MA2002-7 Cálculo Avanzado y Aplicaciones

Profesor: Alexis Fuentes Auxiliares: Vicente Salinas

Dudas: vicentesalinas@ing.uchile.cl

Auxiliar 14: Funciones Complejas

16 de noviembre de 2022

P1. Resuelva las siguientes ecuaciones:

a)
$$z^5 = 1$$

b)
$$z^2 = z - 1$$

c)
$$z^3 = 8i$$

- **P2.** Encontrar la función holomorfa f = u + iv tal que su parte real $u = x^2 y^2 + 2x$ y además se tiene que f(i) = 2i 1
- **P3.** Dada una función $f:\Omega\to\mathbb{C}$. Demuestre que si f y \overline{f} son holomorfas, entonces f es una función constante.
- **P4.** Considere la funcion $g: \mathbb{C} \to \mathbb{C}$ dada por

$$g(x+iy) = \begin{cases} \frac{xy^{2}(x+iy)}{x^{2}+y^{4}} & x \neq 0\\ 0 & z = 0 \end{cases}$$

Muestre que g cumple las ecuaciones de Cauchy-Riemann en z=0, pero no es diferenciable.

Resumen

Condiciones de Cachy Riemann $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ y $\frac{\partial u}{\partial y}$ y $-\frac{\partial v}{\partial x}$

Teorema: Una función compleja es derivable si y solo si cumple las condiciones de Cauchy Riemann y es Frechet diferenciable .