Ejercicio 1:

Sea $f: R \to R$ tal que f es periódica de periodo p. Pruebe que:

$$\int_{a}^{a+p} f(x) = \int_{0}^{p} f(x), \ \forall a \in R$$

En efecto, dada la instrucción se nos pide demostrar que la igualdad anteriormente enunciada se cumple para cualquier valor de a, por tanto, definiremos la función auxiliar g(x) y demostraremos que esta es constante $\forall a \in R$, es decir, $g'(a) = 0 \ \forall a \in R$.

Sea g(a) =
$$\int_{a}^{a+p} f(x)$$
, pdq g'(a) = 0 \forall a \in R

Aplicamos el Principio de Leibniz para la derivada de la integral definida (TFC2):

$$g'(a) = \frac{d}{da} \left(\int_{a}^{a+p} f(x) dx \right)$$
$$g'(a) = f(a+p) \cdot (a+p)' - f(a) \cdot (a)'$$

$$g(a) = f(a+p) \cdot (a+p) - f(a)$$

 $g'(a) = f(a+p) - f(a)$

Recordar que como f es función periódica de periodo p se tiene que f(a) = f(a+kp), $\forall k \in Z$, donde para k=1 obtenemos f(a) = f(a+p), por tanto, g'(a) = 0 $\forall a \in R$ y por consiguiente g(a) es una función constante.

Entonces, evaluando a = 0:

$$g(0) = \int_{0}^{0+p} f(x) = \int_{0}^{p} f(x)$$

Demostrando así lo solicitado.

<u>Ejercicio 2:</u>

Hacer una aseveración general relativa a $\int_{-a}^{a} f(x) dx$ para f una función impar y otra para f función par

$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx \qquad , u = -x \rightarrow du = dx$$

$$= \int_{0}^{a} f(x) dx - \int_{a}^{0} f(-u)du = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(-u)du$$

Sabemos que se cumple:

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} (f(x) + f(-x)) dx$$

Caso par: Por el semestre anterior sabemos que f(-x) = f(x), entonces: $\int_{-a}^{a} f(x) dx = \int_{0}^{a} (f(x) + f(-x)) dx = 2 \int_{0}^{a} f(x) dx$

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} (f(x) + f(-x)) dx = 2 \int_{0}^{a} f(x) dx$$

 $\int_{-a}^{a} f(x) dx = \int_{0}^{a} (f(x) + f(-x)) dx = \int_{-a}^{a} f(x) dx = 0$

Caso impar: Por el semestre anterior sabemos que f(-x) = -f(x), entonces:

<u>Ejercicio 3:</u>

Demuestre que si f es una función continua en [a, b] $y \int_a^b f(x) = 0$, **entonces existe un** c **en** [a, b] **tal que** f(c) = 0.

En primer lugar se logra apreciar que f es una función continua en [a, b], por lo tanto se puede utilizar el TVM para integrales. Este indica que $\exists \xi \in (a, b)$, tal que $\int_a^b f(x) = f(\xi)(b - a)$ Por enunciado se dice que $\int_a^b f(x) = 0 \Rightarrow f(\xi)(b - a) = 0 \Rightarrow f(\xi) = 0$

Cambiando ξ por c queda demostrado lo solicitado.

<u>Ejercicio 4:</u>

Hallar
$$\int_a^b \left(\int_a^b f(x) g(y) dy \right) dx$$
 en términos de $\int_a^b f(y) \int_a^b g(y) dy$ Desarrollo:
Ya que $f(x)$ es constante en la integral de adentro:

. b(. b) . b (. b)

$$\int_a^b \left(\int_a^b f(x) \, g(y) \, dy \right) dx = \int_a^b f(x) \left(\int_a^b g(y) \, dy \right) dx$$

$$como \int_a^b g(y) \, dy \text{ es constante en terminos de dx, se puede concluir que:}$$

 $\begin{pmatrix} c & b \end{pmatrix} \begin{pmatrix} c & b \end{pmatrix}$

$$= \left(\int_{a}^{b} f(x) dx \right) \left(\int_{a}^{b} g(y) dy \right)$$
Ejercicio 5:

Hallar F'(x) si F(x) =
$$\int_0^x xf(t)dt$$
.
F'(x) = $\left(\int_0^x xf(t)dt\right)' = \left(x\int_0^x f(t)dt\right)' = x'\int_0^x f(t)dt + x\left(\int_0^x f(t)dt\right)'$
Por TFC 1:
= $\int_0^x f(t)dt + xf(x)$

<u>Ejercicio 6:</u>

Desarrollo: $En \ efecto, \ tomando \ u = \int_0^u f(t) dt, \ du = f(u), \ v = u, \ dv = 1$

Demostrar que si f es continua entonces $\int_0^x f(u)(x-u)du = \int_0^x \left(\int_0^u f(t)dt\right)du$

$$\Rightarrow \int_0^x \left(\int_0^u f(t) dt \right) du = \left(u \int_0^u f(t) dt \right) \Big|_0^x - \int_0^x f(u) du$$

$$= x \int_0^x f(t) dt - \int_0^u u f(u) du$$

$$= \int_0^x x f(t) dt - \int_0^x u f(u) du$$

$$= \int_0^x x f(u) - u f(u) du$$

$$= \int_0^x f(u) (x - u) du$$

(por propiedad de Integración por Partes)

Suponga que f es integrable en [a, b] . Demostrar que existe un $x \in [a, b]$ tal que $\int_a^x f = \int_x^b f$

observemos:

У

Ejercicio 7:

Demostrar, con un ejemplo, que no siempre es posible elegir x que este en (a, b).

notar:

definamos $g(x) = \int_a^b f - 2 \int_a^x f$, notar que como f es integrable en $[a,b] \rightarrow g(x)$ es continua en [a,b]. para demostrar lo pedido basta encontrar un $x_0 \in [a,b]$ tal que g(x) = 0.

$$g(b) = \int_{a}^{b} f - 2 \int_{a}^{b} f = - \int_{a}^{b} f$$

 $g(a) = \int_{a}^{b} f - 2 \int_{a}^{a} f = \int_{a}^{b} f$

Luego en virtud del T.V.I se tiene: $g(a)g(b)\leqslant 0 \Rightarrow \ \exists \ x_0\in [a,b] \ tal \ que \ g(x_0)=0$

se concluye que $\exists x_0 \in [a, b]$ tal que $g(x_0) = \int_a^b f - 2 \int_a^x f = 0 \Rightarrow \int_a^b f = 2 \int_a^x f$

$$\int_{a}^{x} f + \int_{x}^{b} f = 2 \int_{a}^{x} f \rightarrow \int_{x}^{b} f = \int_{a}^{x} f$$
obteniendo lo pedido
ahora si se tiene que
$$\int_{a}^{b} f = 0$$

se tendra que tomar un $x_0 = b \lor x_0 = a$ para obtener lo pedido, concluyendo que $x_0 \notin (a, b)$

$$\frac{\text{desarrollo:}}{\text{a) } f(x) = \int_{-1}^{-x^2} \sin \left(t^4\right) dt \;, \quad \text{por T.F.C tenemos que} \int_{-1}^{-x^2} \sin \left(t^4\right) dt = F\left(x^2\right) - F(1) \;, \; \text{donde F es una}$$
 primitiva de $\sin \left(t^4\right)$, Luego derivamos aplicando regla de la cadena y notando que por TFC

a) $f(x) = \int_{1}^{x^2} \sin(t^4) dt$ b) $f(x) = \int_{\sqrt{x}}^{x^2} \frac{t^2}{1+t^6} dt$ c) $f(x) = \int_{x^3}^{\cos(x)} (x-t) \sin(t^2) dt$

 $F'=\sin\left(t^4\right) \text{ nos queda } \left(\int_{-1}^{-x^2} \sin\left(t^4\right) dt\right) = F'\left(x^2\right) - F'(1) = \sin\left(x^8\right) \cdot \left(x^2\right)' - \sin(1) \cdot (1)'$ finalmente nos queda $\sin\left(x^8\right) 2x - \sin(1) \cdot 0 = 2x \sin\left(x^8\right).$

Por lo tanto la derivada de la función es $f(x)' = \left(\int_{1}^{x^2} \sin(t^4) dt\right) = 2x \sin(x^8)$.

b)
$$f(x) = \int \frac{x^2}{\sqrt{x}} \frac{t^2}{1+t^6} dt$$
, por T.F.C tenemos que $\int \frac{x^2}{\sqrt{x}} \frac{t^2}{1+t^6} dt = F(x^2) - F(\sqrt{x})$ donde F es una primitiva de $\frac{t^2}{1+t^6}$, ahora derivamos $f(x)$ de modo que aplicamos regla de la cadena y

notamos que por T.F.C $F' = \frac{t^2}{1+t^6}$ por lo que nos queda $\left(\int_0^{x^2} \frac{t^2}{t^2} dt\right) = F'(x^2) - F'(\sqrt{x}) = \frac{x^4}{1+t^6} \cdot (x^2)' - \frac{(\sqrt{x})^2}{1+t^6} \cdot (\sqrt{x})'$ finalmente r

$$\left(\int \frac{x^2}{\sqrt{x}} \frac{t^2}{1+t^6} dt\right)' = F'(x^2) - F'(\sqrt{x}) = \frac{x^4}{1+x^{12}} \cdot (x^2)' - \frac{\left(\sqrt{x}\right)^2}{1+\left(\sqrt{x}\right)^6} \cdot \left(\sqrt{x}\right)' \quad \text{finalmente resolviendo}$$
 las derivadas nos queda
$$\frac{x^4}{1+x^{12}} \cdot 2x - \frac{x}{1+x^3} \cdot \frac{x^{\frac{1}{2}}}{2} = \frac{2x^5}{1+x^{12}} - \frac{\sqrt{x}}{2+2x^3}.$$
 Por lo tanto la derivada de la función es
$$f(x)' = \left(\int \frac{x^2}{\sqrt{x}} \frac{t^2}{1+t^6} dt\right)' = \frac{2x^5}{1+x^{12}} - \frac{\sqrt{x}}{2+2x^3}.$$

c)
$$f(x) = \int_{x^3}^{\cos(x)} (x - t)\sin(t^2) dt$$
, podemos escribir la función como

$$\int_{x^3}^{\cos(x)} (x-t)\sin(t^2)dt = \int_{x^3}^{\cos(x)} x\sin(t^2)dt - \int_{x^3}^{\cos(x)} t\sin(t^2)dt \text{ y como la integral no depende}$$

de x queda:
$$x \int_{x^3}^{\cos(x)} \sin(t^2) dt - \int_{x^3}^{\cos(x)} t \sin(t^2) dt$$
. Luego por T.F.C. tenemos que

$$\int_{x^3}^{\cos(x)} \sin(t^2) dt = F(\cos(x)) - F(x^3), \text{ con } F \text{ primitiva } de \sin(t^2) \text{ y}$$

$$\int_{x^3}^{\cos(x)} t \sin(t^2) dt = H(\cos(x)) - H(x^3), \text{ con } H \text{ primitiva } de \text{ t} \sin(t^2).$$

derivamos f(x) de modo que aplicamos la regla de la cadena y notando que por T.F.C $F' = \sin(t^2)$ y $H' = t \sin(t^2)$ nos queda:

 $\left[(x)' \cdot F(\cos(x)) + x \cdot F'(\cos(x)) \cdot \cos'(x) \right] - \left[(x)' \cdot F(x^3) + x \cdot F'(x^3) \cdot (x^3)' \right] - \left[H'(\cos(x)) \cdot \cos'(x) \right] + \left[H'(x^3) \cdot (x^3)' \right]$ Luego resolviendo nos queda:

Por lo que juntando todo nos queda: $xF(cos(x)) - xF(x^3) - H(cos(x)) + H(x^3)$, ahora

$$\begin{split} &F(\cos(x)) - x \sin\left(\cos(x)^2\right) \sin(x) - F\left(x^3\right) - 3x^3 \sin\left(x^6\right) + \cos(x) \sin\left(\cos(x)^2\right) \sin(x) + 3x^5 \sin\left(x^6\right) \\ &= \sin\left(\cos(x)^2\right) \sin(x) \left[\cos(x) - x\right] + 3x^3 \sin\left(x^6\right) \left[x^2 - 1\right] + F(\cos(x)) - F\left(x^3\right) \text{ , donde si} \end{split}$$

recordamos nos damos cuenta que $F(\cos(x)) - F(x^3) = \int_{x^3}^{\cos(x)} \sin(t^2) dt$, por lo tanto al

reemplazar nos queda: (a + b) = (a

 $\sin(\cos(x^2))\sin(x)[\cos(x)-x]+3x^3\sin(x^6)[x^2-1]+\int_{x^3}^{\cos(x)}\sin(t^2)dt$. Finalmente la derivada de la función es

 $f(x)' = \left[\int_{x^3}^{\cos(x)} (x - t) \sin(t^2) dt \right] = \sin(\cos(x)^2) \sin(x) \left[\cos(x) - x \right] + 3x^3 \sin(x^6) \left[x^2 - 1 \right] +$ $\int_{x^3}^{\cos(x)} \sin(t^2) dt.$ **Ejercicio 9:**

Sea f una función tal que $f(x) = \int_0^x (x - t)^2 f(t) dt$. Muestre que f''(x) = 2f(x). Desarrollando el binomio al cuadrado:

Desarrollando el binomio al cuadrado: $f(x) = \int_0^x x^2 - 2tx + t^2 f(t) dt$

$$f(x) = \int_0^x x^2 f(t) dt - \int_0^x 2tx f(t) dt + \int_0^x t^2 f(t) dt$$

 $f'(x) = 2x \int_{0}^{x} f(t) dt - 2 \int_{0}^{x} tf(t) dt$ $f''(x) = 2 \int_{0}^{x} f(t) dt$

Por lo que se cumple que: $\int_{0}^{x} f(t)dt = \int_{0}^{x} (x - t)^{2} f(t)dt$

Por lo que queda demostrado que: f''(x) = 2f(x)