(λx)).

Let Rem > −d. Then |x|m is a tempered distribution. Its Fourier transform
is again a tempered distribution of homogeneity −d −m. This can be seen from
the Euler relation x · ∇f = mf.

Lemma 9.5. Let 0 < Rem < d. The following identity holds:

F
( 1

2m/2Γ(m/2)
|x|m−d

)
=

1

2(d−m)/2Γ(d−m
2 )

|x|−m.

Proof. We claim that the Fourier transform of a homogeneous distribution of de-
gree m ∈ C is a homogeneous distribution of degree −d−m. We denote by Tλ the
distribution

Tλ(f) = λ−dTfλ−1 .

Here fλ(x) = f(x/λ). Then

T̂λ(f) = Tλ(f̂) = T (λ−df̂(λ·)) = T (f̂(·/λ)) = λ−m−dT (f̂) = λ−m−dT̂ (f).

Let f be a homogeneous function of degree m such that Tf is a homogeneous
distribution. Let O be an orthogonal matrix with f ◦O = f . Then

T̂f ◦OT = T̂f
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where the term on the left-hand side is defined by the action on Schwartz func-
tions. In particular, the Fourier transform of |x|−m is radial in the sense that it is
invariant under the action of orthogonal matrices. This is equivalent to

Tf = T

(
Hd−1(Sd−1)−1

∫
Sd−1

f(|x|σ)Hd−1(σ))

)
(a rigorous justification requires either an approximation, or a symmetrization
argument). We denote the symmetrization operator by S.

Let T be a radial homogeneous distribution of degree m. We fix a non-
negative function h with integral 1 and with compact support and observe that
Tf = T (Sf) = λT (Sf(λx)). Let e ∈ Rd be a unit vector.

T (f) =

∫ ∞

0

λ−1h(lnλ)T (Sf)dλ

=

∫ ∞

0

λm+d−1h(lnλ)T (Sf(λx))dλ

= T

(∫ ∞

0

(Sf)(μe)(μ/|x|)d+mμ−1h(ln(μ/|x|))dμ
)

=

∫ ∞

0

μ−1Sf(μe)T ((μ/|x|)d+mh(ln(μ/|x|)))dμ

= −T (|x|−d−mh(ln |x|))(dmd(B1(0)))
−1

∫
Rd

|y|mf(y))dμ.

This shows that a rotational symmetric distribution of homogeneity m > −d
is given by c|x|m. Below we determine c for the Fourier transform of |x|m with
−d < m < 0.

By the consideration above,

|̂x|−m = c(n,m)|x|m−d

and we have to determine c(n,m). The Gaussian is its own Fourier transform. Let
T = |x|m and denote by T̂ its Fourier transform. Then, by the definition,

T (e−
|x|2
2 ) = T̂ (e−

|ξ|2
2 ).

We calculate∫
|x|me−

|x|2
2 dmd(x) = dmd(B1(0))

∫ ∞

0

e−r2/2rd−1+mdr

= dmd(B1(0))2
− d+m

2 −1

∫ ∞

0

t
d+m

2 −1e−tdt

= dmd(B1(0))2
− d+m

2 −1Γ(
d+m

2
).

Comparison with the calculation for |x|−d−m gives the formula. �
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The formula extends to all m ∈ C\(−∞,−d]∪ [0,∞). This requires however
a proper definition of the homogeneous tempered distribution.
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integration. Acta Math., 67(1):251–282, 1936.



Geometric Dispersive Evolutions

Daniel Tataru



Chapter 1

Introduction

Among the nonlinear dispersive equations, a distinguished class is that of geometric
evolutions. Unlike the models seen earlier where nonlinear interactions are added
to an underlying linear dispersive flow, here the nonlinear structure arises from the
curvature of the state space itself. Precisely, our geometric evolutions are obtained
by applying the standard linear Lagrangian or Hamiltonian formalism to a state
space consiting of maps into (curved) manifolds.

The simplest geometric pde’s are the elliptic and parabolic ones, namely the
harmonic map equation and the harmonic heat flow. While these still play a role
in our exposition, in these notes we are primarily concerned with the dispersive
evolutions, the wave map equation and the Schrödinger map equation.

Both the short and the long time behavior of wave and Schrödinger maps are
dependent on the curvature properties of the target manifold. Because of these,
the model cases of maps into the sphere Sm and into the hyperbolic space play an
important role.

Compared with other dispersive pde’s, an additional structure present here
is that of “gauge invariance”. The simplest way this arises is in the choice of coor-
dinates on the target manifold; also, in a more subtle way, in the choice of frames
in the tangent space of the target manifold. Often a more favourable nonlinear
structure is obtained by making a suitable choice of gauge. This is also related to
the notion of “renormalization”, which here represents a paradifferential version
of choosing a good gauge.

The dimension of the underlying space-time affects the scaling and criticality
properties of our equations. Our primary target here is the case of 2+1 dimensions,
which is arguably the most interesting. This is the energy critical case, i.e., for
which the energy is invariant with respect to the natural scaling of the equations.

We begin these notes with a brief description of the state space of maps into
manifolds, followed by an introduction of the four main pde’s, namely harmonic
maps, the harmonic heat flow, wave maps, and finally Schrödinger maps. Our
main interest is in wave maps, where a series of developments in the last 15 years
have led to a reasonably complete theory. We first discuss the small data case,
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142 Chapter 1. Introduction

where the emphasis is on function spaces and renormalization. Then we consider
the large data problem, where in addition we bring in the concept of induction on
energy, and study energy concentration using Morawetz estimates. Finally, the last
section is concerned with the small data problem for Schrödinger maps, where the
difficulties revolve around the gauge choice and function spaces. The large data
problem for Schrödinger maps is still open.



Chapter 2

Maps into manifolds

Instead of working with real or complex-valued functions, our main objects of
study here are evolutions whose state space, in the simplest setting, consists of
maps from the Euclidean space Rn into a Riemannian manifold (M, g). More
generally, one can consider maps whose domains are also Riemannian manifolds.

In terms of the target manifold (M, g), the most common situation we will
consider is that of compact manifolds without boundary. Among these, the sphere
S2 or its higher dimensional counterparts Sm will play the role of a model posi-
tively curved manifold. On such manifolds one often does not have a nice global
coordinate chart. Thus, in order to describe global objects it is often convenient to
view such manifolds, via Nash’s theorem, as isometrically embedded into a higher
dimensional Euclidean space,

(M, g) ↪→ (Rm, e).

We call this the extrinsic setting. The simplest such example is the unit sphere
representation

S2 = {x ∈ R3; |x| = 1} ⊂ R3.

Among negatively curved manifolds, the model is the hyperbolic space H2

or, more generally, Hm. While this is not compact, it can be viewed globally as
embedded in the Minkowski space (M2+1,m), with metric m = ds2 = −dφ2

0 +
dφ2

1 + dφ2
2:

H2 = {φ ∈ M2+1; |φ|2m = −1} ⊂ M2+1.

Alternatively, one can also use compact quotients of Hm as surrogates for Hm.
This is convenient if, for instance, one wants to adapt Hm to the extrinsic setting.

2.1 The tangent bundle and covariant differentiation

Given a differentiable map

φ : Rn → (M, g)
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144 Chapter 2. Maps into manifolds

we can define its partial derivatives with respect to the Rn coordinates at a point
x ∈ Rn, ∂iφ(x) ∈ Tφ(x)M . These can be viewed as sections of a vector bundle

Eφ over Rn, where the fiber is given by Eφ
x = Tφ(x)M . Precisely, Eφ is a metric

bundle, where the metric is inherited from TM .

On TM one has the Levi-Civita connection induced by the metric. Its pull-
back to Rn is a connection on Eφ. The easiest way to describe it is by using a local
coordinate chart on M . If in a chart φ is given by φ = (φ1, . . . φm) and a section
of Eφ is given by v = (v1, . . . , vm), then the covariant derivatives of v are given
by

Djv
k(x) = ∂jv

k(x) + Γk
il∂jφ

ivl(x). (2.1)

Here Γk
il represent the Riemann-Christoffel symbols on M . This is a metric con-

nection, i.e. Dg = 0. Another way to express this property is via the relation

Dj〈v, w〉g = 〈Djv, w〉g + 〈v,Djw〉g.

In particular, one can consider the covariant derivatives of ∂jφ; then it is
easy to establish that

Di∂jφ = Dj∂iφ. (2.2)

Of course, the covariant derivatives themselves do not commute; instead, the cur-
vature R of the connection D is related to the curvature tensor R of M . Precisely,
for any two sections v, w of Eφ we have the relation

〈[Di, Dj ]v, w〉g = R(∂iφ, ∂jφ, v, w). (2.3)

Another way to express the covariant differentiation is in the context of the
extrinsic setting. For this we assume that (M, g) is a submanifold of the Euclidean
space Rm. Then one can define the normal bundle NM . The second fundamental
form S is a symmetric quadratic form

S : TM × TM → NM,

given by

〈S(X,Y ), ν〉 = 〈∇XY, ν〉 = −〈Xν, Y 〉.
Here Xν is the X-derivative of ν since the Euclidean space is flat. In this context,
the connection D can be expressed in terms of the second fundamental form S as

Djv
k(x) = ∂jv

k(x) + Sk
il∂jφ

ivl(x). (2.4)

By the Gauss–Codazzi equations, the curvature of the connection takes the form

〈[Di, Dj ]v, w〉g = 〈∂iφ, v〉g〈∂jφ,w〉g − 〈∂jφ, v〉g〈∂iφ,w〉g. (2.5)
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2.2 Special targets

For the most part, the work so far in geometric dispersive equations is devoted
to special targets, namely the sphere S2 (or Sm) and the hyperbolic space H2 (or
Hm). The advantage is that the algebra is simpler, while one hopes that noth-
ing fundamental is lost in the process. In both cases the preferred setting is the
extrinsic one.

Consider first the sphere S2 ⊂ R3, and a map φ : Rn → S2. By a slight abuse
of notation, we also use φ for the coordinates in R3. Then φ represents the unit
outer normal to the sphere. The second fundamental form of the sphere is

S(u, v) = −〈u, v〉, u, v ⊥ φ.

The sections of E are R3-valued vector fields u with the property that 〈u, φ〉 =
0. The covariant derivatives are given by

Dju = ∂ju− 〈u, ∂jφ〉φ, (2.6)

and their commutator is

[Di, Dj ]u = 〈∂iφ, u〉∂jφ− 〈∂jφ, u〉∂iφ.
The case of H2 is almost identical. Representing it as the space-like hyper-

boloid
−φ2

0 + φ2
1 + φ2

2 = −1

in the Minkowski space (M2+1,m), the upward normal is still given by φ and the
above formulas for covariant differentiation remain unchanged provided that the
inner products are now taken with respect to the Minkowski metric.

2.3 Sobolev spaces

The question of characterizing the Sobolev regularity of maps between manifolds
is not fully understood at this time, and many open problems exist. The discussion
below is confined to the specific setting that is needed later in these notes. For
further references we refer the reader to the survey paper [27].

The issue at hand is primarily to understand the Hs regularity of maps
φ : Rn → (M, g). There is a natural scaling law associated with such maps,

φ(x) → φ(λx).

In terms of L2 based Sobolev norms, the one with exactly this scaling law is the
Ḣ

n
2 norm. The problems which we will discuss later all have Ḣ

n
2 as a critical (scale

invariant) Sobolev norm. Hence most of our discussion will revolve around Ḣ
n
2 .

We also care about higher regularity; to study that we will consider the spaces
Ḣs∩ Ḣ

n
2 for s > n

2 . Finally, in various contexts we need to measure the regularity
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of sections of the vector bundle Eφ. For this we will still use homogeneous Sobolev
spaces Ḣs, but here we will allow a range of s below n

2 .

A key feature of the space Ḣ
n
2 is that it is a threshold in terms of Sobolev

embeddings. Precisely, the embedding Ḣ
n
2 ⊂ L∞ barely fails, and instead we have

Ḣ
n
2 ⊂ VMO, the space of functions with vanishing mean oscillation. So while Ḣ

n
2

functions are not continuous, they are almost localized in the sense that on small
sets they vary very little in average.

As it turns out, VMO is a borderline space as far as the topological properties
of maps are concerned. Precisely, the homotopy of VMO maps is well defined, and
one can use the homotopy classes in order to partition VMO (and also Ḣ

n
2 ) into

connected components.
Another consequence of working with Ḣ

n
2 is that it is not possible to confine

the range of a map to the domain of a local chart on M , not even locally. Thus
the extrinsic setting seems far more desirable from this perspective.

The space of maps φ : Rn → (M, g) is not a linear space, so one cannot endow
it with a norm. There are two main methods to define the class of Ḣ

n
2 maps:

In the extrinsic setting, where we have a uniform isometric embedding (M, g)
↪→ (Rm, e). There one can simply view maps φ : Rn → M as maps φ : Rn → Rm

which happen to take values in M . Then their regularity, as well as the regularity
of sections of Eφ, is computed on components as real-valued functions.

This is the most convenient setting to use in the analysis. The disadvantage
is that it is not at all obvious whether this definition is geometric or it depends
on the embedding at hand.

In the geometric setting. The easier case is when n is even. Then for φ smooth
and constant outside a compact set one can define the homogeneous Ḣk Sobolev
size of φ by

‖φ‖2
Ḣk =

∑
j

∑
|α|=k−1

‖Dα∂jφ‖2L2 , k ≥ n

2
.

Then one can define the set of Ḣ
n
2 maps by taking, say, L2

loc limits of sequences
which have bounded size in the above sense.

One can also endow the vector bundle E with a related norm. Precisely, for
v ∈ E we set

‖v‖2
Ḣk =

∑
|α|=k

‖Dαv‖2L2 , 0 ≤ k ≤ n

2
.

In the case of odd n one needs to work with fractional spaces, and for that it
is necessary to consider a more roundabout route. This is based on the Littlewood-
Paley theory. To describe the idea, we begin with a complex-valued function φ :
Rn → C. To φ we associate its Littlewood-Paley truncations φ≤k to frequencies
less than 2k, as well as its dyadic pieces φk = d

dkφ<k, where k is a real dyadic
frequency parameter. Then for any large N we have

‖φ‖2
Ḣs = cs,k

∫ ∞

−∞
22sk‖φk‖2L2 + 22(s−N)k‖φk‖2ḢN dk.
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If, instead of taking φ<k to be the exact Littlewood-Paley localization of φ, one
takes an arbitrary smooth function which decays to 0 as k → −∞ and converges
to φ as k → ∞, then the above equality becomes an inequality,

‖φ‖2
Ḣs �

∫ ∞

−∞
22sk‖φk‖2L2 + 22(s−N)k‖φk‖2ḢN dk.

Then the Ḣs norm of φ can be defined by minimizing the right hand side with
respect to all extensions φ<k of φ as above,

‖φ‖2
Ḣs ≈ inf

φ<k

∫ ∞

−∞
22sk‖ d

dk
φ<k‖2L2 + 22(s−N)k‖ d

dk
φ<k‖2ḢN dk.

The above definition involves only integerHs norms, and it carries over easily
to our context. Precisely, given a measurable map

φ0 : Rn → M

we call a smooth function
φ : R× Rn → M

an admissible extension of φ0 if limk→∞ φ(k) = φ0 in L2, and limk→−∞ ∇φ(k) = 0.
Then we set

‖φ0‖Ḣs = inf
φ admissible

∫ ∞

−∞
22sk‖∂kφ(k)‖2L2 + 22(s−N)k‖∂kφ(k)‖2ḢN dk.

A similar definition applies to sections of Eφ0 . There one needs to consider also
extensions to sections of Eφ.

An alternate route is to consider a distinguished extension rather that all
possible extensions. A suitable one is given for instance by the harmonic heat flow
described below.

To compare the above Ḣs classes of maps we have the following:

Theorem 2.1 ([48]). The extrinsic Ḣ
n
2 class and the geometric Ḣ

n
2 class are equiv-

alent for small Ḣ
n
2 sizes. In the same context, the higher regularity classes of maps

Ḣs ∩ Ḣ
n
2 are also equivalent.

Likely this correspondence extends to all maps in the zero homotopy class.
Unfortunately the geometric definition, as stated, applies only to homotopy zero
maps.

2.4 S2 and targets: homotopy classes and equivariance

As mentioned before, the family of Ḣ
n
2 maps is divided into connected components,

indexed by the homotopy class. One model case of interest is that of maps φ : R2 →
S2. There the homotopy class is indexed by integers m, computed via the formula∫

R2

φ · (∂1φ× ∂2φ)dx = 4πm.
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Here the integrand is exactly the pull-back of the volume form on S2, and the
integral is finite for all finite energy maps by the Cauchy–Schwarz inequality.
Intuitively, this measures the number of times the map φ wraps around the sphere.

We remark that in the case of the H2 target all the finite energy maps have
homotopy zero, and the direct analogue of the above integral vanishes.

In many difficult nonlinear pde’s one can gain insights by studying classes
of solutions which have additional symmetries. Often one uses the class of radial
solutions. In our case, spherically symmetric maps are less useful, in part because
they have homotopy zero (the integrand above is in fact identically zero). Instead,
the interesting class of maps is the equivariant class.

The equivariant maps are maps which, when expressed in polar coordinates,
satisfy

φ(r, θ) = (u(r), kθ + θ0(r)), u ∈ [0, π], (2.7)

where k is the equivariance class. Another interpretation of this is the relation

φ(Rx) = Rkφ(x),

where R stands at the same time for a rotation around the origin in R2, respectively
a rotation around the N-S axis in S2.

Here k = 0 corresponds to radial symmetry. If k �= 0, then all Ḣ
n
2 equivariant

maps must have a limit at 0 and at infinity, which can be either pole, S or N . The
homotopy index is then a multiple of the equivariance class.

We also remark that, in a more restrictive interpretation, sometimes one
defines equivariant maps as maps of the form

φ(r, θ) = (u(r), kθ + θ0). (2.8)

This works for harmonic maps, the harmonic heat flow, and wave maps. However,
this restricted class is not invariant with respect to the Schrödinger map flow.

2.5 Frames and gauge freedom

This approach to the study of maps from Rn into manifolds begins with a choice
of an orthonormal frame {ek(φ)} in TφM . Then the idea is to describe the map
φ via its gradient expressed in this frame. We obtain the differentiated fields ψα,
given by

ψα,k = 〈∂αφ, ek〉g.
To start with, these satisfy the compatibility conditions

Dαψβ = Dβψα, (2.9)

where the new covariant differentiation operators Dα, expressed in the frame, have
the form

Dα = ∂α +Aα.
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Here the connection coefficients Aα are antisymmetric matrices given by

(Aα)jk = 〈ej , Dαek〉g.

A priori the coefficients Aα satisfy the curl system

(∂αAβ − ∂βAα)jk = R(∂αφ, ∂βφ, ej , ek) = ψα,iψβ,lR(ei, el, ej , ek), (2.10)

where R is the Riemann curvature tensor on (M, g). This is not yet a well deter-
mined system because the orthonormal frame has not been specified. Varying the
frame choice leads to the gauge invariance

ψα → Oψα, Aα → OAαO−1 − ∂αOO−1, O ∈ SO(m).

Specifying an orthonormal frame is called fixing the gauge.
Assuming that M is parallelizable, one natural option would be to consider a

fixed frame which is tied to M . However, this does not improve at all the analysis,
and defeats the purpose of trying to express all equations exclusively in terms of
the differentiated fields ψα. Indeed, the main advantage of the frame method is
that one can produce equations with a better structure by choosing a favorable
frame which depends not only on M , but also on the map φ.

Another obstruction to the above goal has to do with the fact that in general
the curvature tensor in (2.10) depends on the original map φ. However, there is
one interesting case when we do obtain a self-contained system, namely when M
has constant curvature κ. Then the system (2.10) can be rewritten in the simpler
form

∂αAβ − ∂βAα = κ(ψα ⊗ ψβ − ψβ ⊗ ψα). (2.11)

For this reason, the frame method has been primarily used so far in the case when
M is either the sphere or the hyperbolic space.

An obvious way to complete this system and uniquely determine A is to add
the divergence relation

∂αAα = 0. (2.12)

This is called the Coulomb gauge. Then Aα are uniquely determined by (2.10)
and (2.12), namely

Aα = −1

2
κΔ−1∂β(ψα ⊗ ψβ − ψβ ⊗ ψα). (2.13)

A further simplification occurs when the target manifold is two-dimensional.
Then ψα ∈ R2, which we identify with C. On the other hand, Aα can be viewed
as real rotation coefficients. Then the ψα belong to a complex vector bundle over
Rn endowed with the connection

Dα = ∂α + iAα.
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The curl relations (2.10) become

∂αAβ − ∂βAα = κ�(ψαψ̄β) (2.14)

and the gauge freedom translates to

ψα → eiχψα, Aα → Aα + ∂αχ,

where χ is any real-valued function. In the Coulomb gauge the connection coeffi-
cients are given by

Aα = −1

2
κΔ−1∂β�(ψαψ̄β). (2.15)

As a final remark here, the Coulomb gauge works well in high dimensions (say
n ≥ 4). In low dimensions, however, there are issues associated to high× high→
low frequency interactions in the above expression for A, and new gauge choices
are needed. The situation improves somewhat if one considers maps with extra
symmetries (e.g., equivariant).
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Geometric pde’s

3.1 Harmonic maps

We first review the linear Laplace equation. For functions

φ : Rn → R

we define the Lagrangian

Le(φ) =
1

2

∫
Rn

|∇xφ|2 dx =
1

2

∫
Rn

∂αφ · ∂αφ dx, (3.1)

with the Einstein summation convention. Local critical points solve the corre-
sponding Euler-Lagrange equation, which is the Laplace equation.

−Δφ = 0, or − ∂j∂jφ = 0.

We now repeat the above process, but with the key difference that instead of
considering maps φ which take real or complex values, we consider maps which take
values in a Riemannian manifold (M, g). The analogue of the elliptic Lagrangian
in (3.1) is

Le(φ) =
1

2

∫
Rn

〈∂αφ, ∂αφ〉g dx. (3.2)

The associated Euler-Lagrange equation is called the harmonic map equation, and
is similar to the Laplace equation, namely

−Dα∂αφ = 0, (3.3)

where Dj are the covariant differentiation operators introduced in the previous
section. Thus the above equation is no longer a linear equation; instead, as we
shall see in a moment, it becomes a semilinear elliptic equation.

Expressed in local coordinates on the target manifold, the above equation
takes the form

−Δφi = Γi
jk(φ)∂αφ

j∂αφ
k.

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,

DOI 10.1007/978-3-0348-0736-4_12, © Springer Basel 2014
, Oberwolfach Seminars 45,Nonlinear Schrödinger, Wave and Schrödinger Maps

151



152 Chapter 3. Geometric pde’s

This problem is invariant with respect to the dimensionless scaling

φ(x) → φ(λx),

therefore a natural translation invariant setting to study this problem is that of the
Sobolev space Ḣ

n
2 . On the other hand, the Lagrangian is invariant with respect

to this scaling only if n = 2. We call that the energy critical problem. The higher
dimensional case n > 2 is energy supercritical.

As mentioned before, another fact to consider is that Ḣ
n
2 functions are not

necessarily bounded. Hence there is no guarantee that any such map will stay
locally within the domain of a local chart on M . This emphasizes the global
aspects of the problem, and effectively eliminates the use of local coordinates in
the study of the equation.

Switching to the extrinsic setting, the harmonic map equation takes the form

−Δφi = Si
jk(φ)∂αφ

j∂αφ
k.

While just considering the above equation involves no additional structure, one
has to also keep in mind the geometric properties of the second fundamental form.
In particular, we have the relation

Sk
ji(φ)∂αφ

k = 0,

as one is a normal vector and the other is a tangent vector to M . Thus one can
rewrite the equation in the form

−Δφi = (Si
jk(φ)− Sk

ji(φ))∂αφ
j∂αφ

k

which leads to the study of more general equations of the form

−Δφ = Ωα∂αφ

with the key property that Ωα ∈ Ḣ
n
2 −1 are antisymmetric matrices.

From the perspective of geometric dispersive equations, harmonic maps are
interesting as the steady states of the evolution problems. Thus it is useful to us
to discuss the existence and regularity of harmonic maps. We begin with the local
regularity question. In two dimensions this is provided by the following result for
finite energy maps:

Theorem 3.1 (Hélein [19]). Harmonic maps with locally finite energy are smooth
in the energy critical case n = 2.

The frame method and the Coulomb gauge have played a critical role in
Heléin’s approach. Their role is roughly to produce an elliptic equation with a per-
turbative nonlinearity. However, an alternate, more recent approach by Rivière [33]
uses the extrinsic formulation of the problem. The higher dimensional counterpart
of the above result is as follows1:

1Their results are actually stronger than stated here.
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Theorem 3.2 (Evans [14], Bethuel [7]). Local Ḣ
n
2 harmonic maps are smooth.

Secondly, we discuss the issue of existence of nontrivial finite energy har-
monic maps in dimension n = 2. This is relevant since such maps are stationary
solutions for wave and Schrödinger maps. The answer to this question depends on
the geometry of the target manifold. We consider two opposite examples. The first
is the hyperbolic space H2, where we have the following Liouville type result:

Theorem 3.3 (Lemaire [24]). There are no nontrivial finite energy harmonic maps
from R2 into2 H2.

By contrast, the class of finite energy harmonic maps φ : R2 → S2 is quite
rich. To describe it, we first recall that the class of all finite energy maps φ : R2 →
S2 consists of infinitely many connected components, indexed by their homotopy
class k ∈ Z defined by

4πk =

∫
R2

φ · (∂1φ× ∂2φ)dx.

This is finite since by Cauchy–Schwarz we have

4π|k| � 1

2

∫
R2

|∂1φ|2 + |∂2φ|2dx = E(φ).

Within each homotopy class one can look for energy minimizers which turn out to
have energy exactly 4π|k|. In order for equality to hold above the two derivatives
∂1φ and ∂2φ must be orthogonal and of equal size. This means that φ must be
conformal. Such maps are nonunique due to the many symmetries of the problem.
To remove some of the degrees of freedom, we turn our attention to k-equivariant
maps which take 0 to the south pole and infinity to the north pole. Then, for
k �= 0, one can find a k-equivariant harmonic map with energy 4πk, namely

Qk(r, θ) = (2 tan−1(rk), kθ), k ≥ 1,

which is unique modulo scaling and rotations.

3.2 The harmonic heat flow

Starting again with the Euclidean case, consider the gradient flow associated to
the Lagrangian (3.1). We obtain the heat equation in R× Rn, namely

(∂t −Δ)φ = 0 or (∂t − ∂α∂α)φ = 0, φ(0) = φ0.

The geometric analogue of this, namely the harmonic heat flow, is the gradient
flow associated to the geometric Lagrangian (3.2). The equation has the form

∂tφ−Dα∂αφ = 0, φ(0) = φ0 : Rn → M. (3.4)

2The same result holds for any negatively curved target.
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This is a semilinear parabolic equation for which Le is a Lyapunov functional,

d

dt
Le(φ) = −

∫
Rn

〈Di∂iφ,Dj∂jφ〉gdx.

The associated scaling is

φ(t, x) → φ(λ2t, λx)

As before, this makes the problem energy critical in dimension n = 2, and super-
critical in higher dimension.

In the extrinsic formulation the harmonic heat flow takes the form

(∂t −Δ)φi = Si
jk(φ)∂αφ

j∂αφ
k, φ(0) = φ0. (3.5)

This is a semilinear parabolic equation with a nonlinear constraint, namely that
φ(t, x) ∈ M for all (x, t) ∈ Rn+1. Extending S in any fashion outside M one may
also interpret this equation as a parabolic equation for Rm-valued functions, where
the above constraint is dynamically preserved.

We begin with the small data problem, for which one can directly use per-
turbative techniques to solve the equation:

Theorem 3.4 (Chen-Ding [9]). Assume that the initial data u0 for the harmonic
heat flow is small in the critical Sobolev space Ḣ

n
2 . Then there is a unique global

solution, which is smooth for t > 0.

A similar result holds for data which are small in the larger space BMO, see
[25].

Consider now the large data problem. In supercritical dimensions n ≥ 3,
blow up can occur in finite time in a self-similar manner. However, in the critical
dimension n = 2 the self-similar blow up is disallowed, and the only possibility for
blow up is the “bubbling off” of harmonic maps, where a portion of the energy
concentrates at a point close to a rescaled harmonic map, see Chen and Struwe
[10] and Topping [49]. Precisely, we have the following result for energies below
Ecrit(M), the lowest energy of a nontrivial harmonic map φ : Rn → M :

Theorem 3.5 (Struwe [39], Qing and Tian [30], Smith [36]). Let n = 2. Assume
that the energy of the initial data u0 for the harmonic heat flow is below Ecrit(M).
Then there is a unique global solution, which is smooth for t > 0.

In the particular case of theHm target space, there are no nontrivial harmonic
maps so there is a large data global well-posedness result. The case of the sphere S2

as a target is much richer. There we have at our disposal the equivariant harmonic
maps Qk described in the previous section, and a natural question is what happens
for data that are close in energy to these. A result in [17] asserts that within the
equivariant class the Qk’s are stable for |k| ≥ 3. For |k| = 2 instability can occur,
but there is no finite time blow up [16]. Finally, one can have finite time blow up
for k = 1, see [31].
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This seems to indicate that the generic blow-up pattern should be the bub-
bling off of single spheres, associated by a corresponding decrease in the homotopy
class.

3.3 Wave maps

Formally, wave maps can be described by replacing the domain Rn used for har-
monic maps by the the Minkowski space Mn+1. For real-valued functions Mn+1,
the corresponding Lagrangian is

Lm(φ) =
1

2

∫
Mn+1

−|∂tφ|2 + |∇φ|2 dxdt =
1

2

∫
Mn+1

∂αφ∂αφ dxdt, (3.6)

where indices are lifted with respect to the Minkowski metric. The associated
Euler-Lagrange equation is the wave equation in Mn+1,

�φ = 0, φ(0) = φ0, ∂tφ(0) = φ1,

where the d’Alembertian is given by

� = ∂2
t −Δx = −∂α∂α.

For functions with values in a Riemannian manifold (M, g) we can consider
a similar Lagrangian to the above one,

Lm(φ) =
1

2

∫
Mn+1

〈∂αφ, ∂αφ〉g dxdt,

The associated Euler-Lagrange equation is called the wave map equation,
and has the form

Dα∂αφ = 0, φ(0) = φ0, ∂tφ(0) = φ1. (3.7)

This is a semilinear wave equation, for which the initial position and velocity are
maps

φ0 : Rn → M, φ1 : Rn → Tφ0
M,

with φ1 ∈ Eφ0 . The steady states of this evolution are precisely the harmonic
maps discussed before.

A feature which is shared with the linear wave equation is the conservation
of the energy and momentum,

E(φ) =
1

2

∫
Rn

|∂xφ|2 + |∂tφ|2 dx, Mi(φ) =

∫
Rn

∂iφ · ∂tφ dx.

The scaling associated to this problem is

φ(t, x) → φ(λt, λx),
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so the scale invariant initial data space is Ḣ
n
2 ×Ḣ

n
2 −1. Again, the most interesting

case is the energy critical case, n = 2.
In addition, the wave map problem inherits the full Lorentz group of symme-

tries from the linear wave equation. Thus, in addition to steady states (harmonic
maps), we also have their Lorentz transforms, which are waves with a fixed pro-
file and constant velocity (less than 1). It is worth noting that taking a Lorentz
transform of a harmonic map leads to an increase in energy.

In the extrinsic formulation the wave map equation is:

�φi = −Si
jk(φ)∂

αφj∂αφ
k, φ(0) = φ0, ∂tφ(0) = φ1. (3.8)

In the case of the Sm target this equation takes a very simple form,

�φ = −φ 〈∂αφ, ∂αφ〉.
A very similar formula holds for maps into Hm,

�φ = φ 〈∂αφ, ∂αφ〉m.

This problem is quite different from the corresponding heat flow, in that it is
a dispersive equation. In other words, one has, on one hand, energy conservation,
while, on the other hand linear waves travel (with speed one) in different directions
and disperse. Hence, one does not expect, as in the parabolic case, a pure decay to
a harmonic map pattern, but instead a more plausible picture is that of a splitting
into one or more solitons (Lorentz transforms of harmonic maps) plus a dispersive
part. While such a complete picture is not proved at the moment, considerable
progress was made in recent years.

The first aim of the present notes is to describe the proof of the small data
result:

Theorem 3.6 (Tao [45]: Sm, Krieger [22]: H2 , Tataru [48]: (M, g)). The wave map
equation is globally well-posed for initial data which are small in Ḣ

n
2 × Ḣ

n
2 −1.

This is done in the next section. The result is briefly stated above. A more
precise formulation requires the introduction of a suitable function space S for the
solutions, associated to the initial data space Ḣ

n
2 × Ḣ

n
2 −1. This is done later, but

for now we mention the embedding

S ⊂ C(R; Ḣ
n
2 ) ∩ Ċ1(R; Ḣ

n−1
2 ).

Expressed in terms of S, the above result includes:

• Existence: solutions exist in S.

• Uniqueness: solutions are unique in S.

• Continuous dependence: the map

(Ḣ
n
2 × Ḣ

n
2 −1) ∩ (Ḣ

n
2 −δ × Ḣ

n
2 −1−δ) 
 (φ0, φ1) �→ φ ∈ S, δ > 0,

is continuous.
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• Regularity: If in addition the datum is in Ḣs × Ḣs−1 for some s > n
2 , then

the solution stays uniformly bounded in the same norm.

• Scattering: after a suitable renormalization, the solutions approach a free
wave at infinity.

The next question to ask is to what extent are the results in the small data
case still valid for large data. One key difference in that regard occurs between
the critical dimension n = 2 and supercritical dimensions n ≥ 3. In two space
dimensions the energy coincides with the critical Sobolev norm, and is a conserved
quantity. In higher dimensions, on the other hand, there is no known mechanism to
keep the critical Sobolev norm bounded; the energy is too weak for that purpose.
Hence, if n ≥ 3 it makes sense to try to study solutions for which an uniform a
priori critical Sobolev bound is known.

An obstruction to having global scattering solutions comes from known solu-
tions which either blow up, or do not decay as time goes to infinity. Such examples
include:

• Self-similar solutions φ(t, x) = φ
(x
t

)
blow up in finite time; many examples

are known if n ≥ 3, but such solutions cannot exist and have finite energy if
n = 2.

• Solitons (harmonic maps and their Lorentz transforms) do not blow up, but
cause scattering to fail.

• Soliton-like concentration; this can indeed occur even if n = 2, and is dis-
cussed in Section 4.9.

On the positive side, we do have the finite speed of propagation: if blow up
occurs, it has to happen via critical Sobolev norm concentration at the tip of a
light cone. This severely limits the possible blow-up geometries.

We begin our discussion with the two-dimensional case, where the primary
enemies for global solutions are the solitons, which correspond to harmonic maps.
Then it is natural to introduce the following heuristic classification of target man-
ifolds (M, g):

• No nonconstant harmonic maps ⇒ defocusing, Ecrit = ∞, e.g., M = Hm.

• Nontrivial harmonic maps ⇒ focusing, Ecrit < ∞, e.g., M = Sm.

In the defocusing case, one expects global well-posedness for large data. In
the focusing case, global well-posedness should hold at least for data with energy
below the ground state energy Ecrit, i.e., the energy of the smallest nontrivial
harmonic map. This has been known as the Threshold Conjecture, but is now a
theorem:

Theorem 3.7 (Sterbenz and Tataru [37],[38]). The following hold for the wave map
equation in dimension n = 2:
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a) In the defocusing case we have global well-posedness and scattering for large
data in Ḣ1 × L2.

b) In the focusing case we have global well-posedness and scattering for all data
in Ḣ1 × L2 below the ground state energy Ecrit.

The main ideas of the proof of this theorem are also presented in the next
section. Prior to this, the same result was established in the equivariant case by
Cote, Kenig, and Merle [13]. Independently, the case M = Hm was treated by
Tao, see [43] and further references therein, and the case M = H2 was treated by
Krieger and Schlag [23].

3.4 Schrödinger maps

The Schrödinger equation is closely related to the heat equation, and can be ob-
tained by allowing complex-valued solutions for the heat equation and then ex-
tending those analytically in the half-space �t ≥ 0. Restricting these solutions to
the imaginary axis one obtains

(i∂t −Δ)φ = 0 or (i∂t − ∂α∂α)φ = 0, φ(0) = φ0.

The situation is slightly more complicated in the case of the Schrödinger
maps. For that to make sense in the above context, we need a complex structure
on the tangent space TM . Thus the natural setting is to have a Kähler manifold
(M, g, J, ω) as a target. Even then, the Schrödinger map equation can no longer
be obtained by taking a holomorphic extension of the harmonic heat flow in a
half-space; indeed, the two flows no longer commute.

To introduce the Schrödinger map equation it is convenient to use the Hamil-
tonian formalism. In the case of the linear Schrödinger equation, the Hamiltonian
is

H(φ) =
1

2

∫
Rn

|∇φ|2 dx

and the symplectic form is

ω(u, v) = �
∫
Rn

uv̄ dx.

For the Schrödinger map equation the Hamiltonian stays essentially un-
changed,

H(φ) =
1

2

∫
Rn

|∇φ|2g dx, (3.9)

while the symplectic form becomes

ω(u, v) =

∫
Rn

〈u, Jv〉g dx =

∫
Rn

ω(u, v) dx, u, v ∈ Eφ. (3.10)
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The associated Hamilton flow is the Schrödinger map equation

φt = JDα∂αφ, φ(0) = φ0, (3.11)

where J is the complex structure on TM .
The associated scaling law is the parabolic scaling

φ(t, x) → φ(λ2t, λx),

and the scale invariant space for the initial data is again Ḣ
n
2 .

While the above form of the equation is fairly general, most of the work so
far has been done for special targets, namely the sphere S2 and the hyperbolic
space H2. In the case of the sphere the form of the equation is

∂tφ = φ×Δφ,

where the cross product’s purpose is twofold: to eliminate the component of Δφ
which is normal to the sphere, and to rotate the remaining part by π/2. In the
H2 case the equation looks identical except for a sign twist in the definition of the
cross product.

The equation (3.11) admits one conserved quantity which is the counterpart
of the usual energy functional for the linear Schrödinger equation:

E(φ) =
1

2

∫
Rn

|∇φ|2g dx.

This is also the Hamiltonian; we use the terminology interchangeably.
In general there seems to be no direct counterpart of the conservation of mass

and momentum; see however [15]. This can be related to the loss of the Galilean
invariance.

The aim of the last section of these notes is to describe the proof of the small
data result in critical Sobolev spaces:

Theorem 3.8 (Bejenaru, Ionescu, Kenig and Tataru [4]). Consider the Schrödinger
map equation with values into S2. Then global well-posedness holds for initial data
which are small in the space Ḣ

n
2 .

As for wave maps, this result includes existence, uniqueness, regularity, scat-
tering, as well as continuous dependence on the initial data. The first result of
this type was proved in [3] in high dimension n ≥ 4 using the Coulomb gauge and
suitable dispersive type estimates for the linear Schrödinger equation. The more
difficult lower dimensional case n = 2 was proved in [4]. This requires a Schrödinger
type counterpart3 of the null frame spaces, as well as the caloric gauge. The corre-
sponding result for the H2 target, though not explicitly spelled out in [4], follows
by an almost identical argument.

The Schrödinger map counterpart of the large data problem result for wave
maps in Theorem 3.7 is still open. However, we have the following partial result:

3Considerably simpler than for wave maps, though.
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Theorem 3.9 (Bejenaru, Ionescu, Kenig and Tataru [1],[2]). The following hold for
the Schrödinger map equation in dimension n = 2 in the 1-equivariant class:

a) For the H2 target we have global well-posedness and scattering for all large
data in the energy space Ḣ1.

• [b)] For the S2 target we have global well-posedness and scattering for all
large data in the energy space Ḣ1 below the ground state energy.
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Wave maps

4.1 Small data heuristics

Here we outline the main difficulties encountered in the study of the small data
problem, and describe the ideas needed to overcome these difficulties. For sim-
plicity we confine ourselves to the most interesting case of dimension two. Some
simplifications arise in higher dimension, but the principles remain the same.

4.2 A perturbative set-up

In a first approximation, suppose that we are trying to view the wave map equation
in the extrinsic formulation, namely

�φi = −Si
jk(φ)∂

αφj∂αφ
k, φ(0) = φ0, ∂tφ(0) = φ1, (4.1)

as a small perturbation of the constant coefficient wave equation. This will not
actually work, but it provides very useful insight. For this we would need two
function spaces; one, call it S, for solutions, and a second, call it N , for the
nonlinearity. For these spaces we would like to have two estimates:

a) a linear bound,

‖φ‖S � ‖φ[0]‖Ḣ1×L2 + ‖�φ‖N ; (4.2)

b) an estimate for the nonlinearity,

‖N(φ)‖N � ‖φ‖S , N(φ) = S(φ)∂αφ∂αφ. (4.3)

Further digesting the estimate for the nonlinearity, it would seem natural to
break this into three parts:

b1) The algebra property for S.

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,

DOI 10.1007/978-3-0348-0736-4_13, © Springer Basel 2014
, Oberwolfach Seminars 45,Nonlinear Schrödinger, Wave and Schrödinger Maps

161



162 Chapter 4. Wave maps

b2) The null form bilinear estimate

‖∂αφ∂αφ‖N � ‖φ‖2S . (4.4)

b3) The product bound S ·N → N .

4.2.1 The Strichartz norms

A key ingredient in the study of semilinear wave equations is the Strichartz esti-
mates. Here we can easily incorporate the estimates in the structure of our function
spaces by setting, in dimension n = 2,

S ⊂ |D|−1L∞L2 ∩ |D|− 1
4L4L∞, N ⊃ L1L2 + |D| 34L 4

3L1. (4.5)

However, one sees that the Strichartz estimates cannot suffice to estimate
the bilinear expression in (4.4). There are two reasons for that:

(i) The balance of the exponents. This is worst in two dimensions and improves
as the dimension increases, up to the point where, in 5 + 1 dimensions, it
becomes favorable.

(ii) The balance of the derivatives. Because of the form of (4.4), one actually can-
not use the full range of Strichartz exponents for each factor. This limitation
is independent of the dimension.

Thus, by themselves, Strichartz estimates will not solve the problem. To remedy
that, one needs to take advantage of the structure of the nonlinearity.

4.2.2 The null structure

We denote by τ the time Fourier variable and by ξ the space Fourier variable.
We will refer to ξ as the frequency. An important role is played by the null cone
τ2 = ξ2, which is the characteristic set of �. The distance to the null cone, which
has size ||τ | − |ξ||, will be referred to as modulation.

The symbol of the bilinear form ∂αφ∂αφ is τs− ξη. As it is easy to see, this
symbol vanishes if (τ, ξ) and (s, η) are parallel and located on the null cone. This
is what we call the null condition. The geometric interpretation of this is that
the nonlinear interaction of waves traveling in the same direction is killed in the
nonlinearity, leaving the bulk of the nonlinear interaction to come from transversal
waves. Heuristically that should be better behaved, because transversal waves have
a short interaction time.

As the null condition depends on location of waves in the Fourier space,
it cannot be handled via Strichartz estimates, which are invariant with respect
to Fourier translations. Instead, one needs to take advantage of the Xs,b type
structure. The homogeneous Xs,b spaces associated to the homogeneous wave
equation are defined using the size of the Fourier transform:

‖u‖Xs,b = ‖û(τ, ξ)|ξ|s||τ | − |ξ||b‖L2 .
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Scaling considerations would dictate that we choose

S = X1, 12 , N = X0,− 1
2 .

Unfortunately, this is just outside the range of indices for which these spaces are
well defined.

To avoid the above difficulty one may use the U2
� and V 2

� type spaces associ-
ated to the wave equation. These were first introduced in unpublished work of the
author in connection to wave maps, and are described in detail elsewhere in these
notes. They can be associated separately to each half wave and then combined
using suitable multiplier. They are close to the above Xs,b spaces, in the sense
that

X1, 12 ,∞ ⊂ V 2
�Ḣ

1 ⊂ U2
�Ḣ

1 ⊂ X1, 12 ,1, (4.6)

where the third index in the Xs,b notation is a Besov index with respect to mod-
ulation.

For the moment we neglect what happens far away from the null cone, which
will turn out to be easier to deal with anyway. Then one would roughly have to
choose

S ⊂ U2
�Ḣ

1, N ⊃ DU2
�L

2. (4.7)

In view of Strichartz type embeddings associated to the U2 and V 2 spaces, this is
stronger than (4.5). With this choice we would have to prove a bound of the type

‖∂αφ1∂αφ
2‖DU2

�L2 � ‖φ1‖U2
�Ḣ1‖φ2‖U2

�Ḣ1 . (4.8)

By the duality (DU2
�L

2)∗ = V 2
�L

2, this becomes∣∣∣∣∫ ∂αφ1∂αφ
2φ3 dxdt

∣∣∣∣ � ‖φ1‖U2
�Ḣ1‖φ2‖U2

�Ḣ1‖φ3‖V 2
�L2 . (4.9)

To test this theory, we consider the usual Littlewood–Paley trichotomy. In order
to be able to work with U2 atoms, we also neglect for now the difference between
V 2L2 and U2L2. Then we can prove the following sharp dyadic estimate:

Lemma 4.1. Assume that j ≤ k. Then the following dyadic estimates hold:∣∣∣∣∫ ∂αφ1
k∂αφ

2
jφ

3
k dxdt

∣∣∣∣ � 2j+k‖φ1
k‖U2

�L2‖φ2
j‖U2

�L2‖φ3
k‖U2

�L2 , (4.10)

respectively∣∣∣∣∫ ∂αφ1
k∂αφ

2
kφ

3
jdxdt

∣∣∣∣ � 2
k+3j

2 ‖φ1
k‖U2

�L2‖φ2
k‖U2

�L2‖φ3
j‖U2

�L2 . (4.11)

Proof. The proof of the lemma is fairly simple. First of all, it suffices to prove
the result for U2 atoms. Secondly, by considering the nesting of the steps in each
atom, one sees that it suffices to assume that two of the three atoms are free
waves. Remembering the relation between U2 and Xs,b spaces, we are left with
having to prove bilinear L2 estimates for free waves. We need to consider two
cases, depending on the frequency balance of the two free waves:
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a) high× low free wave interactions. Denoting by 2k, respectively 2j the size of
two frequencies, we will prove the estimate

‖∂αφj∂αφk‖
X0,− 3

4
� 2k+

3
4 j‖φk(0)‖L2‖φj(0)‖L2 , (4.12)

where the output modulation is at most 2j . Let ξ, respectively η be the
frequencies for the two inputs. The output frequency ξ + η will have size 2k,
but we also need to compute its distance d from the null cone. This distance
turns out to be related to the angle θ between ξ and η. Precisely, we have

2kd ≈ |(τ + s, ξ + η)|2m = 2〈(τ, ξ), (s, η)〉m ≈ ±2k+jθ2,

where the sign depends on the relative orientation of the two input cones.
Fixing the angle θ between the two waves we can reduce the problem to the
following L2 estimate for two free waves at angle θ ∈ [0, 1]:

‖φkφj‖L2 � θ−
1
2 2

j
2 ‖φk(0)‖L2‖φj(0)‖L2 . (4.13)

This estimate no longer has anything to do with the curvature of the cone,
instead it is based on the transversality of the two sectors of the cone. Thus it
follows by general principles (see the exposition in [46], though such estimates
had been known before, e.g. [20], [8]) since the angle of the two cone sections
is θ and the size of the intersection of two translates of them is 2j .

From here one arrives to (4.12) by adding the size of the symbol of the
null form τs− ξη ≈ ±2k+jθ2. There is an additional orthogonality argument
which is needed in order to gain the square summability with respect to θ,
but we skip it since it plays no role in the sequel.

b) high× high free wave interactions. Denoting by 2k the size of two input
frequencies , and by 2j the size of the output frequency, we will prove the
estimate

‖Pj(∂
αφ1

k∂αφ
2
k)‖X0,− 3

4
� 2

1
2k+

5
4 j‖φ1

k(0)‖L2‖φ2
k(0)‖L2 , (4.14)

where the output modulation is at most 2j . As before let ξ, respectively η
be the Fourier variables for the two inputs. The output frequency ξ + η is
restricted to a 2j cube, so by orthogonality we can also restrict ξ and η to 2j

cubes.

This time the distance of ξ+η from the null cone is related to the angle
θ between ξ and η by the relation

2jd ≈ ±22kθ2,

where the sign depends on the relative orientation of the two input cones.
Fixing the angle θ between the two waves we can reduce the problem to the
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following L2 estimate for two free waves localized in 2j cubes at frequency
2k and at angle θ:

‖φ1
kφ

2
k‖L2 � θ−

1
2 2

j
2 ‖φ1

k(0)‖L2‖φ2
k(0)‖L2 . (4.15)

This is again a transversality estimate which follows by general principles.
From here (4.14) is obtained by adding the size of the symbol of the null
form 22kθ2.

�

Compare the needed bound (4.8) with what is actually proved in Lemma 4.1.
On the positive side, we have

• extra gains in the high× high→ low interactions

• extra gains at small interaction angles.

On the negative side, we have

• possible losses in the transition from U2 to V 2 in (4.9);

• lack of dyadic summation with respect to low frequencies in low× high→
high interactions.

Both of these difficulties are nontrivial, and will be successively discussed in what
follows.

4.2.3 The null frame spaces

As mentioned above, one of the difficulties in the direct approach above is the need
to transition from V 2 to U2 spaces in bilinear estimates. This venue was initially
pursued by the author, and, on the positive side, it led to the introduction of the
Up and V p type spaces to the field of dispersive equations. Unfortunately, this
attempt was not entirely successful, and a more radical reworking of the function
spaces S and N was eventually introduced in [47]. We remark that at this point
we do have a well established mechanism for transitioning from V 2 to U2 spaces
in estimates, see [18]. However, this transition entails logarithmic frequency losses
of one type or another, which seem to be too much for this particular problem.

Backtracking to the proof of the estimates (4.13) and (4.15), the key idea is
that one would like to have a version of that which also applies to inhomogeneous
waves. We focus on the first bound, and revisit its proof. Rather than thinking of
it as a convolution of two surface carried distributions in the Fourier space, of the
form, say,

‖fj(ξ)δτ=±|ξ| ∗ fk(ξ)δτ=±|ξ|‖L2 � θ−
1
2 2

j
2 ‖fj‖L2‖fk‖L2 , (4.16)
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where φ̂j = fj(ξ)δτ=±|ξ| and φ̂k = fk(ξ)δτ=±|ξ|, we instead take advantage of
the extra dimension that we have available to foliate the frequency μ waves with
respect to null rays in frequency,

fj(ξ)δτ=±|ξ| =
∫
ω

fω
j dω, fω

j = fj(rω)δτ=±|ξ|δξ=rω.

For each fω
j we have the bilinear estimate

‖fω
j ∗ fk(ξ)δτ=±|ξ|‖L2 � θ−1‖fμ(ωr)‖L2

r
‖fλ‖L2 , (4.17)

simply due to the fact that the incidence angle is θ2 (compare this with the angle
θ of the two surfaces!). Then (4.16) follows easily from (4.17) by Cauchy–Schwartz
with respect to ω after also accounting for the change in the surface measure.

So far all we have is an alternate proof of (4.13). The key observation now is
that we can rework the proof of (4.17) in terms of mixed Lp norms as follows. If

φω
j = f̂ω

j , then by Plancherel we have the estimate

‖φω
j ‖L2

γL
∞
γ⊥ = ‖fj(ωr)‖L2

r
, γ = (ω,±|ω|).

On the other hand, using the fact that ω is at angle θ from the support of fk, we
also have the characteristic energy estimate

‖φλ‖L∞
γ L2

γ⊥
≈ θ−1‖fλ‖L2 .

Then (4.17) follows from the last two relations. This suggests that the space S
should include, beside the standard Strichartz norm and the U2 structure, the
following two components associated to null frames:

• characteristic energy norms ∩ωL
∞
γ L2

γ⊥ ;

• foliated norms
∑

ω L2
γL

∞
γ⊥ .

By duality considerations, the space N also needs to include

• dual characteristic energy norms
∑

ω L1
γL

2
γ⊥ .

Fortunately, the second set of dual spaces
⋂

ω L2
γL

1
γ⊥ turns out not to be needed.

Both of these have to be introduced carefully, with suitable frequency, mod-
ulation, and angular localizations. An additional difficulty occurs when applying
this idea to high × high interactions, where one needs to either allow for radial
frequency localizations below the frequency scale, or to admit some losses in the
interaction angle or in the high-low frequency balance in the estimates. Fortu-
nately this is not a crucial issue, since there is sufficient room there to allow for
some flexibility.
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4.2.4 The paradifferential equation and renormalization

Suppose now that we have good function spaces S and N for which the dyadic
versions of the null form estimates hold:

‖∂αφj∂αφk‖N � ‖φj‖S‖φk‖S , j < k, (4.18)

‖Pj(∂
αφk∂αφk)‖N � 2−δ|j−k|‖φk‖S1‖φk‖S1 , j � k. (4.19)

While the second has some extra room, the first one is tight, and does not al-
low for a favorable j summation, since the norms of φj are only square summable.
This suggests that the nonlinearity in the wave map equation is actually nonper-
turbative. If that is the case, then the next best thing to do is to understand exactly
what is the nonperturbative part. That immediately leads to the paradifferential
formulation of the problem, namely

�φi
k = −2Si

jl(φ)<k∂
αφj

<k∂αφ
l
k + perturbative(N)

One advantage in doing this is that now we only need to study a linear equation,
where the coefficients have lower frequency. The above equation is closely linked
to the linearized wave map equation; indeed, it largely represents a high frequency
linearized wave evolving on a low frequency background.

A generic equation of the above form does not seem to have enough structure
to allow for good linear estimates. However, so far we have not used at all the ge-
ometry of the problem. To take advantage of that we begin with the orthogonality
relation

Sl
ji(φ)∂αφ

l = 0.

Transitioning to the paradifferential form of this and combining it with the previ-
ous paradifferential equation we arrive at a more favorable equation,

�φk = −2Ai(φ)<k∂
αφi

<k∂αφk + perturbative(N), (4.20)

where the matrices (Ai)
j
l = Sj

il − Sl
ij are antisymmetric. This antisymetry adds

some conservation structure to the paradifferential equation; this is closely linked
to the question of getting good energy estimates for solutions to (4.20).

Tao [45]’s approach to the above equation in the S2 case was to develop a
renormalization procedure which transforms the nonlinearity into a a perturba-
tive nonlinearity in the context of the null frame spaces. This is reminiscent of
Heléin’s work on harmonic maps, and is achieved in a multiplicative way in the
paradifferential setting. Precisely, one seeks a linear transformation

wk = O<kψk

which transforms the previous equation into the flat wave equation

�wk = perturbative(N). (4.21)
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In the context of the frame method introduced earlier, this corresponds to studying
high frequency solutions to the linearized wave map equation, represented in a
favorable frame in the tangent space TM .

Substituting into the equation and neglecting some lower order terms, one
sees that this works provided that the (orthogonal or almost orthogonal) matrix-
valued function O<k is a reasonably good approximate solution for the system of
equations

∂αO<k = O<k∂αφ
i
<k.

The construction of such a renormalization matrix O is a key idea of Tao [45].
This construction was further refined and simplified in Tataru [48] and later in
Sterbenz and Tataru [37]. One choice that needs to be made here is between the
frequency localization and the orthogonality of O<k; both are desirable, but seem
mutually exclusive. Frequency localization is easier to work with and was the
preferred choice in the small data problem in [45], [48]. However, for large data
the orthogonality losses become unmanageable, and instead one must sacrifice
frequency localization, see [37].

An alternate approach, based on the frame method with the Coulomb gauge,
was developed by Krieger [22] for the case of an H2 target.

4.3 Function spaces

Here we define the function spaces S and N , following Sterbenz and Tataru [37].
The space N is essentially as originally introduced in Tataru [47]; there the space
�−1N was used in place of S, along with the key embedding �−1N ⊂ S. Tao [45]
observed that using S instead of �−1N as the main function space helps with the
algebra type properties. Tao’s version of S was then strengthened to some extent
in Sterbenz and Tataru [37]. A related but somewhat different modification of S
was proposed by Krieger [22].

We recall that Pk denote Littlewood-Paley localization with respect to the
spatial frequency. For modulation localizations we use the space-time multipliers
Qj with symbol

qj(τ, ξ) = ϕ
(
2−j

∣∣|τ | − |ξ|∣∣),
where ϕ truncates smoothly on a unit annulus. We denote by Q±

j the restriction
of this multiplier to the upper or lower time frequency space.

Beside the frequency and modulation decompositions, we also need to deal
with the angular decompositions which are needed for the proof of the bilinear
estimates. We denote by κ ∈ Kl a collection of caps of diameter ∼ 2−l providing
a finitely overlapping cover of the unit sphere. According to this decomposition,
we cut up the spatial frequency domain according to

Pk =
∑
κ∈Kl

Pk,κ.
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These decompositions usually occur in conjunction with modulation cutoffs up to
2j , where j = k − 2l. This is related to the discussion in Section 4.2.2; another
interpretation of this scale choice is that it corresponds to the thinnest angular
slabs of angle 2−l on the null cone which are well approximated by a parallelipiped,
i.e., have no curvature.

For each integer k we define the following frequency localized norm:

‖φ ‖Sk
:= ‖∇t,xφk ‖L∞

t (L2
x)

+ ‖∇t,xφk ‖
X

0, 1
2∞
+ ‖φk ‖S + sup

j<k−20
‖φ ‖S[k;j], (4.22)

with components as follows:

• The fixed frequency space Xs,b
p is defined as

‖Pkφ ‖p
Xs,b

p
:= 2psk

∑
j

2pbj‖QjPkφ ‖p
L2

t (L
2
x)
,

with the obvious definition for Xs,b
∞ .

• The “physical space Strichartz” norms are given by

‖φk ‖S := sup
(q,r): 2

q+
1
r� 1

2

2(
1
q+

2
r−1)k‖∇t,xφk ‖Lq

t (L
r
x)
. (4.23)

• The “modulational Strichartz” norms are

‖φ ‖S[k;j] := sup
±

( ∑
κ∈Kl

‖Q±
<k−2lPk,±κφ ‖2S[k,κ]

) 1
2 , l =

k − j

2
> 10. (4.24)

• The “angular Strichartz” space is defined in terms of the three components:

‖φ ‖S[k,κ] := 2k sup
ω/∈2κ

dist(ω, κ)‖φ ‖L∞
tω

(L2
wω

) + 2k‖φ ‖L∞
t (L2

x)

+ 2
1
2k|κ|− 1

2 inf∑
ω φω=φ

∑
ω

‖φω ‖L2
tω

(L∞
xω

). (4.25)

The first component on the RHS above will often be referred to as NFA∗.

We define S as the space of functions φ in R2+1 with ∇x,tφ ∈ C(R;L2
x) and

finite norm
‖φ ‖2S = ‖φ ‖2L∞

t (L∞
x ) +

∑
k

‖φ ‖2Sk
.

Two other norms related to S play an auxiliary role in the study of the large
data problem, namely

• The null frame energy:

‖φ ‖E := ‖∇t,xφ ‖L∞
t (L2

x)
+ sup

ω
‖ /∇ω

t,xφ ‖L∞
tω

(L2
xω

). (4.26)
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• The high modulation L2 norm:

‖φ ‖Xk
:= 2−

1
2k‖�Pkφ ‖L2

t (L
2
x)
. (4.27)

We also define X as the square sum of Xk. Notice that there are no square
sums or frequency localizations in the norm E. This makes proving E bounds
amenable to energy estimates techniques, bypassing the more difficult bilinear
and multilinear estimates. The X bounds are also easier to obtain and provide
stronger high modulation bounds than what is included in the S norm.

In the same manner as in the case of the S space, for each integer k we define
the dyadic versions of the N norm by

‖F ‖Nk
:= inf

FA+FB+
∑

l,κ F l,κ
C =F

(
‖PkFA ‖L1

t (L
2
x)

+ ‖PkFB ‖
X

0,− 1
2

1

+
∑
±

∑
l>10

(∑
κ

inf
ω/∈2κ

dist(ω, κ)−2‖Q±
<k−2lPk,±κF

l,κ
C ‖2L1

tω
(L2

xω
)

) 1
2
)
. (4.28)

We will often refer to the last component on the RHS above as NFA, and the norm
applied to a fixed Q±F l,κ

C as NFA[±κ].

The full N norm is

‖F‖2N =
∑
k

‖PkF‖2Nk
.

All of these spaces have versions which are restricted to time intervals I,
denoted, e.g., by S[I], respectively N [I]. Since the interval truncation does not
commute with the time Fourier transform, some minor technical issues arise in
the process. These are skipped here.

4.3.1 Frequency envelopes

In many places of the subsequent analysis involving the S spaces it pays to keep
a more careful track of how much of the S norm of wave maps is concentrated at
various frequencies. This is conveniently expressed in the language of frequency
envelopes.

A sequence ck is called a frequency envelope for φ in S if the following three
requirements are satisfied:

• Norm control:

‖φk‖S ≤ ck.

• Norm equivalence: ∑
c2k ≈

∑
‖φk‖2S .
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• Slowly varying:

|cj/ck| � 2δ|j−k|

for a fixed small universal constant δ.

A similar terminology is used with respect to all of the other norms in the
paper, e.g., the initial data space Ḣ1 × L2, the space N , etc.

4.3.2 Linear analysis in the S and N spaces

The linear component of our estimates has the form

Proposition 4.2. The following estimate holds for functions which are localized at
frequency 2k:

‖φk‖Sk
� ‖φk[0]‖Ḣ1×L2 + ‖�φk‖Nk

. (4.29)

Outline of the proof. The proof is relatively straightforward when interpreted in
terms of the U2 norms. Set F = �φk. With notations as in the above definition
of the Nk norm, consider first the case when F = FA + FB . By Strichartz type
embeddings and the dual to (4.6) it is fairly easy to see that F ∈ DU2

�L
2, there-

fore the corresponding solution φk belongs to U2
�Ḣ

1, so it remains to show that
U2
�Ḣ

1 ⊂ S. The first and third components of the S norm are easy to estimate via
bounds for free waves and then for atoms. The third component of the S norm is
bounded by (4.6). It remains to consider the S[k, j] norms. The U2 space is well
behaved with respect to frequency and modulation localizations:∑

κ∈Kl

‖Q±
<k−2lPk,±κφk ‖2U2

�Ḣ1 � ‖φk‖2U2
�Ḣ1 ,

so it remains to estimate the S[k, κ] norm for each localized piece. But this is
easily done again by starting with the known bounds for free solutions, which are
then transferred to U2H1 atoms.

Lastly, consider the case when F =
∑

l,κ F
l,κ
C . On one hand, we can place

F l,κ
C in DV 2

�L
2, which follows by duality from the embedding of U2

�Ḣ
1 into the

NFA∗ component of the Sk space. On the other hand, we can place F l,κ
C into

DU2
ωL

2, which is the U2 space corresponding to the wave evolution in the null
direction associated to ω.

Thus, denoting by φ =
∑

φl,κ, where φl,κ is the solution to

�φl,κ = F l,κ
C , φl,κ[0] = 0,

we can first bound φl,κ in V 2
�Ḣ

1. By frequency orthogonality, this leads to a V 2
�Ḣ

1

for φ, and this suffices for the first three components of the Sk norm.
Secondly, we can bound φl,κ in U2

ωḢ
1 with ω = ω(κ). Now to estimate the

S[k, j] norm of φ we consider two cases:
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(i) l > l′ = j−k
2 . Then each φl,κ is measured with respect to a collection of S[k, κ′]

norms with κ′ ∈ Kl′ . We can argue separately for each ω that U2
ωḢ

1 ⊂ S[k, j]
and then use the square summability with respect to κ to sum up the results.

(ii) l < l′ = j−k
2 . Then each corresponding S[k, κ′] norm applies to a collec-

tion of φl,κ. For the first two components of the S[k, κ′] norm, we estimate
them directly for each φl,κ, and then use L2 orthogonality based on the fre-
quency/modulation localization to add them up. For the last component of
the S[k, κ′] norm, we simply sum up the bounds for each φl,κ; orthogonality
does not hold, but it is also not needed. �

4.3.3 Multilinear estimates

For the nonlinear side of our problem we need not only the bilinear null form
estimate described earlier, but also additional bounds which account for the role
of the S(φ) factor. To start with, we have:

Proposition 4.3. The following bilinear and trilinear estimates hold for the S and
N spaces:

• Product estimates:

‖φ(1)
<k+O(1) · φ(2)

k ‖S � ‖φ(1)
<k+O(1) ‖S · ‖φ(2)

k ‖S , (4.30)

‖Pk(φ
(1)
k1

· φ(2)
k2

) ‖S � 2−(max{ki}−k)‖φ(1)
k1

‖S · ‖φ(2)
k2

‖S , (4.31)

‖Pk(φ<k+O(1) · Fk) ‖N � ‖φ ‖S · ‖Fk ‖N , (4.32)

‖Pk(φk1
· Fk2

) ‖N � 2−δ(k−k2)+‖φk1
‖S · ‖Fk2

‖N . (4.33)

• Bilinear Null Form Estimates:

‖Pk

(
∂αφ

(1)
k1

· ∂αφ(2)
k2

)‖L2
t (L

2
x)

� 2
1
2 min{ki}2−( 1

2+δ)(max{ki}−k)
∏
i

‖φ(i)
ki
‖S ,

(4.34)

‖Pk(∂
αφ

(1)
k1

· ∂αφ(2)
k2

) ‖N � 2−δ(max{ki}−k)
∏
i

‖φ(i)
ki

‖S . (4.35)

• Trilinear Null Form Estimate:

‖Pk(φ
(1)
k1

· ∂αφ
(2)
k2

· ∂αφ(3)
k3

) ‖N � 2−δ(max{ki}−k)2−δ(k1−min{k2,k3})+
∏
i

‖φ(i)
ki

‖S .

(4.36)

The bilinear estimates are essentially the dyadic counterparts of the bounds
discussed in Section 4.2.2. The last trilinear estimate provides a key improvement
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over the composition of bilinear bounds, which plays a major role in the renormal-
ization procedure in Section 4.2.4. The proofs follow largely from the principles
discussed in Section 4.2.3, and are omitted; instead we refer the reader to [47], [45]
and [37]. As a consequence of the above results we have

Proposition 4.4. a) The space S is an algebra, and the following Moser type es-
timates hold for any bounded function G with uniformly bounded derivatives:

‖G(φ) ‖S � ‖φ ‖S(1 + ‖φ ‖3S) , (4.37)

In addition, if ck is a frequency envelope for φ, then

‖G(φ)k ‖S � (1 + ‖φ ‖3S)ck.

b) The product estimate S ×N → N holds.

Outline of proof. The nontrivial part of the proposition is the Moser estimate. For
that, following [48], we use multilinear paradifferential decompositions. For h ∈ R
we can write

d

dh
F (φ<h) = φhF

′(φ<h)

or in integral form

F (φ) = F (φ<l) +

∫ ∞

l

φhF
′(φ<h)dh. (4.38)

This suffices for energy estimates, but not for estimates in the S type spaces.
Hence we iterate this computation to obtain

F (φ) = F (φ<l) + F ′(φ<l)

∫ ∞

l

χ(h)φhdh+ F ′′(φ<l)

∫
[l,∞)2

χ(h)φh0
φh1

dh

+

∫
[l,∞)3

χ(h)φh0
φh1

φh2
F

′′′
(φ<h2

)dh (4.39)

where by χ(h) we denote the ordering function

χ(h) = 1hj≤hj−1≤···≤h0
.

This expansion allows us to successively build estimates for F (φ<l) as follows:

(i) First, by direct differentiation, we have

‖∇F (φ<k)‖L∞ � 2k, ‖∇F (φ<k)‖L∞L2 � 1.

(ii) Next, repeated differentiation followed by Littlewood-Paley projections yields
the high frequency decay

‖PjF (φ<k)‖L∞ � 2N(k−j), ‖PjF (φ<k)‖L∞L2 � 2−k+N(k−j), j > k.
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(iii) Applying (4.39) to φ<k and letting l → −∞ the first term drops, and using
the Strichartz estimates1 for φ and the bounds in the previous steps we obtain
the better high frequency decay

‖PjF (φ<k)‖L2 � 2−
3k
2 +N(k−j), j > k + 10.

For all practical purposes this allows us to assume that F (φ<k) is localized at
frequency � 2k; the contributions of higher frequencies are easier to estimate.

(iv) To estimate a component of the Sk norm of F (φ) which involves a modula-
tion truncation at modulation 2j < 2k, we apply (4.39) to φ with l = j − 10.
The factors F ′(φ<l) and F ′′(φ<l) are bounded, so they preserve all mixed
Lp norm, without affecting the frequency localization (except for better be-
haved tails). In the last term in (4.39) we have the higher frequency factor
F

′′′
(φ<h2). However, this is combined with a trilinear expression φh0φh1φh2

which by Strichartz and multilinear S estimates has an L2 structure on
the 2h2 frequency scale; hence, it again suffices to use the L∞ bound for
F

′′′
(φ<h2

). �

4.4 Renormalization

The idea behind the renormalization is to consider a linear paradifferential equa-
tion of the type

(�+ 2Ai(φ)<k−m∂αφi
<k−m∂α)ψk = Fk

with antisymmetric Ai’s, and to obtain estimates of the type

‖ψk‖S � ‖ψk[0]‖Ḣ1×L2 + ‖Fk‖N . (4.40)

Here m is a large parameter which depends on the S size of φ in the coefficients;
it is essential in the large data problem, but it plays no role for small data.

The strategy is to use a renormalization matrix O<k−m to perform a change
of variable wk = O<k−mψk so that the equation for wk is

�wk = O<k−mFk + error(N).

To motivate the choice of O we compute the above error,

error =
(
�O<k−m −O<k−m(�+ 2Ai(φ)<k−m∂αφi

<k−m∂α)
)
φk

�O<k−mφk + 2(∂αO<k−m −O<k−mAi(φ)<k−m∂αφi
<k−m)∂αφk.

The first term in the error is in some2 sense better behaved because both deriva-
tives apply to the lower frequency factor. In the second term, in view of the trilinear

1It takes exactly three Strichartz estimates to place a product in L2.
2This still has to be proved once O<k is constructed, and it it not entirely straightforward.
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estimate (4.36), we can neglect the terms where the frequency of Ai is comparable
to or larger than the frequency of φi. Hence, defining

Bk = Ai(φ)<k−Cφ
i
k,

a reasonable choice would be to select Ok so that

Ok = O<kBk. (4.41)

Since Ok is continuously interpreted as ∂kO<k, it follows that O<k is defined as
the solution to the ode

d

dk
O<k = O<kBk, lim

k→−∞
O<k = Im. (4.42)

Defining Ok as such has one key advantage, namely that the antisymmetry
of Bk insures that O<k remains an orthogonal matrix, and provides good Lp type
bounds for its derivatives. There is also a significant disadvantage, namely that the
frequency localization is lost; fortunately, the frequency tails turn out to decrease
rapidly. The bounds for O<k are summarized as follows:

Proposition 4.5. Let φ be a wave-map with energy E, S norm F , and S frequency
envelope {ck}. Then the orthogonal matrix O<k defined above and its k derivative
Ok have the following properties:

• (Sk bounds for Ok) Each Ok obeys the bounds:

‖Pk′Ok ‖S �F 2−δ|k−k′|2−C(k′−k)+ck, (4.43)

‖Pk′∇J
t,xOk‖L1

t (L
1
x)

�F 2(|J|−3)k2−C(k′−k)ck, k′ > k + 10, |J | � 2,

(4.44)

‖Pk′
(
O<k−20 ·Gk

) ‖N �F 2−|k′−k|‖Gk ‖N , (4.45)

‖Pk

(
�Ok1 · ψk2

) ‖N �F 2−|k−k2|2−δ(k2−k1)ck1‖ψk2 ‖S , k1 < k2 − 10.
(4.46)

• (The matrix O approximately renormalizes Aα = ∇αB) We have the formula:

O†
<k∇αO<k = ∇αB<k −

∫ k

−∞

[
Bk′ , O†

<k′∇αO<k′
]
dk′. (4.47)

Proof. The main difficulty in the proof is that, since Bk are not small, it is not
possible to directly bootstrap the estimates for Ok. Instead, the proof is by direct
arguments, iterating separately the various components of the S norm, in the
following order:

• L∞ and L∞L2 bounds,



176 Chapter 4. Wave maps

• Strichartz bounds,

• High modulation bounds (i.e., L2 bounds for �Uk),

• High frequency bounds (i.e., the estimate (4.44)),

• S norm bounds.

Here each step is carried out based on the previous steps, without bootstrapping.
The most difficult part, i.e., the S bound, is obtained by using iterated expansions
akin to the proof of the Moser estimates. For further details we refer the reader
to [37]. �

The main use of the renormalization matrix O<k is in the proof of the N → S
estimates for the paradifferential equation:

Proposition 4.6 (Gauge Covariant S Estimate). Let ψk = Pkψ be a solution to the
linear problem:

�ψk = −2Aα
<k−m∂αψk +Gk, (4.48)

where Aα
<k−m is the so(n) matrix

(Aα
<k−m)ab =

(Sa
bc(φ)− Sb

ac(φ)
)
<k−m

∂αφc
<k−m. (4.49)

Assume that φ is a smooth wave map on I with the bounds:

‖φ ‖E[I] + ‖φ ‖X[I] + ‖φ ‖S[I] � F. (4.50)

Furthermore, assume that m � m(F ) > 20, for a certain function m(F ) ∼ ln(F ).
Then we have the estimate:

‖ψk ‖S �F ‖ψk[0] ‖Ḣ1×L2 + ‖Gk ‖N . (4.51)

We remark on the role of the parameter m. If φ is small (i.e., F is small in
the theorem) then any m ≥ 10 suffices. However, if φ is large, then we need an
alternate source for smallness.

Outline of the proof. The proof of this result comes in two flavors:
a) Small φ. Set m = 10 . A direct use of the renormalization matrix O<k−m,

as shown in the previous section, reduces the problem to an equation for wk =
O<k−mψk, namely

�wk = O<k−mFk + Errψk,

where the terms on the right are estimated directly using the bilinear and trilinear
estimates in Proposition 4.3:

‖O<k−mFk‖N � ‖Fk‖N , ‖Err ψk‖N � F‖ψk‖S .
The smallness of F yields the smallness of the error term, therefore one can con-
clude using the N → S estimate (4.29) for the � equation.
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b) Large φ. In this case the previous argument no longer works because the
errors are no longer small. This is where the large parameter m plays a key role,
and provides a more subtle form of smallness which replaces the smallness coming
from φ.

In the first step we consider energy estimates. Precisely, our paradifferential
equation is essentially a covariant wave equation, therefore energy estimates can
be established directly using integration by parts, with an error which is small for
large m. In addition, characteristic energy estimates, i.e., bounds for the E norm,
are just as easy to obtain. Precisely, we have

‖ψk‖E �F ‖ψk[0]‖Ḣ1×L2 + 2−δm‖ψk‖S .
In a second step we apply the renormalization procedure; however, instead of

directly applying the bilinear and trilinear estimates in Proposition 4.3, we refine
them so that the bulk of the error is estimated using the characteristic energy
estimates, and only a small part, corresponding to small angle interactions, is
done using the full S norm of ψk,

‖Errwk‖N �F ε−N‖ψk‖E + ε‖ψk‖S , ε � 1.

Combining the last two estimates, we obtain (with a new δ > 0)

‖Errwk‖N �F ‖ψ[0]‖Ḣ1×L2 + 2−δm‖ψk‖S ,
and now we can use again (4.29) to close the argument provided that m is large
enough (depending on F ).

We note that all implicit constants are polynomial in F , which leads to a
logarithmic dependence of m(F ) on F . �

4.5 The small data result

Here we outline the proof of the small data result in Theorem 3.6. This is achieved
in several steps:

4.5.1 The a priori estimate

The aim here is to start with a smooth wave map on a time interval I, which is a
priori assumed to satisfy the bound

‖φ‖S ≤ ε (4.52)

for some sufficiently small ε. Then we establish the following two estimates:

‖φ‖S � ‖φ[0]‖Ḣ1×L2 , (4.53)

‖φ‖SN � ‖φ[0]‖ḢN×ḢN−1 , (4.54)
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where SN stands for functions with N − 1 spatial derivatives in S.

In effect, it is very convenient to provide a more precise version of this,
expressed in the language of frequency envelopes. Precisely, one starts with a
frequency envelope ck for the initial data φ[0], i.e.,

‖φk[0]‖Ḣ1×L2 ≤ ck.

Then the estimate to prove is

‖φk‖S � ck. (4.55)

A similar analysis can be carried out at the level of the SN norms.

To achieve this we begin with the full equation

�φi = −Si
jl(φ)∂

αφj∂αφ
l,

apply Littlewood–Paley projections, and rewrite it in the paradifferential form

(�+ 2Aj(φ)<k∂
αφj

<k∂α)φk = Fk.

The functions Fk contain all the interactions not included in the left, and can be
estimated directly using the bilinear and trilinear estimates in Proposition 4.3:

‖Fk‖Nk
� dk‖φ‖SF (‖φ‖S),

where dk is a frequency envelope for φ in S, for now unrelated to ck.

Applying Proposition 4.6 we obtain the bound

‖φk‖S � ‖φk[0]‖Ḣ1×L2 + ‖Fk‖N ,

which leads to

dk � ck + εdk.

Given our assumption on the smallness of ε, we obtain dk � ck, and the desired
conclusion follows.

4.5.2 Global existence and regularity

Consider a smooth initial data set φ[0] with small energy, say� ε. Then for a short
time there is a smooth solution φ, which can be easily shown to be small in S. We
consider the set of times T for which a smooth solution satisfying ‖φ‖S[−T,T ] ≤ 1

2ε
exists in [−T, T ]. The family of rescaled functions φ(t/T, x/T ) depends smoothly
on T , so it will have an S norm depending continuously on T . By Step 1 it follows
that the threshold 1

2ε is never reached. By an open/close argument this shows that
the solution exists for all t, and satisfies the bound ‖φ‖S[−T,T ] ≤ 1

2ε.
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4.5.3 Weak Lipschitz dependence on the initial data

Here we consider the linearized wave map equation, which has the form

�ψl = −(∂mSl
ij)(φ)ψ

m∂αφi∂αφ
j − 2Sl

ij(φ)∂
αφi∂αψ

j . (4.56)

The function ψ must satisfy the compatibility condition

ψ(t, x) ∈ Tφ(t,x)M. (4.57)

Understanding the behavior of these equations is the key to comparing different
solutions of the wave maps equation.

The goal here is to show that under the assumption ‖φ‖S ≤ ε, we have a
bound of the form

‖ψ‖S−δ � ‖ψ[0]‖Ḣ1−δ×Ḣ−δ (4.58)

for some small δ.
The proof of this bound is similar to the proof of the main estimate (4.53). We

write the equations for ψk, which evolve along the same paradifferential flow as the
equations for φk, and then show that the errors are small and use Proposition 4.6.

A consequence of the above bound is an estimate for the difference of solu-
tions,

‖φ1 − φ2‖S−δ � ‖φ1[0]− φ2[0]‖Ḣ1−δ×Ḣ−δ . (4.59)

4.5.4 Rough solutions and continuous dependence on the initial
data

Given any small energy datum φ[0], we approximate it with a sequence of regu-
larized data

φn[0] → φ[0] in (Ḣ1 × L2) ∩ (Ḣ1−δ × Ḣ−δ).

It is not difficult to show that φn[0] can be chosen to inherit the frequency envelope
from φ[0]. Then we have a corresponding sequence φ(n) of smooth solutions, which
by the previous step is Cauchy in S−δ. It also has a common frequency envelope
in S. Together these two facts show that φ(n) is actually Cauchy in S; thus we
obtain a unique limit φ which is small in S.

The same argument yields continuous dependence on the initial data in the
(Ḣ1 × L2) ∩ (Ḣ1−δ × Ḣ−δ) topology. Due to the finite speed of propagation, a
localized form of this result is also available; it asserts continuous dependence on
the initial data in the H1

loc × L2
loc topology.

4.6 Energy dispersion

Here we discuss the first step toward the study of the large data problem. The idea
is that there should be some dichotomy between concentration of wave maps and
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the global existence of large data solutions. In other words, it would be reasonable
to expect that if no concentration occurs then solutions persist globally. This was
the viewpoint adopted by Sterbenz-Tataru in [37].

The interesting question though is what is the meaning of “concentration”.
To address that, in [37] was introduced the notion of energy dispersion. For a time
interval I we set

‖φ‖ED[I] = sup
k

‖Pkφ ‖L∞
t,x[I×R2]. (4.60)

Then the main result asserts that energy dispersed solutions are good:

Theorem 4.7 (Energy Dispersed Regularity Theorem [37]). There exist two func-
tions,

1 � F (E), 0 < ε(E) � 1,

of the energy such that the following statement is true. If φ is a finite energy
solution to (4.1) on the open interval I with energy E and:

sup
k

‖φ ‖ED[I] � ε(E), (4.61)

then one also has

‖φ ‖S[I] � F (E). (4.62)

Finally, such a solution φ(t) extends in a regular way to a neighborhood of the
closure of the interval I.

In the remainder of this section we provide an outline of the proof of Theo-
rem 4.7.

In order to construct the functions F (E) and ε(E) such that (4.61) and
(4.62) hold we use the induction on energy method. Precisely, we will show that
there exists a strictly positive nonincreasing function defined for all values of E,
c0 = c0(E) � 1, so that if the conclusion of the Theorem holds up to energy E,
then it also holds up to energy E + c0. It is important here that c0 depends only
on E and not on the size of F (E) or ε(E), as otherwise we would only be able to
conclude the usual first step in an induction on energy proof, which is establishing
that the set of regular energies is open.

According to Theorem 3.6 we know that ε(E) and F (E) can be constructed
up to some E0 � 1. We now assume that E0 is fixed by induction, and to increase
its range we consider a solution φ defined on an interval I with energy E[φ] =
E0+c, c � c0(E0), and with energy dispersion � ε (at first this is a free parameter
which we may take as small as we like). We will compare φ with a wave map
φ̃ with energy E0. To construct φ̃ we reduce the initial datum energy of φ[0] by
truncation in frequency. We define the cut frequency k∗ ∈ R according to (this can
be done by adjusting the definition of the P<k continuously if necessary)

E[ΠP�k∗φ[0]] = E0.
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Here we work in the extrinsic setting, and the small energy dispersion insures that
the low frequency projections P≤kφ0 stay close to the manifold. Then one can use
any reasonable projection operator Π to return back to the manifold.

We consider the wave-map φ̃ with this initial data φ̃[0] = ΠP�k∗φ[0]. This
wave-map exists classically for at least a short amount of time according to Cauchy
stability, and where it exists we have:

E[φ̃(t)] = E0. (4.63)

Since φ has energy dispersion � ε, by (4.71) it follows that φ̃ has energy dispersion

�E0 ε
1
4 at time t = 0. Again by the usual Cauchy stability theory, if ε is chosen

small enough in comparison to the inductively defined parameter ε(E0) it follows
that there exists a non-empty interval J0 where φ̃ satisfies

sup
k

‖Pkφ̃ ‖L∞
t (L∞

x )[J0] � ε(E0). (4.64)

Then our induction hypothesis guarantees that we have the dispersive bounds:

‖ φ̃ ‖S[J0] � F (E0). (4.65)

The plan is now very simple. On one hand, we try to pass the space-time control
(i.e. the S bound) from φ̃ to φ via linearization around φ̃ to control the low
frequencies, and conservation of energy and perturbation theory to control the
high frequencies. On the other hand, we need to pass the good energy dispersion
bounds from φ back down to φ̃ in order to increase the size of J ⊆ I on which
(4.64) holds, until it eventually fills up all of I.

To summarize, we have the two wave maps φ̃ and φ on an interval I with
energies E, respectively E + c, so that

‖φ̃‖S ≤ F̃ = F (E0), ‖φ‖ED ≤ ε, (4.66)

and we want to prove that

‖φ̃‖ED ≤ ε̃ = ε(E0), ‖φ‖S ≤ F. (4.67)

In doing this, we can freely make the bootstrap assumption

‖φ̃‖ED ≤ 2ε̃, ‖φ‖S ≤ 2F. (4.68)

We are also free to independently choose F sufficiently large and ε sufficiently
small. But the delicate part is that c can only depend on E. The analysis is
carried out in several steps:

4.6.1 Energy dispersion and multilinear estimates

Ideally, one would like to know that having small energy dispersion improves the
multilinear bounds in Proposition 4.3. To understand this better, let us first discuss
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the null form estimate (4.8) in the easiest case when both inputs are free waves.
As discussed earlier, there is an angular gain for small angle interactions, so one
only needs to consider large angles, i.e. bilinear estimates for transversal waves. In
that case the null form does not help, so we just treat this as a bilinear product
estimate.

On one hand, using Strichartz estimates for one factor and the energy dis-
persion for the other we obtain an improved L6 product estimate. On the other
hand, the large angle bilinear estimate of Wolff [50] and Tao [44] shows that one

also has an L
5
3 bound (the exact exponent does not matter, only that it is less

than 2). Interpolating, one obtains an improved L2 bound. That suffices, because
the output of transversal free waves is at high modulation.

One downside of the above reasoning is that in the case of unbalanced fre-
quency interactions one ends up with the wrong balance of the powers of the two
frequencies, namely with an estimate of the type

‖∂αφj∂αφk‖N � 2c|j−k|‖φj [0]‖Ḣ1×L2‖φk[0]‖1−δ

Ḣ1×L2
‖φk‖δL∞ , c, δ > 0.

Hence this energy dispersion gain is effective only in the case of balanced factors.
Ideally one would like to have the same estimate for S inputs. While this is

not out of question, we were unable to prove that. Instead, we only have weaker
estimates of the form

‖∂αφj∂αφk‖N
�2c|j−k|(‖φj‖Ḣ1×L2 + ‖�φj‖N )(‖φk[0]‖Ḣ1×L2 + ‖�φk‖N )1−δ‖φk‖δL∞ , c, δ>0.

The dyadic portions of our wave maps do not have this regularity. However, they
do have it after renormalization. This is the reason why we introduce the following
definition:

Definition 4.8 (Renormalizable Functions). We define a non-linear functional Wk

on S as follows:

‖φ ‖Wk
:= inf

U∈SO(d)

[(‖U ‖S∩X + sup
j�k

2C(j−k)‖PjU ‖S∩X

)
· sup

k′
2|k

′−k|(‖Pk′(Uφk)[0] ‖Ḣ1×L2 + ‖Pk′�(Uφk) ‖N
)]
.

(4.69)

Using this notation, the above bound is improved to

‖∂αφj∂αφk‖N � 2c|j−k|‖φj‖Wj‖φk‖1−δ
Wk

‖φk‖δL∞ , c, δ > 0. (4.70)

Similar improvements apply to the other multilinear estimates in Proposition 4.3,
provided that at least two of the interacting frequencies are balanced.

These improved estimates are crucial in order to gain the large gap m that
is needed in Proposition 4.6.
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4.6.2 Compare the initial data of φ and φ̃

At the linearized level we have φ̃[0] = P<k∗φ[0]. This is not an identity, but the
errors are higher order, and they will be small due to the energy dispersion:

‖Pk

(
P<k∗φ[0]− φ̃[0]

) ‖Ḣ1×L2 �E ε
1
4 2−

1
2 |k−k∗|. (4.71)

4.6.3 Compare the low frequencies of φ and φ̃.

The previous step shows that the low frequencies of the data for φ and φ̃ are very
close. Here we aim to show that a similar bound holds for the difference of the
solutions,

‖Pk

(
P<k∗φ− φ̃

) ‖S �F 2−δ0|k−k∗|εδ0 . (4.72)

This yields the small energy dispersion for φ̃, provided that ε is small enough. To
prove (4.72) we consider the equation for the difference ψ = P<k∗φ− φ̃. This has
the form

�ψ = −S(φ̃)∂αφ̃∂αφ̃+ P<k∗(S(φ)∂αφ∂αφ)

= −S(φ̃)∂αφ̃∂αφ̃+ S(φ̃+ ψ)∂α(φ̃+ ψ)∂α(φ̃+ ψ) +R(φ),

where
R(φ) = P<k∗(S(φ)∂αφ∂αφ)− S(P<k∗φ)∂αP<k∗φ∂αP<k∗φ.

We rewrite the above equation in the paradifferential form

�ψk = −2Aα
<k−m(φ̃)∂αψk + Errk(ψ) + PkR(φ).

Provided ε is small enough, the remaining part evolves essentially along the lin-
earized flow along φ̃, and can be solved perturbatively using the linear covariant
estimates in Proposition 4.6, with respect to a norm defined as in (4.72). It remains
to establish good estimates for the last two terms on the right.

The term R(φ) is estimated in N using the S norm for φ and its energy
dispersion:

‖PkR(φ)‖N �F 2−δ0|k−k∗|εδ0 . (4.73)

The term Errk(ψ) is at least quadratic in ψ. It is estimated directly, using
Proposition 4.3 for unbalanced frequency interactions, and its energy dispersed
improvement for the balanced ones. We remark that here we use the energy dis-
persion of φ̃, but that it still can be assumed to be small enough to defeat the S
norm of ψ.

4.6.4 Compare the high frequencies

Here we estimate directly the difference ψ = φ− φ̃,

‖φ− φ̃‖S �F̃ 1. (4.74)
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This yields the S bound for φ in (4.67). The tricky bit is to do this with a constant
c which depends only on E and not on F̃ .

The function ψ has initial datum of size c, and solves the equation

�ψ = −S(φ̃)∂αφ̃∂αφ̃+ S(φ̃+ ψ)∂α(φ̃+ ψ)∂α(φ̃+ ψ).

We need to estimate only its high frequencies, i.e., larger than k∗. The idea is to
reduce the problem again to a perturbation of the gauge covariant equation (4.48),
but this time with coefficients depending on φ rather than φ̃. The difficulty is that
the size of φ̃ is large, and this would force the needed smallness of c to depend on
F̃ rather than on E. To remedy this, we need several intermediate steps:

(i) Establish uniform energy bounds for ψ in the energy norm, which do not
depend on F . This is done using the energy estimates for both φ and φ̃,
combined with the bound (4.72), which guarantees their almost orthogonality.

(ii) Prove a partial divisibility result for the S norm of φ̃, as follows:

Lemma 4.9. Let φ̃ be a wave map with energy E and S norm F̃ . Then there
exists a collection of subintervals I =

⋃K
i=1 Ii, such that K = K(F̃ ) depends

only on F̃ , and such that the following bound holds on each Ii:

‖ φ̃ ‖S[Ii] �E 1 . (4.75)

(iii) Use the perturbative argument to estimate the S norm of ψ in each interval
Ik. In each interval we do have the small energy dispersion for φ, but all
other constants depend only on E; hence the smallness condition on c will
also depend only on E, and so will the S bound on ψ on Ik. On the other
hand, the number of intervals and thus the global S bound for ψ will depend
on F̃ .

4.7 Energy and Morawetz estimates

The study of the large data problem for wave maps relies on the finite speed of
propagation property of the wave equation. Because of this and of the small data
result, the following conclusion follows:

If a wave map blows up at a point, then its energy must concentrate toward
the tip of the light cone originating at that point. Similarly, if scattering fails, then
it fails inside a light cone.

Thus, in order to study both blow up and scattering, it suffices to consider
finite energy wave maps inside a light cone. In one case we are interested in what
happens at the tip of the light cone, in the other we are interested in what happens
inside the cone but toward infinity. We will see that the two problems are virtually
identical. The main tools in the study of the energy distribution inside the cone
are the energy and the Morawetz estimates. These are described in the sequel.
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4.7.1 Notations

We consider the forward light cone

C = {0 ≤ t < ∞, r ≤ t}
and its subsets

C[t0,t1] = {t0 ≤ t ≤ t1, r ≤ t} .

The lateral boundary of C[t0,t1] is denoted by ∂C[t0,t1]. The time sections of the
cone are denoted by

St0 = {t = t0, |x| ≤ t} .

We also use the translated cones

Cδ = {δ ≤ t < ∞, r ≤ t− δ},
as well as the corresponding notations Cδ

[t0,t1]
, ∂Cδ

[t0,t1]
and Sδ

t0 for t0 > δ.
For some of the computations below it is convenient to use the null frame

L = ∂t + ∂r, L̄ = ∂t − ∂r, /∂ = r−1∂θ.

4.7.2 The energy-momentum tensor

A systematic way to derive both the energy and the Morawetz estimates is by
using the energy-momentum tensor:

Tαβ [Φ] = gij(Φ)
[
∂αφ

i∂βφ
j − 1

2
mαβ ∂

γφi∂γφ
j
]
, (4.76)

with a well chosen vector field. Here Φ = (φ1, . . . , φn) is a set of local coordinates
on the target manifold (M, g) and (mαβ) stands for the Minkowski metric. The
main two properties of Tαβ [Φ] are:

• it is divergence free, ∇αTαβ = 0;

• it obeys the positive energy condition T (X,Y ) � 0 whenever bothm(X,X) �
0 and m(Y, Y ) � 0.

Our estimates are obtained by contracting the energy-momentum tensor with
a well chosen vector field. The above properties imply that contracting Tαβ [Φ] with
timelike/null vector fields will result in good energy estimates on characteristic and
space-like hypersurfaces.

If X is some vector field, we can form its associated momentum density (i.e.,
its Noether current)

(X)Pα = Tαβ [Φ]X
β .

This one-form obeys the divergence rule

∇α (X)Pα =
1

2
Tαβ [Φ]

(X)παβ , (4.77)
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where (X)παβ is the deformation tensor of X,

(X)παβ = ∇αXβ +∇βXα.

A simple computation shows that one can also express

(X)π = LXg.

This latter formulation is very convenient when dealing with coordinate deriva-
tives. Recall that in general one has

(LXg)αβ = X(gαβ) + ∂α(X
γ)gγβ + ∂β(X

γ)gαγ .

The energy estimates are obtained by integrating the relation (4.77) over
cones Cδ

[t1,t2]
. Then from (4.77) we obtain, for δ ≤ t1 ≤ t2:∫

Sδ
t2

(X)P0 dx+
1

2

∫
Cδ

[t1,t2]

Tαβ [Φ]
(X)παβ dxdt =

∫
Sδ
t1

(X)P0 dx+

∫
∂Cδ

[t1,t2]

(X)PL dA, (4.78)

where dA is an appropriately normalized (Euclidean) surface area element on the
lateral boundary of the cone r = t− δ.

4.7.3 Energy estimates

The standard energy estimates come from contracting Tαβ [Φ] with Y = ∂t. Then
we have

(Y )π = 0, (Y )P0 =
1

2
(|∂tΦ|2 + |∇xΦ|2), (Y )PL =

1

4
|LΦ|2 + 1

2
|/∂Φ|2.

Applying (4.78) over C[t1,t2] we obtain the energy-flux relation

ESt1
[Φ] = ESt0

[Φ] + F[t0,t1][Φ], (4.79)

where ESt represents the energy of Φ on time sections,

ESt [Φ] =
1

2

∫
St

(|∂tΦ|2 + |∇xΦ|2)dx,

and F[t0,t1][Φ] represents the lateral flux of Φ between t0 and t1:

F[t0,t1][Φ] =

∫
∂C[t0,t1]

(1
4
|LΦ|2 + 1

2
|/∂Φ|2) dA.

The energy relation (4.79) shows that ESt
[Φ] is a nondecreasing function of

t. It also shows that for the blow-up problem we have

lim
t1,t2→0

F[t1,t2][Φ] = 0
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and for the scattering problem we have

lim
t1,t2→∞F[t1,t2][Φ] = 0.

This is the main decay estimate arising as a consequence of the energy rela-
tion. Later we will want to turn the flux decay on the boundary of the cone into
an integrated decay inside the cone. This is accomplished using Morawetz type
estimates.

Finally, we remark that applying (4.78) over Cδ
[δ,1] yields∫

∂Cδ
[δ,1]

1

4
|LΦ|2 + 1

2
|/∂Φ|2 dA ≤ E1[Φ]. (4.80)

This will be used later on.

4.7.4 The energy of self-similar maps

A map Φ : C → (M, g) is said to be self-similar if

Φ(λt, λx) = Φ(t, x), (t, x) ∈ C, λ > 0.

Such a map, if it had finite energy, would be a natural obstruction to global
existence of wave maps. Later we will argue that finite energy self-similar wave
maps do not exist. Here we carry out a preliminary step, which is to compute the
energy E[Φ] (which is independent of time) in hyperbolic coordinates.

Hyperbolic coordinates (ρ, y,Θ) are introduced inside C via

t = ρ cosh(y), r = ρ sinh(y), θ = Θ, (4.81)

and self-similar maps Φ can be viewed as functions Φ = Φ(y,Θ) on H2.
In this system of coordinates, the Minkowski metric becomes

−dt2 + dr2 + r2dθ2 = −dρ2 + ρ2
(
dy2 + sinh2(y)dΘ2

)
. (4.82)

A quick calculation shows that the contraction on line (4.84) becomes the one-form

(Y )PαdVα = T (∂ρ, ∂t)ρ
2dAH2 , dAH2 = sinh(y)dydΘ. (4.83)

The area element dAH2 is that of the hyperbolic plane H2. To continue, we note
that

∂t =
t

ρ
∂ρ − r

ρ2
∂y,

so in particular

T (∂ρ, ∂t) =
cosh(y)

2
|∂ρΦ|2− sinh(y)

ρ
∂ρΦ·∂yΦ+

cosh(y)

2ρ2

(
|∂yΦ|2+ 1

sinh2(y)
|∂ΘΦ|2

)
.
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This computation allows us to obtain a version of the usual energy estimate
adapted to the hyperboloids

√
t2 − r2 = 1. Integrating the divergence of the (Y )Pα

momentum density over regions of the form R = {ρ � ρ0, t � t0} we have:∫
{ρ=1}∩{t�t0}

(Y )PαdVα =

∫
{ρ>1}∩{t=t0}

(Y )P0dx, (4.84)

where the integrand on the LHS denotes the interior product of (Y )P with the
Minkowski volume element.

Letting t0 → ∞ in (4.84) we obtain a useful consequence of this, namely a
weighted hyperbolic space estimate for special solutions to the wave-map equa-
tions, which will be used in the sequel to rule out the existence of non-trivial finite
energy self-similar solutions:

Lemma 4.10. Let Φ be a self-similar finite energy smooth wave map in the interior
of the cone C Then one has:

E [Φ] = 1

2

∫
H2

|∇H2Φ|2 cosh(y)dAH2 . (4.85)

Here

|∇H2Φ|2 = |∂yΦ|2 + 1

sinh2(y)
|∂ΘΦ|2

is the covariant energy density for the hyperbolic metric.

4.7.5 Morawetz estimates

Our goal here is to obtain decay estimates for time-like components of the energy
density. For this we use the energy momentum estimate (4.78) with respect to the
timelike/null vector field

Xε =
1

ρε
((t+ ε)∂t + r∂r) , ρε =

√
(t+ ε)2 − r2. (4.86)

In order to gain some intuition, we first consider the case ofX0. This is most readily
expressed in the system of hyperbolic coordinates (4.81). One easily checks that
the coordinate derivatives turn out to be

∂ρ = X0, ∂y = r∂t + t∂r.

In particular, X0 is uniformly timelike with m(X0, X0) = −1, and one should
expect it to generate good energy estimate on time slices t = const. In the system
of coordinates (4.81) one also has that

LX0
m = 2ρ

(
dy2 + sinh2(y)dΘ2

)
.
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Raising indices, one then computes

(X0)παβ =
2

ρ3
(
∂y ⊗ ∂y + sinh−2(y)∂Θ ⊗ ∂Θ

)
.

Therefore, we have the contraction identity

1

2
Tαβ [Φ]

(X0)παβ =
1

ρ
|X0Φ|2.

To compute the components of (X0)P0 and (X0)PL we use the associated optical
functions

u = t− r, v = t+ r, uv = ρ2.

Then we have

X0 =
1

ρ

(
1

2
vL+

1

2
uL̄

)
, ∂t =

1

2
L+

1

2
L̄. (4.87)

Finally, we record here the components of Tαβ [Φ] in the null frame:

T (L,L) = |LΦ|2, T (L̄, L̄) = |L̄Φ|2, T (L, L̄) = |/∂Φ|2.
By combining the above calculations, we see that we may compute

(X0)P0 = T (∂t, X0) =
1

4

( v

u

) 1
2 |LΦ|2 + 1

4

[ ( v
u

) 1
2

+
(u
v

) 1
2
]
|/∂Φ|2 + 1

4

(u
v

) 1
2 |L̄Φ|2,

(X0)PL = T (L,X0) =
1

2

( v

u

) 1
2 |LΦ|2 + 1

2

(u
v

) 1
2 |/∂Φ|2.

These are essentially the same as the components of the usual energy currents
(∂t)P0 and (∂t)PL modulo ratios of the optical functions u and v.

One would expect to get nice space-time estimates for X0Φ by integrating
(4.77) over the interior cone r � t � 1. The problem is that the boundary terms
degenerate when ρ → 0. To avoid this difficulty we simply redo everything with
the shifted version Xε from line (4.86). The above formulas remain valid with u,
v replaced by their time shifted versions

uε = (t+ ε)− r, vε = (t+ ε) + r.

Furthermore, notice that for small t one has the bounds(
vε
uε

) 1
2

≈ 1,

(
uε

vε

) 1
2

≈ 1, 0 < t ≤ ε

within the cone C. Thus,

(Xε)P0 ≈ (∂t)P0, 0 < t ≤ ε.
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In what follows we work with a wave map Φ in C[ε,1]. We denote its total
energy and flux by

E = ES1
[Φ], F = F[ε,1][Φ].

In the limiting case F = 0, ε = 0 one could apply (4.78) to obtain∫
S0
t2

(Xε)P0 dx+

∫
C0

[t1,t2]

1

ρε
|XεΦ|2 dxdt =

∫
S0
t1

(Xε)P0 dx.

By (4.88), letting t1 → 0 followed by ε → 0 and taking supremum over 0 < t2 � 1
we would get the model estimate

sup
t∈(0,1]

∫
S0
t

(X0)P0 dx+

∫
C0

[0,1]

1

ρ
|X0Φ|2 dxdt ≤ E.

However, here we need to deal with a small nonzero flux. Observing that

(Xε)PL � ε−
1
2 (∂t)PL,

from (4.78) we obtain the weaker bound∫
S0
t2

(Xε)P0 dx+

∫
C0

[t1,t2]

1

ρε
|XεΦ|2 dxdt �

∫
S0
t1

(Xε)P0dx+ ε−
1
2F.

Letting t1 = ε and taking the supremum over ε � t2 � 1 we obtain

sup
t∈(ε,1]

∫
S0
t

(Xε)P0 dx+

∫
C0

[0,1]

1

ρε
|XεΦ|2 dxdt � E + ε−

1
2F. (4.88)

A consequence of this is the following, which will be used to rule out the case of
asymptotically null pockets of energy:

Lemma 4.11. Let Φ be a smooth wave map in the cone C(ε,1] which satisfies the

flux-energy relation F � ε
1
2E. Then∫

S0
1

(Xε)P0 dx � E. (4.89)

Next, we show that we can replace Xε by X0 in (4.88) if we restrict the
integrals on the left to r < t− ε. In this region we have

(Xε)P0 ≈ (X0)P0, ρε ≈ ρ.

In addition, a direct computation shows that in r < t− ε

1

ρ
|X0Φ|2 � 1

ρε
|XεΦ|2 + ε2

ρ3
|∂tΦ|2,
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and also ∫
Cε

(ε,1]

ε2

ρ3
|∂tΦ|2dxdt ≤

∫
Cε

(ε,1]

ε
1
2

t
3
2

|∂tΦ|2dxdt � E.

Thus, using the last three relations in (4.88) we have proved the following estimate
which will be used to conclude that rescaling of Φ is asymptotically stationary,
and also used to help trap uniformly time-like pockets of energy:

Lemma 4.12. Let Φ be a smooth wave-map in the cone C(ε,1] which satisfies the

flux-energy relation F � ε
1
2E. Then we have

sup
t∈(ε,1]

∫
Sε
t

(X0)P0 dx+

∫
Cε

[ε,1]

1

ρ
|X0Φ|2dxdt � E. (4.90)

Finally, we use the last lemma to propagate pockets of energy forward away
from the boundary of the cone. By (4.78) for X0 we have∫

Sδ
1

(X0)P0 dx ≤
∫
Sδ
t0

(X0)P0 dx+

∫
∂Cδ

[t0,1]

(X0)PL dA , ε ≤ δ < t0 < 1.

We consider the two components of (X0)PL separately. For the angular component,
by (4.80) we have the bound∫

∂Cδ
[t0,1]

(u
v

) 1
2 |/∂Φ|2 dA �

(
δ

t0

) 1
2
∫
∂Cδ

[t0,1]

|/∂Φ|2 dA �
(

δ

t0

) 1
2

E.

For the L component a direct computation shows that

|LΦ| �
(u
v

) 1
2 |X0Φ|+

(u
v

)
|L̄Φ|.

Thus we obtain∫
Sδ
1

(X0)P0 dx �
∫
Sδ
t0

(X0)P0 dx+

(
δ

t0

) 1
2

E+

∫
∂Cδ

[t0,1]

((u
v

) 1
2 |X0φ|2+

(u
v

) 3
2 |L̄Φ|2

)
dA.

For the last term we optimize with respect to δ ∈ [δ0, δ1] to obtain:

Lemma 4.13. Let Φ be a smooth wave-map in the cone C(ε,1] which satisfies the

flux-energy relation F � ε
1
2E. Suppose that ε ≤ δ0 � δ1 ≤ t0. Then∫

S
δ1
1

(X0)P0 dx �
∫
S

δ0
t0

(X0)P0 dx+

((
δ1
t0

) 1
2

+ (ln(δ1/δ0))
−1

)
E. (4.91)
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To prove this lemma, it suffices to choose δ ∈ [δ0, δ1] so that∫
∂Cδ

[t0,1]

[(u
v

) 1
2 |X0φ|2 +

(u
v

) 3
2 |L̄Φ|2

]
dA � | ln(δ1/δ0)|−1E.

This follows by pigeonholing the estimate∫
C

δ0
[t0,1]

\Cδ1
[t0,1]

1

u

[(u
v

) 1
2 |X0φ|2 +

(u
v

) 3
2 |L̄Φ|2

]
dxdt � E.

The first term is estimated directly by (4.90). For the second we simply use energy
bounds, since in the domain of integration we have the relation

1

u

(u
v

) 3
2 ≤ δ

1
2
1

t
3
2

.

4.8 The threshold theorem

Using the energy dispersed result in Theorem 4.7 and the energy/Morawetz esti-
mates in the previous section we can now approach the large data problem. For
the blow-up question we prove the following:

Theorem 4.14 ([38]). Let Φ : C(0,1] → M be a C∞ wave map. Then exactly one of
the following possibilities must hold:

(1) There exists a sequence of points (tn, xn) ∈ C[0,1] and scales rn with

(tn, xn) → (0, 0), lim sup
|xn|
tn

< 1, lim
rn
tn

= 0

such that the rescaled sequence of wave-maps

Φ(n)(t, x) = Φ
(
tn + rnt, xn + rnx

)
(4.92)

converges strongly in H1
loc to a Lorentz transform of an entire harmonic map

of nontrivial energy:

Φ(∞) : R2 → M, 0 < ‖Φ(∞) ‖Ḣ1(R2) � lim
t→0

ESt [Φ] .

(2) For each ε > 0 there exists 0 < t0 � 1 and a wave map extension

Φ : R2 × (0, t0] → M

with bounded energy
E[Φ] ≤ (1 + ε8) lim

t→0
ESt

[Φ] (4.93)

and energy dispersion

sup
t∈(0,t0]

sup
k∈Z

(‖PkΦ(t)‖L∞
x

+ 2−k‖Pk∂tΦ(t)‖L∞
x

) ≤ ε . (4.94)
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The analogue result for the scattering problem also holds:

Theorem 4.15. Let Φ : C[1,∞) → M be a C∞ wave map with finite energy. Then
exactly one of the following possibilities must hold:

(1) There exists a sequence of points (tn, xn) ∈ C[1,∞) and scales rn with

tn → ∞, lim sup
|xn|
tn

< 1, lim
rn
tn

= 0,

so that the rescaled sequence of wave maps

Φ(n)(t, x) = Φ
(
tn + rnt, xn + rnx

)
(4.95)

converges strongly in H1
loc to a Lorentz transform of an entire harmonic map

of nontrivial energy:

Φ(∞) : R2 → M, 0 < ‖Φ(∞) ‖Ḣ1(R2) � lim
t→∞ESt

[Φ].

(2) For each ε > 0 there exist t0 > 1 and a wave map extension

Φ : R2 × [t0,∞) → M

with bounded energy

E[Φ] ≤ (1 + ε8) lim
t→∞ESt

[Φ] (4.96)

and energy dispersion,

sup
t∈[t0,∞)

sup
k∈Z

(‖PkΦ(t)‖L∞
x

+ 2−k‖Pk∂tΦ(t)‖L∞
x

) ≤ ε. (4.97)

We recall that a nontrivial harmonic map Φ(∞) : R2 → M cannot have
an arbitrarily small energy. Precisely, there are two possibilities. Either there are
no such harmonic maps (for instance, in the case when M is negatively curved,
see [24]) or there exists a lowest energy nontrivial harmonic map, which we have
denoted by Ecrit > 0. Furthermore, a simple computation shows that the energy
of any harmonic map will increase if we apply a Lorentz transformation. Hence,
combining the results of Theorem 4.14 and Theorem 4.60 we obtain the following:

Corollary 4.16 (Global regularity for wave maps). The following statements hold:

(1) Assume that M is a compact Riemannian manifold such that there are no
nontrivial finite energy harmonic maps Φ(∞) : R2 → M. Then for any finite
energy datum Φ[0] : R2 × R2 → M × TM for the wave map equation there
exists a global solution Φ ∈ S. In addition, this global solution retains any
additional regularity of the initial data.
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(2) Let π : M̃ → M be a Riemannian covering, with M compact, and such that
there are no nontrivial finite energy harmonic maps Φ(∞) : R2 → M. If
Φ[0] : R2 × R2 → M̃ × TM̃ is C∞, then there is a global C∞ solution to M̃
with this datum.

(3) Suppose that there exists a lowest energy nontrivial harmonic map into M
with energy Ecrit. Then for any datum Φ[0] : R2 × R2 → M × TM for the
wave map equation with energy below Ecrit, there exists a global solution
Φ ∈ S.

We remark that the statement in part (2) is a simple consequence of (1) and
restricting the projection π ◦ Φ to a sufficiently small section St of a cone where
one expects blowup of the original map into M̃. In particular, since this projection
is regular by part A), its image lies in a simply connected set for sufficiently small
t. Thus, this projection can be inverted to yield regularity of the original map
close to the suspected blow-up point. Because of this trivial reduction, we work
exclusively with compact M in the sequel. It should be remarked however, that as
a (very) special case of this result one obtains global regularity for smooth wave
maps into all hyperbolic spaces Hn, which has been a long-standing and important
conjecture in geometric wave equations due to its relation with problems in general
relativity (see Chapter 16 of [11]).

The statement of Corollary 4.16 in its full generality was known as the
Threshold Conjecture. Similar results were previously established for the wave
map problem via symmetry reductions in the works [12], [35], [41], and [40].

The proof of Theorems 4.14,4.15 are similar, and are outlined in what follows.

Step 1: Extension. Here one constructs an extension for small t in the blow-up
problem, respectively for large t in the scattering problem, so that the energy is
increased very little, as in (4.93), respectively (4.96).

This argument uses the flux decay in an essential way; this allows us to
initiate the extension at a time t0 where /∇Φ is very small on the boundary ∂St0

of the cone, thus guaranteeing the smallness of the energy outside the cone.
By energy estimates, this guarantees that the energy remains small outside

the cone up to time zero for the blow-up problem, respectively up to time infinity
for the scattering problem. By the small data result, this suffices in order to insure
that our extended solution remains regular outside the cone.

Step 2: Energy dispersion and scaling. Here we work with the extensions con-
structed above. Either they have small energy dispersion, in which case we are
done by the energy dispersion result in Theorem 4.7, or not, in which case we have
a sequence of points (tn, xn) and frequencies kn with either tn → 0 or tn → ∞, so
that

|Pkn
φ(tn, xn)|+ 2−kn |Pkn

∂tφ(tn, xn)| ≥ ε.
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Using also the flux decay in (4.79) and rescaling tn to 1, we arrive at a setting
where we have the sequence of wave maps

Φ(n)(t, x) = Φ(tnt, tnx)

in the increasing regions C[εn,1], with εn → 0, so that

F[εn,1][Φ
(n)] ≤ ε

1
2
nE[Φ] ,

and also points xn ∈ R2 and frequencies kn ∈ Z so that

|Pkn
Φ(n)(1, xn)|+ 2−kn |Pkn

∂tΦ
(n)(1, xn)| > ε . (4.98)

From this point on, the proofs of Theorems 4.14 and 4.15 are identical.

Step 3: Elimination of null concentration scenario. Using the fixed time portion of
the X0 energy bounds in (4.89) we eliminate the case of null concentration

|xn| → 1, kn → ∞
in estimate (4.98), and show that the sequence of maps Φ(n) at time t = 1 must
either have low frequency concentration in the range

m(ε, E) < kn < M(ε, E), |xn| < R(ε, E)

or high frequency concentration strictly inside the cone:

kn ≥ M(ε, E), |xn| < γ(ε, E) < 1.

Step 4: Time-like energy concentration. In both remaining cases above we show
that a nontrivial portion of the energy of Φ(n) at time 1 must be located inside a
smaller cone:

1

2

∫
t=1,|x|<γ1

(|∂tΦ(n)|2 + |∇xΦ
(n)|2) dx ≥ E1,

where E1 = E1(ε, E) and γ1 = γ1(ε, E) < 1.

Step 5: Uniform propagation of nontrivial time-like energy. Using again the X0

energy bounds as in Lemma 4.13 we propagate the above time-like energy concen-

tration for Φ(n) from time 1 to smaller times t ∈ [ε
1
2
n , ε

1
4
n ],

1

2

∫
|x|<γ2(ε,E)t

(|∂tΦ(n)|2 + |∇xΦ
(n)|2) dx ≥ E0(ε, E), t ∈ [ε

1
2
n , ε

1
4
n ].

At the same time, we obtain bounds for X0Φ
(n) outside smaller and smaller neigh-

borhoods of the cone, namely∫
Cεn

[ε

1
2
n ,ε

1
4
n ]

ρ−1|X0Φ
(n)|2dxdt � 1.
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Step 6: Final rescaling. By a pigeonhole argument and rescaling we end up pro-
ducing another sequence of maps, still denoted by Φ(n), which are sections the

original wave map Φ and are defined in increasing regions C[1,Tn], Tn = e| ln εn|
1
2 ,

and satisfy the following three properties:

ESt
[Φ(n)] ≈ E, t ∈ [1, Tn] (Bounded Energy),

E
S

(1−γ2)t
t

[Φ(n)] ≥ E2, t ∈ [1, Tn] (Nontrivial Time-like Energy),∫
C

ε

1
2
n

[1,Tn]

1

ρ
|X0Φ

(n)|2dxdt � | log εn|− 1
2 (Decay to Self-similar Mode).

Step 7: Isolating the concentration scales. Using several additional pigeonholing
arguments we show that one of the following two scenarios must occur:

(1) (Energy Concentration) On a subsequence there exist (tn, xn) → (t0, x0),

with (t0, x0) inside C
1
2

[ 12 ,∞)
, and scales rn → 0 so that we have

EB(xn,rn)[Φ
(n)](tn) =

1

10
E0,

EB(x,rn)[Φ
(n)](tn) ≤ 1

10
E0, x ∈ B(x0, r),

r−1
n

∫ tn+rn/2

tn−rn/2

∫
B(x0,r)

|X0Φ
(n)|2dxdt → 0.

(2) (Non-concentration) For each j ∈ N there exists an rj > 0 such that for every
(t, x) inside Cj = C1

[1,∞) ∩ {2j < t < 2j+1} one has

EB(x,rj)[Φ
(n)](t) ≤ 1

10
E0 , ∀(t, x) ∈ Cj ,

E
S

(1−γ2)t
t

[Φ(n)](t) ≥ E2 ,∫
Cj

|X0Φ
(n)|2dxdt → 0 .

uniformly in n.

Here E0 represents the threshold in the small data result.

Step 8: The compactness argument. In case i) above we consider the rescaled wave
maps

Ψ(n)(t, x) = Φ(n)(tn + rnt, xn + rnx)

and show that on a subsequence they converge locally in the energy norm to a
finite energy nontrivial wave map Ψ in R2× [− 1

2 ,
1
2 ] which satisfies X(t0, x0)Ψ = 0.

Thus Ψ must be a Lorentz transform of a nontrivial harmonic map.
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In case ii) above we show directly that the sequence Φ(n) converges locally on
a subsequence in the energy norm to a finite energy nontrivial wave map Ψ, defined
in the interior of a translated cone C2

[2,∞), which satisfies X0Ψ = 0. Consequently,
in hyperbolic coordinates we may interpret Ψ as a nontrivial harmonic map

Ψ : H2 → M .

Compactifying this and using conformal invariance, we obtain a nontrivial finite
energy harmonic map

Ψ : D2 → M

from the unit disk D2, which according to the estimates of Section 4.7 obeys the
additional weighted energy bound∫

D2

|∇xΦ|2 dx

1− r
< ∞.

But such maps do not exist due to a combination of a theorem of Qing [29] and a
theorem of Lemaire [24].

4.9 Further developments

We begin with some comments concerning the higher dimensional case. First of
all, we remark that, while not explicitly proved in [37], the result in Theorem 4.7
extends to higher dimensions with no change other that the role of the energy is
played by the critical Sobolev norm of the initial data. However, the analogue of
Theorem 3.7 is not true as stated. Instead we have the following

Open Problem 4.17. Consider wave maps in dimension n ≥ 3 with uniformly
bounded critical Sobolev norms.

a) Identify all possible concentration scenarios (at the very least, this must in-
clude solitons and self-similar solutions).

b) Establish a dichotomy, as in Theorem 3.7, between energy dispersion and
concentration scenarios.

Next we return to the two dimensional case. In the results above we have
considered solutions below the ground state energy. But what happens if we take
data with size slightly above the ground state energy? For simplicity we will discuss
the special case of maps from R2+1 into (M, g) = S2. There we have the harmonic
maps Qk which are the unique energy minimizers in their homotopy class modulo
symmetries3. Recall that the ground state Q = Q1 is the stereographic projection.

Consider the wave map equation with data which are close in the energy
norm to Qk. Such data must be in the same homotopy class as Qk, and the

3Namely, isometries of R2, rotations of S2, and scaling.
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corresponding solution stays there as long as no blow up occurs. Then, due to
energy conservation, we conclude that the ground states are orbitally stable, i.e.,
the solution must stay close to Qk modulo symmetries. However, this does not
lead to a global result since the group of symmetries is noncompact. Precisely, it
is the scaling that generates the noncompactness4 and may lead to blow up.

A natural simplification is to look at equivariant solutions. Then all other
components of the symmetry group are eliminated, and we are left only with
scaling. Thus we are looking at solutions of the form

φ = Qk(λr) + o(1), (4.99)

where λ is some function of t. Blow up at time t0 would correspond to λ(t) → ∞
as t → t0. Blow-up solutions have been proved to exist:

Theorem 4.18 (Krieger, Schlag, and Tataru [21]). Let k = 1. Then there exist
equivariant blow-up solutions with the concentration rate

λ(t) = t−ν−1, ν > 1. (4.100)

Theorem 4.19 (Rodnianski and Sterbenz [34], Raphael and Rodnianski [32]). Let
k ≥ 1. Then there exist equivariant blow-up solutions with the concentration rate

λ(t) = t−1| log t|− 1
2k−2 , k ≥ 2, (4.101)

λ(t) = ec
√

| log t|, k = 1. (4.102)

We expect the first result to be true for all ν > 0. The second result seems to
be in some sense an extreme case. The proof of these results is strongly related to
the linearized wave map flow around the ground states Qk. There is a fundamental
difference between the case k = 1 and k ≥ 2. In the latter case, the linearized
elliptic operator has a zero eigenvalue, which is the source of instability. In the
former case, we have instead a zero resonance, which still leads to instability, but
in a more subtle way. A natural follow-up problem would be

Open Problem 4.20. Classify all possible blow-up rates in the equivariant case, and
study their stability.

Is blow up a generic phenomenon or an atypical one ? The knowledge that
we have so far seems to indicate that the following may be plausible at least for
k = 1:

Conjecture 4.21. Consider the equivariant wave map equation with data near the
soliton Q1. Then there exists a codimension one stable manifold of data separating
the data set into two components, as follows:

4The spatial translations are another source of noncompactness, but cannot lead to blow up
because of the finite speed of propagation.
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a) Data in one component leads to a shrinking soliton and to finite time blow
up.

b) Data in the other component leads to an expanding soliton.

This picture may require small adjustments as more data becomes available.
As in initial step, in recent work [5] we are able to construct a codimension two
stable manifold.

It would also be very interesting to consider non-equivariant data:

Open Problem 4.22. Classify all possible blow ups for wave maps φ : R2+1 → S2

with data near the ground state Q, in terms of a description akin to (4.99), but
with scaling replaced by all the symmetries, and with good asymptotics for the
symmetry group parameters as functions of t near the blow-up time.



Chapter 5

Schrödinger maps

Here we consider Schrödinger maps φ : R × Rn → S2, n ≥ 2, and prove the
small data result in Theorem 3.8. We recall that in n space dimensions the initial
data belongs to the space Ḣ

n
2 . To keep the notations simple we will confine the

discussion to the energy critical case n = 2; this is also the most difficult case.
Beside the finite energy condition, it is technically convenient to assume that for
some Q ∈ S2 we have

M(φ) =

∫
R2

|φ−Q|2 dx < ∞

This is a conserved quantity. The size ofM plays no role in any of the estimates. Its
only purpose is to insure convergence to the constant state Q along the harmonic
heat flow; this in turn is used in the construction of the caloric gauge. The use of
this condition can be bypassed, but that is not pursued here.

5.1 Frames and gauges

The formulation we adopt for this problem uses the frame method. At each point
(t, x) we consider an orthonormal frame (v, w) in Tφ(t,x)S2, and use the complex
representation of tangent vectors X → 〈X, v〉 + i〈X,w〉. In particular we can
express ∂mφ in the (v, w) frame as

ψm = v · ∂mφ+ i w · ∂mφ. (5.1)

Here m = 1, . . . , n, n+ 1 and ψn+1 corresponds to the time variable.
Given the frame coefficients

Am = w · ∂mv, (5.2)

we define the covariant differentiation operators

Dm = ∂m + iAm.
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The differentiated variables ψk are subject to the compatibility conditions

Dmψk = Dkψm, (5.3)

while the connection Ak satisfies the curvature conditions

∂lAm − ∂mAl = �(ψlψm) = qlm. (5.4)

A direct computation shows that the Schrödinger map equation expressed in
terms of the differentiated fields reads

ψn+1 = i

n∑
l=1

Dlψl. (5.5)

Using (5.3) and (5.4), it follows that for m = 1, . . . , n we have

Dtψm = i

n∑
l=1

DlDlψm +

d∑
l=1

qlmψl, (5.6)

which is equivalent to

(i∂t+Δx)ψm = −2i

n∑
l=1

Al∂lψm+
(
Ad+1+

n∑
l=1

(A2
l − i∂lAl)

)
ψm− i

n∑
l=1

ψl�(ψlψm).

(5.7)
To view this as a self-contained system, we need to make a gauge choice,

which would uniquely determine the Aj ’s in terms of the ψj ’s. Ideally, we would
like to have a gauge that would make the right-hand side of the above equation
perturbative. The analogy we have in mind here is with the cubic NLS problem.
Indeed, in view of the relations (5.4), it is reasonable to assume that the Aj ’s
are quadratic and higher order in ψ, therefore the right-hand side above will only
contain terms which are cubic and higher order.

The main difficulty primarily originates with the term

Al∂lψm,

which has an unfavorable balance of derivatives. Consider for instance the simplest
gauge, namely the Coulomb gauge, which yields an expression of the form

D−1(ψψ̄)Dψ

This causes some difficulties in the case of high× high→ low interactions in the
first factor; these can be resolved in high dimension (n ≥ 4, see [3]), but the
singularity at frequency zero is too strong in two and three dimensions.

This is what causes us to look for a different choice of gauge which avoids the
above difficulty. A reason to hope that such a gauge might exist is given by the
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exact form of the right-hand side in the equations (5.4). Precisely, the functions
ψl and ψm there are not independent, instead they are connected via (5.3). This
indicates that to the leading order, the expression ψlψ̄m is real when the two factors
have equal frequencies. Such a cancellation is not at all captured by the Coulomb
gauge. As it turns out, there is indeed a more favorable gauge, namely the caloric
gauge. This was proposed in [42] in the context of the wave map equation, and
then as a possible gauge for Schrödinger maps.

Precisely, at each time t we solve the harmonic heat flow equation with φ(t)
as the initial data:{

∂sφ̃ = Δxφ̃+ φ̃ ·∑n
m=1 |∂mφ̃|2 on [0,∞)× Rd,

φ̃(0, t, x) = φ(t, x).
(5.8)

We note that the Schrödinger map and the harmonic heat flow do not commute.
Thus, the Schrödinger map equation is only valid at s = 0, and not for larger s.

We heuristically remark that as the heat time s approaches infinity, the
solution φ(s) approaches the equilibrium state Q. This is related to our assumption
that the “mass” of φ0 is finite, and would not necessarily be true otherwise. This
allows us to arbitrarily pick (v∞, w∞) at s = ∞ as an orthonormal basis in TQS2,
independently of t and x. To define the orthonormal frame (v, w) for all s ≥ 0 we
pull back (v∞, w∞) along the backward heat flow using parallel transport. This
translates into the relation

w · ∂sv = 0. (5.9)

Setting ∂0 = ∂s, we define the functions ψm and Am for all s ∈ [0,∞) and
m = 0, . . . , d+ 1 by {

ψm = v · ∂mφ̃+ i w · ∂mφ̃,

Am = w · ∂mv.
(5.10)

In addition, the parallel transport relation w · ∂sv = 0 yields the main gauge
condition

A0 = 0. (5.11)

As in the case of the Schrödinger equation, a direct computation using the heat
equation (5.8) and (5.3), (5.4) shows that

ψ0 =

d∑
l=1

Dlψl. (5.12)

Thus, using again (5.4), for any m = 1, . . . , d+ 1,

∂0ψm = Dmψ0 =

d∑
l=1

DmDlψl =

d∑
l=1

DlDmψl + i

d∑
l=1

qmlψl

=

d∑
l=1

DlDlψm + i

d∑
l=1

�(ψmψl)ψl,
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which is equivalent to

(∂s −Δx)ψm = 2i

d∑
l=1

Al∂lψm −
d∑

l=1

(A2
l − i∂lAl)ψm + i

d∑
l=1

�(ψmψl)ψl. (5.13)

On the other hand, from (5.4) we obtain

∂sAm = �(ψ0ψm).

Then we can integrate back from s = ∞ to obtain

Am(s) = −
∫ ∞

s

�(ψ0ψm)(r) dr = −
n∑

l=1

∫ ∞

s

�(
ψm(∂lψl + iAlψl)

)
(r) dr, (5.14)

for any m = 1, . . . , d + 1 and s ∈ [0,∞). Thus Am|s=0 represents our choice of
the gauge for the Schrödinger map equation. The reason we prefer the caloric
gauge to the Coulomb gauge is the way the high-high frequency interactions are
handled. Indeed, while in the Coulomb gauge the connection coefficients can be
conceptually written in the form

A ≈
∑
j<k

2−kPjψPkψ +
∑
j≤k

2−jPj(PkψPkψ),

substituting the first approximation ψ(s) ≈ esΔψ(0) in (5.14) yields the relation

A ≈
∑
j<k

2−kPjψPkψ +
∑
j≤k

2−kPj(PkψPkψ). (5.15)

This has a better frequency factor in the high× high→ low frequency interactions.

5.2 Function spaces

To motivate our choice of spaces, recall the Schrödinger nonlinearities, see (5.7)

Lm = −2i

d∑
l=1

Al∂lψm +
(
Ad+1 +

d∑
l=1

(A2
l − i∂lAl)

)
ψm − i

d∑
l=1

ψl�(ψlψm). (5.16)

We would like to analyze these nonlinearities perturbatively in suitable spaces. The
main difficulty is caused by the magnetic terms −2i

∑d
l=1 Al∂lψm. Using (5.15)

(for simplicity consider only the terms corresponding to k = j) they can be written
schematically in the form ∑

k,k′∈Z

2−kPkψPkψ · 2k′
Pk′ψ. (5.17)
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If k > k′, then this is a Strichartz type term, but if k < k′, then we need
to recover a full derivative at frequency k′. The way to do that is by using the
lateral energy spaces L∞,2

e associated to Schrödinger waves with a suitable angular
localization in a lateral frame with direction e. These, and more generally the Lp,q

e

spaces, are defined as

Lp,q
e = Lp

xe
Lq
t,x′

e
,

where (xe = x · e, x′
e) is the orthogonal frame associated to the direction e.

Then the above expression (5.17) needs to be estimated in a dual space L1,2
e .

For this to work it would appear that we need to bound Pkψ in L2,∞
e . This estimate

is valid in dimensions three and higher. However, in two space dimensions this is
precisely the forbidden endpoint of the (lateral) Strichartz estimates.

Nevertheless, the corresponding L2 bilinear estimate for free Schrödinger
waves is valid:

‖ψkψk′‖L2 � 2
k−k′

2 ‖ψk(0)‖L2‖ψk′(0)‖L2 , k < k′.

This suggests that there might be a way to still close by more subtle adjustments to
the function spaces. The key observation which allows us to fix the above argument
in two space dimensions is that in the lateral energy spaces L∞,2

e used at frequency
k′ we are free to add Galilean transformations Tv as long as |v| � 2k

′
. Here

Tvφ(x, t) = e−i( 1
2xv+

1
4 |v|2t)φ(x+ vt, t).

In other words, we can set

‖φ‖Lp,q
e,v

= ‖Tvφ‖Lp,q
e

and work with the smaller space ⋂
|v|�2k′

L∞,2
e,v .

This would allow us to relax the bound for Pkψ to the space∑
|v|≈2k

L2,∞
e,v .

This strategy actually works. Furthermore, we do not need to use all such v, it
suffices to restrict our attention to those which are parallel to e. In addition, by
restricting time to a large but finite interval, we can discretize the above continuous
set of v’s. Precisely, for large K we restrict time to t ∈ [0, 22K], and then define
the set of indices

Wk = Wk(K) = {λ ∈ [−2k, 2k] : 2k+2Kλ ∈ Z}.
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and the associated space

L2,∞
e,Wk

=
∑

v∈eWk

L2,∞
e,v .

To use these spaces we need the projectors Pk,e which select the region |ξ ·e| ≈ 2k.
Then we have the following

Lemma 5.1. Let d = 2. For any f ∈ L2, k ∈ Z, and e ∈ S1 we have

‖eitΔPk,ef‖L∞,2
e,v

� 2−k/2‖f‖L2 , |v| � 2k. (5.18)

In addition, if T ∈ (0, 22K], then

‖1[−T,T ](t)e
itΔPkf‖L2,∞

e,Wk+40

� 2k/2‖f‖L2 . (5.19)

Proof. We begin with (5.18). After a Galilean transformation the problem reduces
to the case v = 0, where by translation invariance it suffices to estimate

‖u‖L2
t,x′ � 2−

k
2 ‖f‖L2 , u = eitΔPk,ef(t, 0, x

′
e).

Without any restriction in generality we assume that Pk,e is confined to the positive
side ξ · e ≈ 2k (and not −2k). Then a direct computation shows that

û(τ, ξ′e) =
1

2ξe
pk,e(ξ)f̂(ξ), τ = ξ2, ξe > 0.

Hence (5.18) follows by a simple change of coordinates in the integral defining the
L2 norm.

Next we prove (5.19). For that we define two more classes of spaces. Given
a finite subset W ⊆ R and r ∈ [1,∞], we define the spaces

∑r
Lp,q
e,W and

⋂r
Lp,q
e,W

using the norms

‖φ‖r∑r Lp,q
e,W

= |W |r−1 inf
φ=

∑
λ∈W φλ

∑
λ∈W

‖φλ‖rLp,q
e,λ

(5.20)

and
‖φ‖r⋂r Lp,q

e,W
= |W |−1

∑
λ∈W

‖φ‖rLp,q
e,λ

. (5.21)

Clearly,
∑1

Lp,q
e,W = Lp,q

e,W and

‖φ‖∑r Lp,q
e,W

≤ ‖φ‖∑r′ Lp,q
e,W

if r ≤ r′. (5.22)

We fix e ∈ S1. By rescaling we can assume that K = 0. We may also assume
that k ≥ 1, since for k ≤ 0 one has the stronger bound

‖1[−1,1](t)e
itΔPkf‖L2

xL
∞
t

� ‖f‖L2 .
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We need to show that

‖1[−1,1](t)e
itΔPkf‖∑2 L2,∞

e,Wk+5

� 2k/2‖f‖L2 . (5.23)

Due to the duality relation1(⋂2
L2,1
e,Wk+5

)′
=

∑2
L2,∞
e,Wk+5

.

it suffices to show that if ‖g‖⋂2 L2,1
e,Wk+5

≤ 1, then

∣∣∣ ∫
R2×R

g(x, t)1[−1,1](t)(e
itΔPkf)(x, t) dxdt

∣∣∣ � 2k/2‖f‖L2 . (5.24)

This can be rewritten as∣∣∣ ∫
R2×R

(e−itΔPkg(t))(x)1[−1,1](t)f(x) dtdx
∣∣∣ � 2k/2‖f‖L2 ,

or, equivalently, ∥∥∥∥∫ 1

−1

e−itΔPkg(t)

∥∥∥∥
L2

� 2k/2.

Hence by a TT ∗ argument it suffices to show that∣∣∣ ∫
R2×R

∫
R2×R

g(x, t)1[−1,1](t)g(y, s)1[−1,1](s)Kk(x− y, t− s) dxdtdyds
∣∣∣ � 2k,

(5.25)
where

Kk(x, t) =

∫
R2

eix·ξe−it|ξ|2χk(|ξ|)2 dξ. (5.26)

By stationary phase

|Kk(t, x)| �
⎧⎨⎩ 22k(1 + 22k|t|)−1, if |x| ≤ 2k+4|t|,

22k(1 + 2k|x|)−N , if |x| ≥ 2k+4|t|.

The key idea is to foliate Kk in the e direction with respect to (thickened) rays
with speed less than 2k+5. We observe that for t ∈ [−2, 2]

|Kk(t, x)| �
∑

λ∈Wk+5

Kk,λ(t, x), Kk,λ(t, x) = (1 + 2k|x · e− λt|)−N .

1This is not entirely straightforward.
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Hence the left hand side of (5.25) can be bounded by∑
λ∈Wk+5

∫ 1

−1

∫ 1

−1

Kk,λ(t− s, x− y)|g(y, s)||g(x, t)|dxdydsdt

�
∑

λ∈Wk+5

‖Kk,λ‖L1,∞
e,λ

‖g‖L2,1
e,λ

‖g‖L2,1
e,λ

� 2−k
∑

λ∈Wk+5

‖g‖2
L2,1

e,λ

� 2k‖g‖2⋂2 L2,1
e,Wk+5

,

where we used the fact that |Wk+5| ≈ 22k. Thus (5.24) follows. �
We are now ready to define the dyadic function spaces where we want to

study the equation (5.7). We will denote by Gk the spaces for the solutions ψm

and by Nk the spaces for the right hand side Lm. Heuristically the Gk norms
should contain Strichartz type norms, plus the above

⋂
|v|�2k L

∞,2
e,v and the sum

space L∞,2
e,Wk

.
One difficulty we encounter is that the norms of nearby Gk’s are not equiva-

lent, and that makes it difficult to propagate them along the harmonic heat flow.
For this reason we introduce a third space Fk with a weaker topology than Gk,
Gk ⊂ Fk, but which does vary nicely with respect to k.

For comparison purposes, we also provide the corresponding definitions in
dimensions three and higher.

Definition 5.2. Assume n ≥ 3 and k ∈ Z. Then Fk(T ), Gk(T ), and Nk(T ) are the
Banach spaces of functions localized at frequency 2k for which the corresponding
norms are finite:

‖φ‖Fk(T ) = ‖φ‖L∞
t L2

x
+‖φ‖Lpd +2−kd/(d+2)‖φ‖Lpd

x L∞
t
+2−k(d−1)/2 sup

e∈Sd−1

‖φ‖L2,∞
e

,

(5.27)

‖φ‖Gk(T ) = ‖φ‖Fk
+ 2k/2 sup

|j−k|≤20

sup
e∈Sd−1

‖Pj,eφ‖L∞,2
e

, (5.28)

and

‖f‖Nk(T ) = inf
f=f1+f2

(
‖f1‖Lp′

d
+ 2−k/2 sup

e∈Sd−1

‖f2‖L1,2
e

)
. (5.29)

Definition 5.3. Assume that n = 2, k ∈ Z, K ∈ Z+, and T ∈ (0, 22K]. For functions
φ at frequency 2k let

‖φ‖F 0
k (T ) = ‖φ‖L∞

t L2
x
+ ‖φ‖L4 + 2−k/2‖φ‖L4

xL
∞
t

+ 2−k/2 sup
e∈S1

‖φ‖L2,∞
e,Wk+40

. (5.30)

We define Fk(T ), Gk(T ), and Nk(T ) as the spaces of functions for which the
corresponding norms are finite:

‖φ‖Fk(T ) = inf
J,m1,...,mJ∈Z+

inf
f=fm1

+···+fmJ

J∑
j=1

2mj‖fmj‖F 0
k+mj

, (5.31)
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‖φ‖Gk(T ) = ‖φ‖F 0
k
+ 2−k/6 sup

e∈S1

‖φ‖L3,6
e

+ 2k/6 sup
|j−k|≤20

sup
e∈S1

‖Pj,eφ‖L6,3
e

+ 2k/2 sup
|j−k|≤20

sup
e∈S1

sup
|λ|<2k−40

‖Pj,eφ‖L∞,2
e,λ

,
(5.32)

and

‖f‖Nk(T )

= inf
f=f1+f2+f3+f4

(
‖f1‖

L
4
3
+2

k
6 ‖f2‖

L
3
2
, 6
5

e1

+2
k
6 ‖f3‖

L
3
2
, 6
5

e2

+2−
k
2 sup

e∈S1

‖f4‖L1,2
e,Wk−40

)
,

(5.33)

where (e1, e2) is the canonical basis in R2.

In all dimensions d ≥ 2 the spaces Nk(T ) and Gk(T ) are related by the
following linear estimate:

Proposition 5.4 (Main linear estimate). Assume K ∈ Z+, T ∈ (0, 22K], and k ∈ Z.
Then for each u0 ∈ L2 which is localized at frequency 2k and any h ∈ Nk(T ), the
solution u to

(i∂t +Δx)u = h, u(0) = u0

satisfies

‖u‖Gk(T ) � ‖u(0)‖L2
x
+ ‖h‖Nk(T ).

To bound products of functions in Fk(T ) we often use a more relaxed crite-
rion. Precisely, since for e ∈ S1 and f localized at frequency 2k we have

‖f‖L2,∞
e,Wk+mj

≤ ‖f‖L2,∞
e

� 2k(d−1)/2‖f‖L2
xL

∞
t
,

it follows that, in all dimensions d ≥ 2,

‖f‖Fk(T ) � ‖f‖L2
xL

∞
t

+ ‖f‖Lpd . (5.34)

This criterion is often used to estimate bilinear expressions, by exploiting the
Lpd
x L∞

t norms in the spaces Fk(T ).
We also need to evolve Fk(T ) functions along the heat flow. Since the Fk(T )

norm is translation invariant, it immediately follows that if h ∈ Fk(T ) then

‖esΔxh‖Fk(T ) � (1 + s22k)−20‖h‖Fk(T ), s ≥ 0. (5.35)

To prove useful bounds on the connection coefficients Am, m = 1, . . . , d, for
k ∈ Z and ω ∈ [0, 1/2] we define the normed spaces Sω

k (T ) of functions in L2
k(T )

for which

‖f‖Sω
k (T ) = 2kω(‖f‖L∞

t L2ω
x

+ ‖f‖
L

pd
t L

pd,ω
x

+ 2−kd/(d+2)‖f‖
L

pd,ω
x L∞

t
) < ∞, (5.36)
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where the exponents 2ω and pd,ω are such that

1

2ω
− 1

2
=

1

pd,ω
− 1

pd
=

ω

d
.

The spaces Sω
k (T ) are at the same scale as the spaces Fk(T ) and Fk(T ) ↪→ S0

k(T ).
By Sobolev embeddings we have

‖f‖Sω′
k (T ) � ‖f‖Sω

k (T ) if ω′ ≤ ω. (5.37)

Thus the spaces Sω
k (T ) can be interpreted as refinements of the Strichartz part

of the spaces Fk(T ) (which corresponds to S0
k(T )). It is important to be able to

prove bounds on the coefficients Am, m = 1, . . . , d, in both spaces Fk(T ) and

S
1/2
k (T ). These bounds quantify an essential gain of smoothness of the coefficients

Am compared to the fields ψm.

5.3 The small data result

Here we outline the main steps in the proof of the small data result for Schrödinger
maps in Theorem 3.8.

5.3.1 Bounds for the harmonic heat flow

We begin with the L2 bounds for the harmonic heat flow. Below we state them
for small data, but by the work of Smith [36] similar results hold up to the critical
energy Ecrit. For the next result we fix the Schrödinger time:

Proposition 5.5 (Construction of the caloric gauge). Let φ : Rn → S2 with φ−Q ∈
L2 which satisfies the smallness condition

‖φ‖
Ḣ

n
2
= γ2 � 1. (5.38)

Let ck be a frequency envelope for φ. Then there is a unique smooth solution
φ̃ ∈ C∞((0,∞)× Rn) of the covariant heat equation{

∂sφ̃ = Δxφ̃+ φ̃ ·∑d
m=1 |∂mφ̃|2 on [0,∞)× Rd,

φ̃(0, x, t) = φ(x, t).
(5.39)

In addition, there are smooth functions v, w : [0,∞)×Rd → S2 with the properties

v · φ̃ = w · φ̃ = v · w = w · ∂sv = 0 on [0,∞)× Rd × (−T, T ), (5.40)

and for any F ∈ {φ̃, v, w} we have the bounds

‖PkF (s)‖L2
x
� ck(1 + s22k)−202−

n
2 k. (5.41)
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The key caloric gauge condition is the last identity in (5.40), namely tw·∂sv ≡
0, which leads to the identity A0 ≡ 0. It is also important that the functions φ̃, v, w
become trivial as s → ∞.

The L2 bounds are far from sufficient for our analysis. Instead we need addi-
tional Fk bounds for the harmonic heat flow. This happens at the level of space-
time estimates, so we add a Schrödinger time variable back into the picture. Again
it is convenient to add the frequency envelopes to this picture. This is done with
respect to the Fk norm. Thus, let ck be an Fk frequency envelope for the ψm’s. To
this envelope we associate the sequence

c>k =
(∑

j≥k

c2j

)1/2

.

Proposition 5.6 (Heat flow bootstrap estimates). For T ∈ (0,∞) and φ small in
L∞Ḣ1(T ) we consider φ̃, v, w as in Proposition 5.5, and ψm and Am the associated
fields and connection coefficients.

(a) Suppose that the functions {ψm}m=1,d satisfy

‖Pkψm(0)‖Fk(T ) ≤ 2−k(d−2)/2ck, ε := ‖c‖l2 � 1, (5.42)

as well as the bootstrap condition

‖Pkψm(s)‖Fk(T ) ≤ ε−1/2ck2
−k(d−2)/2(1 + s22k)−4. (5.43)

Then we have

‖Pkψm(s)‖Fk(T ) � ck2
−k(d−2)/2(1 + s22k)−4. (5.44)

Also, for l,m = 1, . . . , n we have the Fk(T ) bounds

‖Pk(Am(s)ψl(s))‖Fk(T ) � ck2
−k(d−4)/2(22ks)−

3
8 (1 + s22k)−2, (5.45)

as well as the Lpd estimate at s = 0

‖PkAm(0)‖Lpd � ck2
−k(d−2)/2. (5.46)

(b) Assume in addition that

‖Pkψd+1(0)‖Lpd � ck2
−k(d−4)/22k. (5.47)

Then we have

‖Pkψd+1(s)‖Lpd � ck2
−k(d−4)/2(1 + 22ks)−2, (5.48)

and the connection coefficient Ad+1 satisfies the L2 estimate at s = 0

‖PkAd+1(0)‖L2 � ck2
−k(d−2)/2, n ≥ 3, (5.49)

respectively

‖Ad+1(0)‖L2 � ε2, ‖PkAd+1(0)‖L2 � c2>k d = 2. (5.50)

The bootstrap assumption (5.43) can be then eliminated.
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5.3.2 Bounds for the Schrödinger map flow

Since the connection coefficients Am are defined via the harmonic heat flow, we
cannot use a direct fixed point argument in order to solve the Schrödinger map
equation. Instead, we use a bootstrap argument. Our main Schrödinger bootstrap
result is the following.

Proposition 5.7 (Schrödinger bootstrap estimates). Assume that T ∈ (0, 22K] and
Q ∈ S2. Let {ck}k∈Z be an ε-frequency envelope with ε � 1. Let φ be a smooth
Schrödinger map in [0, T ] whose initial datum satisfies

‖Pk∇φ0‖L2
x
≤ ck2

−k(d−2)/2. (5.51)

Assume that φ satisfies the bootstrap condition

‖Pk∇φ‖L∞
t L2

x
≤ ε−1/2ck2

−k(d−2)/2 (5.52)

and let (φ, v, w) be the caloric extension of φ given by Proposition 5.5, with the
corresponding fields ψm, Am. Suppose also that at the initial parabolic time s = 0
the functions {ψm}m=1,d satisfy the additional bootstrap condition

‖Pkψm(0)‖Gk(T ) ≤ ε−1/22−(d−2)k/2ck. (5.53)

Then we have
‖Pkψm(0)‖Gk(T ) � 2−(d−2)k/2ck. (5.54)

The above proposition is proved by applying the linear result in Proposi-
tion 5.4 to the equation (5.7). The right-hand side in (5.7) is estimated in the
Nk(T ) spaces using the bounds in Proposition 5.6 for the differentiated fields ψm

and the connection coefficients Am.
We note that the bootstrap assumption (5.53) is eliminated via a continuity

argument. The additional bootstrap condition (5.52) can also be improved to

‖Pk∇φ‖L∞
t L2

x
� ck (5.55)

and then eliminated, by first transferring it to v and w using Proposition 5.5, and
then by recovering ∇φ via the relations (5.1).

5.3.3 Rough solutions and continuous dependence.

To define rough solutions and study the dependence of solutions on the initial data,
we consider the linearized Schrödinger map equation. Expressed in the frame, this
has the form

(i∂t +Δx)ψlin

= −2i

d∑
l=1

Al∂lψlin +
(
Ad+1 +

d∑
l=1

(A2
l − i∂lAl)

)
ψlin − i

d∑
l=1

ψl�(ψlψlin).
(5.56)
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This can be derived by direct computations as before. Heuristically, one can also
think of a one parameter family of solutions φ(h) for the Schrödinger map equation
so that φ(0) = φ and ψlin is the expression in the frame of ∂hφ|h=0, and extend the
frame (v, w) as h varies. For this we will prove that it is well-posed in Ḣ(d−2)/2.

Proposition 5.8. Let φ be a Schrödinger map as above. Then for each initial datum
ψlin(0) ∈ H∞ there exists an unique solution ψlin ∈ C(R, H∞) for (5.56), which
satisfies the bounds∑

k

2(d−2)k‖Pkψlin‖2Gk(T ) � ‖ψlin(0)‖2
Ḣ

d−2
2

. (5.57)

The proof of this result is identical to the proof of Proposition 5.6. As a
consequence of this we obtain the Lipschitz dependence of solutions in terms of
the initial data in a weaker topology:

Proposition 5.9. Consider two initial data φ0
0 and φ1

0 in H∞
Q which satisfy the

smallness condition ‖φh
0‖Ḣ d

2
� 1, h = 0, 1, and let φ0 and φ1 be the corresponding

global solutions for (5.56). Then∑
k

2(d−2)k‖Pk(φ
0 − φ1)‖2

L∞Ḣ
d−2
2

� ‖φ0
0 − φ1

0‖2
Ḣ

d−2
2

. (5.58)

To prove this, one needs to show that any two initial data φ0
0 and φ1

0 which are
small in Ḣ1 can be joined by a one parameter family {φh

0}h∈[0,1] ∈ C∞([0, 1];H∞)
of initial data so that: ∫ 1

0

‖∂hφh
0‖Ḣ d−2

2
≈ ‖φ0

0 − φ1
0‖Ḣ d−2

2
. (5.59)

This was proved in [47].
The above proposition allows us to conclude the proof of the strong continu-

ous dependence on the initial data. Precisely, we show that the datum to solution
map SQ admits an unique continuous extension

SQ : Ḣ
d
2 ∩ Ḣ

d−2
2

Q → C(R; Ḣ
d
2 ∩ Ḣ

d−2
2

Q ).

It suffices to consider a sequence of smooth initial data φn
0 ∈ H∞

Q which satisfy

uniformly the smallness condition ‖φn
0‖Ḣ d

2
� 1 and such that φn

0 → φ0 in Ḣ
d
2 ∩

Ḣ
d−2
2

Q , and show that the corresponding sequence of global solutions is Cauchy in

the space in C(R; Ḣ
d
2 ∩ Ḣ

d−2
2

Q ). By Proposition 5.9, it follows that the sequence

φn is Cauchy in C(R; Ḣ
d−2
2

Q ):

lim
n,m→∞ ‖φn − φm‖

C(R;Ḣ
d−2
2 )

= 0. (5.60)
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Consider frequency envelopes {cnk} associated to φn
0 . Since φ

n
0 is convergent in Ḣ

d
2

we can choose the corresponding envelopes {cnk} to converge in l2. Then we have
the uniform summability property

lim
k0→∞

sup
n

∑
k>k0

(cnk )
2 = 0. (5.61)

Now we estimate

‖φn − φm‖2
C(R;Ḣ

d
2 )

≤ ‖P≤k0(φ
n − φm)‖2

C(R;Ḣ
d
2 )

+ ‖P>k0φ
n‖2

C(R;Ḣ
d
2 )

+ ‖P>k0φ
m‖2

C(R;Ḣ
d
2 )

� 2k0‖P≤k0
(φn − φm)‖2

C(R;Ḣ
d−2
2 )

+
∑
k>k0

(cnk )
2 + (cmk )2.

Hence using (5.60) we have

lim sup
n,m→∞

‖φn − φm‖2
C(R;Ḣ

d
2 )

� sup
n

∑
k>k0

(cnk )
2.

Letting k0 → ∞, by (5.61) we obtain

lim sup
n,m→∞

‖φn − φm‖
C(R;Ḣ

d
2 )

= 0,

and the argument is concluded.

The continuity of the solution operator SQ in higher Sobolev spaces

SQ : Ḣσ ∩ Ḣ
d−2
2

Q → C(R; Ḣσ ∩ Ḣ
d−2
2

Q ),
d

2
< σ ≤ σ1

can be obtained in the same manner.

5.4 Further developments

5.4.1 Other targets

The frame method works well in the case of the S2 or H2 targets, but arbitrary
Kähler targets are a different story. There the frame method would not yield a
self-contained system for the differentiated fields ψm.

Open Problem 5.10. Prove small data well-posedness for the Schrödinger map
equation with values into an arbitrary (say compact) Kähler manifold.
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5.4.2 Large data

For the purpose of this subsection we assume that we are in two space dimensions,
i.e., the energy critical case. The reason for this is that in this case the energy is
a meaningful invariant object which can be used in the description of the global
behavior of solutions.

We begin with the case of the H2 target, where there are no finite energy
harmonic maps, and no other known obstructions to global well-posedness. This
is the geometric version of a defocusing problem. Then we have

Conjecture 5.11 (Defocusing Conjecture). Consider the Schrödinger map prob-
lem in two space dimensions, with values in H2. Then global well-posedness and
scattering hold for all finite energy data.

In the case of the S2 target, the harmonic maps provide an obvious obstruc-
tion to a large data result. In addition, scattering can only occur for solutions
in the zero homotopy class. The smallest nontrivial soliton, on the other hand,
is the stereographic projection, Q1, which belongs to the homotopy one class. In
order to emulate such a soliton in the zero homotopy class, one needs to wrap the
sphere and then unwrap it; this requires twice the soliton energy. Thus the natural
conjecture is:

Conjecture 5.12 (Strong Threshold Conjecture). Consider the Schrödinger map
problem in two space dimensions, with values in S2. Then global well-posedness
and scattering holds for all zero homotopy data which satisfy E(φ) < 2E(Q1).

These conjectures parallel recently proved results for wave maps. Both con-
jectures are still open for Schrödinger maps. However, the equivariant case has
recently been studied.

Theorem 5.13 (Bejenaru, Kenig, Ionescu, and Tataru [2]). Consider the Schrödin-
ger map problem in two space dimensions, with values in H2. For this problem,
global well-posedness and scattering hold in the 1-equivariant class for all finite
energy data.

Theorem 5.14 (Bejenaru, Kenig, Ionescu, and Tataru [1]). Consider the Schrödin-
ger map problem in two space dimensions, with values in S2. For this problem,
global well-posedness and scattering hold in the 1-equivariant class for all zero
homotopy data which satisfies E(φ) < E(Q1).

The proof uses the Kenig–Merle method, which involves

• proving that if the result does not hold, then minimal energy blow-up solu-
tions exist and

• eliminating the minimal energy blow-up solutions via mass and momentum
Morawetz type estimates.

The key difficulties in the proof are as follows:
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• Gauge formulation of the problem: via the Coulomb gauge one obtains two
coupled NLS type equations, and the coupling needs to survive in the con-
centration compactness argument.

• Morawetz (momentum) estimates are harder, and only yield local energy
decay in a restricted regime; in particular, we cannot reach the conjectured
2E(Q1) threshold for S2 targets.

5.4.3 Near soliton behavior

In this section we consider the behavior of solutions with energy above the ground
state threshold. For clarity we discuss only the simplest such problem, which is
still wide open. Thus, we consider the case of the S2 target and solutions in the
homotopy one class, which have energy just above the soliton energy:

E(Q1) ≤ E(φ) < E(Q1) + ε. (5.62)

We note that if E(Q1) = E(φ), then φ must belong to the class Q1 of ground states
obtained from Q1 via symmetries. We also remark that energy considerations show
that any such state φ must satisfy

dist(φ,Q1) � ε.

Thus the family Q1 is orbitally stable. Unfortunately, this does not say as much
as one might want since the group of symmetries is noncompact. Thus we have
the following

Open Problem 5.15. For Schrödinger maps from R2+1 to S2 which have homotopy
one and satisfy (5.62), understand the possible global dynamics for the flow.

The key element in this is understanding the motion of solutions along the
Q1 family. Possible issues to consider are

• Can finite time blow up occur? If so, what are the possible rates?

• For global solutions, what is the asymptotic behavior at infinity (if any)?

• Can solutions drift away to spatial infinity in finite time? In infinite time?

• Are there any breather type solutions in this class?

While in such generality the above problem seems out of reach for now,
some partial results have been obtained for equivariant solutions. An advantage
of working in the equivariant class is that the dimension of the symmetry group is
reduced to two, namely scaling and horizontal rotations. The first is noncompact,
but the second is compact. Thus we can parametrize the ground states as

Qeq
1 = {Qα,λ; λ ∈ R+, α ∈ S1}
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The equivariant solutions are represented as

φ(t) = Qα(t),λ(t) +OḢ1(ε)

and the question is to understand the behavior of the functions α(t) and λ(t).
In chronological order, the results we have so far are as follows:

Theorem 5.16 (Gustafson, Nakanishi, and Tsai [17]). Qk ground states are stable
in the k equivariant class for k ≥ 3.

We remark that this result is very different from the wave-map picture. Also,
it seems somewhat unlikely that the result will survive outside the equivariant
class.

Theorem 5.17 (Bejenaru and Tataru (k = 1, [6]) (k = 2, in progress)).

a) Q1 ground states are unstable in the energy norm Ḣ1.

b) Q1 ground states are stable in the one equivariant class with respect to a
stronger topology X satisfying

H1 ⊂ X ⊂ Ḣ1.

A key role in this analysis is played by the linearized equation near Q1 ex-
pressed in a suitable gauge. This is a linear Schrödinger equation governed by an
explicit operator

H = −Δ+ V, V (r) =
1

r2
− 8

(1 + r2)2
.

A key difficulty is that H has a zero resonance

φ0 = r∂rQ1 =
2r

1 + r2
,

which corresponds to motion along the soliton family.
This is unlike what happens in higher equivariance classes k ≥ 3, where the

analogue of φ0 is not only an eigenvalue, but also belongs to H−1. This allows one
to define a corresponding orthogonal projection for functions in Ḣ1 and opens the
door to a more standard perturbation theory.

The proof of the above result requires developing a complete spectral reso-
lution for the operator H. In addition, the parameter λ(t) is the main nonper-
turbative parameter in this analysis, so one in effect needs to work with a linear
evolution of the form

(i∂t +Hλ(t))ψ = f

with a nontrivial dependence of λ on t.
Finally, the last and most recent results in this direction that we mention are
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Theorem 5.18 (Merle, Raphael, and Rodnianski [26], Perelman [28]). Finite time
blow-up equivariant solutions exist near Q1.

The first result [26] adapts to the Schrödinger map setting the techniques in
the similar work for wave maps in [34], [32]. The second [28] is the Schrödinger
map counterpart of the wave map results in [21].
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Chapter 1

Notation

Throughout this text, we will be regularly referring to the space-time norms

∥∥u∥∥
Lq

tL
r
x(R×Rd)

:=

(∫
R

[ ∫
Rd

|u(t, x)|r dx
] q

r

dt

) 1
q

, (1.1)

with obvious changes if q or r are infinity. We will often use the abbreviation

‖f‖r := ‖f‖Lr
x

and ‖u‖q,r := ‖u‖Lq
tL

r
x
.

We write X � Y to indicate that X ≤ CY for some constant C, which is per-
mitted to depend on the ambient spatial dimension, d, without further comment.
Other dependencies of C will be indicated with subscripts, for example, X �u Y .
We will write X ∼ Y to indicate that X � Y � X.

We use the ‘Japanese bracket’ convention: 〈x〉 := (1 + |x|2)1/2 as well as
〈∇〉 := (1−Δ)1/2. Similarly, |∇|s denotes the Fourier multiplier with symbol |ξ|s.
These are used to define the Sobolev norms

‖f‖Hs,r := ‖〈∇〉sf‖Lr
x

and ‖f‖Ḣs,r := ‖|∇|sf‖Lr
x
.

When r = 2 we abbreviate Hs = Hs,2 and Ḣs = Ḣs,2.
Our convention for the Fourier transform is

f̂(ξ) = (2π)−
d
2

∫
Rd

e−ix·ξf(x) dx,

so that

f(x) = (2π)−
d
2

∫
Rd

eix·ξ f̂(ξ) dξ and

∫
Rd

|f̂(ξ)|2 dξ =

∫
Rd

|f(x)|2 dx.

Notations associated to Littlewood–Paley projections are discussed in the Ap-
pendix (Chapter 11).
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Chapter 2

Dispersive and Strichartz estimates

What all linear dispersive-type equations have in common is a dispersive-type
estimate, which expresses the fact that wave packets spread out as time goes by.
An expression of this on the Fourier side is the fact that different frequencies move
with different speeds and/or in different directions. Below we will discuss several
instances of this phenomenon.

2.1 The linear Schrödinger equation

The initial-value problem for the linear Schrödinger equation reads

i∂tu = −Δu with u(0, x) = u0(x). (2.1)

Here u denotes a complex-valued function on the space-time Rt ×Rd
x with spatial

dimension d ≥ 1. By taking Fourier transforms, we observe that

û(t, ξ) = e−it|ξ|2 û0(ξ). (2.2)

In particular, solutions with Schwartz initial data are Schwartz for all t ∈ R.
Using (2.2) and Plancherel, it is easy to see that solutions to (2.1) conserve

mass, that is,

‖eitΔu0‖2L2
x
= ‖u0‖2L2

x
, (2.3)

and kinetic energy, that is,

‖∇eitΔu0‖2L2
x
= ‖∇u0‖2L2

x
.

To derive an explicit formula for solutions to (2.1), we will first study the
particular case of modulated Gaussian initial data, namely,

u0(x) = exp
{
− |x|2

4σ2 + ixξ0

}
with σ > 0 and ξ0 ∈ Rd.
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228 Chapter 2. Dispersive and Strichartz estimates

This initial datum is a Gaussian that lives at scale σ and has wave vector ξ0,
that is, it has wave length 2π

|ξ0| and the wave fronts are perpendicular to ξ0. A

straightforward computation yields that the solution u to (2.1) with this initial
datum is given by

[eitΔu0](x) = (2π)−
d
2

∫
Rd

eixξ−it|ξ|2 û0(ξ) dξ

= (2π)−d

∫
Rd

∫
Rd

eixξ−it|ξ|2e−iyξe−
|y|2
4σ2 +iyξ0 dy dξ

= (2π)−d

∫
Rd

∫
Rd

eixξ−it|ξ|2e−σ2|ξ−ξ0|2e−| y
2σ+iσ(ξ−ξ0)|2 dy dξ

= (2π)−d(4πσ2)
d
2 e

−it|ξ0|2+ixξ0− |x−2tξ0|2
4(σ2+it)

∫
Rd

e
−(σ2+it)

∣∣ξ− ix+2σ2ξ0
2(σ2+it)

∣∣2
dξ

=
( σ2

σ2 + it

) d
2

exp
{
−it|ξ0|2 + ixξ0 − |x−2tξ0|2

4(σ2+it)

}
. (2.4)

In the formulas above, |v|2 :=
∑d

j=1 v
2
j for all vectors v ∈ Cd.

Exercise 2.1. Justify all steps in the derivation of (2.4).

Remark. From the exact formula (2.4), we read the following:
• the wave packet travels at speed 2ξ0 (called the group velocity)
• the wave vector is still ξ0 (called the phase velocity)
• while the amplitude of the wave packet decreases with time, the wave packet
also spreads out: Re 1

4(σ2+it) < 1
4σ2 . This is consistent with the conservation of

mass.

We are now ready to derive an exact formula for solutions to (2.1), at least
for Schwartz initial data u0 ∈ S(Rd). Using the linearity of the propagator eitΔ

and (2.4), we get

eitΔ
[
(4πσ2)−

d
2

∫
Rd

e−
|x−y|2

4σ2 u0(y) dy
]
= [4π(σ2 + it)]−

d
2

∫
Rd

e
− |x−y|2

4(σ2+it)u0(y) dy.

To continue, the key observation is that for u0 ∈ S(Rd),

lim
σ→0

(4πσ2)−
d
2

∫
Rd

e−
|x−y|2

4σ2 u0(y) dy = u0(x), (2.5)

both pointwise in x and in the L2
x topology. Using also that the propagator eitΔ

is continuous in the L2
x topology (on Schwartz space), we get the exact formula

[eitΔu0](x) = (4πit)−
d
2

∫
Rd

e
i|x−y|2

4t u0(y) dy for t 
= 0, (2.6)

for all u0 ∈ S(Rd), where the equality is meant in the L2
x sense.
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This leads directly to the dispersive inequality for the linear Schrödinger
propagator:

‖eitΔu0‖L∞
x

� |t|− d
2 ‖u0‖L1

x
for t 
= 0. (2.7)

Interpolating with (2.3), we obtain the full range of dispersive estimates for the
linear Schrödinger propagator:

‖eitΔu0‖Lp
x
� |t| d2 ( 1

p− 1
p′ )‖u0‖Lp′

x
for t 
= 0, (2.8)

for all 2 ≤ p ≤ ∞, where p′ denotes the exponent conjugate to p, that is, 1
p+

1
p′ = 1.

Exercise 2.2. Prove that for all u0 ∈ L2
x, the equality (2.5) holds both a.e. in x

and in the L2
x topology.

2.2 The Airy equation

The initial-value problem for the Airy equation reads

∂tu = −∂3
xu with u(0, x) = u0(x). (2.9)

Here u denotes a real-valued function on the space-time Rt × Rx. Note that
complex-valued solutions to (2.9) have the property that their real and imagi-
nary parts individually solve (2.9).

Using the Fourier transform, we arrive at

[e−t∂3
xu0](x) = (3t)−1/3

∫
R

Ai
(

x−y
(3t)1/3

)
u0(y) dy for t 
= 0, (2.10)

where

Ai(x) := π−1

∫ ∞

0

cos( 13ξ
3 + xξ) dξ

denotes the Airy function of the first kind.

Exercise 2.3. Prove that the Airy function is uniformly bounded. Indeed, show
that Ai(x) → 0 as x → ±∞.
Hint: Use non-stationary phase for x ≥ 1; van der Corput for |x| ≤ 1; van der
Corput for x ≤ −1 on |ξ| ∼ |x|1/2 and the complementary region, separately.

As a consequence of this exercise and (2.10), we obtain the dispersive estimate
for the Airy equation:

‖e−t∂3
xu0‖L∞

x
� |t|− 1

3 ‖u0‖L1
x

for t 
= 0. (2.11)

Interpolating with the conservation law

‖e−t∂3
xu0‖L2

x
= ‖u0‖L2

x
,
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we obtain the full range of dispersive estimates, namely,

‖e−t∂3
xu0‖Lp

x
� |t| 13 ( 1

p− 1
p′ )‖u0‖Lp′

x
for t 
= 0, (2.12)

for all 2 ≤ p ≤ ∞, where p′ denotes the exponent conjugate to p, 1
p + 1

p′ = 1.

We may strengthen the dispersive estimate (2.11) by localizing in frequency:

Exercise 2.4 (Frequency-localized dispersive estimate for the Airy propagator).
Let f ∈ S(R). Prove that

‖e−t∂3
xPNu0‖L∞

x
� min{|t|− 1

3 , (N |t|)− 1
2 }‖PNu0‖L1

x

uniformly for N ∈ 2Z and t 
= 0. Here PN denotes the Littlewood–Paley projection
to frequencies |ξ| ∼ N ; see Appendix (11) for definitions and basic properties.

2.3 The linear wave equation

The initial-value problem for the linear wave equation reads

∂2
t u = Δu with u(0, x) = u0(x) and ∂tu(0, x) = u1(x). (2.13)

Here u denotes a real-valued function on the space-time Rt × Rd
x with spatial

dimension d ≥ 1.
Using the Fourier transform, we find(

u
ut

)
(t) =

(
cos(t|∇|) |∇|−1 sin(t|∇|)

−|∇| sin(t|∇|) cos(t|∇|)
)(

u0

u1

)
.

One can derive an explicit formula for the wave propagator in spatial vari-
ables; see, for example, [31]. One advantage of this expression is that it immedi-
ately yields Huygens’ principle. This exact formula can also be used to derive the
dispersive estimate we give below; however, we prefer to take a Fourier analytic
approach that generalizes to more equations.

Lemma 2.1 (Frequency-localized dispersive estimate for the half-wave propagator).
For any d ≥ 1 and any frequency N ∈ 2Z, we have

‖e±it|∇|PNf‖L∞
x

�
(
1 + |t|N)− d−1

2 Nd‖PNf‖L1
x
. (2.14)

In particular, interpolating with ‖eit|∇|PNf‖L2
x
= ‖PNf‖L2

x
we get

‖e±it|∇|PNf‖Lp
x
�
(
1 + |t|N)− (d−1)(p−2)

2p N
d(p−2)

p ‖PNf‖
Lp′

x
, (2.15)

for all 2 ≤ p ≤ ∞, where p′ denotes the exponent conjugate to p, that is, 1
p+

1
p′ = 1.



2.3. The linear wave equation 231

Proof. By symmetry, it suffices to prove the dispersive estimate for the propagator
eit|∇|. If d = 1 or d ≥ 2 and |t| � N−1, the claim (2.14) follows easily from the
Bernstein inequality:

‖eit|∇|PNf‖L∞
x

� N
d
2 ‖eit|∇|PNf‖L2

x
� N

d
2 ‖PNf‖L2

x
� Nd‖PNf‖L1

x
.

It thus remains to prove the claim for d ≥ 2 and |t| 
 N−1, to which we now
turn. We write

eit|∇|PNf = eit|∇|P̃NfN =
[
eit|ξ|ψ̃

(
ξ
N

)
f̂N (ξ)

]∨
=
[
eit|ξ|ψ̃

(
ξ
N

)]∨ ∗ fN ,

where P̃N = PN/2 + PN + P2N denotes the fattened Littlewood–Paley projection,

ψ denotes the Fourier multiplier associated with P1, and ψ̃ denotes the Fourier
multiplier associated with P̃1. To establish (2.14), it thus suffices to show∣∣∣∣∫

Rd

eixξ+it|ξ|ψ̃
(

ξ
N

)
dξ

∣∣∣∣ � N
d+1
2 |t|− d−1

2 (2.16)

for all d ≥ 2 and |t| 
 N−1.
Using a change of variables and switching to polar coordinates, we write∫
Rd

eixξ+it|ξ|ψ̃
(

ξ
N

)
dξ = Nd

∫ ∞

0

∫
Sd−1

eixNrω+itNrψ̃(r) dσ(ω)rd−1 dr (2.17)

= Nd

∫ ∞

0

eitNrψ̃(r)σ̌(Nr|x|)rd−1 dr, (2.18)

where dσ denotes the surface measure on the sphere Sd−1 ⊂ Rd.
If |x| � |t|, we note that the phase φ(r) := Nrxω + Nrt has no critical

points; indeed, |φ′(r)| � N |t|. Thus, writing eiφ(r) = 1
iφ′(r)∂re

iφ(r) and integrating

by parts k times in (2.17), we get the bound∣∣∣∣∫
Rd

eixξ+it|ξ|ψ̃
(

ξ
N

)
dξ

∣∣∣∣ �k Nd(N |t|)−k � N
d+1
2 |t|− d−1

2 .

To obtain the last inequality, we take k = d−1
2 if the dimension d is odd, or k = d

2
if the dimension d is even (recalling that |t| 
 N−1).

It remains to consider the case |x| � |t|. In this case we use (2.18) together
with the following lemma:

Lemma 2.2. Let d ≥ 2 and let dσ denote the surface measure on the sphere Sd−1 ⊂
Rd. Then

|σ̌(x)| � 〈x〉− d−1
2 .

Proof. Exercise! Hint: Using the fact that dσ is rotationally invariant, we may
write

σ̌(x) = (2π)−
d
2

∫
Sd−1

ei|x|ξddσ(ξ) ∼
∫ π

0

ei|x| cos θ(sin θ)d−2 dθ,
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where θ is the angle x makes with ed. Now use stationary phase and van der
Corput. �

Returning to the proof of Lemma 2.1, for |x| � |t| 
 N−1 we use (2.18) and
Lemma 2.2 to estimate∣∣∣∣∫

Rd

eixξ+it|ξ|ψ̃
(

ξ
N

)
dξ

∣∣∣∣ � Nd

∫
Rd

|ψ̃(r)|(Nr|x|)− d−1
2 rd−1 dr � N

d+1
2 |t|− d−1

2 ,

which gives (2.16) in this case. This completes the proof of (2.16), and so the proof
of Lemma 2.14. �

2.4 From dispersive to Strichartz estimates

In this subsection, we will only present details for the derivation of Strichartz
estimates for the wave equation. Strichartz estimates for Schrödinger and Airy are
left as exercises for the reader.

Definition 2.3. We say that (q, r) is wave admissible if

1

q
+

d− 1

2r
≤ d− 1

4
, q, r, d ≥ 2, and (q, r, d) 
= (2,∞, 3).

Proposition 2.4 (Frequency-localized Strichartz estimates for the half-wave prop-
agator). Let d ≥ 2 and (q, r) be wave admissible such that 1

q +
d
r = d

2 − γ for some
γ > 0. Then

‖e±it|∇|PNf‖Lq
tL

r
x
� Nγ‖PNf‖L2

x
, (2.19)∥∥∥∫

R

e∓it|∇|PNF (t) dt
∥∥∥
L2

x

� Nγ‖PNF‖
Lq′

t Lr′
x
. (2.20)

Moreover, if (q̃, r̃) is also a wave admissible pair, then we have the retarded esti-
mate ∥∥∥∫

s<t

e±i(t−s)|∇|PNF (s) ds
∥∥∥
Lq

tL
r
x

� Nd− 1
q− 1

q̃− d
r− d

r̃ ‖PNF‖
Lq̃′

t Lr̃′
x
. (2.21)

Proof. We will only prove the proposition in the non-endpoint cases, that is, omit-

ting the pair (2, 2(d−1)
d−3 ) for d > 3. For the endpoint case, see [17].

By the TT ∗ argument, (2.19) is equivalent to (2.20) and they are both equiv-
alent to ∥∥∥∫

R

e±i(t−s)|∇|PNF (s) ds
∥∥∥
Lq

tL
r
x

� N2γ‖F‖
Lq′

t Lr′
x
. (2.22)

When 1
q + d−1

2r < d−1
4 we use (2.15) and Young’s inequality to estimate

LHS(2.22) �
∥∥∥∫

R

(
1 + |t− s|N)− (d−1)(r−2)

2r N
d(r−2)

r ‖PNF (s)‖Lr′
x
ds
∥∥∥
Lq

t
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� N
d(r−2)

r ‖PNF‖
Lq′

t Lr′
x

∥∥(1 + |t|N)− (d−1)(r−2)
2r

∥∥
L

q/2
t

� N
d(r−2)

r N− 2
q ‖PNF‖

Lq′
t Lr′

x
,

which gives (2.22) in this case. When 1
q + d−1

2r = d−1
4 we use instead the Hardy–

Littlewood–Sobolev inequality to obtain

LHS(2.22) �
∥∥∥∫

R

|t− s|− (d−1)(r−2)
2r N

(d+1)(r−2)
2r ‖PNF (s)‖Lr′

x
ds
∥∥∥
Lq

t

� N
(d+1)(r−2)

2r ‖PNF‖
Lq′

t Lr′
x
,

which gives (2.22) in this case. Note that the application of Hardy–Littlewood–

Sobolev requires r < 2(d−1)
d−3 . This completes the proof of (2.22), and so the proof

of (2.19) and (2.20).
We now turn to (2.21). First we note that, by Bernstein’s inequality, it suffices

to prove the claim for those admissible pairs that are sharp admissible in the sense
that 1

q + d−1
2r = d−1

4 = 1
q̃ + d−1

2r̃ . Next, we remark that the proof of (2.22) gives

(2.21) for (q̃, r̃) = (q, r). Finally, to obtain the full range of sharp admissible pairs,
one interpolates between this and the following two estimates, which are simple
consequences of duality and (2.19) and (2.20):∥∥∥∫

R

e±i(t−s)|∇|PNF (s) ds
∥∥∥
L∞

t L2
x

� N
d
2− 1

q̃− d
r̃ ‖PNF‖

Lq̃′
t Lr̃′

x
,∥∥∥∫

R

e±i(t−s)|∇|PNF (s) ds
∥∥∥
Lq

tL
r
x

� N
d
2− 1

q− d
r ‖PNF‖L1

tL
2
x
.

This completes the proof of the lemma. �
Corollary 2.5 (Strichartz estimates for the half-wave propagator). Let d ≥ 2 and
(q, r) be wave admissible such that r 
= ∞ and 1

q + d
r = d

2 − γ for some γ > 0.
Then

‖e±it|∇|f‖Lq
tL

r
x
� ‖|∇|γf‖L2

x
,∥∥∥∫

R

e∓it|∇|F (t) dt
∥∥∥
L2

x

� ‖|∇|γF‖
Lq′

t Lr′
x
.

Moreover, if (q̃, r̃) is also a wave admissible pair with r̃ 
= ∞, then∥∥∥∫
s<t

e±i(t−s)|∇|F (s) ds
∥∥∥
Lq

tL
r
x

� ‖|∇|d− 1
q− 1

q̃− d
r− d

r̃ F‖
Lq̃′

t Lr̃′
x
.

Proof. In view of Proposition 2.4, it suffices to prove that

‖F‖Lq
tL

r
x
�
{∑
N∈2Z

‖PNF‖2Lq
tL

r
x

}1/2

for all 2 ≤ q ≤ ∞ and 2 ≤ r < ∞, (2.23)
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which by duality is equivalent to{∑
N∈2Z

‖PNF‖2
Lq′

t Lr′
x

}1/2

� ‖F‖
Lq′

t Lr′
x

for all 2 ≤ q ≤ ∞ and 2 ≤ r < ∞. (2.24)

To see that (2.23) and (2.24) are equivalent, consider the operator T :

Lq′
t L

r′
x → l2(Lq′

t L
r′
x ) given by T (F ) = {PNF}N∈2Z . The operator T being bounded

is equivalent to (2.24). It is easy to check that the adjoint of T is T ∗ : l2(Lq
tL

r
x) →

Lq
tL

r
x given by T ∗({GN}N∈2Z) =

∑
N∈2Z PNGN . Boundedness of T ∗ implies∥∥∥∑

N∈2Z

PNGN

∥∥∥
Lq

tL
r
x

�
{∑
N∈2Z

‖GN‖2Lq
tL

r
x

}1/2

. (2.25)

Writing F =
∑

N∈2Z PNF =
∑

N∈2Z PN P̃NF and applying (2.25) with GN =

P̃NF , we obtain (2.23). Thus (2.24) implies (2.23). To see that (2.23) implies
(2.25) and so (2.24), we estimate∥∥∥∑

N∈2Z

PNGN

∥∥∥
Lq

tL
r
x

�
{∑
N∈2Z

∥∥∥PN

∑
M∈2Z

PMGM

∥∥∥2
Lq

tL
r
x

}1/2

�
{∑
N∈2Z

∥∥∥ ∑
M∼N

GM

∥∥∥2
Lq

tL
r
x

}1/2

�
{∑
N∈2Z

‖GN‖2Lq
tL

r
x

}1/2

.

It thus remains to prove (2.23); for this it suffices to show that

‖f‖Lr
x
�
{∑
N∈2Z

‖PNf‖2Lr
x

}1/2

for all 2 ≤ r < ∞, (2.26)

since then, for q ≥ 2, we obtain

‖F‖Lq
tL

r
x
�
∥∥∥{∑

N∈2Z

‖PNF (t)‖2Lr
x

}1/2∥∥∥
Lq

t

=
∥∥∥∑
N∈2Z

‖PNF (t)‖2Lr
x

∥∥∥1/2
L

q
2
t

�
{∑
N∈2Z

∥∥∥‖PNF (t)‖2Lr
x

∥∥∥
L

q
2
t

}1/2

=
{∑
N∈2Z

‖PNF‖2Lq
tL

r
x

}1/2

.

Finally, to prove (2.26) we use the square function estimate and the same
argument as above:

‖f‖Lr
x
∼
∥∥∥{∑

N∈2Z

|PNf |2
}1/2∥∥∥

Lr
x

�
{∑
N∈2Z

‖PNf‖2Lr
x

}1/2

for all 2 ≤ r < ∞.

This completes the proof of the corollary. �
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Corollary 2.6 (Strichartz estimates for the wave equation). Let d ≥ 2 and let (q, r)
and (q̃, r̃) be wave admissible pairs such that r, r̃ < ∞ and 1

q+
d
r = d

2−γ = 1
q̃′+

d
r̃′−2

for some γ > 0. If u solves

∂2
t u = Δu+ F with u(0) = u0 and ∂tu(0) = u1

on I × Rd for some time interval I � 0, then

‖u‖L∞
t Ḣγ

x
+ ‖∂tu‖L∞

t Ḣγ−1
x

+ ‖u‖Lq
tL

r
x
� ‖u0‖Ḣγ

x
+ ‖u1‖Ḣγ−1

x
+ ‖F‖

Lq̃′
t Lr̃′

x
,

where all space-time norms are over I × Rd.

Proof. Exercise! �

For the Schrödinger equation we have the following Strichartz estimates:

Lemma 2.7 (Strichartz estimates for the Schrödinger equation). Let d ≥ 1 and
let (q, r) and (q̃, r̃) be such that 2 ≤ q, r, q̃, r̃ ≤ ∞, 2

q + d
r = d

2 = 2
q̃ + d

r̃ , and

(q, r, d) 
= (2,∞, 2) and (q̃, r̃, d) 
= (2,∞, 2). If u solves

i∂tu = −Δu+ F with u(0) = u0

on I × Rd for some time interval I � 0, then

‖u‖L∞
t L2

x(I×Rd) + ‖u‖Lq
tL

r
x(I×Rd) � ‖u0‖L2

x
+ ‖F‖

Lq̃′
t Lr̃′

x (I×Rd)
.

Proof. Using as a model the proof of Proposition 2.4, prove the lemma for all pairs
of exponents except the endpoints, that is, whenever r 
= 2d

d−2 and r̃ 
= 2d
d−2 for

d ≥ 3. For a proof in the endpoint case, see [17]. �

Finally, we record the Strichartz estimates for the Airy equation:

Lemma 2.8 (Strichartz estimates for the Airy equation). Let (q, r) and (q̃, r̃) be
such that 2 ≤ q, r, q̃, r̃ ≤ ∞, 1

q + 1
3r = 1

6 = 1
q̃ + 1

3r̃ . If u solves

∂tu = −∂3
xu+ F with u(0) = u0

on I × R for some time interval I � 0, then

‖u‖L∞
t L2

x(I×R) + ‖u‖Lq
tL

r
x(I×R) +

∥∥|∇|1/6u∥∥
L6

t,x(I×R)
� ‖u0‖L2

x
+ ‖F‖

Lq̃′
t Lr̃′

x (I×R)
.

Proof. Exercise! �
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2.5 Bilinear Strichartz and local smoothing estimates

In this subsection, we restrict attention to the Schrödinger propagator.

Theorem 2.9 (Bilinear Strichartz I, [3, 13, 28]). Fix d ≥ 1 and M ≤ N . Then∥∥[eitΔPMf ][eitΔPNg]
∥∥
L2

t,x(R×Rd)
� M

d−1
2 N− 1

2 ‖f‖L2
x(R

d)‖g‖L2
x(R

d). (2.27)

When d = 1 we require M ≤ 1
4N , so that PNPM = 0.

Proof. For M ∼ N and d 
= 1, the result follows from the L2
x → L4

tL
2d

d−1

x Strichartz
inequality and Bernstein.

Turning to the case M ≤ 1
4N , we note that by duality and the Parseval

identity, it suffices to show∣∣∣∫∫
Rd×Rd

F (|ξ|2 + |η|2, ξ + η)f̂M (ξ)ĝN (η) dξ dη
∣∣∣

� M
d−1
2 N− 1

2 ‖F‖L2
ω,ξ(R

1+d)‖f̂‖L2
ξ(R

d)‖ĝ‖L2
ξ(R

d).

(2.28)

By decomposing the region of integration into several pieces (and rotating the
coordinate system appropriately), we can restrict the region of integration to a set
where η1−ξ1 � N . Next, we make the change of variables ζ = ξ+η, ω = |ξ|2+|η|2,
and β = (ξ2, . . . , ξd). Note that |β| � M while the Jacobian is J ∼ N−1. Using
this information together with Cauchy–Schwarz, we get

LHS(2.28) =
∣∣∣∫∫∫ F (ω, ζ)f̂M (ξ)ĝN (η)J dω dζ dβ

∣∣∣
≤ ‖F‖L2

ω,ξ(R
1+d)

∫ [∫∫
|f̂M (ξ)|2|ĝN (η)|2J2 dω dζ

] 1
2

dβ

� ‖F‖L2
ω,ξ(R

1+d)M
d−1
2

(∫∫∫
|f̂M (ξ)|2|ĝN (η)|2J2 dω dζ dβ

) 1
2

� ‖F‖L2
ω,ξ(R

1+d)M
d−1
2

(∫∫
|f̂M (ξ)|2|ĝN (η)|2N−1 dξ dη

) 1
2

,

which implies (2.27). �
Corollary 2.10 (Bilinear Strichartz II). Let M , N , and d be as above. Given any
space-time slab I × Rd and any functions u, v defined on I × Rd,∥∥u≤Mv≥N

∥∥
L2

t,x(I×Rd)
� M

d−3
2 N− 1

2 ‖∇u≤M‖S∗
0 (I)

‖v≥N‖S∗
0 (I)

,

where we use the notation

‖u‖S∗
0 (I)

:= ‖u‖L∞
t L2

x(I×Rd) + ‖(i∂t +Δ)u‖
L

2(d+2)
d+4

t,x (I×Rd)

.
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Proof. See [39, Lemma 2.5], which builds on earlier versions in [4, 13]. �

Lemma 2.11 (Local smoothing, [14, 32, 38]). For all f ∈ L2
x we have∫

R

∫
Rd

∣∣[|∇|1/2eitΔf](x)∣∣2e−|x|2 dx dt � ‖f‖2L2
x
.

In particular, by scaling, for all R > 0 we have∥∥|∇|1/2eitΔf∥∥
L2

t,x(R×B(0,R))
� R1/2‖f‖L2

x
.

Proof. Given a : Rd → [0,∞), we have∫
R

∫
Rd

∣∣[|∇|1/2eitΔf](x)∣∣2a(x) dx dt
= (2π)−d

∫
R

∫
Rd

∫
Rd

∫
Rd

eixξ−it|ξ|2 |ξ|1/2f̂(ξ)e−ixη+it|η|2 |η|1/2f̂(η)a(x) dξ dη dx dt

=

∫
Rd

∫
Rd

â(η − ξ)δ(|η|2 − |ξ|2)|ξ|1/2|η|1/2f̂(ξ)f̂(η) dξ dη

=

∫
Rd

∫
Rd

â(η − ξ)δ(|η| − |ξ|) |ξ|
1/2|η|1/2
|ξ|+ |η| f̂(ξ)f̂(η) dξ dη.

By Schur’s test it thus suffices to show that∫
Rd

â(η − ξ)δ(|η| − |ξ|) |ξ|
1/2|η|1/2
|ξ|+ |η| dξ � 1 uniformly in η ∈ Rd. (2.29)

Recalling that in our case a(x) = e−|x|2 and passing to polar coordinates, we
obtain ∫

Rd

â(η − ξ)δ(|η| − |ξ|) |ξ|
1/2|η|1/2
|ξ|+ |η| dξ

�
∫
Sd−1

∫ ∞

0

e−|rω−η|2δ(|η| − r)
r1/2|η|1/2
r + |η| rd−1 dr dσ(ω)

�
∫
Sd−1

∫ ∞

0

e−|η|2
∣∣ω− η

|η|

∣∣2 |η|d−1 dσ(ω)

�
∫ π

0

e−2|η|2(1−cos θ)|η|d−1(sin θ)d−2 dθ

�
∫ π

2

0

e−
|η|2θ2

100 |η|d−1θd−2 dθ �
∫ ∞

0

e−
τ2

100 τd−2 dτ � 1.

In the computation above, θ denotes the angle ω makes with η
|η| . This proves (2.29)

and so completes the proof of the lemma. �
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The next result is a consequence of local smoothing; see Lemma 3.7 in [18].
The proof we present here is the one from [23]; see also [22].

Lemma 2.12. Given φ ∈ Ḣ1(Rd),

‖∇eitΔφ‖3L2
t,x([−T,T ]×{|x|≤R}) � T

2
d+2R

3d+2
d+2 ‖eitΔφ‖

L

2(d+2)
d−2

t,x

‖∇φ‖2L2
x
.

Proof. Given N > 0, Hölder’s and Bernstein’s inequalities imply

‖∇eitΔφ<N‖L2
t,x([−T,T ]×{|x|≤R}) � T

2
d+2R

2d
d+2 ‖eitΔ∇φ<N‖

L

2(d+2)
d−2

t,x

� T
2

d+2R
2d

d+2 N ‖eitΔφ‖
L

2(d+2)
d−2

t,x

.

On the other hand, the high frequencies can be estimated using local smoothing:

‖∇eitΔφ≥N‖L2
t,x([−T,T ]×{|x|≤R}) � R1/2‖|∇|1/2φ≥N‖L2

x

� N−1/2R1/2‖∇φ‖L2
x
.

The lemma now follows by optimizing the choice of N . �



Chapter 3

An inverse Strichartz inequality

In this section, we develop tools that we will employ to prove a linear profile
decomposition for the Schrödinger propagator for bounded sequences in Ḣ1(Rd)
with d ≥ 3. Such a linear profile decomposition was first obtained by Keraani [18],
relying on an improved Sobolev inequality proved by Gérard, Meyer, and Oru [16].
We should also note the influential precursor [1], which treated the wave equation.
In these notes we present a different proof of the result in [18], which relies instead
on an inverse Strichartz inequality.

A linear profile decomposition for the Schrödinger propagator for bounded
sequences in L2(Rd) was proved by Merle and Vega [26] for d = 2, Carles and
Keraani [7] for d = 1, and Bégout and Vargas [2] for d ≥ 3. For a different
approach to these results, which is similar in spirit to what we present in these
notes, see [22].

We start by noting that combining the Strichartz inequality for the Schrö-
dinger propagator from Lemma 2.7 and Sobolev embedding, we obtain

‖eitΔf‖
L

2(d+2)
d−2

t,x (R×Rd)

� ‖eitΔ∇f‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+8
x (R×Rd)

� ‖f‖Ḣ1
x

(3.1)

for all d ≥ 3.
Our next result is a refinement of (3.1), which says that if the linear evolution

of f is large in L
2(d+2)
d−2

t,x , then the linear evolution of a single Littlewood–Paley piece
of f is, at least partially, responsible.

Lemma 3.1 (Refined Strichartz estimate). Let d ≥ 3 and f ∈ Ḣ1(Rd). Then

‖eitΔf‖
L

2(d+2)
d−2

t,x (R×Rd)

� ‖f‖
d−2
d+2

Ḣ1
x

sup
N∈2Z

‖eitΔfN‖
4

d+2

L

2(d+2)
d−2

t,x (R×Rd)

.

Proof. We will present the proof in dimensions d ≥ 6. The proof in dimensions

d = 3, 4 is easier, as 2(d+2)
d−2 is an even integer in those cases. The proof in dimension

d = 5 is a small modification of the argument below. We leave the cases d = 3, 4, 5
as an exercise for the conscientious reader.

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,

DOI 10.1007/978-3-0348-0736-4_17, © Springer Basel 2014
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Fix d ≥ 6. From the square function estimate, the subaditivity of fractional
powers (using the fact that d+2

2(d−2) ≤ 1 in dimensions d ≥ 6), and the Bernstein

and Strichartz inequalities,

‖eitΔf‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

�
∫∫

R×Rd

(∑
N∈2Z

|eitΔfN |2
) d+2

d−2

dx dt

�
∑

M≤N

∫∫
R×Rd

|eitΔfM | d+2
d−2 |eitΔfN | d+2

d−2 dx dt

�
∑

M≤N

‖eitΔfM‖
L

2(d+2)
d−4

t,x

‖eitΔfM‖
4

d−2

L

2(d+2)
d−2

t,x

‖eitΔfN‖
4

d−2

L

2(d+2)
d−2

t,x

‖eitΔfN‖
L

2(d+2)
d

t,x

� sup
N∈2Z

‖eitΔfN‖
8

d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M2‖eitΔfM‖
L

2(d+2)
d−4

t L

2d(d+2)

d2+8
x

‖fN‖L2
x

� sup
N∈2Z

‖eitΔfN‖
8

d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M2‖fM‖L2
x
‖fN‖L2

x

� sup
N∈2Z

‖eitΔfN‖
8

d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M
N ‖∇fM‖L2

x
‖∇fN‖L2

x

� sup
N∈2Z

‖eitΔfN‖
8

d−2

L

2(d+2)
d−2

t,x

‖f‖2
Ḣ1

x
.

This completes the proof of the lemma in dimensions d ≥ 6. �
The refined Strichartz inequality shows that linear solutions with non-trivial

space-time norm must concentrate on at least one frequency annulus. The next
proposition goes one step further and shows that they contain a bubble of concen-
tration around some point in space-time.

Proposition 3.2 (Inverse Strichartz inequality). Let d ≥ 3 and let {fn} ⊂ Ḣ1(Rd).
Suppose that

lim
n→∞ ‖fn‖Ḣ1

x
= A < ∞ and lim

n→∞ ‖eitΔfn‖
L

2(d+2)
d−2

t,x (R×Rd)

= ε > 0.

Then there exist a subsequence in n, φ ∈ Ḣ1
x, {λn} ⊂ (0,∞), and {(tn, xn)} ⊂

R× Rd such that

λ
d−2
2

n [eitnΔfn](λnx+ xn) ⇀ φ(x) weakly in Ḣ1
x, (3.2)

lim inf
n→∞

{
‖fn‖2Ḣ1

x
− ‖fn − φn‖2Ḣ1

x

}
= ‖φ‖2

Ḣ1
x
� A2( ε

A )
d(d+2)

4 , (3.3)

lim inf
n→∞

{
‖eitΔfn‖

2(d+2)
d−2

L

2(d+2)
d−2

t,x

− ‖eitΔ(fn − φn)‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

}
� ε

2(d+2)
d−2 ( ε

A )
(d+2)(d+4)

4 , (3.4)
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where

φn(x) := λ
− d−2

2
n [e−iλ−2

n tnΔφ]
(
x−xn

λn

)
. (3.5)

Proof. Passing to a subsequence, we may assume that

lim
n→∞ ‖fn‖Ḣ1

x
≤ 2A and lim

n→∞ ‖eitΔfn‖
L

2(d+2)
d−2

t,x (R×Rd)

≥ ε
2 .

Thus, using Lemma 3.1 we see that for each n there exists Nn ∈ 2Z such that

‖eitΔPNn
fn‖

L

2(d+2)
d−2

t,x

� ε
d+2
4 A− d−2

4 .

On the other hand, from the Strichartz and Bernstein inequalities we get

‖eitΔPNnfn‖
L

2(d+2)
d

t,x

� ‖PNnfn‖L2
x
� N−1

n A.

By Hölder’s inequality, these imply

ε
d+2
4 A− d−2

4 � ‖eitΔPNnfn‖
L

2(d+2)
d−2

t,x

� ‖eitΔPNn
fn‖

d−2
d

L
2(d+2)

d
t,x

‖eitΔPNn
fn‖

2
d

L∞
t,x

� N
− d−2

d
n A

d−2
d ‖eitΔPNn

fn‖
2
d

L∞
t,x

,

and so

N
− d−2

2
n ‖eitΔPNnfn‖L∞

t,x
� A( ε

A )
d(d+2)

8 .

Thus there exist (tn, xn) ∈ R× Rd such that

N
− d−2

2
n

∣∣[eitnΔPNn
fn](xn)

∣∣ � A( ε
A )

d(d+2)
8 . (3.6)

We define the spatial scales λn := N−1
n .

It remains to find the profile φ and to prove it satisfies (3.2) through (3.4).
To this end, we set

gn(x) := λ
d−2
2

n [eitnΔfn](λnx+ xn).

A simple change of variables gives

‖gn‖Ḣ1
x
= ‖fn‖Ḣ1

x
� A

and so, passing to a subsequence, we can choose φ so that gn ⇀ φ weakly in Ḣ1
x.

This proves (3.2).

Chapter 3. An inverse Strichartz inequality



242 Chapter 3. An inverse Strichartz inequality

We now turn to (3.3). The asymptotic decoupling statement is immediate
since Ḣ1

x is a Hilbert space. We are left to prove the lower bound in (3.3). Toward
this end, let ψ̌ := P1δ0 denote the convolution kernel associated with P1. Using a
change of variables and (3.6), we get∣∣〈φ, ψ̌〉L2

x

∣∣ = ∣∣ lim
n→∞〈gn, ψ̌〉L2

x

∣∣ = ∣∣ lim
n→∞

〈
eitnΔfn, λ

− d+2
2

n ψ̌
(
x−xn

λn

)〉
L2

x

∣∣
= N

− d−2
2

n

∣∣[eitnΔPNn
fn](xn)

∣∣ � A( ε
A )

d(d+2)
8 . (3.7)

On the other hand, by Hölder’s inequality and Sobolev embedding,∣∣〈φ, ψ̌〉L2
x

∣∣ � ‖φ‖L6
x
‖ψ̌‖

L
6/5
x

� ‖φ‖Ḣ1
x
.

Putting the two inequalities together, we derive the lower bound in (3.3).

It remains to prove (3.4). We start by proving decoupling for the L
2(d+2)
d−2

t,x

norm. Note that

(i∂t)
1
2 eitΔ = (−Δ)

1
2 eitΔ,

as can be checked by testing against Schwartz functions in R × Rd. Thus, by
Hölder’s inequality, on any compact set K in R× Rd we have

‖eitΔgn‖
H

1
2
t,x(K)

� ‖〈−Δ〉 1
2 eitΔgn‖L2

t,x(K) �K A.

Using this together with Rellich–Kondrashov and passing to a subsequence, we
get

eitΔgn → eitΔφ strongly in L2
t,x(K).

(In order to identify the limit in the display above, we note that gn ⇀ φ weakly in
Ḣ1

x implies that eitΔgn converges to eitΔφ as distributions on R×Rd.) Passing to
a further subsequence, we deduce that eitΔgn → eitΔφ a.e. on K. Finally, using a
diagonal argument and passing again to a subsequence if necessary, we obtain

eitΔgn → eitΔφ a.e. in R× Rd.

To continue, we use this convergence together with the refined Fatou lemma
(see Lemma 11.3) due to Brezis and Lieb and a change of variables; we obtain

lim
n→∞

{
‖eitΔfn‖

2(d+2)
d−2

L

2(d+2)
d−2

t,x

− ‖eitΔ(fn − φn)‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

}
= ‖eitΔφ‖

2(d+2)
d−2

L

2(d+2)
d−2

t,x

,

from which (3.4) will follow once we prove

‖eitΔφ‖
L

2(d+2)
d−2

t,x

� ε( ε
A )

d2+2d−8
8 . (3.8)
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To see this, we use (3.7), the Mikhlin multiplier theorem, and Bernstein to estimate

A( ε
A )

d(d+2)
8 �

∣∣〈φ, ψ̌〉L2
x

∣∣ = ∣∣〈eitΔφ, eitΔψ̌〉L2
x

∣∣ � ‖eitΔφ‖
L

2(d+2)
d−2

x

‖eitΔψ̌‖
L

2(d+2)
d+6

x

� ‖eitΔφ‖
L

2(d+2)
d−2

x

,

uniformly in |t| ≤ 1. Integrating in t leads to (3.8). �
Exercise 3.1. Under the hypotheses of Proposition 3.2 and passing to a further
subsequence if necessary, prove decoupling of the potential energy, namely,

lim inf
n→∞

{
‖fn‖

2d
d−2
2d

d−2

− ‖fn − φn‖
2d

d−2
2d

d−2

− ‖e−iλ−2
n tnΔφ‖

2d
d−2
2d

d−2

}
= 0.

Hint: Passing to a subsequence, we may assume that λ−2
n tn → t0 ∈ [−∞,∞]. If

t0 = ±∞, then approximate φ in Ḣ1
x by Schwartz functions and use the fact that,

by the dispersive estimate for the Schrödinger propagator,

‖e−iλ−2
n tnΔψ‖ 2d

d−2
→ 0 as n → ∞

for any ψ ∈ S(Rd). If instead t0 ∈ (−∞,∞), then (3.2) can be upgraded to

λ
d−2
2

n fn(λnx+ xn) ⇀ e−it0Δφ(x) weakly in Ḣ1
x. Now use Rellich–Kondrashov and

refined Fatou as in the proof of (3.4).

Chapter 3. An inverse Strichartz inequality



Chapter 4

A linear profile decomposition

In this section, we use the inverse Strichartz inequality Proposition 3.2 to derive
a linear profile decomposition for the Schrödinger propagator.

One can view the linear profile decomposition as a tool for measuring the
defects of compactness in the Strichartz inequality (3.1). More precisely, given a
bounded sequence of functions {fn}n≥1 ⊂ Ḣ1(Rd) we would like to be able to say

that, after possibly passing to a subsequence, {eitΔfn}n≥1 converges in L
2(d+2)
d−2

t,x .
Unfortunately, every non-compact symmetry of the inequality (3.1) is a reason
why we would fail to extract a convergent subsequence.

The non-compact symmetries of (3.1) are space and time translations and
Ḣ1

x-preserving scaling. To see how these work against us, consider the simple sce-
nario where fn(x) = f(x + xn) with f ∈ Ḣ1

x and {xn}n≥1 ⊂ Rd is a sequence
that diverges to infinity; in this case, {eitΔfn}n≥1 converges weakly to zero. We

leave it to the reader to use time translations and Ḣ1
x-preserving scaling to con-

struct bounded sequences of functions {fn}n≥1 ⊂ Ḣ1(Rd) for which {eitΔfn}n≥1

converges weakly to zero.

At this point we might imagine that if suitably translate and rescale our se-
quence, then we might be able to extract a convergent subsequence. Proposition 3.2
gives us hope, since it exhibits a bubble of concentration living inside each eitΔfn,

which captures a nontrivial portion of the L
2(d+2)
d−2

t,x norm of eitΔfn. However, even
this modified goal is naive and doomed to fail, as one can see by considering the
following scenario: fn(x) = f(x) + f(x+ xn) with f ∈ Ḣ1

x and {xn}n≥1 ⊂ Rd is a
sequence that diverges to infinity; in this case, the evolutions eitΔfn contain two
diverging bubbles of concentration and translating our sequence would still fail to
exhibit a convergent subsequence.

Nevertheless, this suggests that if we take out enough bubbles of concentra-
tion living inside eitΔfn, then we might be able to say that the remainders do

indeed converge to zero in L
2(d+2)
d−2

t,x . This is precisely the content of the following
theorem.
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Theorem 4.1 (Ḣ1
x linear profile decomposition for the Schrödinger propagator). Fix

d ≥ 3 and let {fn}n≥1 be a sequence of functions bounded in Ḣ1(Rd). Passing to
a subsequence if necessary, there exist J∗ ∈ {0, 1, . . .}∪{∞}, functions {φj}J∗

j=1 ⊂
Ḣ1(Rd), {λj

n} ⊂ (0,∞), and {tjn, xj
n} ⊂ R× Rd such that for each finite 0 ≤ J ≤

J∗, we have the decomposition

fn =
J∑

j=1

(λj
n)

− d−2
2 [eit

j
nΔφj ]

(x−xj
n

λj
n

)
+ wJ

n , (4.1)

with the following properties:

lim
J→J∗

lim sup
n→∞

∥∥eitΔwJ
n

∥∥
L

2(d+2)
d−2

t,x (R×Rd)

= 0, (4.2)

lim
n→∞

[
‖∇fn

∥∥2
2
−

J∑
j=1

‖∇φj‖22 − ‖∇wJ
n‖22
]
= 0, (4.3)

lim
n→∞

[
‖fn
∥∥ 2d

d−2
2d

d−2

−
J∑

j=1

‖eitjnΔφj‖
2d

d−2
2d

d−2

− ‖wJ
n‖

2d
d−2
2d

d−2

]
= 0, (4.4)

e−itJnΔ
[
(λJ

n)
d−2
2 wJ

n(λ
J
nx+ xJ

n)
]
⇀ 0 weakly in Ḣ1(Rd). (4.5)

Moreover, for each j 
= k we have the following asymptotic decoupling of parame-
ters:

λj
n

λk
n

+
λk
n

λj
n

+
|xj

n − xk
n|2

λj
nλk

n

+

∣∣tjn(λj
n)

2 − tkn(λ
k
n)

2
∣∣

λj
nλk

n

→ ∞ as n → ∞. (4.6)

Lastly, we may additionally assume that for each j either tjn ≡ 0 or tjn → ±∞.

Proof. To keep formulas within margins, we will use the notation

(gjnf)(x) := (λj
n)

− d−2
2 f
(x−xj

n

λj
n

)
and [(gjn)

−1f ](x) := (λj
n)

d−2
2 f
(
λj
nx+ xj

n

)
.

Note that ‖gjnf‖Ḣ1
x
= ‖f‖Ḣ1

x
= ‖(gjn)−1f‖Ḣ1

x
and

〈gjnf1, f2〉Ḣ1
x
= 〈f1, (gjn)−1f2〉Ḣ1

x
for all f1, f2 ∈ Ḣ1

x.

We will also use the notation

φj
n(x) := (λj

n)
− d−2

2 [eit
j
nΔφj ]

(x−xj
n

λj
n

)
= [gjne

itjnΔφj ](x).

To prove the theorem we will proceed inductively, extracting one bubble at a
time. To start, we set w0

n := fn. Now suppose we have a decomposition up to level
J ≥ 0 obeying (4.3) through (4.5). (Conditions (4.2) and (4.6) will be verified at
the end.) Passing to a subsequence if necessary, we set

AJ := lim
n→∞ ‖wJ

n‖Ḣ1
x

and εJ := lim
n→∞ ‖eitΔwJ

n‖
L

2(d+2)
d−2

t,x

.
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If εJ = 0, we stop and set J∗ = J . If not, we apply Proposition 3.2 to wJ
n .

Thus, passing to a subsequence in n, we find φJ+1 ∈ Ḣ1
x, {λJ+1

n } ⊂ (0,∞),
and {(tJ+1

n , xJ+1
n )} ⊂ R × Rd, where we renamed the time parameters given by

Proposition 3.2 as follows: tJ+1
n = −λ−2

n tn.
According to Proposition 3.2, the profile φJ+1 is defined as a weak limit,

namely,

φJ+1 = w-lim
n→∞ (gJ+1

n )−1
[
e−itJ+1

n (λJ+1
n )2ΔwJ

n

]
= w-lim

n→∞ e−itJ+1
n Δ[(gJ+1

n )−1wJ
n ].

We let φJ+1
n := gJ+1

n eit
J+1
n ΔφJ+1.

Now define wJ+1
n := wJ

n − φJ+1
n . By the definition of φJ+1,

e−itJ+1
n Δ(gJ+1

n )−1wJ+1
n ⇀ 0 weakly in Ḣ1

x.

This proves (4.5) at the level J + 1. Moreover, from Proposition 3.2 we also have

lim
n→∞

{
‖wJ

n‖2Ḣ1
x
− ‖wJ+1

n ‖2
Ḣ1

x
− ‖φJ+1‖2

Ḣ1
x

}
= 0.

Combining this with the inductive hypothesis gives (4.3) at the level J + 1. A
similar argument using Exercise 3.1 establishes (4.4) at the same level.

Passing to a further subsequence and using Proposition 3.2, we obtain

A2
J+1 = lim

n→∞ ‖wJ+1
n ‖2

Ḣ1
x
≤ A2

J

[
1− C

(
εJ
AJ

) d(d+2)
4

]
≤ A2

J ,

ε
2(d+2)
d−2

J+1 = lim
n→∞ ‖eitΔwJ+1

n ‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

≤ ε
2(d+2)
d−2

J

[
1− C

(
εJ
AJ

) (d+2)(d+4)
4

]
.

(4.7)

If εJ+1 = 0, we stop and set J∗ = J+1; in this case, (4.2) is automatic. If εJ+1 > 0,
we continue the induction. If the algorithm does not terminate in finitely many
steps, we set J∗ = ∞; in this case, (4.7) implies εJ → 0 as J → ∞ and so (4.2)
follows.

Next we verify the asymptotic orthogonality condition (4.6). We argue by
contradiction. Assume (4.6) fails to be true for some pair (j, k). Without loss of
generality, we may assume that this is the first pair for which (4.6) fails, that is,
j < k and (4.6) holds for all pairs (j, l) with j < l < k. Passing to a subsequence,
we may assume that

λj
n

λk
n

→ λ0 ∈ (0,∞),
xj
n − xk

n√
λj
nλk

n

→ x0, and
tjn(λ

j
n)

2 − tkn(λ
k
n)

2

λj
nλk

n

→ t0. (4.8)

From the inductive relation

wk−1
n = wj

n −
k−1∑

l=j+1

φl
n

Chapter 4. A linear profile decomposition
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and the definition of φk, we obtain

φk = w-lim
n→∞ e−itknΔ[(gkn)

−1wk−1
n ]

= w-lim
n→∞ e−itknΔ[(gkn)

−1wj
n]−

k−1∑
l=j+1

w-lim
n→∞ e−itknΔ[(gkn)

−1φl
n]. (4.9)

We will prove that these weak limits are all zero and so obtain a contradiction to
the nontriviality of φk.

We write

e−itknΔ[(gkn)
−1wj

n] = e−itknΔ(gkn)
−1gjne

itjnΔ[e−itjnΔ(gjn)
−1wj

n]

= (gkn)
−1gjne

i
(
tjn−tkn

(λk
n)

2

(λj
n)2

)
Δ
[e−itjnΔ(gjn)

−1wj
n].

Note that, by (4.8),

tjn − tkn
(λk

n)
2

(λj
n)2

=
tjn(λ

j
n)

2 − tkn(λ
k
n)

2

λj
nλk

n

· λ
k
n

λj
n

→ t0
λ0

.

Using this together with (4.5), Exercise 4.2, and the fact that the adjoints of the
unitary operators (gkn)

−1gjn converge strongly, we obtain that the first term on
RHS(4.9) is zero.

To complete the proof of (4.6), it remains to show that the second term on
RHS(4.9) is zero. For all j < l < k we write

e−itknΔ(gkn)
−1φl

n = (gkn)
−1gjne

i
(
tjn−tkn

(λk
n)

2

(λj
n)2

)
Δ
[e−itjnΔ(gjn)

−1φl
n].

Arguing as for the first term on RHS(4.9), it thus suffices to show that

e−itjnΔ(gjn)
−1φl

n = e−itjnΔ(gjn)
−1glne

itlnΔφl ⇀ 0 weakly in Ḣ1
x.

Using a density argument, this reduces to

In := e−itjnΔ(gjn)
−1glne

itlnΔφ ⇀ 0 weakly in Ḣ1
x, (4.10)

for all φ ∈ C∞
c (Rd). Note that we can rewrite In as follows:

In =

(
λj
n

λl
n

) d−2
2
[
e
i
(
tln−tjn

(
λ
j
n

λl
n

)2)
Δ
φ

](
λj
nx+ xj

n − xl
n

λl
n

)
.

Recalling that (4.6) holds for the pair (j, l), we first prove (4.10) when the
scaling parameters are not comparable, that is,

lim
n→∞

λj
n

λl
n

+
λl
n

λj
n

= ∞. (4.11)
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By Cauchy–Schwarz,∣∣〈In, ψ〉Ḣ1
x

∣∣ � min
{
‖ΔIn‖L2

x
‖ψ‖L2

x
, ‖In‖L2

x
‖Δψ‖L2

x

}
� min

{
λj
n

λl
n

‖Δφ‖L2
x
‖ψ‖L2

x
,
λl
n

λj
n

‖φ‖L2
x
‖Δψ‖L2

x

}
,

which converges to zero as n → ∞, for all ψ ∈ C∞
c (Rd). This establishes (4.10)

when (4.11) holds.
Henceforth we may assume

lim
n→∞

λj
n

λl
n

= λ1 ∈ (0,∞).

We now suppose the time parameters diverge, that is,

lim
n→∞

|tjn(λj
n)

2 − tln(λ
l
n)

2|
λj
nλl

n

= ∞;

then we also have∣∣∣∣tln − tjn

(
λj
n

λl
n

)2∣∣∣∣ = |tln(λl
n)

2 − tjn(λ
j
n)

2|
λl
nλ

j
n

· λ
j
n

λl
n

→ ∞ as n → ∞.

Under this condition, (4.10) follows from

λ
d−2
2

1

[
e
i
(
tln−tjn

(
λ
j
n

λl
n

)2)
Δ
φ

](
λ1x+

xj
n − xl

n

λl
n

)
⇀ 0 weakly in Ḣ1

x,

which is an immediate consequence of Exercise 4.3.
Finally, we deal with the situation when

λj
n

λl
n

→ λ1 ∈ (0,∞),
tln(λ

l
n)

2 − tjn(λ
j
n)

2

λj
nλl

n

→ t1, but
|xj

n − xl
n|2

λj
nλl

n

→ ∞. (4.12)

Then we also have tln − tjn(λ
j
n)

2/(λl
n)

2 → λ1t1. Thus, it suffices to show that

λ
d−2
2

1 eit1λ1Δφ(λ1x+ yn) ⇀ 0 weakly in Ḣ1
x, (4.13)

where

yn :=
xj
n − xl

n

λl
n

=
xj
n − xl

n√
λl
nλ

j
n

√
λj
n

λl
n

→ ∞ as n → ∞.

The desired weak convergence (4.13) follows again from Exercise 4.3.

Chapter 4. A linear profile decomposition
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Finally, we prove the last assertion in the theorem regarding the behaviour
of tjn. For each j, by passing to a subsequence we may assume tjn → tj ∈ [−∞,∞].
Using a standard diagonal argument, we may assume that the limit exists for all
j ≥ 1.

Fix j ≥ 1. If tj = ±∞, there is nothing more to be proved. If tj ∈ (−∞,∞),
we claim that we may redefine tjn ≡ 0, provided we replace the original profile φj

by eit
jΔφj . Indeed, we merely need to prove that the errors introduced by these

changes can be incorporated into wJ
n , namely,

lim
n→∞

∥∥gjneitjnΔφj − gjne
itjΔφj

∥∥
Ḣ1

x
= 0.

But this follows easily from the strong convergence of the linear propagator.
This completes the proof of Theorem 4.1. �

Exercise 4.1. Under the hypotheses of Proposition 3.2, prove that

e−itjnΔ
[
(λj

n)
d−2
2 wJ

n(λ
j
nx+ xj

n)
]
⇀ 0 weakly in Ḣ1(Rd) for all j ≤ J.

Exercise 4.2. Let fn ∈ Ḣ1(Rd) be such that fn ⇀ 0 weakly in Ḣ1(Rd) and let
tn → t∞ ∈ R. Then

eitnΔfn ⇀ 0 weakly in Ḣ1
x as n → ∞.

Exercise 4.3. Let f ∈ C∞
c (Rd) and let {(tn, xn)}n≥1 ⊂ R× Rd. Then

eitnΔf(x+ xn) ⇀ 0 weakly in Ḣ1
x as n → ∞

whenever |tn| → ∞ or |xn| → ∞.



Chapter 5

Stability theory for the energy-critical
NLS

In this section we develop a stability theory for the energy-critical NLS

i∂tu = −Δu± |u| 4
d−2u with u(0) = u0 ∈ Ḣ1

x. (5.1)

Definition 5.1 (Solution). A function u : I×Rd → C on a non-empty time interval
0 ∈ I ⊂ R is a solution (more precisely, a strong Ḣ1

x solution) to (5.1) if it lies in

the class C0
t Ḣ

1
x(K × Rd) ∩ L

2(d+2)
d−2

t,x (K × Rd) for all compact K ⊂ I, and satisfies
the Duhamel formula

u(t) = eitΔu(0)∓ i

∫ t

0

ei(t−s)Δ|u(s)| 4
d−2u(s) ds (5.2)

for all t ∈ I. We refer to the interval I as the lifespan of u. We say that u is a
maximal-lifespan solution if the solution cannot be extended to any strictly larger
interval. We say that u is a global solution if I = R.

Solutions to (5.1) conserve the energy

E(u(t)) =

∫
Rd

1
2 |∇u(t, x)|2 ± d−2

2d |u(t, x)| 2d
d−2 dx.

Note that taking data in Ḣ1
x renders the energy finite. Indeed, Sobolev embedding

shows that Ḣ1
x is precisely the energy space.

The equation is called energy-critical because the scaling associated with this
equation, namely,

u(t, x) �→ λ
d−2
2 u
(
λ2t, λx

)
for λ > 0,

leaves invariant not only the class of solutions to (5.1), but also the energy.
Throughout the section, we use S0 to denote the intersection of any finite

number of Strichartz spaces Lq
tL

r
x with (q, r) obeying the conditions of Lemma 2.7,
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and N0 to denote the sum of any finite number of dual Strichartz spaces Lq′
t L

r′
x .

For an interval I ⊂ R we define the norms

‖u‖S0(I) := ‖u‖S0(I×Rd) and ‖F‖N0(I) := ‖F‖N0(I×Rd).

We start by reviewing the standard local well-posedness statement for (6.1).

Theorem 5.2 (Standard local well-posedness, [8, 9, 10]). Let d ≥ 3 and u0 ∈
H1(Rd). There exists η0 = η0(d) > 0 such that if 0 < η ≤ η0 and I is a compact
interval containing zero such that∥∥∇eitΔu0

∥∥
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ η, (5.3)

then there exists a unique solution u to (5.1) on I × Rd. Moreover, we have the
bounds ∥∥∇u

∥∥
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ 2η,∥∥∇u
∥∥
S0(I×Rd)

�
∥∥∇u0

∥∥
L2

x
+ η1+p,

‖u‖S0(I×Rd) � ‖u0‖L2
x
.

Proof. Exercise! Hint: use contraction mapping with the distance given by an S0

norm. �
Remarks. 1. By the Strichartz inequality,∥∥∇eitΔu0

∥∥
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

�
∥∥∇u0

∥∥
L2

x
.

Thus, (5.3) holds with I = R for initial data with sufficiently small Ḣ1
x norm. In

particular, we obtain global well-posedness for initial data in H1
x that are small in

Ḣ1
x.

2. By the monotone convergence theorem, given an arbitrary u0 ∈ Ḣ1
x we

can choose a sufficiently small interval I to ensure that (5.3) holds. Note however
that the length of I will depend upon u0 and not merely on its norm.

This standard local well-posedness result suffers from the fact that the initial
data belong to the inhomogeneous Sobolev space H1

x, rather than the energy space
Ḣ1

x; the stronger requirement u0 ∈ H1
x is needed in the proof of Theorem 5.2 in

order to prove that the solution map is a contraction. To remove this restriction,
we need the following stability result:

Theorem 5.3 (Energy-critical stability result, [22, 34]). Let I a compact time in-
terval and let ũ be an approximate solution to (5.1) on I × Rd in the sense that

iũt = −Δũ± |ũ| 4
d−2 ũ+ e
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for some function e. Assume that

‖ũ‖L∞
t Ḣ1

x(I×Rd) ≤ E, (5.4)

‖ũ‖
L

2(d+2)
d−2

t,x (I×Rd)

≤ L, (5.5)

for some positive constants E and L. Let t0 ∈ I and u0 ∈ Ḣ1
x and assume the

smallness conditions

‖u0 − ũ(t0)‖Ḣ1
x
≤ ε (5.6)

‖∇e‖N0(I) ≤ ε (5.7)

for some 0 < ε < ε1 = ε1(E,L). Then there exists a unique strong solution
u : I × Rd → C to (5.1) with initial datum u0 at time t = t0 satisfying

‖u− ũ‖
L

2(d+2)
d−2

t,x (I×Rd)

≤ C(E,L)εc, (5.8)

‖∇(u− ũ)‖S0(I) ≤ C(E,L), (5.9)

‖∇u‖S0(I) ≤ C(E,L), (5.10)

where c = c(d) > 0.

This stability result was first proved for d = 3 in the work of Colliander, Keel,
Staffilani, Takaoka, and Tao [13] on the defocusing energy-critical NLS. For d = 4,
it can be found in [30]. The same proof extends easily to dimensions d = 5, 6. To
prove Theorem 5.3 in dimensions d ≥ 7, new ideas are needed. To see why, let
us consider the question of continuous dependence of the solution upon the initial
data, which corresponds to taking e = 0 in Theorem 5.3. To make things as simple
as possible, we choose initial data u0, ũ0 ∈ H1

x which are small in the sense that

‖u0‖Ḣ1
x
+ ‖ũ0‖Ḣ1

x
≤ η0.

By the first remark above, if η0 is sufficiently small there exist unique global
solutions u and ũ to (5.1) with initial data u0 and ũ0, respectively; moreover, they
satisfy

‖∇u‖S0(R) + ‖∇ũ‖S0(R) � η0.

We would like to see that if u0 and ũ0 are close in Ḣ1
x, say ‖∇(u0 − ũ0)‖2 ≤ ε �

η0, then u and ũ remain ε-close in energy-critical norms. An application of the
Strichartz inequality combined with the bounds above yields

‖∇(u− ũ)‖S0(R) �‖∇(u0 − ũ0)‖L2
x
+ η

4
d−2

0 ‖∇(u− ũ)‖S0(R) + η0‖∇(u− ũ)‖
4

d−2

S0(R).

If 4/(d − 2) ≥ 1, a simple bootstrap argument implies continuous dependence of
the solution on the initial data. However, this will not work if 4/(d− 2) < 1, that

Chapter 5. Stability theory for the energy-critical NLS
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is, if d ≥ 7. The last term in the inequality above causes the bootstrap argument
to break down in high dimensions; indeed, tiny numbers become much larger when
raised to a fractional power.

To prove Theorem 5.3 in dimensions d ≥ 7, the authors of [34] work in spaces
with fractional derivatives (rather than a full derivative), while still maintaining
criticality with respect to the scaling. A similar technique was employed by Nakan-
ishi [27] for the energy-critical Klein–Gordon equation in high dimensions.

The result in [34] assumes the less stringent smallness condition(∑
N∈2Z

∥∥∇PNei(t−t0)Δ
(
u0 − ũ(t0)

)∥∥2
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

)1/2
≤ ε

in place of (5.6). There is also an improvement over the result in [34], in which
the smallness condition above is replaced by∥∥ei(t−t0)Δ

(
u0 − ũ(t0)

)∥∥
L

2(d+2)
d−2

t,x (I×Rd)

≤ ε.

To prove Theorem 5.3 with this particular hypothesis (which was helpful in early
treatments of the energy-critical NLS), it becomes necessary to work in spaces
with fractional derivatives even in small dimensions; see [22] for the proof.

In what follows, we will present the proof of Theorem 5.3 in dimensions
3 ≤ d ≤ 6. For higher dimensions, see [22, 34].

Proof of Theorem 5.3 for 3 ≤ d ≤ 6. We will prove the result under the additional
assumption that u0 ∈ L2

x (and so u0 ∈ H1
x). This allows us to invoke Theorem 5.2

and so guarantee that u exists. Thus, it suffices to prove (5.8) through (5.10) as a
priori estimates, that is, we assume that u exists and satisfies ∇u ∈ S0(I). Once
we have proved (5.8) through (5.10), we may remove the additional assumption
u0 ∈ L2

x by the usual limiting argument: Approximate u0 ∈ Ḣ1
x by {fn}n≥1 ⊂

H1
x and let un be the solution to (5.1) with initial data un(t0) = fn. Applying

Theorem 5.3 with ũ := um, u := un, and e = 0, we deduce that the sequence of
solutions {un}n≥1 is Cauchy in energy-critical norms. Therefore, un converges to
a solution u with data u(t0) = u0 which satisfies ∇u ∈ S0(I).

We first prove the theorem under the hypothesis

‖∇ũ‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ δ (5.11)

for some δ > 0 sufficiently small depending on E. Without loss of generality, we
may assume t0 = inf I.

To continue, let v := u− ũ and for t ∈ I define

A(t) :=
∥∥∇[(i∂t +Δ)v + e

]∥∥
L2

tL
2d

d+2
x ([t0,t]×Rd)

.
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By Sobolev embedding, Strichartz, (5.6), and (5.7), we get

‖v‖
L

2(d+2)
d−2

t,x ([t0,t]×Rd)

� ‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x ([t0,t]×Rd)

� ‖v(t0)‖Ḣ1
x
+A(t) + ‖∇e‖

L2
tL

2d
d+2
x ([t0,t]×Rd)

� A(t) + ε. (5.12)

On the other hand, by Hölder, (5.11), (5.12), and Sobolev embedding, we get

A(t) � ‖∇ũ‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

‖v‖
L

2(d+2)
d−2

t,x

[
‖v‖

L

2(d+2)
d−2

t,x

+ ‖ũ‖
L

2(d+2)
d−2

t,x

] 6−d
d−2

+ ‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

[
‖v‖

L

2(d+2)
d−2

t,x

+ ‖ũ‖
L

2(d+2)
d−2

t,x

] 4
d−2

� δ[A(t) + ε][A(t) + ε+ δ]
6−d
d−2 + [A(t) + ε][A(t) + ε+ δ]

4
d−2 ,

where all space-time norms are over [t0, t]× Rd.
Taking δ, ε sufficiently small (depending only on the ambient dimension so

far), a standard continuity argument gives

A(t) � ε for all t ∈ I, (5.13)

with c = c(d) = 1. Together with (5.12), this gives (5.8). To obtain (5.9), we use
the Strichartz inequality, (5.6), (5.7), and (5.13), as follows:

‖∇(u− ũ)‖S0(I) � ‖u0 − ũ(t0)‖Ḣ1
x
+
∥∥∇[(i∂t +Δ)v + e

]∥∥
L2

tL
2d

d+2
x (I×Rd)

+ ‖∇e‖
L2

tL
2d

d+2
x (I×Rd)

� ε.

To obtain (5.10), we first note that, by (5.11) and (5.12),

‖∇u‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ ‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

+ ‖∇ũ‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

� ε+ δ.

Using this together with the Strichartz inequality, Sobolev embedding, and (5.4),

‖∇u‖S0(I) � ‖ũ(t0)‖Ḣ1
x
+ ‖u0 − ũ(t0)‖Ḣ1

x
+ ‖∇u‖

d+2
d−2

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

� E + ε+ [ε+ δ]
d+2
d−2 � E,
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provided δ, ε ≤ ε0 = ε0(E).
To complete the proof of Theorem 5.3 in small dimensions, it remains to

restore the hypothesis (5.5) in place of (5.11). We first note that (5.5) implies

∇u ∈ S0(I). Indeed, subdividing I into N0 ∼ (1 + L
η )

2(d+2)
d−2 subintervals Jk such

that on each Jk we have
‖ũ‖

L

2(d+2)
d−2

t,x (Jk×Rd)

≤ η,

and using the Strichartz inequality, Sobolev embedding, and (5.4), we estimate

‖∇ũ‖S0(Jk) � ‖ũ‖L∞
t Ḣ1

x(I×Rd) + ‖∇ũ‖S0(Jk)‖ũ‖
4

d−2

L

2(d+2)
d−2

t,x (Jk×Rd)

+‖∇e‖
L2

tL
2d

d+2
x (I×Rd)

� E + η
4

d−2 ‖∇ũ‖S0(Jk) + ε.

Thus for η sufficiently small depending on d,

‖∇ũ‖S0(Jk) � E + ε.

Summing these bounds over all the intervals Jk we obtain

‖∇ũ‖S0(I) ≤ C(E,L).

We can now subdivide I into N1 = N1(E,L) subintervals Ij = [tj , tj+1] such
that on each Ij we have

‖∇ũ‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (Ij×Rd)

≤ δ,

where δ is as in (5.11). Choosing ε1 sufficiently small depending on ε0 and N1, the
argument above implies that for each j and all 0 < ε < ε1,

‖u− ũ‖
L

2(d+2)
d−2

t,x (Ij×Rd)

≤ C(j)ε,

‖∇(u− ũ)‖S0(Ij) ≤ C(j)ε,

‖∇u‖S0(Ij) ≤ C(j)E,∥∥∇[(i∂t +Δ)(u− ũ) + e
]∥∥

L2
tL

2d
d+2
x (Ij×Rd)

≤ C(j)ε,

provided we can show that (5.6) holds when t0 is replaced by tj . We check this
using an inductive argument. By the Strichartz inequality,

‖u(tj+1)− ũ(tj+1)‖Ḣ1
x
� ‖u0 − ũ(t0)‖Ḣ1

x
+ ‖∇e‖

L2
tL

2d
d+2
x (I×Rd)

+
∥∥∇[(i∂t +Δ)(u− ũ) + e

]∥∥
L2

tL
2d

d+2
x ([t0,tj+1]×Rd)

� ε+

j∑
k=0

C(k)ε.
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Choosing ε1 sufficiently small depending on ε0 and E, we can continue the induc-
tive argument.

This completes the proof of Theorem 5.3 in dimensions 3 ≤ d ≤ 6. �
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A large data critical problem

Throughout the remainder of these notes we restrict attention to the defocusing
energy-critical NLS

i∂tu+Δu = |u| 4
d−2u with u(0) = u0 ∈ Ḣ1

x. (6.1)

For arguments and further references in the focusing case, see [22]. For equation
(6.1) we have the following large data global result:

Theorem 6.1 (Global well-posedness and scattering). Let d ≥ 3 and u0 ∈ Ḣ1
x.

Then there exists a unique global solution u to (6.1) and it satisfies∫
R

∫
Rd

|u(t, x)| 2(d+2)
d−2 dx dt ≤ C(E(u0)).

In particular, the solution scatters, that is, there exist asymptotic states u± ∈ Ḣ1
x

such that
‖u(t)− eitΔu±‖Ḣ1

x
→ 0 as t → ±∞.

The proof of this theorem sparked the recent progress on dispersive equations
at the critical regularity. It was first proved for spherically symmetric initial data
in dimensions d = 3, 4 by Bourgain [5]. In this work, Bourgain introduced the
induction on energy paradigm as a means for breaking the scaling symmetry; this
allowed him to use non-critical monotonicity formulas like the Morawetz inequality

(which scales like Ḣ
1/2
x ). Building on Bourgain’s argument, Tao [33] proved the

theorem in dimensions d ≥ 5 for spherically symmetric data.
The radial assumption was removed in dimension d = 3 by Colliander, Keel,

Staffilani, Takaoka, and Tao [13]. This work further advanced the induction on en-
ergy argument, introducing important new ideas that informed subsequent devel-
opments. To deal with arbitrary data, the authors employed a frequency-localized
interaction Morawetz inequality, which is even further away from scaling (it scales

like Ḣ
1/4
x ). The work [13] was extended to four dimensions in [30]. Finally, for

dimensions d ≥ 5, Theorem 6.1 was proved in [39]; for a different proof reflecting
new advances see [23], which also treats the focusing problem.
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In these notes, we will present the proof of Theorem 6.1 in dimension d = 4.
The proof below is taken from [40], which revisits the argument in [30] in light of
the recent advances made by Dodson [15] on the mass-critical NLS. For a proof
of the three-dimensional case treated in [13] that also incorporates these advances
see [21].

We note that parts of the argument we will present in these notes work in all
dimensions d ≥ 3; in particular, we will demonstrate the existence of a minimal
counterexample to Theorem 6.1 in all dimensions d ≥ 3.

To start, for any 0 ≤ E < ∞, we define

L(E) := sup{SI(u) : u : I × Rd → C such that E(u) ≤ E},

where the supremum is taken over all solutions u : I × Rd → C to (6.1). Here, we
use the notation

SI(u) :=

∫
I

∫
Rd

|u(t, x)| 2(d+2)
d−2 dx dt

for the scattering size of u on an interval I.
Note that L :

[
0,∞) → [0,∞] is a non-decreasing function. Moreover, from

the small data theory,

L(E) � E
d+2
d−2 for E ≤ η0,

where η0 = η0(d) is the small data threshold.

Exercise 6.1. Prove that the set {E > 0 : L(E) < ∞} is open.
Hint: Use Theorem 5.3.

Therefore, there must exist a unique critical energy 0 < Ec ≤ ∞ such that

L(E) < ∞ for E < Ec and L(E) = ∞ for E ≥ Ec.

This plays the role of the inductive hypothesis because it says that Theorem 6.1
holds for energies E < Ec. The argument is called induction on energy, because
this inductive hypothesis will be used to prove that L(Ec) < ∞, thus providing
the desired contradiction.



Chapter 7

A Palais–Smale type condition

In this section we prove a Palais–Smale condition for minimizing sequences of
blowup solutions to the defocusing energy-critical NLS. It was already observed
in [5, 13] that such minimizing sequences have good tightness and equicontinuity
properties. This was taken to its ultimate conclusion by Keraani [19], who showed
the existence and almost periodicity of minimal blowup solutions in the context
of the mass-critical NLS. The proof of the Palais–Smale condition is the crux of
this argument.

We first define operators T j
n on general functions of space-time. These act on

linear solutions in a manner corresponding to the action of gjne
itjnΔ on initial data:

(T j
nu)(t, x) := (λj

n)
− d−2

2 u

(
t

(λj
n)2

+ tjn,
x− xj

n

λj
n

)
.

Here, the parameters λj
n, t

j
n, x

j
n are as defined in Theorem 4.1. Using the asymp-

totic orthogonality condition (4.6), it is not hard to prove the following

Lemma 7.1 (Asymptotic decoupling). Suppose that the parameters associated to
j, k are orthogonal in the sense of (4.6). Then for any ψj , ψk ∈ C∞

c (R× Rd),

‖T j
nψ

jT k
nψ

k‖
L

d+2
d−2
t,x

+ ‖T j
nψ

j∇(T k
nψ

k)‖
L

d+2
d−1
t,x

+ ‖∇(T j
nψ

j)∇(T k
nψ

k)‖
L

d+2
d

t,x

converges to zero as n → ∞.

Proof. Using a change of variables, we get

‖T j
nψ

jT k
nψ

k‖
L

d+2
d−2
t,x

+ ‖T j
nψ

j∇(T k
nψ

k)‖
L

d+2
d−1
t,x

+ ‖∇(T j
nψ

j)∇(T k
nψ

k)‖
L

d+2
d

t,x

= ‖ψj(T j
n)

−1T k
nψ

k‖
L

d+2
d−2
t,x

+ ‖ψj∇(T j
n)

−1T k
nψ

k‖
L

d+2
d−1
t,x

+ ‖∇ψj∇(T j
n)

−1T k
nψ

k‖
L

d+2
d

t,x

,
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where all space-time norms are over R× Rd. Note that

[(T j
n)

−1T k
nψ

k](t, x) =
(λj

n

λk
n

) d−2
2 ψk

((λj
n

λk
n

)2(
t− tjn(λ

j
n)

2−tkn(λ
k
n)

2

(λj
n)2

)
,
λj
n

λk
n

(
x− xk

n−xj
n

λj
n

))
.

We will only present the details for decoupling in the L
d+2
d−2

t,x norm; the argu-
ment for decoupling in the other norms is very similar.

We first assume that
λj
n

λk
n
+

λk
n

λj
n
→ ∞. Using Hölder’s inequality and a change

of variables, we estimate

‖ψj(T j
n)

−1T k
nψ

k‖
L

d+2
d−2
t,x

≤ min
{
‖ψj‖L∞

t,x
‖(T j

n)
−1T k

nψ
k‖

L
d+2
d−2
t,x

+ ‖ψj‖
L

d+2
d−2
t,x

‖(T j
n)

−1T k
nψ

k‖L∞
t,x

}
� min

{(λj
n

λk
n

)− d−2
2 ,
(λj

n

λk
n

) d−2
2

}
→ 0 as n → ∞.

Henceforth, we may assume
λj
n

λk
n
→ λ0 ∈ (0,∞).

If
|tjn(λj

n)
2−tkn(λ

k
n)

2|
λk
nλ

j
n

→ ∞, it is easy to see that the temporal supports of ψj

and (T j
n)

−1T k
nψ

k become disjoint for n sufficiently large. Hence

lim
n→∞ ‖ψj(T j

n)
−1T k

nψ
k‖

L
d+2
d−2
t,x

= 0.

If instead

λj
n

λk
n
→ λ0,

tjn(λ
j
n)

2−tkn(λ
k
n)

2

λk
nλ

j
n

→ t0, and
|xj

n−xk
n|√

λj
nλk

n

→ ∞,

then the spatial supports of ψj and (T j
n)

−1T k
nψ

k become disjoint for n sufficiently
large. Indeed, in this case we have

|xj
n−xk

n|
λj
n

=
|xj

n−xk
n|√

λj
nλk

n

√
λk
n

λj
n
→ ∞ as n → ∞.

This completes the proof of the lemma. �
Recall that failure of Theorem 6.1 implies the existence of a critical energy

0 < Ec < ∞ so that

L(E) < ∞ for E < Ec and L(E) = ∞ for E ≥ Ec, (7.1)

where L(E) denotes the supremum of SI(u) over all solutions u : I×Rd → C with
E(u) ≤ E.

The positivity of Ec is a consequence of the small data global well-posedness.
Indeed, the argument proves the stronger statement

‖u‖Ẋ1(R×Rd) � E(u0)
1
2 for all data with E(u0) ≤ η0, (7.2)
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where η0 denotes the small data threshold. Here,

Ẋ1 := L
2(d+2)
d−2

t,x ∩ L
2(d+2)

d
t Ḣ

1,
2(d+2)

d
x .

Using the induction on energy argument together with (7.1) and the stability
result Theorem 5.3, we now prove a compactness result for optimizing sequences
of blowup solutions.

Proposition 7.2 (Palais–Smale condition). Let un : In × Rd → C be a sequence of
solutions to the defocusing energy-critical NLS with E(un) → Ec, for which there
is a sequence of times tn ∈ In so that

lim
n→∞S≥tn(un) = lim

n→∞S≤tn(un) = ∞.

Then the sequence un(tn) has a subsequence that converges in Ḣ1
x modulo scaling

and spatial translations.

Proof. Using time translation symmetry, we may take tn ≡ 0 for all n; thus,

lim
n→∞S≥0(un) = lim

n→∞S≤0(un) = ∞. (7.3)

Applying Theorem 4.1 to the bounded sequence {un(0)}n≥1 ⊂ Ḣ1
x and passing to

a subsequence if necessary, we decompose

un(0) =
J∑

j=1

gjne
itjnΔφj + wJ

n , (7.4)

with the properties stated in that theorem. In particular, for any finite 0 ≤ J ≤ J∗

we have the energy decoupling condition

lim
n→∞

{
E(un)−

J∑
j=1

E(eit
j
nΔφj)− E(wJ

n)
}
= 0. (7.5)

To prove the proposition, we need to show that J∗ = 1, that w1
n → 0 in

Ḣ1
x, and that t1n ≡ 0. All other possibilities will be shown to contradict (7.3). We

discuss two scenarios:

Scenario I: supj lim supn→∞ E(eit
j
nΔφj) = Ec.

From the non-triviality of the profiles, we have lim infn→∞ E(eit
j
nΔφj) > 0 for

every finite 1 ≤ j ≤ J∗. Thus, using (7.5) together with the hypothesis E(un) →
Ec (and passing to a subsequence if necessary), we deduce that there is a single
profile in the decomposition (7.4) (that is, J∗ = 1) and we can write

un(0) = gne
itnΔφ+ wn with lim

n→∞ ‖wn‖Ḣ1
x
= 0 (7.6)
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and tn ≡ 0 or tn → ±∞. If tn ≡ 0, then we obtain the desired compactness. Thus,
we only need to preclude the scenario when tn → ±∞.

Let us suppose tn → ∞; the case tn → −∞ can be treated symmetrically. In
this case, the Strichartz inequality and the monotone convergence theorem yield

S≥0(e
itΔun(0)) � S≥tn(e

itΔφ) + S(eitΔwn) → 0 as n → ∞.

By Theorem 5.3, this implies that S≥0(un) → 0, which contradicts (7.3).

Scenario 2: supj lim supn→∞ E(eit
j
nΔφj) ≤ Ec − 2δ for some δ > 0.

We first observe that in this case, for each finite J ≤ J∗ we have E(eit
j
nΔφj) ≤

Ec − δ for all 1 ≤ j ≤ J and n sufficiently large.
Next we define nonlinear profiles corresponding to each bubble in the decom-

position of un(0). If t
j
n ≡ 0, we define vj : Ij ×Rd → C to be the maximal-lifespan

solution to the defocusing energy-critical NLS with initial data vj(0) = φj . If in-
stead tjn → ±∞, we define vj : Ij × Rd → C to be the maximal-lifespan solution
to the defocusing energy-critical NLS which scatters to eitΔφj as t → ±∞. Now
define vjn := T j

nv
j . Then vjn is also a solution to the defocusing energy-critical NLS

on the time interval Ijn := (λj
n)

2(Ij − {tjn}). In particular, for n sufficiently large
we have 0 ∈ Ijn and

lim
n→∞ ‖vjn(0)− gjne

itjnΔφj‖Ḣ1
x
= 0. (7.7)

Combining this with E(eit
j
nΔφj) ≤ Ec−δ < Ec and the inductive hypothesis (7.1),

we deduce that for n sufficiently large, vjn (and so also vj) are global solutions that
satisfy

SR(v
j) = SR(v

j
n) ≤ L(Ec − δ) < ∞.

(Note in particular that this implies vjn are global for all n ≥ 1 and they admit a
common space-time bound.)

Combining this with the Strichartz inequality shows that all Strichartz norms
of vj and vjn are finite; in particular,

‖vj‖Ẋ1(R×Rd) = ‖vjn‖Ẋ1(R×Rd) ≤Ec,δ 1.

This allows us to approximate vjn in Ẋ1(R×Rd) by C∞
c (R×Rd) functions. More

precisely, for any ε > 0 there exist ψj
ε ∈ C∞

c (R× Rd) so that

‖vjn − T j
nψ

j
ε‖Ẋ1(R×Rd) < ε. (7.8)

Moreover, we may use (7.2) together with our bounds on the space-time norms of
vjn and the finiteness of Ec to deduce that

‖vjn‖Ẋ1(R×Rd) �Ec,δ E(eit
j
nΔφj)

1
2 �Ec,δ 1. (7.9)
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Combining this with (7.5) we deduce that

lim sup
n→∞

J∑
j=1

‖vjn‖2Ẋ1(R×Rd)
�Ec,δ lim sup

n→∞

J∑
j=1

E(eit
j
nΔφj

n) �Ec,δ 1, (7.10)

uniformly for finite J ≤ J∗.
The asymptotic orthogonality condition (4.6) gives rise to asymptotic decou-

pling of the nonlinear profiles.

Lemma 7.3 (Decoupling of nonlinear profiles). For j 
= k we have

lim
n→∞ ‖vjnvkn‖

L
d+2
d−2
t,x (R×Rd)

+ ‖vjn∇vkn‖
L

d+2
d−1
t,x (R×Rd)

+ ‖∇vjn∇vkn‖
L

d+2
d

t,x (R×Rd)
= 0.

Proof. We only present the argument for decoupling in the L
d+2
d−2

t,x norm; the argu-
ment for decoupling in the other norms is similar. Recall that for any ε > 0 there
exist ψj

ε, ψ
k
ε ∈ C∞

c (R× Rd) so that

‖vjn − T j
nψ

j
ε‖Ẋ1(R×Rd) + ‖vkn − T k

nψ
k
ε ‖Ẋ1(R×Rd) < ε.

Thus, using (7.9) and Lemma 7.1 we get

‖vjnvkn‖
L

d+2
d−2
t,x

≤ ‖vjn(vkn − T k
nψ

k
ε )‖

L
d+2
d−2
t,x

+ ‖(vjn − T j
nψ

j
ε)T

k
nψ

k
ε ‖

L
d+2
d−2
t,x

+ ‖T j
nψ

j
ε T

k
nψ

k
ε ‖

L
d+2
d−2
t,x

� ‖vjn‖Ẋ1‖vkn − T k
nψ

k
ε ‖Ẋ1 + ‖vjn − T j

nψ
j
ε‖Ẋ1‖ψk

ε ‖Ẋ1 + ‖T j
nψ

j
ε T

k
nψ

k
ε ‖

L
d+2
d−2
t,x

�Ec,δ ε+ o(1) as n → ∞.

As ε > 0 was arbitrary, this proves the asymptotic decoupling statement. �

As a consequence of this decoupling we can bound the sum of the nonlinear
profiles in Ẋ1, as follows:

lim sup
n→∞

∥∥∥ J∑
j=1

vjn

∥∥∥
Ẋ1(R×Rd)

�Ec,δ 1 uniformly for finite J ≤ J∗. (7.11)

Indeed, by Young’s inequality, (7.9), (7.10), and Lemma 7.3,

SR

( J∑
j=1

vjn

)
�

J∑
j=1

SR(v
j
n) + CJ

∑
j 
=k

‖vjnvkn‖
d+2
d−2

L
d+2
d−2
t,x

�Ec,δ 1 + CJo(1) as n → ∞.

Similarly,
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∥∥∥ J∑
j=1

∇vjn

∥∥∥2
L

2(d+2)
d

t,x

=
∥∥∥( J∑

j=1

∇vjn

)2∥∥∥
L

d+2
d

t,x

�
J∑

j=1

‖∇vjn‖2
L

2(d+2)
d

t,x

+
∑
j 
=k

‖∇vjn∇vkn‖
L

d+2
d

t,x

�Ec,δ 1 + o(1) as n → ∞.

This completes the proof of (7.11). The same argument combined with (7.5) shows
that given η > 0, there exists J ′ = J ′(η) such that

lim sup
n→∞

∥∥∥ J∑
j=J ′

vjn

∥∥∥
Ẋ1(R×Rd)

≤ η uniformly in J ≥ J ′. (7.12)

Now we are ready to construct an approximate solution to the defocusing
energy-critical NLS. For each n and J , we define

uJ
n :=

J∑
j=1

vjn + eitΔwJ
n .

Obviously uJ
n is defined globally in time. In order to apply the stability result, it

suffices to verify the following three claims for uJ
n:

Claim 1: ‖uJ
n(0)− un(0)‖Ḣ1

x
→ 0 as n → ∞ for any J .

Claim 2: lim supn→∞ ‖uJ
n‖Ẋ1(R×Rd) �Ec,δ 1 uniformly in J .

Claim 3: limJ→J∗ lim supn→∞
∥∥∇[(i∂t +Δ)uJ

n − |uJ
n|

4
d−2uJ

n

]∥∥
N0(R)

= 0.

The three claims imply that for sufficiently large n and J , uJ
n is an approx-

imate solution to the defocusing energy-critical NLS with finite scattering size,
which asymptotically matches un(0) at time t = 0. Using the stability result we
see that for n, J sufficiently large, the solution un inherits the space-time bounds
of uJ

n, thus contradicting (7.3). Therefore, to complete the treatment of the second
scenario, it suffices to verify the three claims above.

The first claim follows trivially from (7.4) and (7.7). To derive the second
claim, we use (7.11) and the Strichartz inequality, as follows:

lim sup
n→∞

‖uJ
n‖Ẋ1(R×Rd) � lim sup

n→∞

∥∥∥ J∑
j=1

vjn

∥∥∥
Ẋ1(R×Rd)

+ lim sup
n→∞

‖wJ
n‖Ḣ1

x
�Ec,δ 1.

It remains to verify the third claim. Adopting the notation F (z) = |z| 4
d−2 z,

we write



267

(i∂t +Δ)uJ
n − F (uJ

n) =
J∑

j=1

F (vjn)− F (uJ
n)

=
J∑

j=1

F (vjn)− F

( J∑
j=1

vjn

)
+ F

(
uJ
n − eitΔwJ

n

)− F (uJ
n).

(7.13)

Taking the derivative, in dimensions d ≥ 6 we estimate∣∣∣∣∇{ J∑
j=1

F (vjn)− F

( J∑
j=1

vjn

)}∣∣∣∣ �J

∑
j 
=k

|∇vjn||vkn|
4

d−2 .

In dimensions d = 3, 4, 5 there is an additional term on the right-hand side of the

inequality above, namely,
∑

j 
=k |∇vjn||vkn||vjn|
6−d
d−2 . Using (7.9) and Lemma 7.3, in

dimensions d ≥ 6 we estimate∥∥∥∥∇[ J∑
j=1

F (vjn)− F

( J∑
j=1

vjn

)]∥∥∥∥
N0(R)

�J

∑
j 
=k

∥∥|∇vjn||vkn|
4

d−2

∥∥
L

2(d+2)
d+4

t,x

�J

∑
j 
=k

∥∥∇vjnv
k
n

∥∥ 4
d−2

L
d+2
d−1
t,x

‖∇vkn‖
d−6
d−2

L
2(d+2)

d
t,x

�J,Ec,δ o(1) as n → ∞.

The additional term in dimensions d = 3, 4, 5 can be treated analogously. Thus,

lim
J→J∗

lim sup
n→∞

∥∥∥∥∇[ J∑
j=1

F (vjn)− F

( J∑
j=1

vjn

)]∥∥∥∥
N0(R)

= 0. (7.14)

We now turn to estimating the second difference in (7.13). We will show that

lim
J→J∗

lim sup
n→∞

∥∥∇[F (uJ
n − eitΔwJ

n)− F (uJ
n)
]∥∥

N0(R)
= 0. (7.15)

In dimensions d ≥ 6,∥∥∇[F (uJ
n − eitΔwJ

n

)− F (uJ
n)
]∥∥

L

2(d+2)
d+4

t,x

� ‖∇eitΔwJ
n‖

L
2(d+2)

d
t,x

‖eitΔwJ
n‖

4
d−2

L

2(d+2)
d−2

t,x

+ ‖∇uJ
n‖

L
2(d+2)

d
t,x

‖eitΔwJ
n‖

4
d−2

L

2(d+2)
d−2

t,x

+
∥∥|uJ

n|
4

d−2∇eitΔwJ
n

∥∥
L

2(d+2)
d+4

t,x

.

In dimensions d = 3, 4, 5, one must add the term

‖∇uJ
n‖

L
2(d+2)

d
t,x

‖eitΔwJ
n‖

L

2(d+2)
d−2

t,x

‖uJ
n‖

6−d
d−2

L

2(d+2)
d−2

t,x
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to the right-hand side above. Using the second claim together with (4.2), and the
Strichartz inequality combined with the fact that wJ

n is bounded in Ḣ1
x, we see

that (7.15) will follow once we establish

lim
J→J∗

lim sup
n→∞

∥∥|uJ
n|

4
d−2∇eitΔwJ

n

∥∥
L

2(d+2)
d+4

t,x (R×Rd)

= 0. (7.16)

We will only prove (7.16) in dimensions d ≥ 6. We leave the remaining low
dimensions as an exercise for the conscientious reader. Using Hölder’s inequality,
the second claim, and the Strichartz inequality, we get

‖||uJ
n|

4
d−2∇eitΔwJ

n‖
L

2(d+2)
d+4

t,x

� ‖uJ
n∇eitΔwJ

n‖
4

d−2

L
d+2
d−1
t,x

‖∇eitΔwJ
n‖

d−6
d−2

L
2(d+2)

d
t,x

�Ec,δ ‖eitΔwJ
n∇eitΔwJ

n‖
4

d−2

L
d+2
d−1
t,x

+
∥∥∥ J∑
j=1

vjn∇eitΔwJ
n

∥∥∥ 4
d−2

L
d+2
d−1
t,x

�Ec,δ ‖eitΔwJ
n‖

4
d−2

L

2(d+2)
d−2

t,x

‖∇eitΔwJ
n‖

4
d−2

L
2(d+2)

d
t,x

+
∥∥∥ J∑
j=1

vjn∇eitΔwJ
n

∥∥∥ 4
d−2

L
d+2
d−1
t,x

�Ec,δ ‖eitΔwJ
n‖

4
d−2

L

2(d+2)
d−2

t,x

+
∥∥∥ J∑
j=1

vjn∇eitΔwJ
n

∥∥∥ 4
d−2

L
d+2
d−1
t,x

.

By (4.2), the contribution of the first term to (7.16) is acceptable. We now turn
to the second term.

By (7.12),

lim sup
n→∞

∥∥∥( J∑
j=J ′

vjn

)
∇eitΔwJ

n

∥∥∥
L

d+2
d−1
t,x

� lim sup
n→∞

∥∥∥ J∑
j=J ′

vjn

∥∥∥
Ẋ1

‖∇eitΔwJ
n‖

L
2(d+2)

d
t,x

�Ec,δ η,

where η > 0 is arbitrary and J ′ = J ′(η) is as in (7.12). Thus, proving (7.16)
reduces to showing

lim
J→J∗

lim sup
n→∞

‖vjn∇eitΔwJ
n‖

L
d+2
d−1
t,x

= 0 for each 1 ≤ j < J ′. (7.17)

Fix 1 ≤ j < J ′. By a change of variables,

‖vjn∇eitΔwJ
n‖

L
d+2
d−1
t,x

=
∥∥vj∇w̃J

n

∥∥
L

d+2
d−1
t,x

,

where w̃J
n := (T j

n)
−1
(
eitΔwJ

n

)
. Note that

‖w̃J
n‖Ẋ1(R×Rd) = ‖eitΔwJ

n‖Ẋ1(R×Rd). (7.18)
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By density, we may assume vj ∈ C∞
c (R×Rd). Invoking Hölder’s inequality, it thus

suffices to show

lim
J→J∗

lim sup
n→∞

‖∇w̃J
n‖L2

t,x(K) = 0

for any compact K ⊂ R×Rd. This however follows immediately from Lemma 2.12,
(4.2), and (7.18), thus completing the proof of (7.17).

This proves (7.16) and so (7.15). Combining (7.14) and (7.15) yields the third
claim. This completes the treatment of the second scenario and so the proof of the
proposition. �
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Chapter 8

Existence of minimal blowup solutions
and their properties

In this section we prove the existence of minimal counterexamples to Theorem 6.1
and we study some of their properties.

Theorem 8.1 (Existence of minimal counterexamples). Suppose Theorem 6.1 fails
to be true. Then there exist a critical energy 0 < Ec < ∞ and a maximal-lifespan
solution u : I × Rd → C to the defocusing energy-critical NLS with E(u) = Ec,
which blows up in both time directions in the sense that

S≥0(u) = S≤0(u) = ∞,

and whose orbit {u(t) : t ∈ R} is precompact in Ḣ1
x modulo scaling and spatial

translations.

Proof. If Theorem 6.1 fails to be true, then there must exist a critical energy
0 < Ec < ∞ and a sequence of solutions un : In ×Rd → C such that E(un) → Ec

and SIn(un) → ∞. Let tn ∈ In be such that S≥tn(un) = S≤tn(un) = 1
2SIn(un);

then

lim
n→∞S≥tn(un) = lim

n→∞S≤tn(un) = ∞. (8.1)

Applying Proposition 7.2 and passing to a subsequence, we find φ ∈ Ḣ1
x such

that un(tn) converge to φ in Ḣ1
x modulo scaling and spatial translations. Using

the scaling and space-translation invariance of the equation and modifying un(tn)
appropriately, we may assume un(tn) → φ in Ḣ1

x. In particular, E(φ) = Ec.
Let u : I×Rd → C be the maximal-lifespan solution to the defocusing energy-

critical NLS with initial data u(0) = φ. From the stability result Theorem 5.3 and
(8.1), we get

S≥0(u) = S≤0(u) = ∞. (8.2)

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,
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Finally, we prove that the orbit of u is precompact in Ḣ1
x modulo scaling and

space translations. For any sequence {t′n} ⊂ I, (8.2) implies S≥t′n(u) = S≤t′n(u) =∞. Thus, by Proposition 7.2, we see that u(t′n) admits a subsequence that con-
verges in Ḣ1

x modulo scaling and space translations. This completes the proof of
the theorem. �

By Corollary 11.2, the maximal-lifespan solution found in Theorem 8.1 is
almost periodic modulo symmetries, that is, there exist (possibly discontinuous)
functions N : I → R+, x : I → Rd, and C : R+ → R+ such that∫

|x−x(t)|≥C(η)/N(t)

|∇u(t, x)|2 dx+

∫
|ξ|≥C(η)N(t)

|ξû(t, ξ)|2 dξ ≤ η

for all t ∈ I and η > 0. We refer to the function N as the frequency scale function,
x is the spatial center function, and C is the compactness modulus function.

Another consequence of the precompactness in Ḣ1
x modulo symmetries of

the orbit of the solution found in Theorem 8.1 is that for every η > 0 there exists
c(η) > 0 such that∫

|x−x(t)|≤c(η)/N(t)

|∇u(t, x)|2 dx+

∫
|ξ|≤c(η)N(t)

|ξû(t, ξ)|2 dξ ≤ η,

uniformly for all t ∈ I.

In what follows, we record some basic properties of almost periodic (modulo
symmetries) solutions. We start with the following definition:

Definition 8.2 (Normalized solution). Let u : I × Rd → C be a solution to (6.1),
which is almost periodic modulo symmetries with parameters N(t) and x(t). We
say that u is normalized if the lifespan I contains zero and

N(0) = 1 and x(0) = 0.

More generally, we can define the normalization of a solution u at a time t0 ∈ I
by

u[t0](s, x) := N(t0)
− d−2

2 u
(
t0 +N(t0)

−2s, x(t0) +N(t0)
−1x

)
. (8.3)

Note that u[t0] is a normalized solution which is almost periodic modulo symme-
tries with lifespan I [t0] := {s ∈ R : t0 + N(t0)

−2s ∈ I}. The parameters of u[t0]

satisfy

N [t0](s) :=
N
(
t0 + sN(t0)

−2
)

N(t0)
and x[t0](s) := N(t0)

[
x
(
t0 + sN(t0)

−2
)− x(t0)

]
and u[t0] has the same compactness modulus function as u. Furthermore, if u is a
maximal-lifespan solution, then so is u[t0].
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Lemma 8.3 (Local constancy of N(t) and x(t), [20, 22]). Let u : I × Rd → C be
a non-zero almost periodic modulo symmetries solution to (6.1) with parameters
N(t) and x(t). Then there exists a small number δ, depending on u, such that for
every t0 ∈ I we have [

t0 − δN(t0)
−2, t0 + δN(t0)

−2
] ⊂ I (8.4)

and
N(t) ∼u N(t0) and |x(t)− x(t0)| �u N(t0)

−1 (8.5)

whenever |t− t0| ≤ δN(t0)
−2.

Proof. We first prove (8.4). Arguing by contradiction, we assume (8.4) fails. Thus,
there exist sequences tn ∈ I and δn → 0 such that tn + δnN(tn)

−2 
∈ I for all n.
Then u[tn] given by (8.3) are normalized solutions whose lifespans I [tn] contain 0
but not δn. Invoking almost periodicity and passing to a subsequence, we conclude
that u[tn](0) converge to some v0 ∈ Ḣ1

x. Let v : J × Rd → C be the maximal-
lifespan solution with data v(0) = v0. By the local well-posedness theory, J is an
open interval and so contains δn for all sufficiently large n. By the stability result
Theorem 5.3, for n sufficiently large we must have that δn ∈ I [tn]. This contradicts
the hypothesis and so gives (8.4).

We now turn to (8.5). Again, we argue by contradiction, taking δ even smaller
if necessary. Suppose one of the two claims in (8.5) failed no matter how small one
chose δ. Then one can find sequences tn, t

′
n ∈ I so that sn := (t′n − tn)N(tn)

2 →
0 but N(t′n)/N(tn) converge to either zero or infinity (if the first claim failed)
or |x(t′n) − x(tn)|N(tn) → ∞ (if the second claim failed). Therefore, N [tn](sn)
converge to either zero or infinity or x[tn](sn) → ∞. By almost periodicity, this
implies that u[tn](sn) must converge weakly to zero.

On the other hand, using almost periodicity and passing to a subsequence we
find that u[tn](0) converge to some v0 ∈ Ḣ1

x. As sn → 0, we conclude that u[tn](sn)
converge to v0 in Ḣ1

x. Thus v0 = 0 and E(u) = E(u[tn]) → E(v0) = 0. This means
u ≡ 0, a contradiction. This completes the proof of (8.5). �

An immediate consequence of Lemma 8.3 is the following corollary, which
describes the behaviour of the frequency scale function.

Corollary 8.4 (N(t) at blowup, [20, 22]). Let u : I × Rd → C be a non-zero
maximal-lifespan solution to (6.1) that is almost periodic modulo symmetries with
frequency scale function N : I → R+. If T is any finite endpoint of the lifespan
I, then N(t) �u |T − t|−1/2; in particular, limt→T N(t) = ∞. If I is infinite or
semi-infinite, then for any t0 ∈ I we have N(t) �u min{N(t0), |t− t0|−1/2}.
Proof. Exercise! �

Our next result shows how energy-critical norms of an almost periodic so-
lution can be computed in terms of its frequency scale function; see [20] for the
mass-critical analogue.

Chapter 8. Existence of minimal blowup solutions and their properties
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Lemma 8.5 (Strichartz norms via N(t), [22]). Let u : I × Rd → C be a non-zero
almost periodic modulo symmetries solution to (6.1) with frequency scale function
N : I → R+. Then∫

I

N(t)2 dt �u

∫
I

∫
Rd

|u(t, x)| 2(d+2)
d−2 dx dt �u 1 +

∫
I

N(t)2 dt.

Proof. We first prove∫
I

∫
Rd

|u(t, x)| 2(d+2)
d−2 dx dt �u 1 +

∫
I

N(t)2 dt. (8.6)

Let 0 < η < 1 be a small parameter to be chosen shortly and partition I into
subintervals Ij so that ∫

Ij

N(t)2 dt ≤ η; (8.7)

this requires at most η−1 × RHS(8.6) many intervals.

For each j, we may choose tj ∈ Ij so that

N(tj)
2|Ij | ≤ 2η. (8.8)

By Sobolev embedding, Strichartz, Hölder, and Bernstein, we obtain

‖u‖
L

2(d+2)
d−2

t,x

� ‖∇u‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

� ‖ei(t−tj)Δ∇u(tj)‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

+ ‖∇u‖
d+2
d−2

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

� ‖u≥N0
(tj)‖Ḣ1

x
+ |Ij |

d−2
2(d+2)N

d−2
d+2

0 ‖u(tj)‖Ḣ1
x
+ ‖∇u‖

d+2
d−2

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

,

where all space-time norms are over Ij × Rd. Choosing N0 as a large multiple
of N(tj) and using almost periodicity modulo symmetries, we can make the first
term as small as we wish. Subsequently, choosing η sufficiently small depending
on E(u) and invoking (8.8), we may also render the second term arbitrarily small.
Thus, by the usual bootstrap argument we obtain

‖u‖
L

2(d+2)
d−2

t,x (Ij×Rd)

� ‖∇u‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (Ij×Rd)

≤ 1.

Using the bound on the number of intervals Ij , this leads to (8.6).

Next we prove ∫
I

∫
Rd

|u(t, x)| 2(d+2)
d−2 dx dt �u

∫
I

N(t)2 dt. (8.9)
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Using almost periodicity and Sobolev embedding, we can guarantee that∫
|x−x(t)|≤C(u)N(t)−1

|u(t, x)| 2d
d−2 dx �u 1 (8.10)

uniformly for t ∈ I. On the other hand, by Hölder,∫
Rd

|u(t, x)| 2(d+2)
d−2 dx �u

(∫
|x−x(t)|≤C(u)N(t)−1

|u(t, x)| 2d
d−2 dx

) d+2
d

N(t)2.

Using (8.10) and integrating over I we obtain (8.9). �
Corollary 8.6. Let u : I×Rd → C be a non-zero almost periodic modulo symmetries
solution to (6.1) with frequency scale function N : I → R+. Then

‖∇u‖2
L2

tL
2d

d−2
x (I×Rd)

�u 1 +

∫
I

N(t)2 dt.

Proof. Exercise! �
The next proposition tells us that for a minimal blowup solution u : I×Rd →

C, the free evolution coming for the endpoints of the maximal-lifespan I converges
weakly to zero in Ḣ1

x. Intuitively, we expect this to be the case since the free
evolution is nothing but radiation and radiation does not directly contribute to
blowup. However, a minimal blowup solution needs all its norm in order to blow
up and so cannot waste any norm on a radiation term.

Proposition 8.7 (Reduced Duhamel formulas, [22, 36]). Let u : I × Rd → C be
a maximal-lifespan almost periodic modulo symmetries solution to (6.1). Then
e−itΔu(t) converges weakly to zero in Ḣ1

x as t → sup I or t → inf I. In particular,
we have the ‘reduced’ Duhamel formulas

u(t) = i lim
T→ sup I

∫ T

t

ei(t−s)Δ|u(s)| 4
d−2u(s) ds

= −i lim
T→ inf I

∫ t

T

ei(t−s)Δ|u(s)| 4
d−2u(s) ds,

(8.11)

where the limits are to be understood in the weak Ḣ1
x topology.

Proof. We prove the claim for the case t → sup I; the proof in the reverse time
direction is similar.

Assume first that sup I < ∞. Then by Corollary 8.4,

lim
t→ sup I

N(t) = ∞.

By almost periodicity, this implies that u(t) converges weakly to zero as t → sup I.
As sup I < ∞ and the map t �→ eitΔ is continuous in the strong operator topology
on Ḣ1

x, we see that e−itΔu(t) converges weakly to zero, as desired.

Chapter 8. Existence of minimal blowup solutions and their properties
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Now suppose that sup I = ∞. We need to prove that

lim
t→∞

〈
u(t), eitΔφ

〉
Ḣ1

x
= 0

for all test functions φ ∈ C∞
c (Rd). Let η > 0 be a small parameter. By Cauchy–

Schwarz and almost periodicity,∣∣∣〈u(t), eitΔφ〉
Ḣ1

x

∣∣∣2 �
∣∣∣∣∫|x−x(t)|≤C(η)/N(t)

∇u(t, x)eitΔ∇φ(x) dx

∣∣∣∣2
+

∣∣∣∣∫|x−x(t)|≥C(η)/N(t)

∇u(t, x)eitΔ∇φ(x) dx

∣∣∣∣2
� ‖u(t)‖2

Ḣ1
x

∫
|x−x(t)|≤C(η)/N(t)

|eitΔ∇φ(x)|2 dx+ η‖φ‖2
Ḣ1

x
.

Therefore, to obtain the claim we merely need to show that∫
|x−x(t)|≤C(η)/N(t)

|eitΔ∇φ(x)|2 dx → 0 as η → 0.

This follows from Lemma 8.8 below, Corollary 8.4, and a change of variables. �
Lemma 8.8 (Fraunhofer formula). For ψ ∈ L2(Rd) and t → ±∞,∥∥[eitΔψ](x)− (2it)−

d
2 ei|x|

2/4tψ̂
(

x
2t

)∥∥
L2

x
→ 0. (8.12)

Proof. This asymptotic is most easily understood in terms of stationary phase.
However, our proof will be based on the exact formula for the Schrödinger propa-
gator, which we derived in Section 2. We have the identity

LHS(8.12) =
∥∥∥(4πit)− d

2

∫
Rd

ei|x−y|2/4t[1− e−i|y|2/4t]ψ(y) dy
∥∥∥
L2

x

=
∥∥eitΔ[(1− e−i|·|2/4t)ψ

]∥∥
L2

x

=
∥∥(1− e−i|·|2/4t)ψ

∥∥
L2

x
.

The result now follows from the dominated convergence theorem. �
So far we have proved that if Theorem 6.1 fails, then there exists a minimal

witness to its failure. This is a maximal-lifespan almost periodic solution u : I ×
Rd → C which blows up in both time directions; see Theorem 8.1. Moreover, we
have recorded some basic properties satisfied by the modulation parameters N(t)
and x(t). Thus, to prove Theorem 6.1 we have to rule out the existence of these
minimal counterexamples. In order to achieve this, we need more quantitative
information regarding N(t) and x(t). The first modest step in this direction is the
following theorem, which asserts that we may assume N(t) is bounded from below;
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the price we pay for this information is that we can no longer guarantee that u
blows up in both time directions.

For an argument that is upside down relative to the one we present below,
see Theorem 3.3 in [35]. This reference treats the mass-critical NLS and restricts
attention to almost periodic solutions with N(t) ≤ 1.

Theorem 8.9. Suppose Theorem 6.1 fails to be true. Then there exists an almost
periodic modulo symmetries solution u : I × Rd → C such that SI(u) = ∞ and

N(t) ≥ 1 for all t ∈ I. (8.13)

Proof. By Theorem 8.1, there exists a maximal-lifespan solution v : J × Rd → C
to the defocusing energy-critical NLS which is almost periodic modulo symmetries
and which blows up in both time directions in the sense that S≥0(v) = S≤0(v) =
∞. Let Nv(t) denote the frequency scale function associated to v. We will obtain
the desired u satisfying (8.13) from v, by rescaling appropriately.

Write J as a nested union of compact intervals J1 ⊂ J2 ⊂ · · · ⊂ J . On each
compact interval Jn, we have v ∈ CtḢ

1
x(Jn ×Rd), which easily implies that Nv(t)

is bounded above and below on Jn. Thus, we may find tn ∈ Jn such that

Nv(tn) ≤ 2Nv(t) for all t ∈ Jn. (8.14)

Now consider the normalizations v[tn] : In × Rd → C with In := {t ∈ R :
tn +Nv(tn)

−2t ∈ Jn}. Using almost periodicity and passing to a subsequence, we
get that v[tn](0) converge in Ḣ1

x to some u0. From the conservation of energy, we
see that u0 is not identically zero. Let u : (−T−, T+) × Rd → C be the maximal-
lifespan solution with data u(0) = u0.

Now let vn : Ĩn × Rd → C be the maximal-lifespan solution which agrees
with v[tn] on In. If K is any compact subinterval of (−T−, T+) containing 0, then
SK(u) < ∞. From the stability result Theorem 5.3, for sufficiently large n we
must have K ⊆ Ĩn and SK(vn) < ∞ uniformly in n. As SJn(v) = SIn(vn) → ∞
as n → ∞, we must have In � K for n large. Passing to subsequence if necessary,
this leaves only two possibilities:

• For every 0 < t < T+, [0, t] ⊆ In for all sufficiently large n.

• For every −T− < t < 0, [t, 0] ⊆ In for all sufficiently large n.

By time reversal symmetry, it suffices to consider the former possibility. Let I :=
[0, T+). We will prove that u : I×Rd → C satisfies the conclusions of Theorem 8.9.

We first note that u : I × Rd → C is almost periodic modulo symmetries.
Indeed, for any 0 ≤ t < T+, u(t) can be approximated to arbitrary accuracy in Ḣ1

x

by v[tn](t), which is a rescaled version of a function in the orbit {v(t) : t ∈ J}. As
the orbit of v is precompact in Ḣ1

x modulo symmetries, then so is {u(t) : 0 ≤ t <
T+}.

Next we prove that SI(u) = ∞. Otherwise we would have T+ = ∞ and
[0,∞) ⊆ In for n large. Moreover, by the stability theory, for n large we get

Chapter 8. Existence of minimal blowup solutions and their properties
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S≥0(v
[tn]) = S≥tn(v) < ∞, which contradicts the fact that v blows up forward in

time.
Finally, we prove (8.13). Let η > 0 to be chosen later. Fix t ∈ I. By the

stability result, for n large we have t ∈ In and

‖v[tn](t)− u(t)‖Ḣ1
x
→ 0 as n → ∞.

Combining this with (8.14) and almost periodicity, we find that there exists c(η) >
0 such that

η ≥
∫
|ξ|≤c(η)Nv(t)

|ξv̂(t, ξ)|2 dξ =

∫
|ξ|≤c(η)

Nv(tn+Nv(tn)−2t)
Nv(tn)

|ξv̂[tn](t, ξ)|2 dξ

≥
∫
|ξ|≤ 1

2 c(η)

|ξv̂[tn](t, ξ)|2 dξ →
∫
|ξ|≤ 1

2 c(η)

|ξû(t, ξ)|2 dξ.

Recalling the definition of almost periodicity, we derive (8.13). This completes the
proof of the theorem. �

Putting together the results of this section we can restrict attention to the
following very specific enemy to Theorem 6.1:

Theorem 8.10. Suppose Theorem 6.1 fails to be true. Then there exists an almost
periodic solution u : [0, Tmax)× Rd → C such that

S[0,Tmax)(u) =

∫ Tmax

0

∫
Rd

|u(t, x)| 2(d+2)
d−2 dx dt = +∞.

Moreover, we may write [0, Tmax) =
⋃

k Jk, with Jk being intervals of local con-
stancy and

N(t) ≡ Nk ≥ 1 for each t ∈ Jk.

In the following two sections we will see how to preclude the existence of
the almost periodic solution described in Theorem 8.10 for the defocusing energy-
critical NLS in four spatial dimensions:

i∂tu = −Δu+ |u|2u with u(0) = u0 ∈ Ḣ1
x(R

4). (8.15)

Some of the arguments that follow work also in higher dimensions, as well as for
the focusing equation; however, in these notes we are not aiming for the greatest
generality, but rather we try to demonstrate how these techniques can be used to
settle Theorem 6.1 in the particular case d = 4.

Before we launch into the involved argument that will preclude the existence
of the enemy described in Theorem 8.10, let us first pause and collect the rewards
of this section. In particular, we will see that our enemy must be global forward
in time; strictly speaking, this step is not necessary for the argument that follows,
but it is always good to realize how far we have come and how much further there
is to go.
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Theorem 8.11. Let u : [0, Tmax)×R4 → C be an almost periodic solution to (8.15)
with S[0,Tmax)(u) = ∞. Then Tmax = ∞.

Proof. We argue by contradiction. Assume that Tmax < ∞. Using Proposition 8.7,
the Strichartz inequality, Hölder’s inequality, and the conservation of energy, we
estimate

‖u≥N (t)‖L2
x
� ‖P≥N (|u|2u)‖

L2
tL

4/3
x ([t,Tmax)×R4)

� (Tmax − t)1/2‖u‖3L∞
t L4

x([t,Tmax)×R4)

�u (Tmax − t)1/2,

uniformly in N ∈ 2Z. Letting N → 0 we deduce that u has finite mass; letting
t → Tmax and invoking the conservation of mass, we deduce that

M(u(t)) =

∫
R4

|u(t, x)|2 dx = 0 for all t ∈ [0, Tmax).

In particular, u ≡ 0, which contradicts the fact that S[0,Tmax)(u) = ∞.
This completes the proof of the theorem. �
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Long-time Strichartz estimates and
applications

In this section, we prove a long-time Strichartz inequality for solutions to (8.15)
as described in Theorem 8.10. This will then be used to rule out rapid frequency
cascade solutions, namely, solutions which also satisfy∫ Tmax

0

N(t)−1 dt < ∞.

9.1 A long-time Strichartz inequality

Long-time Strichartz inequalities originate in the work of Dodson [15] on the mass-
critical NLS. The main result of this section is a long-time Strichartz estimate for
solutions to (8.15). This was proved in [40]; we review the proof below.

Theorem 9.1 (Long-time Strichartz estimates). Let u : [0, Tmax) × R4 → C be
an almost periodic solution to (8.15) with N(t) ≡ Nk ≥ 1 on each characteristic
interval Jk ⊂ [0, Tmax). Then, on any compact time interval I ⊂ [0, Tmax), which
is a union of contiguous intervals Jk, and for any frequency M > 0,

‖∇u≤M‖L2
tL

4
x(I×R4) �u 1 +M3/2K1/2, (9.1)

where K :=
∫
I
N(t)−1 dt. Moreover, for any η > 0 there exists M0 = M0(η) > 0

such that for all M ≤ M0,

‖∇u≤M‖L2
tL

4
x(I×R4) �u η

(
1 +M3/2K1/2

)
. (9.2)

Importantly, the constant M0 and the implicit constants in (9.1) and (9.2) are
independent of the interval I.

Proof. Fix a compact time interval I ⊂ [0, Tmax), which is a union of contiguous
intervals Jk. Throughout the proof all space-time norms will be on I ×R4, unless

 H. Koch et al., Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries,

DOI 10.1007/978-3-0348-0736-4_23, © Springer Basel 2014
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we specify otherwise. Let η0 > 0 be a small parameter to be chosen later. By
almost periodicity, there exists c0 = c0(η0) such that

‖∇u≤c0N(t)‖L∞
t L2

x
≤ η0. (9.3)

For M > 0 we define

A(M) := ‖∇u≤M‖L2
tL

4
x(I×R4).

Note that Corollary 8.5 implies

A(M) �u 1 +M3/2K1/2 whenever M ≥
( ∫

I
N(t)2 dt∫

I
N(t)−1 dt

)1/3

, (9.4)

and, in particular, whenever M ≥ Nmax := supt∈I N(t). We will obtain the re-
sult for arbitrary frequencies M > 0 by induction. Our first step is to obtain
a recurrence relation for A(M). We start with an application of the Strichartz
inequality:

A(M) � inf
t∈I

‖∇u≤M (t)‖L2
x
+
∥∥∇P≤MF (u)

∥∥
L2

tL
4/3
x

. (9.5)

To continue, we decompose u = u≤M/η0
+ u>M/η0

and then further decompose
u(t) = u≤c0N(t)(t) + u>c0N(t)(t). Thus we may write

F (u) = Ø
(
u>M/η0

u2
)
+Ø

((
P≤c0N(t)u≤M/η0

)3)
+Ø

(
u2
≤M/η0

u>c0N(t)

)
, (9.6)

where we use the notation Ø(X) to denote a quantity that resembles X, that is,
a finite linear combination of terms that look like those in X, but possibly with
some factors replaced by their complex conjugates and/or restricted to various
frequencies. Next, we will estimate the contributions of each of these terms to
(9.5).

To estimate the contribution of the first term on the right-hand side of (9.6),
we use the Bernstein inequality followed by Lemma 11.9, Lemma 11.6, Hölder,
and Sobolev embedding:∥∥∇P≤MØ

(
u>M/η0

u2
)∥∥

L2
tL

4/3
x

(9.7)

� M5/3
∥∥|∇|−2/3Ø

(
u>M/η0

u2
)∥∥

L2
tL

4/3
x

� M5/3
∥∥|∇|−2/3u>M/η0

∥∥
L2

tL
4
x

∥∥|∇|2/3Ø(u2
)∥∥

L∞
t L

3/2
x

� M5/3
∥∥|∇|−2/3u>M/η0

∥∥
L2

tL
4
x

∥∥|∇|2/3u∥∥
L∞

t L
12/5
x

‖u‖L∞
t L4

x

� M5/3
∥∥|∇|−2/3u>M/η0

∥∥
L2

tL
4
x
‖u‖2

L∞
t Ḣ1

x

�u

∑
L>M/η0

(M
L

)5/3
A(L). (9.8)
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We turn now to the contribution of the second term on the right-hand side
of (9.6). Employing Hölder and (9.3), we obtain∥∥∇P≤MØ

((
P≤c0N(t)u≤M/η0

)3)∥∥
L2

tL
4/3
x

� ‖∇u≤M/η0
‖L2

tL
4
x
‖u≤c0N(t)‖2L∞

t L4
x

�u η20A
(
M/η0

)
. (9.9)

Finally, we consider the contribution of the third term on the right-hand side
of (9.6). By Bernstein and then Hölder,∥∥∇P≤MØ

(
u2
≤M/η0

u>c0N(t)

)∥∥
L2

tL
4/3
x

� M‖u≤M/η0
‖L∞

t L4
x
‖u≤M/η0

u>c0N(t)‖L2
t,x

�u M‖u≤M/η0
u>c0N(t)‖L2

t,x
.

To continue, we decompose the time interval I into intervals of local constancy Jk
and apply the bilinear Strichartz estimate Corollary 2.10 on each Jk. Note that
by Lemma 8.5, Corollary 8.6, and Hölder’s inequality, on each Jk we have

‖∇u‖L2
tL

4
x(Jk×R4) + ‖∇F (u)‖

L
3/2
t,x (Jk×R4)

�u 1 and hence ‖∇u‖S∗
0 (Jk) �u 1.

Thus, using also Bernstein’s inequality,

‖u≤M/η0
u>c0N(t)

∥∥
L2

t,x(Jk×R4)
� (M/η0)

1/2

(c0Nk)1/2
‖∇u≤M/η0

‖S∗
0 (Jk)‖u>c0Nk

‖S∗
0 (Jk)

�u
M1/2

η
1/2
0 c

3/2
0 N

3/2
k

‖∇u≤M/η0
‖S∗

0 (Jk).

The term ‖∇u≤M/η0
‖S∗

0 (Jk) will be essential in obtaining the small parameter η in
claim (9.2) and this is why we choose to keep it in the display above rather than
discarding it. Summing the estimates above over the intervals Jk and invoking
again the local constancy property Lemma 8.3, we find

‖u≤M/η0
u>c0N(t)

∥∥
L2

t,x(I×R4)
�u

M1/2

η
1/2
0 c

3/2
0

(∑
Jk⊂I

1

N3
k

)1/2
sup
Jk⊂I

‖∇u≤M/η0
‖S∗

0 (Jk)

�u
M1/2K1/2

η
1/2
0 c

3/2
0

sup
Jk⊂I

‖∇u≤M/η0
‖S∗

0 (Jk).

Thus, the contribution of the third term on the right-hand side of (9.6) can be
bounded as follows:

∥∥∇P≤MØ
(
u2
≤M/η0

u>c0N(t)

)∥∥
L2

tL
4/3
x

�u
M3/2K1/2

η
1/2
0 c

3/2
0

sup
Jk⊂I

‖∇u≤M/η0
‖S∗

0 (Jk).

(9.10)
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Collecting (9.5) through (9.10), we obtain

A(M) �u inf
t∈I

‖∇u≤M (t)‖L2
x
+

M3/2K1/2

η
1/2
0 c

3/2
0

sup
Jk⊂I

‖∇u≤M/η0
‖S∗

0 (Jk)

+
∑

L≥ M
η0

(M
L

)5/3
A(L). (9.11)

The inductive step in the proof of claims (9.1) and (9.2) will rely on this recurrence
relation.

Let us first address (9.1). Recall that by (9.4), the claim holds for M ≥ Nmax,
that is,

A(M) ≤ C(u)
[
1 +M3/2K1/2

]
, (9.12)

for some constant C(u) > 0 and all M ≥ Nmax. Now using the fact that (9.11)
implies

A(M) ≤ C̃(u)

{
1 +

M3/2K1/2

η
1/2
0 c

3/2
0

+
∑

L≥ M
η0

(M
L

)5/3
A(L)

}
, (9.13)

we can inductively prove the claim by halving the frequency M at each step.
For example, assuming that (9.12) holds for frequencies larger or equal to M , an
application of (9.13) (with η0 ≤ 1/2) yields

A
(
M/2

) ≤ C̃(u)

{
1 +

(M/2)3/2K1/2

η
1/2
0 c

3/2
0

+ C(u)
∑

L≥ M
2η0

(M
2L

)5/3[
1 + L3/2K1/2

]}

≤ C̃(u)

{
1 +

(M/2)3/2K1/2

η
1/2
0 c

3/2
0

+ 2η
5/3
0 C(u) + 2η

1/6
0 C(u)(M/2)3/2K1/2

}
.

Choosing η0 = η0(u) small enough so that η
1/6
0 C̃(u) ≤ 1/4, we thus obtain

A
(
M/2

) ≤ 1

2
C(u)

{
1 + (M/2)3/2K1/2

}
+ C̃(u)

{
1 +

(M/2)3/2K1/2

η
1/2
0 c

3/2
0

}
.

The claim now follows by setting C(u) ≥ 2C̃(u)η
−1/2
0 c

−3/2
0 .

Next we turn to (9.2). To exhibit the small constant η, we will need the
following

Lemma 9.2 (Vanishing of the small frequencies). Under the assumptions of Theo-
rem 9.1, we have

f(M) := ‖∇u≤M‖L∞
t L2

x([0,Tmax)×R4) + sup
Jk⊂[0,Tmax)

‖∇u≤M‖S∗
0 (Jk) → 0 as M → 0.
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Proof. As by hypothesis inft∈[0,Tmax) N(t) ≥ 1, almost periodicity yields

lim
M→0

‖∇u≤M‖L∞
t L2

x([0,Tmax)×R4) = 0. (9.14)

Now fix a characteristic interval Jk ⊂ [0, Tmax) and recall that all Strichartz
norms of u are bounded on Jk. In particular, we have

‖∇u‖L2
tL

4
x(Jk×R4) + ‖u‖L3

tL
12
x (Jk×R4) + ‖u‖L6

t,x(Jk×R4) �u 1.

Using this followed by the decomposition u = u≤M1/2 + u>M1/2 , Hölder, and
Bernstein, for any frequency M > 0 we estimate

‖∇u≤M‖S∗
0 (Jk)

= ‖∇u≤M‖L∞
t L2

x
+ ‖∇P≤MF (u)‖

L
3/2
t,x

� ‖∇u≤M‖L∞
t L2

x
+ ‖∇P≤MF (u>M1/2)‖

L
3/2
t,x

+ ‖∇u>M1/2u≤M1/2u‖
L

3/2
t,x

+ ‖∇u≤M1/2u2‖
L

3/2
t,x

� ‖∇u≤M‖L∞
t L2

x
+M‖u>M1/2‖L2

tL
4
x
‖u>M1/2‖L6

t,x
‖u>M1/2‖L∞

t L4
x

+ ‖∇u>M1/2‖L2
tL

4
x
‖u≤M1/2‖L∞

t L4
x
‖u‖L6

t,x
+ ‖∇u≤M1/2‖L∞

t L2
x
‖u‖2L3

tL
12
x

�u ‖∇u≤M‖L∞
t L2

x
+M1/2 + ‖∇u≤M1/2‖L∞

t L2
x
.

All space-time norms in the estimates above are on Jk × R4. As Jk ⊂ [0, Tmax)
was arbitrary, we find

sup
Jk⊂[0,Tmax)

‖∇u≤M‖S∗
0 (Jk) �u M1/2 + ‖∇u≤M‖L∞

t L2
x([0,Tmax)×R4)

+ ‖∇u≤M1/2‖L∞
t L2

x([0,Tmax)×R4).

The claim now follows by combining this with (9.14). �
We are now ready to prove (9.2). Using (9.1) and Lemma 9.2, the estimate

(9.11) implies

A(M) �u f(M) +
M3/2K1/2

η
1/2
0 c

3/2
0

f(M) +
∑

L≥ M
η0

(M
L

)5/3
A(L)

�u f(M) + η
5/3
0 +

{
f(M)

η
1/2
0 c

3/2
0

+ η
1/6
0

}
M3/2K1/2.

Thus, for any η > 0, choosing first η0 = η0(η) such that η
1/6
0 ≤ η and then

M0 = M0(η) such that f(M0)

η
1/2
0 c

3/2
0

≤ η, we obtain

A(M) �u η
(
1 +M3/2K1/2

)
for all M ≤ M0.

This completes the proof of Theorem 9.1. �
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Next, we record a consequence of Theorem 9.1, which will be useful in the
derivation of a frequency-localized interaction Morawetz inequality.

Corollary 9.3 (Low and high frequencies control). Let u : [0, Tmax) × R4 → C be
an almost periodic solution to (8.15) with N(t) ≡ Nk ≥ 1 on each characteristic
interval Jk ⊂ [0, Tmax). Then, on any compact time interval I ⊂ [0, Tmax), which
is a union of contiguous intervals Jk, and for any frequency M > 0,

‖u≥M‖Lq
tL

r
x(I×R4) �u M−1(1 +M3K)

1
q for all 1

q + 2
r = 1 with 3 < q ≤ ∞.

(9.15)

Moreover, for any η > 0 there exists M0 = M0(η) such that for all M ≤ M0 we
have

‖∇u≤M‖Lq
tL

r
x(I×R4) �u η(1 +M3K)

1
q for all 1

q + 2
r = 1 with 2 ≤ q ≤ ∞.

(9.16)

The constant M0 and the implicit constants in (9.15) and (9.16) are independent
of the interval I.

Proof. We first address (9.15). By (9.1) and Bernstein’s inequality, for any ε > 0
and any frequency M > 0 we have∥∥|∇|−1/2−εu≥M

∥∥
L2

tL
4
x(I×R4)

�
∑
L≥M

L−3/2−ε‖∇uL‖L2
tL

4
x(I×R4)

�u

∑
L≥M

L−3/2−ε(1 + L3/2K1/2)

�u M−3/2−ε(1 +M3K)1/2.

The claim now follows by interpolating with the energy bound:

‖u≥M‖Lq
tL

r
x(I×R4) �

∥∥|∇|− 1
2− q−3

2 u≥M

∥∥2/q
L2

tL
4
x(I×R4)

‖∇u≥M‖1−2/q
L∞

t L2
x(I×R4)

�u M−1(1 +M3K)1/q,

whenever 1
q + 2

r = 1 and 3 < q ≤ ∞.

We turn now to (9.16). As inft∈I N(t) ≥ 1, using almost periodicity, for any
η > 0 we can find M0(η) such that for all M ≤ M0,

‖∇u≤M‖L∞
t L2

x(I×R4) ≤ η.

The claim follows by interpolating with (9.2). �
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9.2 The rapid frequency cascade scenario

In this subsection, we preclude the existence of almost periodic solutions as in

Theorem 8.10 for which
∫ Tmax

0
N(t)−1 dt < ∞. We will show their existence is

inconsistent with the conservation of mass.

Theorem 9.4 (No rapid frequency cascades). There are no almost periodic solutions
u : [0, Tmax)×R4 → C to (8.15) with N(t) ≡ Nk ≥ 1 on each characteristic interval
Jk ⊂ [0, Tmax) such that ‖u‖L6

t,x([0,Tmax)×R4) = +∞ and

∫ Tmax

0

N(t)−1 dt < ∞. (9.17)

Proof. We argue by contradiction. Let u be such a solution. Then, by Corollary 8.4,

lim
t→Tmax

N(t) = ∞, (9.18)

whether Tmax is finite or infinite. Thus, by almost periodicity we have

lim
t→Tmax

‖∇u≤M (t)‖L2
x
= 0 for any M > 0. (9.19)

Now let In be a nested sequence of compact subintervals of [0, Tmax) that are
unions of contiguous characteristic intervals Jk. On each In we may now apply
Theorem 9.1. Specifically, using (9.11) together with the hypothesis (9.17), we get

An(M) := ‖∇u≤M‖L2
tL

4
x(In×R4)

�u inf
t∈In

‖∇u≤M (t)‖L2
x
+

M3/2

η
1/2
0 c

3/2
0

[∫ Tmax

0

N(t)−1 dt
]1/2

+
∑

L≥ M
η0

(M
L

)5/3
An(L)

�u inf
t∈In

‖∇u≤M (t)‖L2
x
+

M3/2

η
1/2
0 c

3/2
0

+
∑

L≥ M
η0

(M
L

)5/3
An(L)

for all frequencies M > 0. Arguing as for (9.1), we find

‖∇u≤M‖L2
tL

4
x(In×R4) �u inf

t∈In
‖∇u≤M (t)‖L2

x
+M3/2 for all M > 0.

Letting n tend to infinity and invoking (9.19), we obtain

‖∇u≤M‖L2
tL

4
x([0,Tmax)×R4) �u M3/2 for all M > 0. (9.20)

Our next claim is that (9.20) implies

‖∇u≤M‖L∞
t L2

x([0,Tmax)×R4) �u M3/2 for all M > 0. (9.21)
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Fix M > 0. Using the Duhamel formula from Proposition 8.7 together with
the Strichartz inequality, the decomposition u = u≤M + u>M , Lemma 11.9,
Lemma 11.6, (9.20), Bernstein, Hölder, and Sobolev embedding, we find that

‖∇u≤M‖L∞
t L2

x
� ‖∇P≤MF (u)‖

L2
tL

4/3
x

� ‖∇P≤MF (u≤M )‖
L2

tL
4/3
x

+ ‖∇P≤MØ(u>Mu2)‖
L2

tL
4/3
x

� ‖∇u≤M‖L2
tL

4
x
‖u≤M‖2L∞

t L4
x
+M5/3

∥∥|∇|−2/3Ø(u>Mu2)
∥∥
L2

tL
4/3
x

�u M3/2 +M5/3
∥∥|∇|−2/3u>M

∥∥
L2

tL
4
x

∥∥|∇|2/3u∥∥
L∞

t L
12/5
x

‖u‖L∞
t L4

x

�u M3/2 +M5/3
∑
L>M

L−5/3‖∇uL

∥∥
L2

tL
4
x

�u M3/2 +M5/3
∑
L>M

L−1/6

�u M3/2.

All space-time norms in the estimates above are on [0, Tmax)× R4.
With (9.21) in place, we are now ready to finish the proof of Theorem 9.4.

First note that by Bernstein’s inequality and (9.21), u ∈ L∞
t Ḣ

−1/4
x ([0, Tmax)×R4);

indeed, ∥∥|∇|−1/4u‖L∞
t L2

x
�
∥∥|∇|−1/4u>1‖L∞

t L2
x
+
∥∥|∇|−1/4u≤1‖L∞

t L2
x

�u

∑
M>1

M−5/4 +
∑
M≤1

M1/4 �u 1.

Now fix t ∈ [0, Tmax) and let η > 0 be a small constant. By almost periodicity,
there exists c(η) > 0 such that∫

|ξ|≤c(η)N(t)

|ξ|2|û(t, ξ)|2 dξ ≤ η.

Interpolating with u ∈ L∞
t Ḣ

−1/4
x , we find∫

|ξ|≤c(η)N(t)

|û(t, ξ)|2 dξ �u η1/5. (9.22)

Meanwhile, by elementary considerations,∫
|ξ|≥c(η)N(t)

|û(t, ξ)|2 dξ ≤ [c(η)N(t)]−2

∫
R4

|ξ|2|û(t, ξ)|2 dξ �u [c(η)N(t)]−2.

(9.23)

Collecting (9.22) and (9.23) and using Plancherel’s theorem, we obtain

0 ≤ M(u(t)) :=

∫
R4

|u(t, x)|2 dx �u η1/5 + c(η)−2N(t)−2
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for all t ∈ [0, Tmax). Letting η tend to zero and invoking (9.18) and the conservation
of mass, we conclude M(u) = 0 and hence u is identically zero. This contradicts
‖u‖L6

t,x([0,Tmax)×R4) = ∞, thus settling Theorem 9.4. �



Chapter 10

Frequency-localized interaction
Morawetz inequalities and applications

Our goal in this section is to prove a frequency-localized interaction Morawetz
inequality. This will then be used to preclude the existence of almost periodic

solutions as in Theorem 8.10 for which
∫ Tmax

0
N(t)−1 dt = ∞. These results appear

in [40]; we review the proof below.
Before we delve into the gory details, let us pause to assess where we are. In

view of Theorems 8.11 and 9.4, the only enemy we are left to face is an almost
periodic solution u : [0,∞) × R4 → C to (8.15) with N(t) ≡ Nk ≥ 1 on each
characteristic interval Jk ⊂ [0,∞) such that ‖u‖L6

t,x([0,∞)×R4) = +∞ and∫ ∞

0

N(t)−1 dt < ∞.

In order to rule out this quasi-soliton solution, we need tools that express the
defocusing nature of the equation. These are the various versions of the Morawetz
inequality.

The Morawetz inequality originates in classical mechanics: in the presence

of a repulsive potential, the quantity p(t) · x(t)
|x(t)| is monotone. Here p denotes

the momentum of the particle and x denotes its position. The natural quantum

mechanical analogue of the quantity p(t) · x(t)
|x(t)| is the Morawetz action

M(t) := 2 Im

∫
R4

u(t, x)∇u(t, x) · x

|x| dx,

where u is a solution to (8.15). A direct computation shows that

∂tM(t) ≥ 2

∫
R4

|u(t, x)|2
|x|3 dx+ 3

∫
R4

|u(t, x)|4
|x| dx.

Integrating with respect to time and using Cauchy–Schwarz we derive the Lin–
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Strauss Morawetz inequality, [25]:∫
I

∫
R4

|u(t, x)|4
|x| dx dt � ‖u‖L∞

t L2
x(I×R4)‖u‖L∞

t Ḣ1
x(I×R4). (10.1)

There are two obvious drawbacks when attempting to use this formula to
preclude our final enemy. The first one is that it favours the origin: it basically says
that if the solution is in L∞

t H1
x, then it cannot spend a lot of time near the spatial

origin. Secondly, in order to exploit inequality (10.1), we need the solution to lie in
L∞
t H1

x. However, even if we only cared about Schwartz solutions, when we apply
the concentration compactness argument to exhibit a minimal counterexample to
Theorem 6.1, we lose all information about the solution that is not left invariant
by the symmetries of the equation; in particular, we are left with a solution that
is merely in L∞

t Ḣ1
x.

Bourgain [5] showed us how to resolve the second issue above. His solution
was to truncate in space; this is equivalent to throwing away the low frequencies
of the solution. (Incidentally, truncating an L∞

t Ḣ1
x solution to high frequencies

places it in L∞
t H1

x, although the truncation will no longer be a solution.) In this
way, Bourgain obtained the following Morawetz inequality:∫

I

∫
|x|≤A|I|1/2

|u(t, x)|4
|x| dx dt � A|I|1/2‖u‖2

L∞
t Ḣ1

x(I×R4)
. (10.2)

Compared with (10.1), it still favours the spatial origin, but at least now we can
control the right-hand side.

Let us quickly see how to use (10.2) to complete the proof of Theorem 6.1
for radial initial data in dimension d = 4:

Step 1: We note that by rotation invariance and uniqueness of solutions to (8.15),
solutions with radial initial data are radial for all time.

Step 2: Radial almost periodic solutions must concentrate near the spatial origin.
Indeed, if |x(t)| 
 N(t)−1, then by spherical symmetry there exist a very large
number of disjoint balls on which u(t) concentrates a nontrivial portion of its
energy. This however contradicts the conservation of energy. Thus we must have
|x(t)| � N(t)−1. At this point we may set x(t) ≡ 0 by modifying the compactness
modulus function accordingly.

Step 3: By Sobolev embedding and almost periodicity, we can find C(u) > 0 such
that ∫

|x|≤C(u)/N(t)

|u(t, x)|4 dx �u 1 uniformly for t ∈ [0,∞).

Step 4: Using (10.2) and Step 3 above, for any time interval I ⊂ [0,∞) which is a
contiguous union of intervals of local constancy Jk we obtain
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|I|1/2 �u

∫
I

∫
|x|≤C(u)|I|1/2

|u(t, x)|4
|x| dx dt

�u

∑
Jk⊂I

∫
Jk

∫
|x|≤C(u)|Jk|1/2

|u(t, x)|4
|x| dx dt

�u

∑
Jk⊂I

∫
Jk

∫
|x|≤C(u)/N(t)

N(t)|u(t, x)|4 dx dt

�u

∑
Jk⊂I

∫
Jk

N(t) dt

�u

∫
I

N(t) dt.

Recalling that inft∈[0,∞) N(t) ≥ 1, we derive a contradiction by taking the interval
I ⊂ [0,∞) sufficiently large.

This completes the proof of Theorem 6.1 for radial initial data in dimension
d = 4.

To handle nonradial initial data, Colliander, Keel, Staffilani, Takaoka, and
Tao [13] made use of an interaction Morawetz inequality, which they introduced
in [12]. (Strictly speaking they treated the case d = 3. In what follows we consider
the d = 4 analogue; see also [30].) Their idea was to center the Morawetz action
not at the origin, but rather where the solution actually lives:

Minteract(t) := 2 Im

∫
R4

∫
R4

u(t, x)∇u(t, x) · x− y

|x− y| |u(t, y)|
2 dx dy.

A computation gives

∂tMinteract(t) �
∫
R4

∫
R4

|u(t, x)|2|u(t, y)|2
|x− y|3 +

|u(t, x)|4|u(t, y)|2
|x− y| dx dy.

Thus, by the fundamental theorem of calculus and Cauchy–Schwarz,∫
I

∫
R4

∫
R4

|u(t, x)|2|u(t, y)|2
|x− y|3 +

|u(t, x)|4|u(t, y)|2
|x− y| dx dy dt

� ‖u‖3L∞
t L2

x(I×R4)‖u‖L∞
t Ḣ1

x(I×R4). (10.3)

This interaction Morawetz inequality has an obvious drawback, namely, in or-
der to exploit it we need the solution to belong to L∞

t H1
x. However, as noted before,

our last enemy belongs merely to L∞
t Ḣ1

x. Therefore, in order to employ this new
monotonicity formula, Colliander, Keel, Staffilani, Takaoka, and Tao truncated
the solution to frequencies greater than some frequency N ∈ 2Z, which is chosen
small enough so that the truncation captures most of the norm of the solution. By
almost periodicity, it is possible to chose N independent of time, since our enemy

Chapter 10. Frequency-localized interaction Morawetz inequalities
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satisfies inft∈[0,∞) N(t) ≥ 1. Of course, since u≥N no longer solves (8.15), there
are additional errors introduced on the right-hand side of (10.3). Schematically,
we obtain something of the form∫

I

∫
R4

∫
R4

|u≥N (t, x)|2|u≥N (t, y)|2
|x− y|3 dx dy dt

� ‖u≥N‖3L∞
t L2

x(I×R4)‖u≥N‖L∞
t Ḣ1

x(I×R4) + errors

�u N−3 + errors. (10.4)

If these errors were magically zero, then it would be a relatively easy task
to use (10.4) to rule out our last enemy; see Theorem 10.3 below. However, these
errors are not zero and controlling them is highly nontrivial.

Nowadays, there are two ways of handling the error terms on the right-
hand side of (10.4). Colliander, Keel, Staffilani, Takaoka, and Tao estimate these
errors using solely the left-hand side in (10.4). The smallness needed to close the
resulting bootstrap comes from the fact that u≥N captures most of the norm of
the solution and so ‖u≤N‖L∞

t Ḣ1
x
� 1. A second approach, inspired by Dodson’s

work on the mass-critical NLS, is to first obtain additional a priori control in the
form of the long-time Strichartz inequality we derived in Section 9; this is then
used to control error terms in (10.4). It is this second approach that we will discuss
here following [40]. This approach has also been adapted to the three dimensional
problem originally treated by Colliander, Keel, Staffilani, Takaoka, and Tao [13]
in [21].

10.1 A frequency-localized interaction Morawetz

inequality

In this subsection we derive a frequency-localized interaction Morawetz inequal-
ity, using the Dodson approach to control the error terms. We start by recalling
the interaction Morawetz inequality in four spatial dimensions in slightly more
generality; for details, see [30]. For a solution φ : I × R4 → C to the equation
iφt +Δφ = N , we define the interaction Morawetz action by

Minteract(t) := 2 Im

∫
R4

∫
R4

|φ(t, y)|2 x− y

|x− y|∇φ(t, x)φ(t, x) dx dy.

Standard computations show

∂tMinteract(t) ≥ 3

∫
R4

∫
R4

|φ(t, x)|2|φ(t, y)|2
|x− y|3 dx dy

+ 4 Im

∫
R4

∫
R4

{N , φ}m(t, y)
x− y

|x− y|∇φ(t, x)φ(t, x) dx dy
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+ 2

∫
R4

∫
R4

|φ(t, y)|2 x− y

|x− y| {N , φ}p(t, x) dx dy,

where the mass bracket is given by {N , φ}m := Im(N φ̄) and the momentum
bracket is given by {N , φ}p := Re(N∇φ− φ∇N ). Thus, integrating with respect
to time, we obtain

Proposition 10.1 (Interaction Morawetz inequality).

3

∫
I

∫
R4

∫
R4

|φ(t, x)|2|φ(t, y)|2
|x− y|3 dx dy dt

+ 2

∫
I

∫
R4

∫
R4

|φ(t, y)|2 x− y

|x− y| {N , φ}p(t, x) dx dy dt

≤ 2‖φ‖3L∞
t L2

x
‖φ‖L∞

t Ḣ1
x
+ 4‖φ‖L∞

t L2
x
‖φ‖L∞

t Ḣ1
x
‖{N , φ}m‖L1

t,x
,

where all space-time norms are over I × R4.

We will apply Proposition 10.1 with φ = u≥M and N = P≥M (|u|2u) for
M small enough so that the Littlewood–Paley projection captures most of the
solution. More precisely, we will prove

Proposition 10.2 (Frequency-localized interaction Morawetz estimate, [40]). Let
u : [0, Tmax) × R4 → C be an almost periodic solution to (8.15) such that N(t) ≡
Nk ≥ 1 on each characteristic interval Jk ⊂ [0, Tmax). Then for any η > 0 there
exists M0 = M0(η) such that for M ≤ M0 and any compact time interval I ⊂
[0, Tmax), which is a union of contiguous intervals Jk, we have∫

I

∫
R4

∫
R4

|u≥M (t, x)|2|u≥M (t, y)|2
|x− y|3 dx dy dt �u η

[
M−3 +

∫
I

N(t)−1 dt
]
.

The implicit constant does not depend on the interval I.

Proof. Fix a compact interval I ⊂ [0, Tmax), which is a union of contiguous inter-
vals Jk, and let K :=

∫
I
N(t)−1 dt. Throughout the proof, all space-time norms

will be on I × R4.
Fix η > 0 and let M0 = M0(η) be small enough so that claim (9.16) of

Corollary 9.3 holds; more precisely, for all M ≤ M0,

‖∇u≤M‖Lq
tL

r
x
�u η(1 +M3K)1/q for all 1

q + 2
r = 1 with 2 ≤ q ≤ ∞.

(10.5)

Choosing M0 even smaller if necessary, we can also guarantee that

‖u≥M‖L∞
t L2

x
�u η6M−1 for all M ≤ M0. (10.6)

Now fix M ≤ M0 and write ulo := u≤M and uhi := u>M . With this notation,
(10.5) becomes

‖∇ulo‖Lq
tL

r
x
�u η(1 +M3K)1/q for all 1

q + 2
r = 1 with 2 ≤ q ≤ ∞. (10.7)
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We will also need claim (9.15) of Corollary 9.3, which reads

‖uhi‖Lq
tL

r
x
�u M−1(1 +M3K)1/q for all 1

q + 2
r = 1 with 3 < q ≤ ∞.

(10.8)

Note that by (10.6), the endpoint q = ∞ of the inequality above is strengthened
to

‖uhi‖L∞
t L2

x
�u η6M−1. (10.9)

To continue, we apply Proposition 10.1 with φ = uhi and N = PhiF (u) and
use (10.9); we obtain∫

I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|2
|x− y|3 dx dy dt

+

∫
I

∫
R4

∫
R4

|uhi(t, y)|2 x− y

|x− y| {PhiF (u), uhi}p(t, x) dx dy dt (10.10)

�u η18M−3 + η6M−1‖{PhiF (u), uhi}m‖L1
t,x(I×R4).

We first consider the contribution of the momentum bracket term. We write

{PhiF (u), uhi}p
= {F (u), u}p − {F (ulo), ulo}p − {F (u)− F (ulo), ulo}p − {PloF (u), uhi}p
= − 1

2∇[|u|4 − |ulo|4]− {F (u)− F (ulo), ulo}p − {PloF (u), uhi}p
=: I + II + III.

After an integration by parts, the term I contributes to the left-hand side of
(10.10) a multiple of∫

I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|4
|x− y| dx dy dt

+

3∑
j=1

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|j |ulo(t, x)|4−j

|x− y| dx dy dt.

In order to estimate the contribution of II to (10.10), we use {f, g}p = ∇Ø(fg)+
Ø(f∇g) to write

{F (u)− F (ulo), ulo}p =
3∑

j=1

∇Ø(uj
hiu

4−j
lo ) +

3∑
j=1

Ø(uj
hiu

3−j
lo ∇ulo).

Integrating by parts for the first term and bringing absolute values inside the
integrals for the second term, we find that II contributes to the right-hand side
of (10.10) a multiple of
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3∑
j=1

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|j |ulo(t, x)|4−j

|x− y| dx dy dt

+

3∑
j=1

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|j |∇ulo(t, x)||ulo(t, x)|3−j dx dy dt.

Finally, integrating by parts when the derivative (from the definition of the mo-
mentum bracket) falls on uhi, we estimate the contribution of III to the right-hand
side of (10.10) by a multiple of∫

I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||PloF (u(t, x))|
|x− y| dx dy dt

+

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||∇PloF (u(t, x))| dx dy dt.

Consider now the mass bracket appearing in (10.10). Exploiting cancellation,
we write

{PhiF (u), uhi}m
= {PhiF (u)− F (uhi), uhi}m
= {Phi

[
F (u)− F (uhi)− F (ulo)

]
, uhi}m +{PhiF (ulo), uhi}m − {PloF (uhi), uhi}m

= Ø(u3
hiulo) + Ø(u2

hiu
2
lo) + {PhiF (ulo), uhi}m − {PloF (uhi), uhi}m.

Putting everything together and using (10.9), (10.10) becomes∫
I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|2
|x− y|3 dx dy dt+

∫
I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|4
|x− y| dx dy dt

(10.11)

�u η18M−3 (10.12)

+ η6M−1
{‖u3

hiulo‖L1
t,x

+ ‖u2
hiu

2
lo‖L1

t,x

+ ‖uhiPhiF (ulo)‖L1
t,x

+ ‖uhiPloF (uhi)‖L1
t,x

}
(10.13)

+ η12M−2
3∑

j=1

‖uj
hiu

3−j
lo ∇ulo‖L1

t,x
+ η12M−2‖uhi∇PloF (u)‖L1

t,x
(10.14)

+

3∑
j=1

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|j |ulo(t, x)|4−j

|x− y| dx dy dt (10.15)

+

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||PloF (u(t, x))|
|x− y| dx dy dt. (10.16)

Thus, to complete the proof of Proposition 10.2 we have to show that the error
terms (10.13) through (10.16) are acceptable; clearly, (10.12) is acceptable.
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Consider now error term (10.13). Using (10.7), (10.8), and Sobolev embed-
ding, we estimate

‖u3
hiulo‖L1

t,x
� ‖uhi‖L∞

t L4
x
‖uhi‖2L7/2

t L
14/5
x

‖ulo‖L7/3
t L28

x
�u ηM−2(1 +M3K)

‖u2
hiu

2
lo‖L1

t,x
� ‖uhi‖2L4

tL
8/3
x

‖ulo‖2L4
tL

8
x
�u η2M−2(1 +M3K).

Using Bernstein’s inequality as well, we estimate

‖uhiPhiF (ulo)‖L1
t,x

� ‖uhi‖L4
tL

8/3
x

M−1‖∇F (ulo)‖L4/3
t L

8/5
x

�u M−2(1 +M3K)1/4‖∇ulo‖L2
tL

4
x
‖ulo‖2L8

tL
16/3
x

�u η3M−2(1 +M3K).

Finally, by Hölder, Bernstein, Sobolev embedding, (10.7) and (10.8),

‖uhiPloF (uhi)‖L1
t,x

� ‖uhi‖L10/3
t L

20/7
x

M7/5‖F (uhi)‖L10/7
t L1

x

�u M2/5(1 +M3K)3/10‖uhi‖7/3
L

10/3
t L

20/7
x

‖uhi‖2/3
L∞

t L
40/11
x

�u M2/5−7/3(1 +M3K)‖|∇|9/10uhi‖2/3L∞
t L2

x

�u M−2(1 +M3K).

Collecting the estimates above we find

(10.13) �u η6M−3(1 +M3K) �u η(M−3 +K),

and thus this error term is acceptable.
Consider next error term (10.14). By (10.7), (10.8), (10.9), Sobolev embed-

ding, and Bernstein,

‖uhiu
2
lo∇ulo‖L1

t,x
� ‖∇ulo‖L2

tL
4
x
‖uhi‖L∞

t L2
x
‖ulo‖2L4

tL
8
x
�u η9M−1(1 +M3K)

‖u2
hiulo∇ulo‖L1

t,x
� ‖∇ulo‖L2

tL
4
x
‖uhi‖2L4

tL
8/3
x

‖ulo‖L∞
t,x

�u η2M−1(1 +M3K)

‖u3
hi∇ulo‖L1

t,x
� ‖∇ulo‖L7/3

t L28
x
‖uhi‖2L7/2

t L
14/5
x

‖uhi‖L∞
t L4

x
�u ηM−1(1 +M3K).

To estimate the second term in (10.14), we write F (u) = F (ulo) + Ø(uhiu
2
lo +

u2
hiulo + u3

hi). Arguing as above, we obtain

‖uhi∇PloF (ulo)‖L1
t,x

� ‖uhi‖L∞
t L2

x
‖∇ulo‖L2

tL
4
x
‖ulo‖2L4

tL
8
x
�u η9M−1(1 +M3K)

‖uhi∇PloØ(uhiu
2
lo)‖L1

t,x
� M‖uhi‖2L4

tL
8/3
x

‖ulo‖2L4
tL

8
x
�u η2M−1(1 +M3K)

‖uhi∇PloØ(u2
hiulo)‖L1

t,x
� M‖uhi‖L∞

t L4
x
‖uhi‖2L7/2

t L
14/5
x

‖ulo‖L7/3
t L28

x

�u ηM−1(1 +M3K)
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‖uhi∇PloØ(u3
hi)‖L1

t,x
� ‖uhi‖L10/3

t L
20/7
x

M12/5‖u3
hi‖L10/7

t L1
x

� M12/5‖uhi‖10/3
L

10/3
t L

20/7
x

‖uhi‖2/3
L∞

t L
40/11
x

�u M−1(1 +M3K).

Putting everything together, we find

(10.14) �u η12M−3(1 +M3K) �u η(M−3 +K),

and thus this error term is also acceptable.
We now turn to error term (10.15). By easy considerations, we only have to

consider the cases j = 1 and j = 3. We start with the case j = 1; using Hölder to-
gether with the Hardy–Littlewood–Sobolev inequality, Sobolev embedding, (10.7),
(10.8), and (10.9), we estimate∫

I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||ulo(t, x)|3
|x− y| dx dy dt

� ‖uhi‖2L12
t L

24/11
x

∥∥∥ 1
|x| ∗

(|uhi||ulo|3
)∥∥∥

L
6/5
t L12

x

�u M−2(1 +M3K)1/6‖uhiu
3
lo‖L6/5

t,x

�u M−2(1 +M3K)1/6‖uhi‖L∞
t L2

x
‖ulo‖3L18/5

t L9
x

�u η9M−3(1 +M3K).

Finally, to estimate the error term corresponding to j = 3, we consider two sce-
narios: If |ulo| ≤ δ|uhi| for some small δ > 0, we absorb this contribution into the
term ∫

I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|4
|x− y| dx dy dt,

which appears in (10.11). If instead |uhi| ≤ δ−1|ulo|, we may estimate the contri-
bution of this term by that of the error term corresponding to j = 1. Thus,

(10.15) �u η(M−3 +K) + δ

∫
I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|4
|x− y| dx dy dt,

where 0 < δ < 1 is a constant small enough so that the second term on the
right-hand side above can be absorbed by (10.11). Thus, the error term (10.15) is
acceptable.

We are left to consider error term (10.16). Arguing as for the case j = 1 of
the error term (10.15), we derive∫

I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||PloF (u(t, x))|
|x− y| dx dy dt

� ‖uhi‖2L12
t L

24/11
x

∥∥∥ 1
|x| ∗

(|uhi||PloF (u)|)∥∥∥
L

6/5
t L12

x
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�u M−2(1 +M3K)1/6‖uhiPloF (u)‖
L

6/5
t,x

�u M−2(1 +M3K)1/6‖uhi‖L4
tL

8/3
x

‖PloF (u)‖
L

12/7
t L

24/11
x

�u M−3(1 +M3K)5/12‖PloF (u)‖
L

12/7
t L

24/11
x

.

We now write F (u) = F (uhi) +Ø(u3
lo + u2

louhi + ulou
2
hi). Using Hölder, Bernstein,

Sobolev embedding, (10.7), (10.8), and (10.9), we estimate

‖PloØ(u3
lo)‖L12/7

t L
24/11
x

� ‖ulo‖L12
t L

24/5
x

‖ulo‖2L4
tL

8
x
�u η3(1 +M3K)7/12

‖PloØ(u2
louhi)‖L12/7

t L
24/11
x

� M‖u2
louhi‖L12/7

t L
24/17
x

� M‖ulo‖2L4
tL

8
x
‖uhi‖L12

t L
24/11
x

�u η2(1 +M3K)
7
12

‖PloØ(ulou
2
hi)‖L12/7

t L
24/11
x

� M‖ulou
2
hi‖L12/7

t L
24/17
x

� M‖ulo‖L3
tL

12
x
‖uhi‖L4

tL
8/3
x

‖uhi‖L∞
t L4

x

�u η(1 +M3K)7/12.

Finally, using Bernstein, Hölder, interpolation, (10.7), (10.8), and (10.9), we get

‖PloF (uhi)‖L12/7
t L

24/11
x

� M13/6‖F (uhi)‖L12/7
t L1

x

� M13/6‖uhi‖2L24/7
t L

48/17
x

‖uhi‖L∞
t L

24/7
x

�u M1/6(1 +M3K)7/12‖|∇|5/6uhi‖L∞
t L2

x

�u η(1 +M3K)7/12.

Collecting these estimates, we find

(10.16) �u ηM−3(1 +M3K) �u η(M−3 +K),

and thus this last error term is also acceptable.
This completes the proof of Proposition 10.2. �

10.2 The quasi-soliton scenario

With Proposition 10.2 in place, we are now ready to preclude our last enemy,

namely, solutions as in Theorem 8.10 for which
∫ Tmax

0
N(t)−1 dt = ∞.

Theorem 10.3 (No quasi-solitons). There exist no almost periodic solutions u :
[0, Tmax) × R4 → C to (8.15) with N(t) ≡ Nk ≥ 1 on each characteristic interval
Jk ⊂ [0, Tmax) which satisfy ‖u‖L6

t,x([0,Tmax)×R4) = +∞ and∫ Tmax

0

N(t)−1 dt = ∞. (10.17)
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Proof. We argue by contradiction. Assume there exists such a solution u.
Let η > 0 be a small parameter to be chosen later. By Proposition 10.2,

there exists M0 = M0(η) such that for all M ≤ M0 and any compact time interval
I ⊂ [0, Tmax), which is a union of contiguous intervals Jk, we have∫

I

∫
R4

∫
R4

|u≥M (t, x)|2|u≥M (t, y)|2
|x− y|3 dx dy dt �u η

[
M−3 +

∫
I

N(t)−1 dt
]
. (10.18)

As inft∈[0,Tmax) N(t) ≥ 1, choosing M0 even smaller if necessary (depending on η)
we can also ensure that

‖u≤M‖L∞
t L4

x([0,Tmax)×R4) + ‖u≤M‖L∞
t Ḣ1

x([0,Tmax)×R4) ≤ η for all M ≤ M0.

(10.19)

Exercise 10.1. Use almost periodicity to prove that there exists C(u) > 0 such
that

N(t)2
∫
|x−x(t)|≤C(u)/N(t)

|u(t, x)|2 dx �u 1/C(u) (10.20)

uniformly for t ∈ [0, Tmax).

Using Hölder’s inequality and (10.19), we find that∫
|x−x(t)|≤C(u)/N(t)

|u≤M (t, x)|2 dx �
{C(u)

N(t)
‖u≤M‖L∞

t L4
x([0,Tmax)×R4)

}2

�u η2C(u)2N(t)−2

for all t ∈ [0, Tmax) and all M ≤ M0. Combining this with (10.20) and choosing η
sufficiently small depending on u, we find that

inf
t∈[0,Tmax)

N(t)2
∫
|x−x(t)|≤C(u)/N(t)

|u≥M (t, x)|2 dx �u 1 for all M ≤ M0.

Thus, on any compact time interval I ⊂ [0, Tmax) and for any M ≤ M0 we have∫
I

∫
R4

∫
R4

|u≥M (t, x)|2|u≥M (t, y)|2
|x− y|3 dx dy dt

≥
∫
I

∫∫
|x−y|≤ 2C(u)

N(t)

[ N(t)

2C(u)

]3
|u≥M (t, x)|2|u≥M (t, y)|2 dx dy dt

≥
∫
I

[ N(t)

2C(u)

]3 ∫
|x−x(t)|≤C(u)

N(t)

|u≥M (t, x)|2 dx
∫
|y−x(t)|≤C(u)

N(t)

|u≥M (t, y)|2 dy dt

�u

∫
I

N(t)−1 dt.
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Invoking (10.18) and choosing η small depending on u, we find∫
I

N(t)−1 dt �u M−3 for all M ≤ M0

and all intervals I ⊂ [0, Tmax), which are unions of contiguous intervals Jk. Re-
calling the hypothesis (10.17), we derive a contradiction by choosing the interval
I ⊂ [0, Tmax) sufficiently large.

This completes the proof of the theorem. �



Chapter 11

Appendix A: Background material

11.1 Compactness in Lp

Recall that by the Arzelà–Ascoli theorem, a family of continuous functions on a
compact set K ⊂ Rd is precompact in C0(K) if and only if it is uniformly bounded
and equicontinuous. The natural generalization to Lp spaces is due to M. Riesz
[29] and reads as follows:

Proposition 11.1. Fix 1 ≤ p < ∞. A family of functions F ⊂ Lp(Rd) is precompact
in this topology if and only if it obeys the following three conditions:

(i) There exists A > 0 so that ‖f‖p ≤ A for all f ∈ F .

(ii) For any ε > 0 there exists δ > 0 so that
∫
Rd |f(x)− f(x+ y)|p dx < ε for all

f ∈ F and all |y| < δ.

(iii) For any ε > 0 there exists R so that
∫
|x|≥R

|f |p dx < ε for all f ∈ F .

Remark. By analogy to the case of continuous functions (or of measures), it is
natural to refer to the three conditions as uniform boundedness, equicontinuity,
and tightness, respectively.

Proof. If F is precompact, it may be covered by balls of radius 1
2ε around a finite

collection of functions {fj}. As any single function obeys (i)–(iii), these properties
can be extended to the whole family by approximation by an fj .

We now turn to sufficiency. Given ε > 0, our job is to show that there are
finitely many functions {fj} such that the ε-balls centered at these points cover
F . We will find these points via the usual Arzelà–Ascoli theorem, which requires
us to approximate F by a family of continuous functions of compact support. Let
φ : Rd → [0,∞) be a smooth function supported by {|x| ≤ 1} with φ(x) = 1 in a
neighbourhood of x = 0 and

∫
Rd φ(x) dx = 1. Given R > 0 we define

fR(x) := φ
(
x
R

) ∫
Rd

Rdφ
(
R(x− y)

)
f(y) dy
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and write FR := {fR : f ∈ F}. Employing the three conditions, we see that it
is possible to choose R so large that ‖f − fR‖p < 1

2ε for all f ∈ F . We also
see that FR is a uniformly bounded family of equicontinuous functions on the
compact set {|x| ≤ R}. Thus, FR is precompact and we can find a finite family
{fj} ⊆ C0({|x| ≤ R}) such that FR is covered by the Lp-balls of radius 1

2ε around
these points. By construction, the ε-balls around these points cover F . �

In the L2 case it is natural to replace (ii) by a condition on the Fourier
transform:

Corollary 11.2. A family of functions is precompact in L2(Rd) if and only if it
obeys the following two conditions:

(i) There exists A > 0 so that ‖f‖ ≤ A for all f ∈ F .

(ii) For all ε > 0 there exists R > 0 so that
∫
|x|≥R

|f(x)|2 dx+∫|ξ|≥R
|f̂(ξ)|2 dξ < ε

for all f ∈ F .

Proof. Necessity follows as before. Regarding the sufficiency of these conditions,
we note that ∫

Rd

|f(x+ y)− f(x)|2 dx ∼
∫
Rd

|eiξy − 1|2|f̂(ξ)|2 dξ,

which allows us to rely on the preceding proposition. �

In our applications, regularity allows us to upgrade weak-∗ convergence to
almost everywhere convergence. The lower semicontinuity of the norm under this
notion of convergence is essentially Fatou’s lemma. The following quantitative
version of this is due to Brezis and Lieb [6] (see also [24, Theorem 1.9]):

Lemma 11.3 (Refined Fatou). Suppose {fn} ⊆ Lp
x(R

d) with lim sup ‖fn‖p < ∞. If
fn → f almost everywhere, then∫

Rd

∣∣∣|fn|p − |fn − f |p − |f |p
∣∣∣ dx → 0.

In particular, ‖fn‖pp − ‖fn − f‖pp → ‖f‖pp.

11.2 Littlewood–Paley theory

Let ϕ(ξ) be a radial bump function supported in the ball {ξ ∈ Rd : |ξ| ≤ 11
10} and

equal to 1 on the ball {ξ ∈ Rd : |ξ| ≤ 1}. For each number N > 0, we define the
Fourier multipliers

P̂≤Nf(ξ) := ϕ(ξ/N)f̂(ξ),

P̂>Nf(ξ) := (1− ϕ(ξ/N))f̂(ξ),
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P̂Nf(ξ) := (ϕ(ξ/N)− ϕ(2ξ/N))f̂(ξ),

and similarly P<N and P≥N . We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′

whenever M < N . We will usually use these multipliers when M and N are dyadic
numbers (that is, of the form 2n for some integer n); in particular, all summations
over N or M are understood to be over dyadic numbers. Nevertheless, it will
occasionally be convenient to allow M and N to not be a power of 2.

Like all Fourier multipliers, the Littlewood–Paley operators commute with
the propagator eitΔ, as well as with differential operators such as i∂t+Δ. We will
use basic properties of these operators many times, including

Lemma 11.4 (Bernstein estimates). For 1 ≤ p ≤ q ≤ ∞,∥∥|∇|±sPNf
∥∥
Lp(Rd)

∼ N±s‖PNf‖Lp(Rd),

‖P≤Nf‖Lq(Rd) � N
d
p− d

q ‖P≤Nf‖Lp(Rd),

‖PNf‖Lq(Rd) � N
d
p− d

q ‖PNf‖Lp(Rd).

Lemma 11.5 (Square function estimates). Given a Schwartz function f , let

S(f)(x) :=
(∑

N

∣∣PNf(x)
∣∣2)1/2

denote the Littlewood–Paley square function. For 1 < p < ∞,

‖S(f)‖Lp(Rd) ∼ ‖f‖Lp(Rd).

More generally, ∥∥∥(∑
N

N2s
∣∣PNf(x)

∣∣2)1/2∥∥∥
Lp(Rd)

∼ ∥∥|∇|sf∥∥
Lp(Rd)

(11.1)

for all s > −d and 1 < p < ∞.

11.3 Fractional calculus

We first record the fractional product rule from [11]:

Lemma 11.6 (Fractional product rule, [11]). Let s ∈ (0, 1] and 1 < r, p1, p2, q1, q2 <
∞ such that 1

r = 1
pi

+ 1
qi

for i = 1, 2. Then,∥∥|∇|s(fg)∥∥
Lr(Rd)

� ‖f‖Lp1 (Rd)

∥∥|∇|sg∥∥
Lq1 (Rd)

+
∥∥|∇|sf∥∥

Lp2 (Rd)
‖g‖Lq2 (Rd).
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We will also need the following fractional chain rule from [11]. For a textbook
treatment, see [37, §2.4].
Lemma 11.7 (Fractional chain rule, [11]). Suppose G ∈ C1(C), s ∈ (0, 1], and
1 < p, p1, p2 < ∞ are such that 1

p = 1
p1

+ 1
p2
. Then,

‖|∇|sG(u)‖Lp(Rd) � ‖G′(u)‖Lp1 (Rd)‖|∇|su‖Lp2 (Rd).

Although we will not need it in our applications here, for completeness we
record the following fractional chain rule for when the function G is no longer C1,
but merely Hölder continuous:

Lemma 11.8 (Fractional chain rule for a Hölder continuous function, [39]). Let G
be a Hölder continuous function of order 0 < α < 1. Then, for every 0 < s < α,
1 < p < ∞, and s

α < σ < 1 we have∥∥|∇|sG(u)
∥∥
Lp(Rd)

�
∥∥|u|α− s

σ

∥∥
Lp1 (Rd)

∥∥|∇|σu∥∥ s
σ

L
s
σ

p2 (Rd)
, (11.2)

provided 1
p = 1

p1
+ 1

p2
and (1− s

ασ )p1 > 1.

11.4 A paraproduct estimate

In Section 9, we made use of a paraproduct estimate from [40]. The proof we
present here is different from the one in [40]; however, it only requires basic knowl-
edge of harmonic analysis and so it is better suited to these lecture notes.

Lemma 11.9 (Paraproduct estimate, [40]). We have∥∥|∇|−2/3(fg)
∥∥
L4/3(R4)

�
∥∥|∇|−2/3f

∥∥
Lp(R4)

∥∥|∇|2/3g∥∥
Lq(R4)

,

for any 4
3 < p < ∞ and 1 < q < ∞ such that 1

p + 1
q = 11

12 .

Proof. The claim is equivalent to the following estimate:∥∥|∇|− 2
3 {(|∇| 23 f)(|∇|− 2

3 g)}∥∥
L4/3(R4)

� ‖f‖Lp(R4)‖g‖Lq(R4), (11.3)

for 4
3 < p < ∞, 1 < q < ∞ such that 1

p + 1
q = 11

12 . To prove this, we start by
performing the following decomposition:

|∇|− 2
3 {(|∇| 23 f)(|∇|− 2

3 g)} = |∇|− 2
3

{ ∑
1
8≤

N1
N2

≤8

PN1

(|∇| 23 f)PN2

(|∇|− 2
3 g
)

+
∑
N1

PN1

(|∇| 23 f)P>8N1

(|∇|− 2
3 g
)

+
∑
N1

PN1

(|∇| 23 f)P< 1
8N1

(|∇|− 2
3 g
)}

.

(11.4)
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Next, we will show how to control the contribution of each of the terms on the
right-hand side of (11.4) to (11.3).

Using Sobolev embedding, Cauchy–Schwarz, and the square function esti-
mate (11.1), we estimate the contribution of the first term on the right-hand side
of (11.4) as follows:∥∥∥∥|∇|− 2

3

∑
1
8≤

N1
N2

≤8

PN1

(|∇| 23 f)PN2

(|∇|− 2
3 g
)∥∥∥∥

L4/3

�
∥∥∥∥ ∑

1
8≤

N1
N2

≤8

N
− 2

3
1 N

2
3
2

∣∣PN1

(|∇| 23 f)∣∣∣∣PN2

(|∇|− 2
3 g
)∣∣∥∥∥∥

L12/11

�
∥∥∥∥( ∑

1
8≤

N1
N2

≤8

∣∣N− 2
3

1 PN1

(|∇| 23 f)∣∣2) 1
2
( ∑

1
8≤

N1
N2

≤8

∣∣N 2
3
2 PN2

(|∇|− 2
3 g
)∣∣2) 1

2
∥∥∥∥
L12/11

�
∥∥∥∥( ∑

1
8≤

N1
N2

≤8

∣∣N− 2
3

1 PN1

(|∇| 23 f)∣∣2) 1
2
∥∥∥∥
Lp

∥∥∥∥( ∑
1
8≤

N1
N2

≤8

∣∣N 2
3
2 PN2

(|∇|− 2
3 g
)∣∣2) 1

2
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Lq

� ‖f‖Lp‖g‖Lq .

Arguing similarly, we estimate the contribution of the second term on the right-
hand side of (11.4) as follows:∥∥∥∥|∇|− 2

3

∑
N1

PN1

(|∇| 23 f)P>8N1

(|∇|− 2
3 g
)∥∥∥∥

L4/3

�
∥∥∥∥∑

N1

N
− 2

3
1

∣∣PN1

(|∇| 23 f)∣∣N 2
3
1

∣∣P>8N1

(|∇|− 2
3 g
)∣∣∥∥∥∥

L12/11

�
∥∥∥∥(∑

N1

∣∣N− 2
3

1 PN1

(|∇| 23 f)∣∣2) 1
2
(∑

N1

∣∣N 2
3
1 P>8N1

(|∇|− 2
3 g
)∣∣2) 1

2
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L12/11

� ‖f‖Lp‖g‖Lq ,

where we also used the following consequence of (11.1):∥∥∥(∑
N

N2s
∣∣P≥Nh

∣∣2) 1
2
∥∥∥
Lp

∼ ∥∥|∇|sh∥∥
Lp for all s > 0 and 1 < p < ∞.

It remains to estimate the contribution of the third term on the right-hand
side of (11.4). To do this, we use Lemma 11.5, the easy estimates |PNh| � M(h)
and |P≤Nh| � M(h), and the vector maximal inequality:∥∥∥∥|∇|− 2

3

∑
N1

PN1

(|∇| 23 f)P< 1
8N1

(|∇|− 2
3 g
)∥∥∥∥

L4/3
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�
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3PN
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PN1

(|∇| 23 f)P< 1
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�
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N
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∣∣N− 2
3PN1

(|∇| 23 f)∣∣2) 1
2
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Lp

∥∥M(|∇|− 2
3 g
)∥∥

Lr

� ‖f‖Lp

∥∥∇|− 2
3 g
∥∥
Lr ,

where r is such that 1
p + 1

r = 3
4 . (Note that this is the source of the restriction

p > 4
3 .) The claim now follows by applying Sobolev embedding to the second factor

on the right-hand side of the inequality above. �
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[39] M. Vişan, The defocusing energy-critical nonlinear Schrödinger equation in
higher dimensions, Duke Math. J. 138 (2007), no. 2, 281–374. MR 2318286
(2008f:35387)

[40] , Global well-posedness and scattering for the defocusing cubic non-
linear Schrödinger equation in four dimensions, Int. Math. Res. Not. IMRN
(2012), no. 5, 1037–1067. MR 2899959


	Contents
	Preface
	Nonlinear Dispersive Equations
	Chapter 1 Introduction
	Chapter 2 Stationary phase and dispersive estimates
	2.1 Examples and dispersive estimates
	2.1.1 The Schrödinger equation
	2.1.2 The Airy function and the Airy equation
	2.1.3 Laplacian and related operators
	2.1.4 Gaussians, heat and Schrödinger equation
	2.1.5 The half-wave equation
	2.1.6 The Klein-Gordon half wave
	2.1.7 The Kadomtsev–Petviashvili equation


	Chapter 3 Strichartz estimates and small data for the nonlinear Schrödinger equation
	3.1 Strichartz estimates for the Schrödinger equation
	3.2 Strichartz estimates for the Airy equation
	3.3 The Kadomtsev–Petviashvili equation
	3.4 The (half-) wave equation and the Klein–Gordon equation
	3.5 The endpoint Strichartz estimate
	3.6 Small data solutions to the nonlinear Schrödinger equation
	3.7 Initial data in L²
	3.8 Initial data in H¹ for d ≥ 3
	3.9 Initial data in H¹(Rd)

	Chapter 4 Functions of bounded p-variation
	4.1 Functions of bounded p-variation and the spaces Up and Vp
	4.2 Duality and the Riemann–Stieltjes integral
	4.3 Step functions are dense
	4.4 Convolution and regularization
	4.5 More duality
	4.6 Consequences of Minkowski’s inequality
	4.7 The bilinear form as integral
	4.8 Differential equations with rough paths
	4.9 The Brownian motion
	4.10 Adapted function spaces
	4.10.1 Strichartz estimates
	4.10.2 Estimates by duality
	4.10.3 High modulation estimates


	Chapter 5 Convolution of measures on hypersurfaces, bilinear estimates, and local smoothing
	Chapter 6 Well-posedness for nonlinear dispersive equations
	6.1 Adapted function spaces approach for a model problem
	6.2 The (generalized) KdV equation
	6.3 The derivative nonlinear Schrödinger equation
	6.4 The Kadomtsev–Petviashvili II equation

	Chapter 7 Appendix A: Young’s inequality and interpolation
	7.1 Complex interpolation: The Riesz–Thorin theorem

	Chapter 8 Appendix B: Bessel functions
	Chapter 9 Appendic C: The Fourier transform
	9.1 The Fourier transform in L¹
	9.2 The Fourier transform of Schwartz functions
	9.3 Tempered distributions

	Bibliography

	Geometric Dispersive Evolutions
	Chapter 1 Introduction
	Chapter 2 Maps into manifolds
	2.1 The tangent bundle and covariant differentiation
	2.2 Special targets
	2.3 Sobolev spaces
	2.4 S² and targets: homotopy classes and equivariance
	2.5 Frames and gauge freedom

	Chapter 3 Geometric pde’s
	3.1 Harmonic maps
	3.2 The harmonic heat flow
	3.3 Wave maps
	3.4 Schrödinger maps

	Chapter 4 Wave maps
	4.1 Small data heuristics
	4.2 A perturbative set-up
	4.2.1 The Strichartz norms
	4.2.2 The null structure
	4.2.3 The null frame spaces
	4.2.4 The paradifferential equation and renormalization

	4.3 Function spaces
	4.3.1 Frequency envelopes
	4.3.2 Linear analysis in the S and N spaces
	4.3.3 Multilinear estimates

	4.4 Renormalization
	4.5 The small data result
	4.5.1 The a priori estimate
	4.5.2 Global existence and regularity
	4.5.3 Weak Lipschitz dependence on the initial data
	4.5.4 Rough solutions and continuous dependence on the initial data

	4.6 Energy dispersion
	4.6.1 Energy dispersion and multilinear estimates
	4.6.2 Compare the initial data of φ and ˜φ
	4.6.3 Compare the low frequencies of φ and ˜φ.
	4.6.4 Compare the high frequencies

	4.7 Energy and Morawetz estimates
	4.7.1 Notations
	4.7.2 The energy-momentum tensor
	4.7.3 Energy estimates
	4.7.4 The energy of self-similar maps
	4.7.5 Morawetz estimates

	4.8 The threshold theorem
	4.9 Further developments

	Chapter 5 Schrödinger maps
	5.1 Frames and gauges
	5.2 Function spaces
	5.3 The small data result
	5.3.1 Bounds for the harmonic heat flow
	5.3.2 Bounds for the Schrödinger map flow
	5.3.3 Rough solutions and continuous dependence.

	5.4 Further developments
	5.4.1 Other targets
	5.4.2 Large data
	5.4.3 Near soliton behavior


	Bibliography

	Dispersive Equations
	Acknowledgements
	Chapter 1 Notation
	Chapter 2 Dispersive and Strichartz estimates
	2.1 The linear Schrödinger equation
	2.2 The Airy equation
	2.3 The linear wave equation
	2.4 From dispersive to Strichartz estimates
	2.5 Bilinear Strichartz and local smoothing estimates

	Chapter 3 An inverse Strichartz inequality
	Chapter 4 A linear profile decomposition
	Chapter 5 Stability theory for the energy-critical NLS
	Chapter 6 A large data critical problem
	Chapter 7 A Palais–Smale type condition
	Chapter 8 Existence of minimal blowup solutions and their properties
	Chapter 9 Long-time Strichartz estimates and applications
	9.1 A long-time Strichartz inequality
	9.2 The rapid frequency cascade scenario

	Chapter 10 Frequency-localized interaction Morawetz inequalities and applications
	10.1 A frequency-localized interaction Morawetz inequality
	10.2 The quasi-soliton scenario

	Chapter 11 Appendix A: Background material
	11.1 Compactness in Lp
	11.2 Littlewood–Paley theory
	11.3 Fractional calculus
	11.4 A paraproduct estimate

	Bibliography


