Tutoría Preparación Examen

06 de enero de 2021

P1. Sea S la superficie de la elipsoide de ecuación:

$$\frac{x^2}{a^2} + y^2 + z^2 = 1$$

a) Dado $\vec{x} \in S$ encuentre la normal unitaria exterior \hat{n} de S en \vec{x} . Para ello use la función:

$$g(x, y, z) = \frac{x^2}{a^2} + y^2 + z^2 - 1$$

Note que S corresponde a la superficie de nivel cero de g. Si llamamos Π al plano tangente de S en \vec{x} recuerde entonces que el gradiente de g en \vec{x} es perependicular a Π .

- b) Encuentre la ecuación de Π . Muestre que el vector $\vec{p} = (\vec{x} \cdot \hat{n})\hat{n}$ verifica la ecuación de Π y que es perpendicular a este. Notar que $f = \vec{x} \cdot \hat{n}$ corresponde a la distancia entre el origen y Π .
- c) Muestre que:

$$\int \int_{S} f dA = 4\pi a$$

d) Considere el campo vectorial:

$$\vec{F}(x,y,z) = \left(\frac{x}{a^2}, y, z\right)$$

Muestre que \vec{F} es paralelo a \hat{n} .

- e) Pruebe que $f=1/(\vec{F}\cdot\hat{n})$ sobre S.
- f) Muestre que:

$$\int \int_{S} \frac{1}{f} dA = \frac{4\pi}{3} \left(\frac{2a^2 + 1}{a} \right)$$

P2. a) Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

b) Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

Propuesto: Use las fórmulas de Cauchy y Residuos para calcular $\oint_{\gamma} f(z)dz$, donde γ : |z-1-i|=r>0.

Tutoría Examen Cálculo Avanzado y Aplicaciones Taller Los Dos Relojes

Leonel Huerta

6 de enero de 2021

Leonel Huerta Tutoría Examen 6 de enero de 2021 1/11

Dado $\vec{x} \in S$ encuentre la normal unitaria exterior \hat{n} de S en \vec{x} . Para ello use la función:

$$g(x, y, z) = \frac{x^2}{a^2} + y^2 + z^2 - 1$$

Note que S corresponde a la superficie de nivel cero de g. Si llamamos Π al plano tangente de S en \vec{x} recuerde entonces que el gradiente de g en \vec{x} es perependicular a Π .

Leonel Huerta Tutoría Examen 6 de enero de 2021 2 / 11

Dado $\vec{x} \in S$ encuentre la normal unitaria exterior \hat{n} de S en \vec{x} . Para ello use la función:

$$g(x, y, z) = \frac{x^2}{a^2} + y^2 + z^2 - 1$$

Note que S corresponde a la superficie de nivel cero de g. Si llamamos Π al plano tangente de S en \vec{x} recuerde entonces que el gradiente de g en \vec{x} es perependicular a Π .

• Evidentemente S corresponde a la superficie de nivel cero de g pues los vectores tales que g(x,y,z)=0 satisfacen la ecuación de S.

Leonel Huerta Tutoría Examen 6 de enero de 2021 2

Dado $\vec{x} \in S$ encuentre la normal unitaria exterior \hat{n} de S en \vec{x} . Para ello use la función:

$$g(x, y, z) = \frac{x^2}{a^2} + y^2 + z^2 - 1$$

Note que S corresponde a la superficie de nivel cero de g. Si llamamos Π al plano tangente de S en \vec{x} recuerde entonces que el gradiente de g en \vec{x} es perependicular a Π .

- Evidentemente S corresponde a la superficie de nivel cero de g pues los vectores tales que g(x,y,z)=0 satsifacen la ecuación de S.
- Siguiendo la indicación, para buscar un vector normal simplemente calculamos:

$$\nabla g(x, y, z) = \left(\frac{2x}{a^2}, 2y, 2z\right)$$

Leonel Huerta Tutoría Examen 6 de enero de 2021 2 /

Dado $\vec{x} \in S$ encuentre la normal unitaria exterior \hat{n} de S en \vec{x} . Para ello use la función:

$$g(x, y, z) = \frac{x^2}{a^2} + y^2 + z^2 - 1$$

Note que S corresponde a la superficie de nivel cero de g. Si llamamos Π al plano tangente de S en \vec{x} recuerde entonces que el gradiente de g en \vec{x} es perependicular a Π .

- Evidentemente S corresponde a la superficie de nivel cero de g pues los vectores tales que g(x,y,z)=0 satisfacen la ecuación de S.
- Siguiendo la indicación, para buscar un vector normal simplemente calculamos:

$$\nabla g(x, y, z) = \left(\frac{2x}{a^2}, 2y, 2z\right)$$

• Para que el vector quede unitario dividimos por su norma:

$$\hat{n} = \frac{\left(\frac{2x}{a^2}, 2y, 2z\right)}{\sqrt{(\frac{2x}{a^2})^2 + (2y)^2 + (2z)^2}}$$

Dado $\vec{x} \in S$ encuentre la normal unitaria exterior \hat{n} de S en \vec{x} . Para ello use la función:

$$g(x, y, z) = \frac{x^2}{a^2} + y^2 + z^2 - 1$$

Note que S corresponde a la superficie de nivel cero de g. Si llamamos Π al plano tangente de S en \vec{x} recuerde entonces que el gradiente de g en \vec{x} es perependicular a Π .

- Evidentemente S corresponde a la superficie de nivel cero de g pues los vectores tales que g(x,y,z)=0 satisfacen la ecuación de S.
- Siguiendo la indicación, para buscar un vector normal simplemente calculamos:

$$\nabla g(x, y, z) = \left(\frac{2x}{a^2}, 2y, 2z\right)$$

• Para que el vector quede unitario dividimos por su norma:

$$\hat{n} = \frac{\left(\frac{2x}{a^2}, 2y, 2z\right)}{\sqrt{(\frac{2x}{a^2})^2 + (2y)^2 + (2z)^2}}$$

Encuentre la ecuación de Π . Muestre que el vector $\vec{p}=(\vec{x}\cdot\hat{n})\hat{n}$ verifica la ecuación de Π y que es perpendicular a este. Notar que $f=\vec{x}\cdot\hat{n}$ corresponde a la distancia entre el origen y Π .

3 / 11

Encuentre la ecuación de Π . Muestre que el vector $\vec{p} = (\vec{x} \cdot \hat{n})\hat{n}$ verifica la ecuación de Π y que es perpendicular a este. Notar que $f = \vec{x} \cdot \hat{n}$ corresponde a la distancia entre el origen y Π .

• Por definición:

$$\Pi = \{ \vec{y} \in \mathbb{R}^3 : (\vec{y} - \vec{x}) \cdot \hat{n} = 0 \}$$

Leonel Huerta Tutoría Examen 6 de enero de 2021

Encuentre la ecuación de Π . Muestre que el vector $\vec{p} = (\vec{x} \cdot \hat{n})\hat{n}$ verifica la ecuación de Π y que es perpendicular a este. Notar que $f = \vec{x} \cdot \hat{n}$ corresponde a la distancia entre el origen y Π .

• Por definición:

$$\Pi = \{ \vec{y} \in \mathbb{R}^3 : (\vec{y} - \vec{x}) \cdot \hat{n} = 0 \}$$

 \bullet Para ver que \vec{p} verifica la ecuación, simplemente reemplazamos:

$$(\vec{p} - \vec{x}) \cdot \hat{n} = ((\vec{x} \cdot \hat{n})\hat{n} - \vec{x}) \cdot \hat{n} = \vec{x} \cdot \hat{n} - \vec{x} \cdot \hat{n} = 0$$

Luego \vec{p} satisface.

Leonel Huerta

Encuentre la ecuación de Π . Muestre que el vector $\vec{p} = (\vec{x} \cdot \hat{n})\hat{n}$ verifica la ecuación de Π y que es perpendicular a este. Notar que $f = \vec{x} \cdot \hat{n}$ corresponde a la distancia entre el origen y Π .

• Por definición:

$$\Pi = \{ \vec{y} \in \mathbb{R}^3 : (\vec{y} - \vec{x}) \cdot \hat{n} = 0 \}$$

 \bullet Para ver que \vec{p} verifica la ecuación, simplemente reemplazamos:

$$(\vec{p} - \vec{x}) \cdot \hat{n} = ((\vec{x} \cdot \hat{n})\hat{n} - \vec{x}) \cdot \hat{n} = \vec{x} \cdot \hat{n} - \vec{x} \cdot \hat{n} = 0$$

Luego \vec{p} satisface.

• \vec{p} es perpendicular a Π porque tiene la misma dirección que \hat{n} .

Leonel Huerta Tutoría Examen

Encuentre la ecuación de Π . Muestre que el vector $\vec{p} = (\vec{x} \cdot \hat{n})\hat{n}$ verifica la ecuación de Π y que es perpendicular a este. Notar que $f = \vec{x} \cdot \hat{n}$ corresponde a la distancia entre el origen y Π .

Por definición:

$$\Pi = \{ \vec{y} \in \mathbb{R}^3 : (\vec{y} - \vec{x}) \cdot \hat{n} = 0 \}$$

 \bullet Para ver que \vec{p} verifica la ecuación, simplemente reemplazamos:

$$(\vec{p}-\vec{x})\cdot\hat{n}=((\vec{x}\cdot\hat{n})\hat{n}-\vec{x})\cdot\hat{n}=\vec{x}\cdot\hat{n}-\vec{x}\cdot\hat{n}=0$$

Luego \vec{p} satisface.

- \vec{p} es perpendicular a Π porque tiene la misma dirección que \hat{n} .
- Para ver que f corresponde a la distancia entre el origen y Π recordar que podemos pensar el producto punto como:

$$\vec{x} \cdot \hat{n} = |\vec{x}||\hat{n}|\cos(\alpha) = |\vec{x}|\cos(\alpha)$$

Donde α es el ángulo comprendido entre \vec{x} y \hat{n} .

Leonel Huerta Tutoría Examen

Encuentre la ecuación de Π . Muestre que el vector $\vec{p} = (\vec{x} \cdot \hat{n})\hat{n}$ verifica la ecuación de Π y que es perpendicular a este. Notar que $f = \vec{x} \cdot \hat{n}$ corresponde a la distancia entre el origen y Π .

Por definición:

$$\Pi = \{ \vec{y} \in \mathbb{R}^3 : (\vec{y} - \vec{x}) \cdot \hat{n} = 0 \}$$

 \bullet Para ver que \vec{p} verifica la ecuación, simplemente reemplazamos:

$$(\vec{p}-\vec{x})\cdot\hat{n}=((\vec{x}\cdot\hat{n})\hat{n}-\vec{x})\cdot\hat{n}=\vec{x}\cdot\hat{n}-\vec{x}\cdot\hat{n}=0$$

Luego \vec{p} satisface.

- \vec{p} es perpendicular a Π porque tiene la misma dirección que \hat{n} .
- Para ver que f corresponde a la distancia entre el origen y Π recordar que podemos pensar el producto punto como:

$$\vec{x} \cdot \hat{n} = |\vec{x}||\hat{n}|\cos(\alpha) = |\vec{x}|\cos(\alpha)$$

Donde α es el ángulo comprendido entre \vec{x} y \hat{n} .

Leonel Huerta Tutoría Examen

Muestre que:

$$\int \int_S f dA = 4\pi a$$

Muestre que:

$$\int \int_{S} f dA = 4\pi a$$

Teorema de la divergencia de Gauss

Sea $\Omega \subseteq \mathbb{R}^3$ un abierto acotado cuya frontera es una superficie regular por pedazos, orientada según la normal exterior. Sea $\vec{F}: U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Entonces:

$$\int \int_{\partial\Omega} \vec{F} \cdot d\vec{A} = \int \int \int_{\Omega} div(\vec{F}) dV$$

Leonel Huerta Tutoría Examen 6 de enero de 2021

Muestre que:

$$\int \int_{S} f dA = 4\pi a$$

Teorema de la divergencia de Gauss

Sea $\Omega\subseteq\mathbb{R}^3$ un abierto acotado cuya frontera es una superficie regular por pedazos, orientada según la normal exterior. Sea $\vec{F}:U\subseteq\mathbb{R}^3\to\mathbb{R}^3$ un campo vectorial de clase C^1 . Entonces:

$$\int \int_{\partial\Omega} \vec{F} \cdot d\vec{A} = \int \int \int_{\Omega} div(\vec{F}) dV$$

• En nuestro caso:

$$\int \int_S f dA = \int \int \vec{x} \cdot \hat{n} dA$$

Muestre que:

$$\int \int_{S} f dA = 4\pi a$$

Teorema de la divergencia de Gauss

Sea $\Omega \subseteq \mathbb{R}^3$ un abierto acotado cuya frontera es una superficie regular por pedazos, orientada según la normal exterior. Sea $\vec{F}: U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Entonces:

$$\int \int_{\partial \Omega} \vec{F} \cdot d\vec{A} = \int \int \int_{\Omega} div(\vec{F}) dV$$

• En nuestro caso:

$$\int \int_{S} f dA = \int \int \vec{x} \cdot \hat{n} dA$$

• Por el teorema:

$$\iint \vec{x} \cdot \hat{n} dA = \iiint_{\Omega} div(\vec{x}) dV = 3 \iiint_{\Omega} dv = 3vol(\Omega)$$

Leonel Huerta Tutoría Examen 6 de

Muestre que:

$$\int \int_{S} f dA = 4\pi a$$

Teorema de la divergencia de Gauss

Sea $\Omega \subseteq \mathbb{R}^3$ un abierto acotado cuya frontera es una superficie regular por pedazos, orientada según la normal exterior. Sea $\vec{F}: U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Entonces:

$$\int \int_{\partial \Omega} \vec{F} \cdot d\vec{A} = \int \int \int_{\Omega} div(\vec{F}) dV$$

En nuestro caso:

$$\int \int_{S} f dA = \int \int \vec{x} \cdot \hat{n} dA$$

• Por el teorema:

$$\iint \vec{x} \cdot \hat{n} dA = \iiint_{\Omega} div(\vec{x}) dV = 3 \iiint_{\Omega} dv = 3vol(\Omega)$$

 Se concluye recordando que el volumen de un elipsoide como el nuestro viene dado por (?):

 $\frac{4}{3}\pi a$

Muestre que:

$$\int \int_{S} f dA = 4\pi a$$

Teorema de la divergencia de Gauss

Sea $\Omega \subseteq \mathbb{R}^3$ un abierto acotado cuya frontera es una superficie regular por pedazos, orientada según la normal exterior. Sea $\vec{F}: U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Entonces:

$$\int \int_{\partial \Omega} \vec{F} \cdot d\vec{A} = \int \int \int_{\Omega} div(\vec{F}) dV$$

En nuestro caso:

$$\int \int_{S} f dA = \int \int \vec{x} \cdot \hat{n} dA$$

• Por el teorema:

$$\iint \vec{x} \cdot \hat{n} dA = \iiint_{\Omega} div(\vec{x}) dV = 3 \iiint_{\Omega} dv = 3vol(\Omega)$$

 Se concluye recordando que el volumen de un elipsoide como el nuestro viene dado por (?):

 $\frac{4}{3}\pi a$

Considere el campo vectorial:

$$\vec{F}(x,y,z) = \left(\frac{x}{a^2}, y, z\right)$$

Muestre que \vec{F} es paralelo a \hat{n} .

Considere el campo vectorial:

$$\vec{F}(x, y, z) = \left(\frac{x}{a^2}, y, z\right)$$

Muestre que \vec{F} es paralelo a \hat{n} .

• En efecto:

$$\frac{2\vec{F}}{\sqrt{(\frac{2x}{a^2})^2+(2y)^2+(2z)^2}}=\hat{n}$$

Considere el campo vectorial:

$$\vec{F}(x, y, z) = \left(\frac{x}{a^2}, y, z\right)$$

Muestre que \vec{F} es paralelo a \hat{n} .

• En efecto:

$$\frac{2\vec{F}}{\sqrt{(\frac{2x}{a^2})^2+(2y)^2+(2z)^2}}=\hat{n}$$

• Es decir:

$$k\vec{F}=\hat{n}$$

Con $k \in \mathbb{R}$, por lo que \vec{F} es paralelo a \hat{n} .

Considere el campo vectorial:

$$\vec{F}(x, y, z) = \left(\frac{x}{a^2}, y, z\right)$$

Muestre que \vec{F} es paralelo a \hat{n} .

• En efecto:

$$\frac{2\vec{F}}{\sqrt{(\frac{2x}{a^2})^2+(2y)^2+(2z)^2}}=\hat{n}$$

• Es decir:

$$k\vec{F}=\hat{n}$$

Con $k \in \mathbb{R}$, por lo que \vec{F} es paralelo a \hat{n} .

Pruebe que $f = 1/(\vec{F} \cdot \hat{n})$ sobre S.

Leonel Huerta Tutoría Examen 6 de enero de 2021 6/11

Pruebe que $f = 1/(\vec{F} \cdot \hat{n})$ sobre S.

• Propuesto...:)

6 / 11

Leonel Huerta Tutoría Examen 6 de enero de 2021

Pruebe que $f = 1/(\vec{F} \cdot \hat{n})$ sobre S.

• Propuesto...:)

6 / 11

Leonel Huerta Tutoría Examen 6 de enero de 2021

Muestre que:

$$\int \int_{S} \frac{1}{f} dA = \frac{4\pi}{3} \left(\frac{2a^2 + 1}{a} \right)$$

Leonel Huerta

Tutoría Examen

Muestre que:

$$\int \int_{S} \frac{1}{f} dA = \frac{4\pi}{3} \left(\frac{2a^2 + 1}{a} \right)$$

• Usando la parte anterior sabemos que:

$$\frac{1}{f} = \vec{F} \cdot \hat{n}$$

Leonel Huerta

Muestre que:

$$\int \int_{S} \frac{1}{f} dA = \frac{4\pi}{3} \left(\frac{2a^2 + 1}{a} \right)$$

• Usando la parte anterior sabemos que:

$$\frac{1}{f} = \vec{F} \cdot \hat{n}$$

• Nuevamente por el teorema de Gauss:

$$\int \int_S \frac{1}{f} dA = \int \int_S \vec{F} \cdot \hat{n} = \int \int \int_\Omega div(\vec{F}) dV$$

Muestre que:

$$\int \int_{S} \frac{1}{f} dA = \frac{4\pi}{3} \left(\frac{2a^2 + 1}{a} \right)$$

• Usando la parte anterior sabemos que:

$$\frac{1}{f} = \vec{F} \cdot \hat{n}$$

• Nuevamente por el teorema de Gauss:

$$\int \int_S \frac{1}{f} dA = \int \int_S \vec{F} \cdot \hat{n} = \int \int \int_\Omega div(\vec{F}) dV$$

• En este caso:

$$div(\vec{F}) = \frac{1}{a^2} + 2$$

Muestre que:

$$\int \int_{S} \frac{1}{f} dA = \frac{4\pi}{3} \left(\frac{2a^2 + 1}{a} \right)$$

• Usando la parte anterior sabemos que:

$$\frac{1}{f} = \vec{F} \cdot \hat{n}$$

• Nuevamente por el teorema de Gauss:

$$\int \int_S \frac{1}{f} dA = \int \int_S \vec{F} \cdot \hat{n} = \int \int \int_\Omega div(\vec{F}) dV$$

• En este caso:

$$div(\vec{F}) = \frac{1}{a^2} + 2$$

• Y así:

$$\int\int_{S}\frac{1}{f}dA=\left(\frac{1}{a^{2}}+2\right)\int\int\int_{\Omega}dV=\left(\frac{1}{a^{2}}+2\right)vol(\Omega)=\frac{4}{3}\pi\left(\frac{2a^{2}+1}{a}\right)$$

Muestre que:

$$\int \int_{S} \frac{1}{f} dA = \frac{4\pi}{3} \left(\frac{2a^2 + 1}{a} \right)$$

• Usando la parte anterior sabemos que:

$$\frac{1}{f} = \vec{F} \cdot \hat{n}$$

• Nuevamente por el teorema de Gauss:

$$\int \int_S \frac{1}{f} dA = \int \int_S \vec{F} \cdot \hat{n} = \int \int \int_\Omega div(\vec{F}) dV$$

• En este caso:

$$div(\vec{F}) = \frac{1}{a^2} + 2$$

• Y así:

$$\int\int_{S}\frac{1}{f}dA=\left(\frac{1}{a^{2}}+2\right)\int\int\int_{\Omega}dV=\left(\frac{1}{a^{2}}+2\right)vol(\Omega)=\frac{4}{3}\pi\left(\frac{2a^{2}+1}{a}\right)$$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

Leonel Huerta Tutoría Examen 6 de enero de 2021 8/11

4□ > 4□ > 4□ **> 4**□ **> 9 9 9 9**

Leonel Huerta Tutoría Examen 6 de enero de 2021 8/11

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

Condiciones de Cauchy-Riemann

Una función de variable compleja $f:\Omega\subseteq\mathbb{C}\to\mathbb{C}$ es derivable en $z_0\in\Omega$ ssi es derivable en (x_0,y_0) como función de \mathbb{R}^2 en \mathbb{R}^2 y además se satisfacen las condiciones de Cauchy-Riemann:

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$

$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

En tal caso:

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

Condiciones de Cauchy-Riemann

Una función de variable compleja $f:\Omega\subseteq\mathbb{C}\to\mathbb{C}$ es derivable en $z_0\in\Omega$ ssi es derivable en (x_0,y_0) como función de \mathbb{R}^2 en \mathbb{R}^2 y además se satisfacen las condiciones de Cauchy-Riemann:

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$

$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

En tal caso:

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

9/11

Leonel Huerta Tutoría Examen 6 de enero de 2021

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z) \\$$

Y calcule f'(z) cuando exista.

• Queremos usar las condiciones de C-R, así que comenzamos por escribir f en términos de x,y. En nuestro caso, para z=x+iy:

$$f(z)=2xy+i\sqrt{x^2+y^2}=u(x,y)+iv(x,y)$$

Leonel Huerta Tutoría Examen 6 de enero de 2021

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z) \\$$

Y calcule f'(z) cuando exista.

• Queremos usar las condiciones de C-R, así que comenzamos por escribir f en términos de x,y. En nuestro caso, para z=x+iy:

$$f(z) = 2xy + i\sqrt{x^2 + y^2} = u(x, y) + iv(x, y)$$

• Derivamos:

$$\begin{split} \frac{\partial u}{\partial x}(x,y) &= 2y, \quad \frac{\partial u}{\partial y}(x,y) = 2x \\ \frac{\partial v}{\partial x}(x,y) &= \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial v}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} \end{split}$$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z) \\$$

Y calcule f'(z) cuando exista.

• Queremos usar las condiciones de C-R, así que comenzamos por escribir f en términos de x,y. En nuestro caso, para z=x+iy:

$$f(z) = 2xy + i\sqrt{x^2 + y^2} = u(x, y) + iv(x, y)$$

• Derivamos:

$$\begin{split} \frac{\partial u}{\partial x}(x,y) &= 2y, \quad \frac{\partial u}{\partial y}(x,y) = 2x \\ \frac{\partial v}{\partial x}(x,y) &= \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial v}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} \end{split}$$

• Las condiciones de C-R imponen que:

$$2y = \frac{y}{\sqrt{x^2 + y^2}}, \quad 2x = -\frac{x}{\sqrt{x^2 + y^2}}$$

Leonel Huerta Tutoría Examen

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z) \\$$

Y calcule f'(z) cuando exista.

 \bullet Queremos usar las condiciones de C-R, así que comenzamos por escribir f en términos de x, y. En nuestro caso, para z = x + iy:

$$f(z)=2xy+i\sqrt{x^2+y^2}=u(x,y)+iv(x,y)$$

Derivamos:

$$\begin{split} \frac{\partial u}{\partial x}(x,y) &= 2y, \quad \frac{\partial u}{\partial y}(x,y) = 2x \\ \frac{\partial v}{\partial x}(x,y) &= \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial v}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} \end{split}$$

• Las condiciones de C-R imponen que:

$$2y = \frac{y}{\sqrt{x^2 + y^2}}, \quad 2x = -\frac{x}{\sqrt{x^2 + y^2}}$$

Usando estas dos identidades:

$$2xy = \frac{xy}{\sqrt{x^2 + y^2}} = -2xy \quad \Rightarrow \quad xy = 0$$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z) \\$$

Y calcule f'(z) cuando exista.

 \bullet Queremos usar las condiciones de C-R, así que comenzamos por escribir f en términos de x, y. En nuestro caso, para z = x + iy:

$$f(z)=2xy+i\sqrt{x^2+y^2}=u(x,y)+iv(x,y)$$

Derivamos:

$$\begin{split} \frac{\partial u}{\partial x}(x,y) &= 2y, \quad \frac{\partial u}{\partial y}(x,y) = 2x \\ \frac{\partial v}{\partial x}(x,y) &= \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial v}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} \end{split}$$

• Las condiciones de C-R imponen que:

$$2y = \frac{y}{\sqrt{x^2 + y^2}}, \quad 2x = -\frac{x}{\sqrt{x^2 + y^2}}$$

Usando estas dos identidades:

$$2xy = \frac{xy}{\sqrt{x^2 + y^2}} = -2xy \quad \Rightarrow \quad xy = 0$$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

10 / 11

Leonel Huerta Tutoría Examen 6 de enero de 2021

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

 \bullet Para que xy=0 necesariamente debe ocurrir que:

10 / 11

Leonel Huerta Tutoría Examen 6 de enero de 2021

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

- \bullet Para que xy=0 necesariamente debe ocurrir que:
 - **1** x = 0 e y = 0:

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z) \\$$

Y calcule f'(z) cuando exista.

- Para que xy = 0 necesariamente debe ocurrir que:

Pero en este caso la función queda mal definida (división por cero).

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

- \bullet Para que xy=0 necesariamente debe ocurrir que:

 - Pero en este caso la función queda mal definida (división por cero).
 - ② $x = 0 e y \neq 0$:

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

- \bullet Para que xy=0 necesariamente debe ocurrir que:
 - $\mathbf{0}$ x = 0 e y = 0: Pero en este caso la función queda mal definida (división por cero).
 - ② x = 0 e $y \neq 0$: Luego, de la primera condición de C-R:

$$\sqrt{x^2+y^2}=\sqrt{y^2}=\frac{1}{2}\quad \Rightarrow \quad y=\pm\frac{1}{2}$$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

- \bullet Para que xy=0 necesariamente debe ocurrir que:
 - x = 0 e y = 0: Pero en este caso la función queda mal definida (división por cero).
 - ② x = 0 e $y \neq 0$: Luego, de la primera condición de C-R:

$$\sqrt{x^2+y^2} = \sqrt{y^2} = \frac{1}{2} \quad \Rightarrow \quad y = \pm \frac{1}{2}$$

3 $x \neq 0$ e y = 0:

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

- \bullet Para que xy=0 necesariamente debe ocurrir que:
 - x = 0 e y = 0: Pero en este caso la función queda mal definida (división por cero).
 - 2 x = 0 e $y \neq 0$: Luego, de la primera condición de C-R:

$$\sqrt{x^2 + y^2} = \sqrt{y^2} = \frac{1}{2} \quad \Rightarrow \quad y = \pm \frac{1}{2}$$

3 $x \neq 0$ e y = 0: Y de la segunda condición de C-R:

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z) \\$$

Y calcule f'(z) cuando exista.

- \bullet Para que xy=0 necesariamente debe ocurrir que:
 - $\mathbf{0}$ x = 0 e y = 0: Pero en este caso la función queda mal definida (división por cero).
 - ② x = 0 e $y \neq 0$: Luego, de la primera condición de C-R:

$$\sqrt{x^2 + y^2} = \sqrt{y^2} = \frac{1}{2} \quad \Rightarrow \quad y = \pm \frac{1}{2}$$

3 $x \neq 0$ e y = 0: Y de la segunda condición de C-R:

$$\sqrt{x^2 + y^2} = -\frac{1}{2}$$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z) \\$$

Y calcule f'(z) cuando exista.

- \bullet Para que xy=0 necesariamente debe ocurrir que:
 - $\mathbf{0}$ x = 0 e y = 0: Pero en este caso la función queda mal definida (división por cero).
 - ② x = 0 e $y \neq 0$: Luego, de la primera condición de C-R:

$$\sqrt{x^2 + y^2} = \sqrt{y^2} = \frac{1}{2} \quad \Rightarrow \quad y = \pm \frac{1}{2}$$

3 $x \neq 0$ e y = 0: Y de la segunda condición de C-R:

$$\sqrt{x^2 + y^2} = -\frac{1}{2}$$

Lo que no puede ocurrir.

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z) \\$$

Y calcule f'(z) cuando exista.

- Para que xy = 0 necesariamente debe ocurrir que:
 - x = 0 e y = 0: Pero en este caso la función queda mal definida (división por cero).
 - 2 x = 0 e $y \neq 0$: Luego, de la primera condición de C-R:

$$\sqrt{x^2 + y^2} = \sqrt{y^2} = \frac{1}{2} \quad \Rightarrow \quad y = \pm \frac{1}{2}$$

3 $x \neq 0$ e y = 0: Y de la segunda condición de C-R:

$$\sqrt{x^2 + y^2} = -\frac{1}{2}$$

Lo que no puede ocurrir.

 \bullet Luego, la función será derivable cuando x=0 e $y=\pm\frac{1}{2},$ es decir, para $z=\pm i\frac{1}{2}.$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

- Para que xy = 0 necesariamente debe ocurrir que:
 - x = 0 e y = 0: Pero en este caso la función queda mal definida (división por cero).
 - 2 x = 0 e $y \neq 0$: Luego, de la primera condición de C-R:

$$\sqrt{x^2 + y^2} = \sqrt{y^2} = \frac{1}{2} \quad \Rightarrow \quad y = \pm \frac{1}{2}$$

§ $x \neq 0$ e y = 0: Y de la segunda condición de C-R:

$$\sqrt{x^2 + y^2} = -\frac{1}{2}$$

Lo que no puede ocurrir.

- Luego, la función será derivable cuando x=0 e $y=\pm \frac{1}{2},$ es decir, para $z=\pm i\frac{1}{2}.$
- Del teorema de las condiciones de C-R sigue que:

$$f'\left(\frac{i}{2}\right) = 1, \quad f'\left(-\frac{i}{2}\right) = -1$$

Estudie la derivabilidad de:

$$f(z) = 2Re(z)Im(z) + iMod(z)$$

Y calcule f'(z) cuando exista.

- Para que xy = 0 necesariamente debe ocurrir que:
 - **1** x = 0 e y = 0: Pero en este caso la función queda mal definida (división por cero).
 - **2** $x = 0 e y \neq 0$: Luego, de la primera condición de C-R:

$$\sqrt{x^2 + y^2} = \sqrt{y^2} = \frac{1}{2} \quad \Rightarrow \quad y = \pm \frac{1}{2}$$

8 $x \neq 0$ e y = 0: Y de la segunda condición de C-R:

$$\sqrt{x^2 + y^2} = -\frac{1}{2}$$

Lo que no puede ocurrir.

- Luego, la función será derivable cuando x=0 e $y=\pm\frac{1}{2}$, es decir, para $z=\pm i\frac{1}{2}$.
- Del teorema de las condiciones de C-R sigue que:

$$f'\left(\frac{i}{2}\right) = 1, \quad f'\left(-\frac{i}{2}\right) = -1$$

Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

11 / 11

Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

 \bullet Busquemos primero los ceros de la función. Es decir, aquellos $z\in\mathbb{C}$ tales que:

$$f(z) = 0$$

Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

• Busquemos primero los ceros de la función. Es decir, aquellos $z\in\mathbb{C}$ tales que:

$$f(z) = 0$$

Como $e^{2z} \neq 0$, para que z sea un cero nos basta que:

$$\sin(z) = 0 \quad \land \quad z^3(z+i) \neq 0$$

Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

 \bullet Busquemos primero los ceros de la función. Es decir, aquellos $z\in\mathbb{C}$ tales que:

$$f(z) = 0$$

Como $e^{2z} \neq 0$, para que z sea un cero nos basta que:

$$\sin(z) = 0 \quad \wedge \quad z^3(z+i) \neq 0$$

Para que se cumpla lo primero, $z=k\pi,$ con $k\in\mathbb{Z}.$

Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

 \bullet Busquemos primero los ceros de la función. Es decir, aquellos $z\in\mathbb{C}$ tales que:

$$f(z) = 0$$

Como $e^{2z} \neq 0$, para que z sea un cero nos basta que:

$$\sin(z) = 0 \quad \wedge \quad z^3(z+i) \neq 0$$

Para que se cumpla lo primero, $z=k\pi,$ con $k\in\mathbb{Z}.$ Sin embargo, para que se cumpla lo segundo, $z\neq 0.$

Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

• Busquemos primero los ceros de la función. Es decir, aquellos $z\in\mathbb{C}$ tales que:

$$f(z) = 0$$

Como $e^{2z} \neq 0$, para que z sea un cero nos basta que:

$$\sin(z) = 0 \quad \wedge \quad z^3(z+i) \neq 0$$

Para que se cumpla lo primero, $z = k\pi$, con $k \in \mathbb{Z}$.

Sin embargo, para que se cumpla lo segundo, $z \neq 0$.

Luego, los ceros de la función son todos aquellos $z \in \mathbb{C}$ tales que $z = k\pi$, con $k \in \mathbb{Z} \setminus \{0\}$.

Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

• Busquemos primero los ceros de la función. Es decir, aquellos $z\in\mathbb{C}$ tales que:

$$f(z) = 0$$

Como $e^{2z} \neq 0$, para que z sea un cero nos basta que:

$$\sin(z) = 0 \quad \land \quad z^3(z+i) \neq 0$$

Para que se cumpla lo primero, $z = k\pi$, con $k \in \mathbb{Z}$.

Sin embargo, para que se cumpla lo segundo, $z \neq 0$.

Luego, los ceros de la función son todos aquellos $z \in \mathbb{C}$ tales que $z = k\pi$, con $k \in \mathbb{Z} \setminus \{0\}$.

• Los polos de la función son:

$$z_1 = 0, \quad z_2 = -i$$

El primero de orden 2 y el segundo de orden 1.

Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

• Busquemos primero los ceros de la función. Es decir, aquellos $z\in\mathbb{C}$ tales que:

$$f(z) = 0$$

Como $e^{2z} \neq 0$, para que z sea un cero nos basta que:

$$\sin(z) = 0 \quad \land \quad z^3(z+i) \neq 0$$

Para que se cumpla lo primero, $z = k\pi$, con $k \in \mathbb{Z}$.

Sin embargo, para que se cumpla lo segundo, $z \neq 0$.

Luego, los ceros de la función son todos aquellos $z \in \mathbb{C}$ tales que $z = k\pi$, con $k \in \mathbb{Z} \setminus \{0\}$.

• Los polos de la función son:

$$z_1 = 0, \quad z_2 = -i$$

El primero de orden 2 y el segundo de orden 1.

Verificar con las definiciones!

Determine los ceros y polos (con sus órdenes) de la función:

$$f(z) = \frac{e^{2z}\sin(z)}{z^3(z+i)}$$

• Busquemos primero los ceros de la función. Es decir, aquellos $z\in\mathbb{C}$ tales que:

$$f(z) = 0$$

Como $e^{2z} \neq 0$, para que z sea un cero nos basta que:

$$\sin(z) = 0 \quad \land \quad z^3(z+i) \neq 0$$

Para que se cumpla lo primero, $z = k\pi$, con $k \in \mathbb{Z}$.

Sin embargo, para que se cumpla lo segundo, $z \neq 0$.

Luego, los ceros de la función son todos aquellos $z \in \mathbb{C}$ tales que $z = k\pi$, con $k \in \mathbb{Z} \setminus \{0\}$.

• Los polos de la función son:

$$z_1 = 0, \quad z_2 = -i$$

El primero de orden 2 y el segundo de orden 1.

Verificar con las definiciones!

