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Betting on Uncertain
Demand: The
Newsvendor Model’

Matching supply and demand is particularly challenging when supply must be chosen
before observing demand and demand is stochastic (uncertain). To illustrate this point,
suppose you are the owner of a simple business: selling newspapers. Each morning you
purchase a stack of papers with the intention of selling them at your newsstand at the cor-
ner of a busy street. Even though you have some idea regarding how many newspapers
you can sell on any given day, you never can predict demand for sure. Some days you sell
all of your papers, while other days end with unsold newspapers to be recycled. As the
newsvendor, you must decide how many papers to buy at the start of each day. Because
you must decide how many newspapers to buy before demand occurs, unless you are very
lucky, you will not be able to match supply to demand. A decision tool is needed to make
the best out of this difficult situation. The newsvendor model is such a tool.

You will be happy to learn that the newsvendor model applies in many more settings
than just the newsstand business. The essential issue is that you must take a firm bet (how
much inventory to order) before some random event occurs (demand) and then you learn
that you either bet too much (demand was less than your order) or you bet too little (demand
exceeded your order). This trade-off between “doing too much” and “doing too little”
occurs in other settings. Consider a technology product with a long lead time to source
components and only a short life before better technology becomes available. Purchase too
many components and you risk having to sell off obsolete technology. Purchase too few
and you may forgo sizable profits. Cisco is a company that can relate to these issues: In
2000 they estimated that they were losing 10 percent of their potential orders to rivals due
to long lead times created by shortages of parts; but by early 2001, the technology bubble
had burst and they had to write off $2.5 billion in inventory.

This chapter begins with a description of the production challenge faced by O’Neill
Inc., a sports apparel manufacturer. O’Neill’s decision also closely resembles the news-
vendor’s task. We then describe the newsvendor model in detail and apply it to O’Neill’s
problem. We also show how to use the newsvendor model to forecast a number of perfor-
mance measures relevant to O’Neill.

! Data in this chapter have been disquised to protect confidential information.
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11.1 O’Neill Inc.

O’Neill Inc. is a designer and manufacturer of apparel, wetsuits, and accessories for
water sports: surf, dive, waterski, wake-board, triathlon, and wind surf. Their product line
ranges from entry-level products for recreational users, to wetsuits for competitive surf-
ers, to sophisticated dry suits for professional cold-water divers (e.g., divers that work on
oil platforms in the North Sea). O’Neill divides the year into two selling seasons: Spring
(February through July) and Fall (August through January). Some products are sold in
both seasons, but the majority of their products sell primarily in a single season. For
example, waterski is active in the Spring season whereas recreational surf products sell
well in the Fall season. Some products are not considered fashionable (i.e., they have little
cosmetic variety and they sell from year to year), for example, standard neoprene black
booties. With product names like “Animal,” “Epic,” “Hammer,” “Inferno,” and “Zen,”
O’Neill clearly also has products that are subject to the whims of fashion. For example,
color patterns on surf suits often change from season to season to adjust to the tastes of the
primary user (15-30-year-old California males).

O’Neill operates its own manufacturing facility in Mexico, but it does not produce all of its
products there. Some items are produced by the TEC Group, O’Neill’s contract manufacturer
in Asia. While TEC provides many benefits to O’Neill (low cost, sourcing expertise, flexible
capacity, etc.), they do require a three-month lead time on all orders. For example, if O’Neill
orders an item on November 1, then O’Neill can expect to have that item at its distribution
center in San Diego, California, ready for shipment to customers, only on January 31.

To better understand O’Neill’s production challenge, let’s consider a particular wetsuit
used by surfers and newly redesigned for the upcoming spring season, the Hammer 3/2.
(The “3/2” signifies the thickness of the neoprene on the suit: 3 mm thick on the chest and
2 mm everywhere else.) Figure 11.1 displays the Hammer 3/2 and O’Neill’s logo. O’Neill
has decided to let TEC manufacture the Hammer 3/2. Due to TEC’s three-month lead time,
O’Neill needs to submit an order to TEC in November before the start of the spring season.
Using past sales data for similar products and the judgment of its designers and sales rep-
resentatives, O’Neill developed a forecast of 3,200 units for total demand during the spring
season for the Hammer 3/2. Unfortunately, there is considerable uncertainty in that fore-
cast despite the care and attention placed on the formation of the forecast. For example, it
is O’Neill’s experience that 50 percent of the time the actual demand deviates from their
initial forecast by more than 25 percent of the forecast. In other words, only 50 percent of
the time is the actual demand between 75 percent and 125 percent of their forecast.

Although O’Neill’s forecast in November is unreliable, O’Neill will have a much better
forecast for total season demand after observing the first month or two of sales. At that time,
O’Neill can predict whether the Hammer 3/2 is selling slower than forecast, in which case
O’Neill is likely to have excess inventory at the end of the season, or whether the Hammer
3/2 is more popular than predicted, in which case O’Neill is likely to stock out. In the latter
case, O’Neill would love to order more Hammers, but the long lead time from Asia prevents
O’Neill from receiving those additional Hammers in time to be useful. Therefore, O’Neill
essentially must “live or dive” with its single order placed in November.

Fortunately for O’Neill, the economics on the Hammer are pretty good. O’Neill sells
the Hammer to retailers for $180 while it pays TEC $110 per suit. If O’Neill has leftover
inventory at the end of the season, it is O’Neill’s experience that they are able to sell that
inventory with a 50 percent discount. Figure 11.2 summarizes the time line of events and
the economics for the Hammer 3/2.

So how many units should O’Neill order from TEC? You might argue that O’Neill should
order the forecast for total demand, 3,200, because 3,200 is the most likely outcome. The
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FIGURE 11.1

O’Neill’s Hammer

3/2 Wetsuit and Logo

for the Surf Market

FIGURE 11.2
Time Line of Events
and Economics for
O’Neill’s Hammer
3/2 Wetsuit

CONEL_&_

forecast is also the value that minimizes the expected absolute difference between the actual
demand and the production quantity; that s, it is likely to be close to the actual demand. Alter-
natively, you may be concerned that forecasts are always biased and therefore suggest an order
quantity less than 3,200 would be more prudent. Finally, you might argue that because the

Generate Forecast
of Demand and
Submit an Order
to TEC
l Spring Selling Season
" Nov. ' Dec. ' Jan. ' Feb. ' Mar. ' Apr. ' May " June July ' Aug. '
Receive Order Leftover Units
from TEC at the Are Discounted
End of the Month
Selling Price =$180
Purchase Price from TEC =$110
Discount Price at End of Season = $90 (50% of $180)

- 133 -



Cachon-Terwiesch:
Matching Supply with
Demand: An Introduction to
Operations Management,
Second Edition

11. Betting on Uncertain Text © The McGraw-Hill ‘ e
Demand: The Newsvendor Companies, 2009
Model

Betting on Uncertain Demand: The Newsvendor Model 223

gross margin on the Hammer is nearly 40 percent ((180 — 110)/180 = 0.39), O’Neill should
order more than 3,200 in case the Hammer is a hit. We next define the newsvendor model and
then discuss what the newsvendor model recommends for an order quantity.

11.2 An Introduction to the Newsvendor Model

The newsvendor model considers a setting in which you have only one production or
procurement opportunity. Because that opportunity occurs well in advance of a single sell-
ing season, you receive your entire order just before the selling season starts. Stochastic
demand occurs during the selling season. If demand exceeds your order quantity, then you
sell your entire order. But if demand is less than your order quantity, then you have leftover
inventory at the end of the season.

There is a fixed cost per unit ordered: for the Hammer 3/2, Cost = 110. It is important
that Cost includes only costs that depend on the number of units ordered; amortized fixed
costs should not be included, because they are unaffected by our order quantity decision.
In other words, this cost figure should include all costs that vary with the order quantity
and no costs that do not vary with the order quantity. There is a fixed price for each unit
you sell; in this case, Price = 180.

If there is leftover inventory at the end of the season, then there is some value associated
with that inventory. To be specific, there is a fixed Salvage value that you earn on each unit
of leftover inventory: with the Hammer, the Salvage value = 50% X 180 = 90. It is pos-
sible that leftover inventory has no salvage value whatsoever, that is, Salvage value = 0. It
is also possible leftover inventory is costly to dispose, in which case the salvage value may
actually be a salvage cost. For example, if the product is a hazardous chemical, then there
is a cost for disposing of leftover inventory; that is, Salvage value < 0 is possible.

To guide your production decision, you need a forecast for demand. O’Neill’s initial
forecast for the Hammer is 3,200 units for the season. But it turns out (for reasons that
are explained later) you need much more than just a number for a forecast. You need to
have a sense of how accurate your forecast is; you need a forecast on your forecast error!
For example, in an ideal world, there would be absolutely no error in your forecast: if the
forecast is 3,200 units, then 3,200 units is surely the demand for the season. In reality, there
will be error in the forecast, but forecast error can vary in size. For example, it is better to
be 90 percent sure demand will be between 3,100 and 3,300 units than it is to be 90 percent
sure demand will be between 2,400 and 4,000 units. Intuition should suggest that you might
want to order a different amount in those two situations.

To summarize, the newsvendor model represents a situation in which a decision maker
must make a single bet (e.g., the order quantity) before some random event occurs (e.g.,
demand). There are costs if the bet turns out to be too high (e.g., leftover inventory that
is salvaged for a loss on each unit). There are costs if the bet turns out to be too low (the
opportunity cost of lost sales). The newsvendor model’s objective is to bet an amount that
correctly balances those opposing forces. To implement the model, we need to identify our
costs and how much demand uncertainty we face. We have already identified our costs, so
the next section focuses on the task of identifying the uncertainty in Hammer 3/2 demand.

11.3 Constructing a Demand Forecast

The newsvendor model balances the cost of ordering too much against the cost of ordering
too little. To do this, we need to understand how much demand uncertainty there is for the
Hammer 3/2, which essentially means we need to be able to answer the following question:

What is the probability demand will be less than or equal to Q units?
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for whatever O value we desire. In short, we need a distribution function. Recall from
statistics, every random variable is defined by its distribution function, F(Q), which is the
probability the outcome of the random variable is O or lower. In this case the random vari-
able is demand for the Hammer 3/2 and the distribution function is

F(Q) = Prob{Demand is less than or equal to O}

For convenience, we refer to the distribution function, F(Q), as our demand forecast
because it gives us a complete picture of the demand uncertainty we face. The objective
of this section is to explain how we can use a combination of intuition and data analysis to
construct our demand forecast.

Distribution functions come in two forms. Discrete distribution functions can be defined
in the form of a table: There is a set of possible outcomes and each possible outcome has a
probability associated with it. The following is an example of a simple discrete distribution
function with three possible outcomes:

Q FQ)
2,200 0.25
3,200 0.75
4,200 1.00

The Poisson distribution is an example of a discrete distribution function that we will
use extensively. With continuous distribution functions there are an unlimited number of
possible outcomes. Both the exponential and the normal are continuous distribution func-
tions. They are defined with one or two parameters. For example, the normal distribution is
defined by two parameters: its mean and its standard deviation. We use u to represent the
mean of the distribution and o to represent the standard deviation. (u is the Greek letter mu
and o is the Greek letter sigma.) This notation for the mean and the standard deviation is
quite common, so we adopt it here.

In some situations, a discrete distribution function provides the best representation of
demand, whereas in other situations a continuous distribution function works best. Hence,
we work with both types of distribution functions.

Now that we know two ways to express our demand forecast, let’s turn to the complex
task of actually creating the forecast. As mentioned in Section 11.1, the Hammer 3/2 has
been redesigned for the upcoming spring season. As a result, actual sales in the previous
season might not be a good guide for expected demand in the upcoming season. In addi-
tion to the product redesign, factors that could influence expected demand include the
pricing and marketing strategy for the upcoming season, changes in fashion, changes in
the economy (e.g., is demand moving toward higher or lower price points), changes in
technology, and overall trends for the sport. To account for all of these factors, O’Neill
surveyed the opinion of a number of individuals in the organization on their personal
demand forecast for the Hammer 3/2. The survey’s results were averaged to obtain the
initial 3,200-unit forecast. This represents the “intuition” portion of our demand fore-
cast. Now we need to analyze O’Neill’s available data to further develop the demand
forecast.

Table 11.1 presents data from O’Neill’s previous spring season with wetsuits in the
surf category. Notice that the data include both the original forecasts for each product as
well as its actual demand. The original forecast was developed in a process that was com-
parable to the one that led to the 3,200-unit forecast for the Hammer 3/2 for this season.
For example, the forecast for the Hammer 3/2 in the previous season was 1,300 units, but
actual demand was 1,696 units.
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Product Description Forecast Actual Demand Error* A/F Ratio**
JR ZEN FL 3/2 90 140 —50 1.56
EPIC 5/3 W/HD 120 83 37 0.69
JR ZEN 3/2 140 143 =3 1.02
WMS ZEN-ZIP 4/3 170 163 7 0.96
HEATWAVE 3/2 170 212 —42 1.25
JREPIC 3/2 180 175 5 0.97
WMS ZEN 3/2 180 195 =15 1.08
ZEN-ZIP 5/4/3 W/HOOD 270 317 —47 1.17
WMS EPIC 5/3 W/HD 320 369 —49 1.15
EVO 3/2 380 587 —207 1.54
JR EPIC 4/3 380 571 =191 1.50
WMS EPIC 2MM FULL 390 311 79 0.80
HEATWAVE 4/3 430 274 156 0.64
ZEN 4/3 430 239 191 0.56
EVO 4/3 440 623 -183 1.42
ZEN FL 3/2 450 365 85 0.81
HEAT 4/3 460 450 10 0.98
ZEN-ZIP 2MM FULL 470 116 354 0.25
HEAT 3/2 500 635 -135 1.27
WMS EPIC 3/2 610 830 -220 1.36
WMS ELITE 3/2 650 364 286 0.56
ZEN-ZIP 3/2 660 788 =123 1.19
ZEN 2MM S/S FULL 680 453 227 0.67
EPIC 2MM S/S FULL 740 607 133 0.82
EPIC 4/3 1,020 732 288 0.72
WMS EPIC 4/3 1,060 1,552 —492 1.46
JR HAMMER 3/2 1,220 721 499 0.59
HAMMER 3/2 1,300 1,696 —396 1.30
HAMMER S/S FULL 1,490 1,832 —342 1.23
EPIC 3/2 2,190 3,504 -1,314 1.60
ZEN 3/2 3,190 1,195 1,995 0.37
ZEN-ZIP 4/3 3,810 3,289 521 0.86
WMS HAMMER 3/2 FULL 6,490 3,673 2,817 0.57

*Error = Forecast — Actual demand
**A/F ratio = Actual demand divided by Forecast

So how does O’Neill know actual demand for a product that stocks out? For example,
how does O’Neill know that actual demand was 1,696 for last year’s Hammer 3/2 if they
only ordered 1,500 units? Because retailers order via phone or fax, O’Neill can keep track
of each retailer’s initial order, that is, the retailer’s demand before the retailer knows a
product is unavailable. (However, life is not perfect: O’Neill’s phone representatives do
not always record a customer’s initial order into the computer system, so there is even
some uncertainty with that figure. We’ll assume this is a minor issue and not address it in
our analysis.) In other settings, a firm may not be able to know actual demand with that
level of precision. For example, a retailer of O’Neill’s products probably does not get
to observe what demand could be for the Hammer 3/2 once the Hammer is out of stock
at the retailer. However, that retailer would know when during the season the Hammer
stocked out and, hence, could use that information to forecast how many additional units
could have been sold during the remainder of the season. Therefore, even if a firm cannot
directly observe lost sales, a firm should be able to obtain a reasonable estimate for what
demand could have been.
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FIGURE 11.3
Forecasts and Actual
Demand for Surf
Wetsuits from the
Previous Season
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As can be seen from the data, the forecasts ranged from a low of 90 units to a high of
6,490 units. There was also considerable forecast error: O’Neill goofed with the Women’s
Hammer 3/2 Full suit with a forecast nearly 3,000 units above actual demand, while the
forecast for the Epic 3/2 suit was about 1,300 units too low. Figure 11.3 gives a scatter
plot of forecasts and actual demand. If forecasts were perfect, then all of the observations
would lie along the diagonal line.

While the absolute errors for some of the bigger products are dramatic, the forecast
errors for some of the smaller products are also significant. For example, the actual demand
for the Juniors Zen Flat Lock 3/2 suit was more than 150 percent greater than forecast.
This suggests that we should concentrate on the relative forecast errors instead of the abso-
lute forecast errors.

Relative forecast errors can be measured with the A/F ratio:

Actual demand

A/F ratio =
Forecast

An accurate forecast has an A/F ratio = 1, while an A/F ratio above 1 indicates the fore-
cast was too low and an A/F ratio below | indicates the forecast was too high. Table 11.1
displays the A/F ratios for our data in the last column.

Those A/F ratios provide a measure of the forecast accuracy from the previous season.
To illustrate this point, Table 11.2 sorts the data in ascending A/F order. Also included
in the table is each product’s A/F rank in the order and each product’s percentile, the
fraction of products that have that A/F rank or lower. (For example, the product with the
fifth A/F ratio has a percentile of 5/33 = 15.2 percent because it is the fifth product out
of 33 products in the data.) We see from the data that actual demand is less than 80 percent
of the forecast for one-third of the products (the A/F ratio 0.8 has a percentile of 33.3) and
actual demand is greater than 125 percent of the forecast for 27.3 percent of the products
(the A/F ratio 1.25 has a percentile of 72.7).
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;-(ﬁ'tBeI;iE A1/l*] .lfatios for Product Description Forecast  Actual Demand  A/F Ratio* Rank  Percentile**
Surf Wetsuits from ZEN-ZIP 2MM FULL 470 116 0.25 1 3.0
the Previous Spring ZEN 3/2 3,190 1,195 0.37 2 6.1
Season ZEN 4/3 430 239 0.56 3 9.1
WMS ELITE 3/2 650 364 0.56 4 12.1
WMS HAMMER 3/2 FULL 6,490 3,673 0.57 5 15.2
JR HAMMER 3/2 1,220 721 0.59 6 18.2
HEATWAVE 4/3 430 274 0.64 7 21.2
ZEN 2MM S/S FULL 680 453 0.67 8 24.2
EPIC 5/3 W/HD 120 83 0.69 9 27.3
EPIC 4/3 1,020 732 0.72 10 30.3
WMS EPIC 2MM FULL 390 311 0.80 11 33.3
ZEN FL 3/2 450 365 0.81 12 36.4
EPIC 2MM S/S FULL 740 607 0.82 13 39.4
ZEN-ZIP 4/3 3,810 3,289 0.86 14 42.4
WMS ZEN-ZIP 4/3 170 163 0.96 15 45.5
JREPIC 3/2 180 175 0.97 16 48.5
HEAT 4/3 460 450 0.98 17 51.5
JR ZEN 3/2 140 143 1.02 18 54.5
WMS ZEN 3/2 180 195 1.08 19 57.6
WMS EPIC 5/3 W/HD 320 369 1.15 20 60.6
ZEN-ZIP 5/4/3 W/HOOD 270 317 117 21 63.6
ZEN-ZIP 3/2 660 788 1.19 22 66.7
HAMMER S/S FULL 1,490 1,832 1.23 23 69.7
HEATWAVE 3/2 170 212 1.25 24 72.7
HEAT 3/2 500 635 1.27 25 75.8
HAMMER 3/2 1,300 1,696 1.30 26 78.8
WMS EPIC 3/2 610 830 1.36 27 81.8
EVO 4/3 440 623 1.42 28 84.8
WMS EPIC 4/3 1,060 1,552 1.46 29 87.9
JR EPIC 4/3 380 571 1.50 30 90.9
EVO 3/2 380 587 1.54 31 93.9
JR ZEN FL 3/2 90 140 1.56 32 97.0
EPIC 3/2 2,190 3,504 1.60 33 100.0

*A/F ratio = Actual demand divided by Forecast
**Percentile = Rank divided by total number of wetsuits (33)

Given that the A/F ratios from the previous season reflect forecast accuracy in the
previous season, maybe the current season’s forecast accuracy will be comparable. For
example, according to Table 11.2, there is a 3.0 percent chance demand is 25 percent of the
forecast. Hence, if this season’s forecast error is similar to last season’s forecast error, then
there is a 3.0 percent chance demand will be 800 units or fewer (0.25 X 3,200 = 800).
Similarly, from Table 11.2 we see there is a 90.9 percent chance demand is 150 percent
of the forecast or lower. Translating that to the Hammer 3/2 means there is a 90.9 percent
chance demand will be 4,800 units or lower (1.5 X 3,200 = 4,800). For each A/F ratio we
observed in our historical data set, we are able to derive the corresponding demand level
for the Hammer 3/2 and the probability we should observe that demand or lower. These
calculations are provided in Table 11.3.

The demand forecast represented by Table 11.3 is a discrete distribution function, but
we will also refer to it as an empirical distribution function (because it is the distribu-
tion function constructed with the empirically observed data). Exhibit 11.1 summarizes the
process of constructing an empirical distribution function.
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A PROCESS FOR USING HISTORICAL A/F RATIOS TO CONSTRUCT AN EMPIRICAL
DISTRIBUTION FUNCTION

Step 1. Assemble a data set of products for which the forecasting task is comparable to
the product of interest. In other words, the data set should include products that
you expect would have similar forecast error to the product of interest. (They
may or may not be similar products.) The data should include an initial forecast of
demand and the actual demand for each item. We also need an initial forecast for
the product for the upcoming season. Your data table should be similar in form
to Table 11.1.

Step 2. Evaluate the A/F ratio for each product in the data set.

Step 3. Sort the data in ascending A/F ratio order and rank the items from 1 to N, where
N is the number of items in the data set. (See Table 11.2.)

Step 4. There are N items in the empirical distribution function. The quantity of the ith
item equals the initial forecast times the A/F ratio of the ith item in the sorted
data set. The probability of the ith item equals i/N. (See Table 11.3.)

An attractive feature of the empirical distribution function in Table 11.3 is that it reflects
our historical forecasting capability. A disadvantage of this demand forecast is that it pre-
dicts only a limited number of possible outcomes. For example, according to the table, it is
possible that demand for the Hammer 3/2 will be 800 or 1,184 units, but 1,000 units is not
possible. Hence, it can be desirable to fit a continuous distribution function to the data so
that a broader range of outcomes are possible.

As an alternative to the empirical distribution function, let’s use the well-known nor-
mal distribution. Given that there are an infinite number of potential normal distributions
(essentially any mean and standard deviation combination), our challenge is to find a nor-
mal distribution that fits our data in Table 11.2.

Take the definition of the A/F ratio and rearrange terms to get

Actual demand = A/F ratio X Forecast

For the Hammer 3/2, the forecast is 3,200 units. Note that the forecast is not ran-
dom, but the A/F ratio is random. Hence, the randomness in actual demand is directly

A/F Ratio Q FQ) A/F Ratio Q FQ) A/F Ratio Q F(Q)
0.25 800 0.0303 0.81 2,592 0.3636 1.23 3,936 0.6970
0.37 1,184 0.0606 0.82 2,624 0.3939 1.25 4,000 0.7273
0.56 1,792 0.0909 0.86 2,752 0.4242 1.27 4,064 0.7576
0.56 1,792 0.1212 0.96 3,072 0.4545 1.30 4,160 0.7879
0.57 1,824 0.1515 0.97 3,104 0.4848 1.36 4,352 0.8182
0.59 1,888 0.1818 0.98 3,136 0.5152 1.42 4,544 0.8485
0.64 2,048 0.2121 1.02 3,264 0.5455 1.46 4,672 0.8788
0.67 2,144  0.2424 1.08 3,456 0.5758 1.50 4,800 0.9091
0.69 2,208 0.2727 1.15 3,680 0.6061 1.54 4,928 0.9394
0.72 2,304 0.3030 1.17 3,744 0.6364 1.56 4,992  0.9697
0.80 2,560 0.3333 1.19 3,808 0.6667 1.60 5,120 1.0000

O = A/F ratio times the initial sales forecast, 3,200 units
F(Q) = Probability demand is less than or equal to the quantity O
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related to the randomness in the A/F ratio. Using standard results from statistics and
the above equation, we get the following results:

Expected actual demand = Expected A/F ratio X Forecast
and
Standard deviation of demand = Standard deviation of A/F ratios X Forecast

Expected actual demand, or expected demand for short, is what we should choose
for the mean for our normal distribution, w. The average A/F ratio in Table 11.2 is
0.9976. Therefore, expected demand for the Hammer 3/2 in the upcoming season is
0.9976 X 3,200 = 3,192 units. In other words, if the initial forecast is 3,200 units and the
future A/F ratios are comparable to the past A/F ratios, then the mean of actual demand is
3,192 units. So let’s choose 3,192 units as our mean of the normal distribution.

This decision may raise some eyebrows: If our initial forecast is 3,200 units, why
do we not instead choose 3,200 as the mean of the normal distribution? Because 3,192
is so close to 3,200, assigning 3,200 as the mean probably would lead to a good order
quantity as well. However, suppose the average A/F ratio were 0.90, that is, on average,
actual demand is 90 percent of the forecast. It is quite common for people to have overly
optimistic forecasts, so an average A/F ratio of 0.90 is possible. In that case, expected
actual demand would only be 0.90 X 3,200 = 2,880. Because we want to choose a nor-
mal distribution that represents actual demand, in that situation it would be better to
choose a mean of 2,880 even though our initial forecast is 3,200. (Novice golfers some-
times adopt an analogous strategy. If a golfer consistently hooks the ball to the right on
her drives, then she should aim to the left of the flag. In an ideal world, there would be
no hook to her shot nor a bias in the forecast. But if the data say there is a hook, then
it should not be ignored. Of course, the golfer and the forecaster also should work on
eliminating the bias.)

Now that we have a mean for our normal distribution, we need a standard deviation.
The second equation above tells us that the standard deviation of actual demand equals the
standard deviation of the A/F ratios times the forecast. The standard deviation of the A/F
ratios in Table 11.2 is 0.369. (Use the “stdev()” function in Excel.) So the standard devia-
tion of actual demand is the standard deviation of the A/F ratios times the initial forecast:
0.369 X 3,200 = 1,181. Hence, for the second way to express our demand forecast for the
Hammer 3/2, we can use a normal distribution with a mean of 3,192 and a standard devia-
tion of 1,181. See Exhibit 11.2 for a summary of the process of choosing a mean and a
standard deviation for a normal distribution forecast.

With a discrete distribution function, it is easy to find F(Q) because we need only look
it up in a table. But now we need to find F(Q) with a normal distribution demand forecast.
There are two ways this can be done. The first way is to use spreadsheet software. For
example, in Excel use the function Normdist(Q, 3192, 1181, 1). The second way, which
does not require a computer, is to use the Standard Normal Distribution Function Table in
Appendix B.

The standard normal is a particular normal distribution: its mean is 0 and its standard
deviation is 1. To introduce another piece of common Greek notation, let ®(z) be the dis-
tribution function of the standard normal. Even though the standard normal is a continuous
distribution, it can be “chopped up” into pieces to make it into a discrete distribution. The
Standard Normal Distribution Function Table is exactly that; that is, it is the discrete ver-
sion of the standard normal distribution. The full table is in Appendix B, but Table 11.4
reproduces a portion of the table.
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Exhibit 11.2

TABLE 11.4

A Portion of the
Standard Normal
Distribution Function
Table, d(z)

230

A PROCESS FOR USING HISTORICAL A/F RATIOS TO CHOOSE A MEAN
AND STANDARD DEVIATION FOR A NORMAL DISTRIBUTION FORECAST

Step 1. Assemble a data set of products for which the forecasting task is comparable to
the product of interest. In other words, the data set should include products that
you expect would have similar forecast error to the product of interest. (They
may or may not be similar products.) The data should include an initial forecast
of demand and the actual demand. We also need an initial forecast for the item
for the upcoming season.

Step 2. Evaluate the A/F ratio for each product in the data set. Evaluate the average of the
A/F ratios (that is, the expected A/F ratio) and the standard deviation of the A/F ratios.
(In Excel use the average() and stdev() functions.)

Step 3. The mean and standard deviation of the normal distribution that we will use as
the forecast can now be evaluated with the following two equations:

Expected demand = Expected A/F ratio X Forecast
Standard deviation of demand = Standard deviation of A/F ratios X Forecast

where the forecast in the above equations is the initial forecast.

Although the Standard Normal Distribution Function Table is surely a table, its format
makes it somewhat tricky to read. For example, suppose you wanted to know the probability
that the outcome of a standard normal is 0.51 or lower. We are looking for the value of ®(z)
with z = 0.51. To find that value, pick the row and column in the table such that the first num-
ber in the row and the first number in the column add up to the z value you seek. Withz = 0.51,
we are looking for the row that begins with 0.50 and the column that begins with 0.01, because
the sum of those two values equals 0.51. The intersection of that row with that column gives
®(z); from Table 11.4 we see that @(0.51) = 0.6950. Therefore, there is a 69.5 percent prob-
ability the outcome of a standard normal is 0.51 or lower.

But it is unlikely that our demand forecast will be a standard normal distribution. So how
can we use the standard normal to find F(Q); that is, the probability demand will be O or
lower given that our demand forecast is some other normal distribution? The answer is that
we convert the quantity we are interested in, O, into an equivalent quantity for the standard
normal. In other words, we find a z such that F(Q) = ®(z); that is, the probability demand
is less than or equal to Q is the same as the probability the outcome of a standard normal is
z or lower. That z is called the z-statistic. Once we have the appropriate z-statistics, we then
just look up ®(z) in the Standard Normal Distribution Function Table to get our answer.

To convert Q into the equivalent z-statistic, use the following equation:

_9—p
g

z

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
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Exhibit 11.3

A PROCESS FOR EVALUATING THE PROBABILITY DEMAND IS EITHER LESS THAN
OR EQUAL TO Q (WHICH IS F(Q)) OR MORE THAN Q (WHICH IS 1 — F(Q))

If the demand forecast is a normal distribution with mean u and standard deviation o, then
follow steps A and B:

A. Evaluate the z-statistic that corresponds to Q:

B. The probability demand is less than or equal to Q is ®(2). With Excel ®(2) can be evalu-
ated with the function Normsdist(2); otherwise, look up ®(2) in the Standard Normal
Distribution Function Table in Appendix B. If you want the probability demand is greater
than Q, then your answer is 1 — ®(2).

If the demand forecast is a discrete distribution function table (as with an empirical distribu-
tion function), then look up FQ), which is the probability demand is less than or equal to
Q. If you want the probability demand is greater than Q, then the answer is 1 — KQ).

For example, suppose we are interested in the probability that demand for the Hammer 3/2
will be 4,000 units or lower, that is, Q = 4,000. With a normal distribution that has mean
3,192 and standard deviation 1,181, the quantity O = 4,000 has a z-statistic of

_ 4,000 — 3,192
1,181

Therefore, the probability demand for the Hammer 3/2 is 4,000 units or lower is ®(0.68); that
is, it is the same as the probability the outcome of a standard normal is 0.68 or lower. Accord-
ing to the Standard Normal Distribution Function Table (see Table 11.4 for convenience),
@(0.68) = 0.7517. In other words, there is just over a 75 percent probability that demand for
the Hammer 3/2 will be 4,000 or fewer units. Exhibit 11.3 summarizes the process of finding
the probability demand will be less than or equal to some Q (or more than Q).

In the remainder of this chapter, we will work with both demand forecasts, the discrete/
empirical distribution, and the normal distribution. We study the empirical distribution
function because the techniques we apply to it extend exactly to any other discrete dis-
tribution function, such as the Poisson or the negative binomial. We study the normal
because it is a widely applied distribution (rightfully so). Furthermore, the techniques used
with the normal distribution are actually quite similar to those used with the empirical
distribution.

You may recall that it has been O’Neill’s experience that demand deviated by more than
25 percent from their initial forecast for 50 percent of their products. We can now check
whether that experience is consistent with our normal distribution forecast for the Hammer
3/2. Our initial forecast is 3,200 units. So a deviation of 25 percent or more implies demand
is either less than 2,400 units or more than 4,000 units. The z-statistic for QO = 2,400 is
z = (2400 — 3192)/1181 = —0.67, and from the Standard Normal Distribution Function
Table, ®(—0.67) = 0.2514. (Find the row with —0.60 and the column with —0.07.) If
there is a 25.14 percent probability demand is less than 2,400 units and a 75.17 percent
probability that demand is less than 4,000 units, then there is a 75.17 —25.14 = 50.03
percent probability that demand is between 2,400 and 4,000 units. Hence, O’Neill’s ini-
tial assertion regarding forecast accuracy is consistent with our normal distribution fore-
cast of demand.

= 0.68

231
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To summarize, the objective in this section is to develop a detailed demand forecast. A
single “point forecast” (e.g., 3,200 units) is not sufficient. We need to quantify the amount
of variability that may occur about our forecast; that is, we need a distribution function.
We first constructed a discrete distribution function table with the empirical observed his-
torical demand (Table 11.3) and then we fit a normal distribution to our historical forecast
performance data.

Now that we can evaluate the distribution function of Hammer 3/2 demand, we can see
how well our chosen normal distribution fits our data. Figure 11.4 combines the empirical
distribution function in Table 11.3 with the normal distribution function. The figure shows
that they match closely, which suggests that they are roughly equivalent. Furthermore, it
suggests that the normal distribution is a good representation of our actual demand.

11.4 The Expected Profit-Maximizing Order Quantity

The next step after assembling all of our inputs (selling price, cost, salvage value, and
demand forecast) is to choose an order quantity. The first part in that process is to decide
what is our objective. A natural objective is to choose our production/procurement quan-
tity to maximize our expected profit. This section explains how to do this. Section 11.6
considers other possible objectives.

Before revealing the actual procedure for choosing an order quantity to maximize
expected profit, it is helpful to explore the intuition behind the solution. Consider again
O’Neill’s Hammer 3/2 ordering decision. Should we order one unit? If we do, then there is
a very good chance we will sell the unit: With a forecast of 3,192 units, it is likely we sell
at least one unit. If we sell the unit, then the gain from that unit equals $180 — $110 = $70
(the selling price minus the purchase cost). The expected gain from the first unit, which
equals the probability of selling the first unit times the gain from the first unit, is then very
close to $70. However, there is also a slight chance that we do not sell the first unit, in
which case we incur a loss of $110 — $90 = $20. (The loss equals the difference between
the purchase cost and the discount price.) But since the probability we do not sell that unit
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is quite small, the expected loss on the first unit is nearly $0. Given that the expected gain
from the first unit clearly exceeds the expected loss, the profit from ordering that unit is
positive. In this case it is a good bet to order at least one unit.

After deciding whether to order one unit, we can now consider whether we should
order two units, and then three units, and so forth. Two things happen as we continue this
process. First, the probability that we sell the unit we are considering decreases, thereby
reducing the expected gain from that unit. Second, the probability we do not sell that unit
increases, thereby increasing the expected loss from that unit. Now imagine we order the
6,400th unit. The probability of selling that unit is quite low, so the expected gain from that
unit is nearly zero. In contrast, the probability of not selling that unit is quite high, so the
expected loss is nearly $20 on that unit. Clearly it makes no sense to order the 6,400th unit.
This pattern is illustrated in Figure 11.5. We see that from some unit just above 4,000 the
expected gain on that unit equals its expected loss.

Let’s formalize this intuition some more. In the newsvendor model, there is a trade-off
between ordering too much (which could lead to costly leftover inventory) and ordering
too little (which could lead to the opportunity cost of lost sales). To balance these forces, it
is useful to think in terms of a cost for ordering too much and a cost for ordering too little.
Maximizing expected profit is equivalent to minimizing those costs. To be specific, let C,
be the overage cost, the loss incurred when a unit is ordered but not sold. In other words, the
overage cost is the per-unit cost of overordering. For the Hammer 3/2, we have C, = 20.

In contrast to C,, let C, be the underage cost, the opportunity cost of not ordering a unit
that could have been sold. The following is an equivalent definition for C,: C, is the gain
from selling a unit. In other words, the underage cost is the per-unit opportunity cost of
underordering. For the Hammer 3/2, C,, = 70. Note that the overage and underage costs are
defined for a single unit. In other words, C, is not the total cost of all leftover inventory;
instead, C,, is the cost per unit of leftover inventory. The reason for defining C, and C,, for a
single unit is simple: We don’t know how many units will be left over in inventory, or how
many units of demand will be lost, but we do know the cost of each unit left in inventory
and the opportunity cost of each lost sale.

Expected Gain
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Now that we have defined the overage and underage costs, we need to choose Q to
strike the balance between them that results in the maximum expected profit. Based on our
previous reasoning, we should keep ordering additional units until the expected loss equals
the expected gain.

The expected loss on a unit is the cost of having the unit in inventory (the overage cost)
times the probability it is left in inventory. For the Oth unit, that probability is F(Q): It
is left in inventory if demand is less than O.” Therefore, the expected loss is C, X F(Q).
The expected gain on a unit is the benefit of selling a unit (the underage cost) times
the probability the unit is sold, which in this case occurs if demand is greater than Q.
The probability demand is greater than Q is (1 — F(Q)). Therefore, the expected gain is
C, X (1= F(Q)).

It remains to find the order quantity Q that sets the expected loss on the Oth unit equal
to the expected gain on the Oth unit:

C X F(Q) = C, X (1= F(Q)

If we rearrange terms in the above equation, we get

FO - e (-

The profit-maximizing order quantity is the order quantity that satisfies the above equa-
tion. If you are familiar with calculus and would like to see a more mathematically rigor-
ous derivation of the optimal order quantity, see Appendix D.

So how can we use equation (11.1) to actually find Q? Let’s begin by just reading it.
It says that the order quantity that maximizes expected profit is the order quantity Q such
that demand is less than or equal to Q with probability C,/(C, + C,). That ratio with the
underage and overage costs is called the critical ratio. We now have an explanation for
why our forecast must be a distribution function. To choose the profit-maximizing order
quantity, we need to find the quantity such that demand will be less than that quantity with
a particular probability (the critical ratio). The mean alone (i.e., just a sales forecast) is
insufficient to do that task.

Let’s begin with the easy part. We know for the Hammer 3/2 that C, = 70 and C, = 20,
so the critical ratio is

C, 70

= = 0.7778
C,+C, 20+70

We are making progress, but now comes the tricky part: We need to find the order quantity
O such that there is a 77.78 percent probability that demand is O or lower.

Suppose we use the discrete distribution function from Table 11.3 as our demand fore-
cast. Reading down the table, we see that F(4,064) = 0.7576 and F(4,160) = 0.7879. There-
fore, the probability we are seeking, 0.7778, falls between two entries in the table, one that

2That statement might bother you. You might recall that A(Q) is the probability demand is Q or
lower. If demand is exactly Q, then the Qth unit will not be left in inventory. Hence, you might argue
that it is more precise to say that (Q — 1) is the probability the Qth unit is left in inventory. However,
the normal distribution assumes demand can be any value, including values that are not integers.

If you are willing to divide each demand into essentially an infinite number of fractional pieces, as

is assumed by the normal, then Q) is indeed the probability there is leftover inventory. With the
empirical distribution function, we get the same answer, but it requires a slightly more complex logic.
If you are curious about the details, see Appendix D.
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corresponds to an order quantity of 4,064 units and the other that corresponds to 4,160 units.
What should we do? The rule is simple, which we will call the round-up rule:

Round-up rule.  'Whenever you are looking up a target value in a table and the target
value falls between two entries, choose the entry that leads to the
larger order quantity.

In this case, the larger quantity is 4,160 units. So if we use the discrete distribution func-
tion as our demand forecast, then the profit-maximizing order quantity is 4,160 units.

At this point you might not be entirely comfortable with the round-up rule. What if the
critical ratio were 0.7577, which is just a hair above 0.7576? Your intuition might suggest
ordering the lower entry value, 4,064 units. At the very least, maybe we should extrapolate. For
example, suppose the critical ratio were 0.7728, which is half-way between 0.7576 and 0.7879.
Extrapolation suggests ordering the average of the two quantities, 4,112 units. Nevertheless,
there are two reasons why we should stick with the round-up rule. First, if the two quantities
are reasonably close together (as they are here), then the difference in expected profit among
these different order quantities is generally quite small. Second, in some cases extrapolation is
not even feasible. For example, suppose the two quantities were 4 units and 5 units. It makes
no sense to order 4.5 units. In those cases it can be shown that the higher order quantity always
generates a higher expected profit. Thus, stick with the round-up rule and you will be fine. (If
you really need to know more why the round-up rule is correct, see Appendix D.)

So we have identified the optimal order quantity if the discrete distribution function is our
demand forecast. Let’s next consider what the optimal order is if the normal distribution is our
demand forecast. This process with the normal distribution is quite similar to the process with
a discrete distribution function. The only difference is that it has one additional step.

First, let’s find the optimal order quantity if the standard normal is our demand fore-
cast. Because the Standard Normal Distribution Function Table is a table like any other
discrete distribution function, we already know how to do this. Just as before, we need to
find the z in the table that satisfies the following equation: ®(z) = C,/(C, + C,), which
is ®(z) = 0.7778 for the Hammer 3/2. In the table we see that ®(0.76) = 0.7764 and
®(0.77) = 0.7794, so we use the round-up rule and pick the larger z value, 0.77. So the
optimal order quantity is 0.77 if the demand forecast is a standard normal.

Now that we have an answer for the standard normal distribution, we need to convert that
answer into an order quantity for the actual normal distribution. (This is the additional step.)

That conversion is done with the following equation:

O=p+zXo
where "

Mean of the normal distribution
Standard deviation of the normal distribution

o

With the Hammer 3/2 we use the above to obtain O = 3,192 + 0.77 X 1,181 = 4,101.
Exhibit 11.4 summarizes how to find the optimal order quantity.

An alternative to the process we just described is to use Excel to find the optimal order
quantity. Just as before, the first step is to find the optimal order quantity for a standard
normal via Excel’s Normsinv function:

z = Normsinv(Critical ratio)

where the critical ratio is C,/(C, + C,). The second step is the same as before: Convert
z into Q with the equation Q = w + z X ¢. Due to rounding issues, the Excel process
might lead to a slightly different order quantity. For example, in Excel we get Normsinv
(7/9) = 0.7647 and then O = 3,192 + 0.7647 X 1,181 = 4,095.12. The small difference
between an order quantity of 4,101 and 4,095 should not matter much.
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A PROCEDURE TO FIND THE ORDER QUANTITY THAT MAXIMIZES EXPECTED PROFIT
IN THE NEWSVENDOR MODEL

_~u
C, +C,
cost is C, = Price — Cost and the overage cost is C, = Cost — Salvage value.

Step 1: Evaluate the critical ratio: In the case of the Hammer 3/2, the underage

Step 2: If the demand forecast is a normal distribution with mean w and standard deviation
o, then follow steps A and B:

A. Find the optimal order quantity if demand had a standard normal distribution.
One method to achieve this is to find the z value in the Standard Normal Dis-
tribution Function Table such that

Gy

d(z) = —4—
@) C, +C,

(If the critical ratio value does not exist in the table, then find the two z values that
it falls between. For example, the critical ratio 0.7778 falls between z = 0.76 and
z = 0.77. Then choose the larger of those two z values.) A second method is to
use the Excel function Normsinv: z = Normsinv(Critical ratio).

B. Convert z into the order quantity that maximizes expected profit, Q:
Q=pt+zXo

If the demand forecast is a discrete distribution function table (as with an empirical

distribution function), then find the quantity in the table such that Q) = Critical

ratio. If the critical ratio falls between two entries in the table, then choose the

entry with the larger quantity.

To summarize this section, we determined the key equation (11.1) for finding the order
quantity that maximizes expected profit: With the profit-maximizing order quantity, the
critical ratio is the probability demand will be that quantity or lower. Using the discrete
distribution function table (Table 11.3), we found our target probability (the critical ratio)
fell between two entries in the table. We used the round-up rule to choose the larger quan-
tity. We also evaluated the optimal order quantity if our demand forecast is a normal dis-
tribution: Look up in the Standard Normal Distribution Function Table the optimal order
quantity z as if demand follows a standard normal distribution and then convert z into the
order quantity for the actual normal distribution. The first step in that process is identi-
cal to the process we use with the discrete distribution function, that is, look up z in the
Standard Normal Distribution Function Table just as you would look up Q in the discrete
distribution function table. The second step (converting z into Q) is specific to the normal
distribution.

11.5 Performance Measures

236

The previous section showed us how to find the order quantity that maximizes our expected
profit. This section shows us how to evaluate a number of relevant performance measures.
As Figure 11.6 indicates, these performance measures are closely related. For example,
to evaluate expected leftover inventory, you first evaluate expected lost sales (which has
up to three inputs: the order quantity, the loss function table, and the standard deviation
of demand), then expected sales (which has two inputs: expected lost sales and expected
demand), and then expected leftover inventory (which has two inputs: expected sales and
the order quantity).
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These performance measures can be evaluated for any order quantity, not just the
expected profit-maximizing order quantity. To emphasize this point, this section evaluates
these performance measures assuming 3,500 Hammer 3/2s are ordered. See Table 12.1 for
the evaluation of these measures with the optimal order quantity, 4,101 units.

Expected Lost Sales

Let’s begin with expected lost sales, which is the expected number of units demand (a ran-
dom variable) exceeds the order quantity (a fixed threshold). (Because order quantities are
measured in physical units, sales and lost sales are measured in physical units as well, not
in monetary units.) For example, if we order 3,500 units of the Hammer but demand could
have been high enough to sell 3,821 units, then we would lose 3,821 — 3,500 = 321 units
of demand. Expected lost sales is the amount of demand that is not satisfied, which should
be of interest to a manager even though the opportunity cost of lost sales does not show up
explicitly on any standard accounting document.

Note that we are interested in the expected lost sales. Demand can be less than our
order quantity, in which case lost sales is zero, or demand can exceed our order quantity,
in which case lost sales is positive. Expected lost sales is the average of all of those events
(the cases with no lost sales and all cases with positive lost sales).

How do we find expected lost sales for any given order quantity? Let’s first suppose the dis-
crete distribution function in Table 11.3 is our demand forecast. Table 11.5 replicates Table 11.3
and adds a column with the loss function, L(Q), for each order quantity. The loss function of a
random variable is the expected amount by which the outcome of the random variable exceeds
a fixed threshold value, such as Q. For example, if O’Neill orders 2,592 Hammer 3/2s, then,
according to Table 11.5, demand exceeds the order quantity by 841 units on average. In other
words, O’Neill’s expected lost sales is 841 units. To summarize, expected lost sales with an
order quantity Q is exactly equal to the loss function of the demand distribution evaluated at Q.
See the Statistics Tutorial in Appendix A for a more detailed description of the loss function.
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Q FQ) L) Q FQ) L@ Q FQ) L)
800 0.0303 2392 2,592 0.3636 841 3,936 0.6970 190
1,184 0.0606 2020 2,624 0.3939 821 4,000 0.7273 170
1,792 0.0909 1448 2,752 0.4242 743 4,064 0.7576 153
1,792 0.1212 1448 3,072 0.4545 559 4,160 0.7879 130
1,824 0.1515 1420 3,104 0.4848 542 4,352 0.8182 89
1,888 0.1818 1366 3,136 0.5152 525 4,544 0.8485 54
2,048 0.2121 1235 3,264 0.5455 463 4,672 0.8788 35
2,144  0.2424 1160 3,456 0.5758 376 4,800 0.9091 19
2,208 0.2727 1111 3,680 0.6061 281 4,928 0.9394 8
2,304 0.3030 1041 3,744 0.6364 256 4,992 0.9697 4
2,560 0.3333 863 3,808 0.6667 232 5,120 1.0000 0

O = Order quantity
F(Q) = Probability demand is less than or equal to the order quantity
L(Q) = Loss function (the expected amount demand exceeds Q)

Table 11.5 is quite convenient because it provides us with the expected lost sales with
little effort. In fact, with any discrete distribution function, we need a loss function table
similar to Table 11.5. Appendix B provides the loss function for the Poisson distribution
with different means. Appendix C provides a procedure to evaluate the loss function for
any discrete distribution function. We relegate this procedure to the appendix because it
is computationally burdensome; that is, it is the kind of calculation you want to do on a
spreadsheet rather than by hand.

Now let’s turn to the evaluation of the expected lost sales if our demand forecast for the
Hammer 3/2 is the normal distribution with mean 3,192 and standard deviation 1,181. That
process is actually not much different than what we have already done: First we look up
in the Standard Normal Loss Function Table the expected lost sales for the z-statistic that
corresponds to our quantity and then we convert the standard normal expected lost sales
into the expected lost sales for our actual normal distribution.

Assume 3,500 Hammer 3/2s are ordered. First find the z-statistic that corresponds to
0 = 3,500:

_ O—p _ 3,500 — 3,192

.= = 0.26
o 1,181

Now use the Standard Normal Loss Function Table in Appendix B to look up the
expected lost sales if the order quantity is z = 0.26; L(0.26) = 0.2824. To convert the stan-
dard normal expected lost sales into the expected lost sales with our actual normal distribu-
tion, use the following equation:

Expected lost sales = o X L(z)

where o = Standard deviation of the normal distribution representing demand

L(z) = Loss function with the standard normal distribution

Therefore, with 3,500 Hammer 3/2s we can expect to lose 1,181 X 0.2824 = 334 units of
demand.

If you wish to avoid the Standard Normal Loss Function Table, then you can evaluate
the loss function for the normal distribution in Excel with the following equation:

L(z) = Normdist(z,0,1,0) — z*(1 — Normsdist(z))
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Exhibit 11.5

EXPECTED LOST SALES EVALUATION PROCEDURE

If the demand forecast is a normal distribution with mean . and standard deviation o, then
follow steps A through D:
A. Evaluate the z-statistic for the order quantity Q: z = Q- p .

B. Use the z-statistic to look up in the Standard Normal Loss Function Table the expected
lost sales, L(z), with the standard normal distribution.

C. Expected lost sales = o X L(2).

D. With Excel, expected lost sales can be evaluated with the following equation:

Expected lost sales = o*(Normdist(z,0,1,0) — z*(1 — Normsdist(z)))

If the demand forecast is a discrete distribution function table (as with an empirical dis-
tribution function), then expected lost sales equals the loss function for the chosen order
quantity, L(Q). If the table does not include the loss function, then see Appendix C for how
to evaluate it.

(If you are curious about the derivation of the above function, see Appendix D.) The
process of evaluating expected lost sales for both a discrete distribution and the normal
distribution is summarized in Exhibit 11.5.

Expected Sales

Each unit of demand results in either a sale or a lost sale, so
Expected sales + Expected lost sales = Expected demand

We already know expected demand: It is the mean of the demand distribution, w. Rear-
range terms in the above equation and we get

Expected sales = u — Expected lost sales

Therefore, the procedure to evaluate expected sales begins by evaluating expected lost
sales. See Exhibit 11.6 for a summary of this procedure.

Let’s evaluate expected sales if 3,500 Hammers are ordered and the normal distribution
is our demand forecast. We already evaluated expected lost sales to be 334 units. There-
fore, Expected sales = 3,192 — 334 = 2,858 units.

Notice that expected sales is always less than expected demand (because expected lost
sales is never negative). In other words, you can never expect to sell your demand forecast:
While you might get lucky and sell more than the mean demand, on average you cannot
sell more than the mean demand.

Expected Leftover Inventory

Expected leftover inventory is the average amount that demand (a random variable) is less
than the order quantity (a fixed threshold). (In contrast, expected lost sales is the average
amount by which demand exceeds the order quantity.)

The following equation is true because every unit purchased is either sold or left over in
inventory at the end of the season:

Expected sales + Expected leftover inventory = Q
239
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Exhibit 11.6

EXPECTED SALES, EXPECTED LEFTOVER INVENTORY, EXPECTED PROFIT, AND FILL
RATE EVALUATION PROCEDURES

Step 1. Evaluate expected lost sales (see Exhibit 11.5). All of these performance mea-
sures can be evaluated directly in terms of expected lost sales and several known
parameters: u = Expected demand; Q = Order quantity; Price; Cost; and Salvage
value.

Step 2. Use the following equations to evaluate the performance measure of interest.

Expected sales = u — Expected lost sales
Expected leftover inventory = Q — Expected sales
= Q — p + Expected lost sales
Expected profit = [(Price — Cost) X Expected sales]
— [(Cost — Salvage value) X Expected leftover inventory]
Fill rate = Expected sales/u = 1 — (Expected lost sales/ )

Rearrange the above equation to obtain
Expected leftover inventory = Q — Expected sales

We know the quantity purchased, Q. Therefore, we can easily evaluate expected leftover
inventory once we have evaluated expected sales. See Exhibit 11.6 for a summary of this
procedure.

If the demand forecast is a normal distribution and 3,500 Hammers are ordered, then
expected leftover inventory is 3,500 — 2,858 = 642 units because we evaluated expected
sales to be 2,858 units.

It may seem surprising that expected leftover inventory and expected lost sales can both
be positive. While in any particular season there is either leftover inventory or lost sales,
but not both, we are interested in the expectation of those measures over all possible out-
comes. Therefore, each expectation can be positive.

Expected Profit

We earn Price — Cost on each unit sold and we lose Cost — Salvage value on each unit we
do not sell, so our expected profit is

Expected profit = [(Price — Cost) X Expected sales]
—[(Cost — Salvage value) X Expected leftover inventory]
Therefore, we can evaluate expected profit after we have evaluated expected sales and
leftover inventory. See Exhibit 11.6 for a summary of this procedure.

With an order quantity of 3,500 units and a normal distribution demand forecast, the
expected profit for the Hammer 3/2 is

Expected profit = ($70 X 2,858) — (520 x 642) = $187,220

Fill Rate
The fill rate is the percentage of demand that is satisfied:
Fill rate = Expected sales _ Expected sales
Expected demand w

240
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Exhibit 11.7

IN-STOCK PROBABILITY AND STOCKOUT PROBABILITY EVALUATION

If the demand forecast is a normal distribution with mean n and standard deviation o, then

follow steps A through D:

A. Evaluate the z-statistic for the order quantity: z = u
(o

B. Use the z-statistic to look up in the Standard Normal Distribution Function Table the
probability the standard normal demand is z or lower, ®(2).

C. In-stock probability = ®(z) and Stockout probability = 1 — ®(2).

D. In Excel, In-stock probability = Normsdist(z) and Stockout probability = 1 — Normsdist(z).

If the demand forecast is a discrete distribution function table (as with an empirical distribu-
tion function), then In-stock probability = F(Q) and Stockout probability = 1 — A(Q), where
F(Q) is the probability demand is Q or lower.

The fill rate is a measure of customer service: The higher the fill rate, the more likely a
customer will find a unit available to purchase. See Exhibit 11.6 for the procedure to eval-
uate the fill rate. With an order of 3,500 Hammer 3/2s and the normal distribution demand
forecast, O’Neill’s fill rate is 2,858/3,192 = 89.5 percent.

In-Stock Probability and Stockout Probability

The fill rate is one measure of customer service, but it is not the only measure of customer
service. The in-stock probability is the probability the firm ends the season having satis-
fied all demand. (Equivalently, the in-stock probability is the probability the firm has stock
available for every customer.) That occurs if demand is less than the order quantity,

In-stock probability = F(Q)

The stockout probability is the probability the firm stocks out for some customer during
the selling season (i.e., a lost sale occurs). Because the firm stocks out if demand exceeds
the order quantity,

Stockout probability = 1 — F(Q)

(The firm either stocks out or it does not, so the stockout probability equals 1 minus the
probability demand is O or lower.) We also can see that the stockout probability and the
in-stock probability are closely related:

Stockout probability = 1 — In-stock probability

See Exhibit 11.7 for a summary of the procedure to evaluate these probabilities. With an
order quantity of 3,500 Hammers, the z-statistic is z = (3,500 — 3,192)/1,181 = 0.26. From
the Standard Normal Distribution Function Table, we find $(0.26) = 0.6026, so the in-
stock probability is 60.26 percent. The stockout probability is 1 —0.6026 = 39.74 percent.

Notice that O’Neill satisfies nearly 90 percent of its demand (the fill rate) with the order
quantity 3,500, but stocks out with nearly a 40 percent probability and only has an in-stock
probability of 60 percent. Figure 11.7 displays the in-stock probability and fill rate for a
wide range of order quantities for the Hammer 3/2, assuming the normal distribution is the
demand forecast.

How is it possible for the in-stock probability to be so low while the fill rate is so high?

The in-stock probability is approximately the fill rate at the very end of the season: It is
241
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FIGURE 11.7
In-Stock Probability
and Fill Rate for the
Hammer 3/2 with a
Normal Distribution
Demand Forecast
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the probability that a customer’s demand can be satisfied at the end of the season. Most
of the customers during the season can be satisfied (resulting in a high fill rate) even if the
poor customer at the end of the season experiences a stockout (resulting in a low in-stock
probability).

This discussion raises the following question: Which is the better measure of customer
service, the fill rate or the in-stock probability? The fill rate is a good measure of average
customer service since it treats each customer as equally important. The in-stock probabil-
ity is a conservative measure of customer service because it is the fill rate when the fill rate
is expected to be at its worst, that is, at the end of the season. Therefore, neither measure
dominates the other in all situations. A catalog retailer’s customers probably do not expect
a high fill rate late in the Christmas season, so a stockout the week before Christmas might
not have a significant long-run impact on customer goodwill. However, a grocery retailer
probably does not want to be out of stock on most items at the end of the day because cer-
tain customers are only able to do their grocery shopping at that time. Therefore, the fill
rate may be more appropriate for the catalog retailer, whereas the in-stock probability may
be more appropriate for the grocery retailer.

11.6 Other Objectives for Choosing an Order Quantity

Maximizing expected profit is surely a reasonable objective for choosing an order quan-
tity, but it is not the only objective. As we saw in the previous section, the expected profit-
maximizing order quantity may generate an unacceptable fill rate or in-stock probability
from the firm’s customer service perspective. This section explains how to determine an
order quantity that satisfies a customer service objective, in terms of either a minimum fill
rate or in-stock probability.

Let’s begin with the objective of choosing an order quantity to achieve a target fill rate.
For example, suppose O’Neill insists that all products have a 99 percent fill rate. In that case,
we need to find the order quantity for the Hammer 3/2 that generates a 99 percent fill rate.

In the previous section, we started with an order quantity and evaluated the fill rate. Now
we need to reverse that process, that is, start with a fill rate and end up with an order quantity.
This requires a couple of algebraic gymnastics. Let’s start with the fill rate equation,

Expected sales
v

Fill rate =
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Recall that
Expected sales = u — Expected lost sales
If we combine the above two equations and rearrange terms, we get
Expected lost sales = u X (1 — Fill rate) (11.2)

Suppose the discrete distribution is our demand forecast (Table 11.5). We can evalu-
ate the right-hand side of the above equation: (1 —0.99) X 3,192 = 31.92. Therefore,
we want to find a Q such that the expected lost sales with that quantity is 31.92 units.
Looking at Table 11.5, we see that L(4,672) = 36 and L(4,800) = 20. Therefore, an order
quantity of 4,672 would yield an expected lost sales slightly above our target (36 versus
31.92), while the larger order quantity of 4,800 would yield an expected lost sales slightly
below our target (20 versus 31.92). We again shall follow our round-up rule: When the
target value falls between two values in a table, choose the entry with the larger quantity.
In this case, we round up to the order quantity 4,800. Therefore, if we order 4,800 Ham-
mer 3/2s and the discrete distribution is our demand forecast, then our fill rate will be at
least 99 percent.

Just to double-check our decision, we can evaluate the fill rate with the order quantity
4,800 and discover that we indeed make our target:

Expected sales _ u — Expected lost sales _ 3,192 — 20 _ 99.37 percent

i i 3,192

Fill rate =

How do we find an order quantity if our demand forecast is a normal distribution?
Again, the process is quite similar, but we need to work with the standard normal. Remem-
ber that with a normal distribution

Expected lost sales = o X L(z)

If we combine the above equation with equation (11.2) and rearrange terms, we get
e o
L(z) = (—] X (1 — Fill rate)
o

Therefore, we first evaluate the right-hand side of the above equation, then look up L(z) in
the Standard Normal Loss Function Table, and then convert our z back into Q. The right-
hand side of the above equation is (3,192/1,181) X (1 —0.99) = 0.0270. We now need to
find a z-statistic such that L(z) = 0.0270. Looking in the Standard Normal Loss Function
Table, we see that L(1.53) = 0.0274 and L(1.54) = 0.0267. Use our round-up rule again
and choose z = 1.54, which generates L(1.54) = 0.0267. (Unfortunately, Excel does not
provide a built-in function to perform this look up.) To finish our process, convert our
z-statistic into an order quantity with the equation Q = p + z X ¢, so our order quan-
tity is 3,192 + 1.54 X 1,181 = 5,011. In other words, if our demand forecast is the normal
distribution, then we need to order 5,011 Hammer 3/2s to achieve a 99 percent fill rate.
Exhibit 11.8 summarizes the process for finding an order quantity to satisfy a target fill rate.

As we have already discovered, the fill rate and the in-stock probability are not the
same for any order quantity. Therefore, a firm may prefer the more conservative in-stock
probability requirement. For example, let’s now suppose O’Neill wants to find the order
quantity that generates a 99 percent in-stock probability with the Hammer 3/2. It turns out
that this objective is easier to work with than the target fill rate objective.

- 154 -



‘ Cachon-Terwiesch: 11. Betting on Uncertain Text © The McGraw-Hill
Matching Supply with Demand: The Newsvendor Companies, 2009

Exhibit 11.8

A PROCEDURE TO DETERMINE AN ORDER QUANTITY THAT SATISFIES A TARGET
FILL RATE

If the demand forecast is a normal distribution with mean n and standard deviation o, then
follow steps A through C:

A. Evaluate the target L(2),

L(z) = (%)x (1 — Fill rate)

B. Find the z-statistic in the Standard Normal Loss Function Table that corresponds to the
target L(2). If L(2) falls between two z values in the table, choose the higher z value.

C. Convert the chosen z-statistic into the order quantity that satisfies our target fill rate,
Q=pn+zXo.

If the demand forecast is a discrete distribution function table (as with an empirical distribu-
tion function), then follow steps D and E:

D. Evaluate the target expected lost sales:
Expected lost sales = u X (1 — Fill rate)

E. Find the order quantity in the expected lost sales table that generates the target expected
lost sales evaluated in step D. If the target expected lost sales fall between two entries in
the table, choose the entry with the larger order quantity. If your table does not include
expected lost sales, use the procedure in Appendix C to evaluate them.

The in-stock probability is F(Q). So we need to find an order quantity such that there is
a 99 percent probability that demand is that order quantity or lower. If the discrete distribu-
tion function is our demand forecast, then we look in Table 11.3 (or Table 11.5) and see
F(4,992) = 0.9697 and F(5,120) = 1.0000. The round-up rule suggests that we need to
order 5,120 Hammer 3/2s to achieve a 99 percent in-stock probability.

If our demand forecast is normally distributed, then we first find the z-statistic that
achieves our objective with the standard normal distribution. In the Standard Normal Dis-
tribution Function Table, we see that ®(2.32) = 0.9898 and ®(2.33) = 0.9901. Again,
we choose the higher z-statistic, so our desired order quantity isnow Q = u +z X o =
3,192 + 2.33 X 1,181 = 5,944. You can use Excel to avoid looking up a probability in
the Standard Normal Distribution Function Table to find z:

z = Normsinv(In-stock probability)

Notice that a substantially higher order quantity is needed to generate a 99 percent in-stock
probability than a 99 percent fill rate (5,944 vs. 5,011) and both order quantities are sub-
stantially higher than the one that maximizes expected profit (4,101). Exhibit 11.9 summa-
rizes the process for finding an order quantity to satisfy a target in-stock probability.

11.7 Managerial Lessons

Now that we have detailed the process of implementing the newsvendor model, it is worth-
while to step back and consider the managerial lessons it implies.
With respect to the forecasting process, there are three key lessons.

244

- 155 -



Cachon-Terwiesch: 11. Betting on Uncertain Text © The McGraw-Hill ‘ °
Matching Supply with Demand: The Newsvendor Companies, 2009

Exhibit 11.9

A PROCEDURE TO DETERMINE AN ORDER QUANTITY THAT SATISFIES A TARGET
IN-STOCK PROBABILITY

If the demand forecast is a normal distribution with mean . and standard deviation o, then
follow steps A and B:

A. Find the z-statistic in the Standard Normal Distribution Function Table that satisfies the
in-stock probability, that is,

®(z) = In-stock probability

If the in-stock probability falls between two z values in the table, choose the higher z. In
Excel, z can be found with the following formula:

z = Normsinv(In-stock probability).

B. Convert the chosen z-statistic into the order quantity that satisfies our target in-stock
probability,

Q=ptzXo

If the demand forecast is a discrete distribution function table (as with an empirical distribu-
tion function), then find the order quantity in the table such that A(Q) = In-stock probabil-
ity. If the in-stock probability falls between two entries in the table, choose the entry with
the larger order quantity.

» For each product, it is insufficient to have just a forecast of expected demand. We
also need a forecast for how variable demand will be about the forecast. That uncertainty
in the forecast is captured by the standard deviation of demand.

« It is important to track actual demand. Two common mistakes are made with respect
to this issue. First, do not forget that actual demand may be greater than actual sales due to
an inventory shortage. If it is not possible to track actual demand after a stockout occurs,
then you should attempt a reasonable estimate of actual demand. Second, actual demand
includes potential sales only at the regular price. If you sold 1,000 units in the previous
season, but 600 of them were at the discounted price at the end of the season, then actual
demand is closer to 400 than 1,000.

* You need to keep track of past forecasts and forecast errors in order to assess the
standard deviation of demand. Without past data on forecasts and forecast errors, it is very
difficult to choose reasonable standard deviations; it is hard enough to forecast the mean
of a distribution, but forecasting the standard deviation of a distribution is nearly impos-
sible with just a “gut feel.” Unfortunately, many firms fail to maintain the data they need
to implement the newsvendor model correctly. They might not record the data because it is
an inherently undesirable task to keep track of past errors: Who wants to have a permanent
record of the big forecasting goofs? Alternatively, firms may not realize the importance of
such data and therefore do not go through the effort to record and maintain it.

There are also a number of important lessons from the order quantity choice process.

 The profit-maximizing order quantity generally does not equal expected demand. If
the underage cost is greater than the overage cost (i.c., it is more expensive to lose a sale
than it is to have leftover inventory), then the profit-maximizing order quantity is larger
than expected demand. (Because then the critical ratio is greater than 0.50.) On the other

245
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hand, some products may have an overage cost that is larger than the underage cost. For
such products, it is actually best to order less than the expected demand.

* The order quantity decision should be separated from the forecasting process. The
goal of the forecasting process is to develop the best forecast for a product’s demand and
therefore should proceed without regard to the order quantity decision. This can be frus-
trating for some firms. Imagine the marketing department dedicates considerable effort
to develop a forecast and then the operations department decides to produce a quantity
above the forecast. The marketing department may feel that their efforts are being ignored
or their expertise is being second-guessed. In addition, they may be concerned that they
would be responsible for ensuring that all of the production is sold even though their fore-
cast was more conservative. The separation between the forecasting and the order quantity
decision also implies that two products with the same mean forecast may have different
expected profit-maximizing order quantities, either because they have different critical
ratios or because they have different standard deviations.

» Explicit costs should not be overemphasized relative to opportunity costs. Inventory
at the end of the season is the explicit cost of a demand—supply mismatch, while lost sales
are the opportunity cost. Overemphasizing the former relative to the latter will cause you
to order less than the profit-maximizing order quantity.

« It is important to recognize that choosing an order quantity to maximize expected
profit is only one possible objective. It is also a very reasonable objective, but there can be
situations in which a manager way wish to consider an alternative objective. For example,
maximizing expected profit is wise if you are not particularly concerned with the variabil-
ity of profit. If you are managing many different products so that the realized profit from
any one product cannot cause undue hardship on the firm, then maximizing expected profit
is a good objective to adopt. But if you are a startup firm with a single product and limited
capital, then you might not be able to absorb a significant profit loss. In situations in which
the variability of profit matters, it is prudent to order less than the profit-maximizing order
quantity. The expected profit objective also does not consider customer service explicitly
in its objective. With the expected profit-maximizing order quantity for the Hammer 3/2,
the fill rate is about 95 percent and the in-stock probability is about 78 percent. Some man-
agers may feel this is an unacceptable level of customer service, fearing that unsatisfied
customers will switch to a competitor.

* Finally, while it is impossible to perfectly match supply and demand when supply
must be chosen before random demand, it is possible to make a smart choice that balances
the cost of ordering too much with the cost of ordering too little. In other words, uncer-
tainty should not invite ad hoc decision making.

11.8
Summary

The newsvendor model is a tool for making a decision when there is a “too much—too
little” challenge: Bet too much and there is a cost (e.g., leftover inventory), but bet too
little and there is a different cost (e.g., the opportunity cost of lost sales). (See Table 11.6
for a summary of the key notation and equations.) To make this trade-off effectively, it
is necessary to have a complete forecast of demand. It is not enough to just have a single
sales forecast; we need to know the potential variation about that sales forecast.

In the case of O’Neill’s Hammer 3/2 wetsuit, we discovered that there exists an order
quantity that maximizes expected profit, but that quantity might not lead to a desirable level
of customer service. In other words, there is a trade-off between profit and service. This trade-
off is illustrated in Figure 11.8. While the newsvendor optimal quantity leads to an outcome
in the upper-left-hand side of the trade-off curve, we also developed methods for moving
down and to the right along the curve, that is, to a higher service level, albeit at a lower profit
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Q = Order quantity C, = Underage cost ~ C, = Overage cost Critical ratio = Ccfuc
u = Expected demand o = Standard deviation of demand
KQ): Distribution function ®(Q): Distribution function of the standard normal

Expected actual demand = Expected A/F ratio X Forecast

Standard deviation of actual demand = Standard deviation of A/F ratios X Forecast

Expected profit-maximizing order quantity: F(Q) = %
9 &

z-statistic or normalized order quantity: z =
a

Q=p+zXo
L(z) = Expected lost sales with the standard normal distribution
Expected lost sales = o X L(z)  Expected sales = p — Expected lost sales
Excel: Expected lost sales = o * (Normdist(z,0,1,0) — z * (1 — Normsdist(2)))
Expected leftover inventory = Q — Expected sales

Expected profit = [(Price — Cost) X Expected sales]
— [(Cost — Salvage value) X Expected leftover inventory]

Fill rate = Expected sales/u
In-stock probability = F(Q) Stockout probability = 1 — In-stock probability
Excel: z= Normsinv(Target in-stock probability)
Excel: In-stock probability = Normsdist(z)
To achieve a fill rate with normally distributed demand, L(2) = (u/o) X (1 — Fill rate);

otherwise, target expected lost sales = u X (1 — Fill rate)

level. We see that achieving a very high in-stock probability can be quite expensive, but
because the curve is relatively flat at its top, it is possible to increase service without much of
a profit sacrifice. This curve allows a manager to determine the correct position for the firm.
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The newsvendor model is one of the most extensively studied models in operations management.
It has been extended theoretically along numerous dimensions (e.g., multiple periods have been
studied, the pricing decision has been included, the salvage values could depend on the quantity sal-
vaged, the decision maker’s tolerance for risk can be incorporated into the objective function, etc.)

Several textbooks provide more technical treatments of the newsvendor model than this chapter.
See Nahmias (2000), Porteus (2002), or Silver, Pyke, and Peterson (1998).

For a review of the theoretical literature on the newsvendor model, with an emphasis on the pric-
ing decision in a newsvendor setting, see Petruzzi and Dada (1999).

Q11.1* (McClure Books) Dan McClure owns a thriving independent bookstore in artsy New
Hope, Pennsylvania. He must decide how many copies to order of a new book, Power and
Self-Destruction, an exposé on a famous politician’s lurid affairs. Interest in the book will
be intense at first and then fizzle quickly as attention turns to other celebrities. The book’s
retail price is $20 and the wholesale price is $12. The publisher will buy back the retailer’s
leftover copies at a full refund, but McClure Books incurs $4 in shipping and handling
costs for each book returned to the publisher. Dan believes his demand forecast can be
represented by a normal distribution with mean 200 and standard deviation 80.

a.

Dan will consider this book to be a blockbuster for him if it sells more than 400 units.
What is the probability Power and Self-Destruction will be a blockbuster?

Dan considers a book a “dog” if it sells less than 50 percent of his mean forecast. What
is the probability this exposé is a “dog”?

What is the probability demand for this book will be within 20 percent of the mean
forecast?

What order quantity maximizes Dan’s expected profit?

e. Dan prides himself on good customer service. In fact, his motto is “McClure’s got what

you want to read.” What order quantity should he choose to satisfy a 95 percent fill rate?
How many books should Dan order if he wants to achieve a 95 percent in-stock prob-
ability?

If Dan orders the quantity chosen in part f to achieve a 95 percent in-stock probability,
then what is the probability that “Dan won’t have what some customer wants to read” (i.e.,
what is the probability some customer won’t be able to purchase a copy of the book)?
Suppose Dan orders 300 copies of the book. What would Dan’s expected profit be in
this case?

Suppose Dan orders 150 copies of the book. What would Dan’s fill rate be in this case?
Being an introspective chap, Dan decided to evaluate his forecasting skills in his spare
time. He collected the following data on recent books he felt matched the characteris-
tics of Power and Self-Destruction. If Dan used these data to construct an empirical
distribution function, then what would be his optimal order quantity? (Assume Dan’s
initial forecast is 200 units.)

Actual Actual
Book Demand Forecast A/F Ratio Book Demand Forecast A/F Ratio
1 27 100 0.27 9 88 100 0.88
2 209 170 1.23 10 57 70 0.81
3 83 160 0.52 11 188 140 1.34
4 77 100 0.77 12 157 130 1.21
5 205 150 1.37 13 65 110 0.59
6 228 190 1.20 14 135 170 0.79
7 12 60 0.20 15 155 160 0.97
8 88 60 1.47 16 82 90 0.91

(* indicates that the solution is in Appendix E)
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(EcoTable Tea) EcoTable is a retailer of specialty organic and ecologically friendly

foods. In one of their Cambridge, Massachusetts, stores, they plan to offer a gift basket of

Tanzanian teas for the holiday season. They plan on placing one order and any leftover

inventory will be discounted at the end of the season. Expected demand for this store is

4.5 units and demand should be Poisson distributed. The gift basket sells for $55, the

purchase cost to EcoTable is $32, and leftover baskets will be sold for $20.

a. If they purchase only 3 baskets, what is the probability that some demand will not be
satisfied?

b. Ifthey purchase 10 baskets, what is the probability that they will have to mark down at
least 3 baskets?

c. How many baskets should EcoTable purchase to maximize its expected profit?

d. Suppose they purchase 4 baskets. How many baskets can they expect to sell?

e. Suppose they purchase 6 baskets. How many baskets should they expect to have to
mark down at the end of the season?

f. Suppose EcoTable wants to minimize its inventory while satisfying all demand with at
least a 90 percent probability. How many baskets should they order?

g. Suppose they wish to minimize their inventory investment while achieving at least a
90 percent fill rate. How many baskets should they order?

h. Suppose EcoTable orders 8 baskets. What is its expected profit?

(Pony Express Creations) Pony Express Creations Inc. (www.pony-ex.com) is a manu-

facturer of party hats, primarily for the Halloween season. (80 percent of their yearly sales

occur over a six-week period.) One of their popular products is the Elvis wig, complete

with sideburns and metallic glasses. The Elvis wig is produced in China, so Pony Express

must make a single order well in advance of the upcoming season. Ryan, the owner of Pony

Express, expects demand to be 25,000 and the following is his entire demand forecast:

Q Prob(D = Q) F(Q) L(Q
5,000 0.0183 0.0183 20,000
10,000 0.0733 0.0916 15,092
15,000 0.1465 0.2381 10,550
20,000 0.1954 0.4335 6,740
25,000 0.1954 0.6289 3,908
30,000 0.1563 0.7852 2,052
35,000 0.1042 0.8894 978
40,000 0.0595 0.9489 425
45,000 0.0298 0.9787 170
50,000 0.0132 0.9919 63
55,000 0.0053 0.9972 22
60,000 0.0019 0.9991 8
65,000 0.0006 0.9997 4
70,000 0.0002 0.9999 2
75,000 0.0001 1.0000 2

Prob(D = Q) = Probability demand D equals O
F(Q) = Probability demand is O or lower
L(Q) = Expected lost sales if O units are ordered

The Elvis wig retails for $25, but Pony Express’s wholesale price is $12. Their produc-
tion cost is $6. Leftover inventory can be sold to discounters for $2.50.
a. Suppose Pony Express orders 40,000 Elvis wigs. What is the chance they have to liqui-
date 10,000 or more wigs with a discounter?

(* indicates that the solution is in Appendix E)
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b. What order quantity maximizes Pony Express’s expected profit?

c. If Pony Express wants to have a 90 percent fill rate, then how many Elvis wigs should
be ordered?

d. If Pony Express orders the quantity chosen in part ¢, what is Pony Express’s actual fill
rate?

e. If Pony Express wants to have a 90 percent in-stock probability, then how many Elvis
wigs should be ordered?

f. If Pony Express orders 50,000 units, then how many wigs can they expect to have to
liquidate with discounters?

g. If Pony Express insists on a 100 percent in-stock probability for its customers, then
what is its expected profit?

(Flextrola) Flextrola, Inc., an electronics systems integrator, is planning to design a key

component for their next-generation product with Solectrics. Flextrola will integrate the

component with some software and then sell it to consumers. Given the short life cycles

of such products and the long lead times quoted by Solectrics, Flextrola only has one

opportunity to place an order with Solectrics prior to the beginning of its selling season.

Flextrola’s demand during the season is normally distributed with a mean of 1,000 and a

standard deviation of 600.

Solectrics’ production cost for the component is $52 per unit and it plans to sell the
component for $72 per unit to Flextrola. Flextrola incurs essentially no cost associated
with the software integration and handling of each unit. Flextrola sells these units to
consumers for $121 each. Flextrola can sell unsold inventory at the end of the season in
a secondary electronics market for $50 each. The existing contract specifies that once
Flextrola places the order, no changes are allowed to it. Also, Solectrics does not accept
any returns of unsold inventory, so Flextrola must dispose of excess inventory in the
secondary market.

a. What is the probability that Flextrola’s demand will be within 25 percent of its forecast?

b. What is the probability that Flextrola’s demand will be more than 40 percent greater
than its forecast?

c. Under this contract, how many units should Flextrola order to maximize its expected
profit?

For parts d through i, assume Flextrola orders 1,200 units.

d. What are Flextrola’s expected sales?

e. How many units of inventory can Flextrola expect to sell in the secondary electronics
market?

f. What is Flextrola’s expected gross margin percentage, which is (Revenue — Cost)/
Revenue?

g. What is Flextrola’s expected profit?

h. What is Solectrics’ expected profit?

i. What is the probability that Flextrola has lost sales of 400 units or more?

j- A sharp manager at Flextrola noticed the demand forecast and became wary of assum-
ing that demand is normally distributed. She plotted a histogram of demands from pre-
vious seasons for similar products and concluded that demand is better represented
by the log normal distribution. Figure 11.9 plots the density function for both the log
normal and the normal distribution, each with mean of 1,000 and standard deviation of
600. Figure 11.10 plots the distribution function for both the log normal and the nor-
mal. Using the more accurate forecast (i.e., the log normal distribution), approximately
how many units should Flextrola order to maximize its expected profit?

(Fashionables) Fashionables is a franchisee of The Limited, the well-known retailer of

fashionable clothing. Prior to the winter season, The Limited offers Fashionables the choice

(* indicates that the solution is in Appendix E)
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of five different colors of a particular sweater design. The sweaters are knit overseas by
hand, and because of the lead times involved, Fashionables will need to order its assort-
ment in advance of the selling season. As per the contracting terms offered by The Limited,
Fashionables also will not be able to cancel, modify, or reorder sweaters during the selling
season. Demand for each color during the season is normally distributed with a mean of
500 and a standard deviation of 200. Further, you may assume that the demands for each
sweater are independent of those for a different color.

The Limited offers the sweaters to Fashionables at the wholesale price of $40 per sweater
and Fashionables plans to sell each sweater at the retail price of $70 per unit. The Limited
delivers orders placed by Fashionables in truckloads at a cost of $2,000 per truckload. The
transportation cost of $2,000 is borne by Fashionables. Assume unless otherwise specified
that all the sweaters ordered by Fashionables will fit into one truckload. Also assume that
all other associated costs, such as unpacking and handling, are negligible.

The Limited does not accept any returns of unsold inventory. However, Fashionables can sell

all of the unsold sweaters at the end of the season at the fire-sale price of $20 each.

a. How many units of each sweater type should Fashionables order to maximize its
expected profit?

b. If Fashionables wishes to ensure a 97.5 percent in-stock probability, what should its
order quantity be for each type of sweater?

c. If Fashionables wishes to ensure a 97.5 percent fill rate, what should its order quantity
be for each type of sweater?

For parts d through f, assume Fashionables orders 725 of each sweater.

d. What is Fashionables’ expected profit?

e. What is Fashionables’ expected fill rate for each sweater?

f. What is the stockout probability for each sweater?

g. Now suppose that The Limited announces that the unit of truckload capacity is 2,500
total units of sweaters. If Fashionables orders more than 2,500 units in total (actually,
from 2,501 to 5,000 units in total), it will have to pay for two truckloads. What now is
Fashionables’ optimal order quantity for each sweater?

(Teddy Bower Parkas) Teddy Bower is an outdoor clothing and accessories chain that

purchases a line of parkas at $10 each from its Asian supplier, TeddySports. Unfortunately,

at the time of order placement, demand is still uncertain. Teddy Bower forecasts that its
demand is normally distributed with mean of 2,100 and standard deviation of 1,200. Teddy

Bower sells these parkas at $22 each. Unsold parkas have little salvage value; Teddy

Bower simply gives them away to a charity.

a. What is the probability this parka turns out to be a “dog,” defined as a product that sells
less than half of the forecast?

b. How many parkas should Teddy Bower buy from TeddySports to maximize expected
profit?

c. If Teddy Bower wishes to ensure a 98.5 percent fill rate, how many parkas should it
order?

d. If Teddy Bower wishes to ensure a 98.5 percent in-stock probability, how many parkas
should it order?

For parts e through g, assume Teddy Bower orders 3,000 parkas.

e. Evaluate Teddy Bower’s expected profit.

f. Evaluate Teddy Bower’s fill rate.

g. Evaluate Teddy Bower’s stockout probability

(Teddy Bower Boots) To ensure a full line of outdoor clothing and accessories, the mar-
keting department at Teddy Bower insists that they also sell waterproof hunting boots.
Unfortunately, neither Teddy Bower nor TeddySports has expertise in manufacturing
those kinds of boots. Therefore, Teddy Bower contacted several Taiwanese suppliers to
request quotes. Due to competition, Teddy Bower knows that it cannot sell these boots for
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more than $54. However, $40 per boot was the best quote from the suppliers. In addition,
Teddy Bower anticipates excess inventory will need to be sold off at a 50 percent discount
at the end of the season. Given the $54 price, Teddy Bower’s demand forecast is for 400
boots, with a standard deviation of 300.

a.

If Teddy Bower decides to include these boots in its assortment, how many boots
should it order from its supplier?

Suppose Teddy Bower orders 380 boots. What would its fill rate be?

c. Suppose Teddy Bower orders 380 boots. What would its expected profit be?

d. The marketing department will not be happy with the planned order quantity (from

part a). They are likely to argue that Teddy Bower is a service-oriented company that
requires a high fill rate. In particular, they insist that Teddy Bower order enough boots
to have at least a 98 percent fill rate. What order quantity yields a 98 percent fill rate for
Teddy Bower?

What would Teddy Bower’s expected profit be with the order quantity from part d?

John Briggs, a buyer in the procurement department, overheard at lunch a discussion of
the “boot problem.” He suggested that Teddy Bower ask for a quantity discount from the
supplier. After following up on his suggestion, the supplier responded that Teddy Bower
could get a 10 percent discount if they were willing to order at least 800 boots. If the objec-
tive is to maximize expected profit, how many boots should it order given this new offer?

After getting involved with the “boot problem,” John Briggs became curious about using
AJF ratios to forecast. He directed his curiosity to another product, Teddy Bower’s stan-
dard hunting boot, which has a demand forecast for 1,000 units. This boot sells for $55,
and because of Teddy Bower’s volume, the supplier of this boot only charges $30. The
standard hunting boot never goes out of style (therefore, all leftover boots will be sold
next year, but it is a seasonal product). It costs Teddy Bower $2.50 to hold a boot over
from one season to the season in the following year. Furthermore, Teddy Bower antici-
pates that the selling price and procurement cost of this boot will be the same next year
(i.e., $55 and $30, respectively). He collected the following data on 20 items that he felt
were similar in nature to hunting boots. Using these data collected by John Briggs, what
is Teddy Bower’s profit-maximizing order quantity?

Actual Actual

Item Demand Forecast A/F Ratio Item Demand Forecast A/F Ratio
1 2,512 2,041 1.23 11 1,317 1,667 0.79
2 1,003 916 1.09 12 366 1,216 0.30
3 32 264 0.12 13 1,009 1,266 0.80
4 829 1,471 0.56 14 1,501 778 1.93
5 95 1,946 0.05 15 1,918 1,599 1.20
6 2,122 1,184 1.79 16 2,306 2,042 1.13
7 165 418 0.39 17 2,058 1,170 1.76
8 769 1,514 0.51 18 794 1,607 0.49
9 1,120 595 1.88 19 552 323 1.71

10 762 872 0.87 20 638 801 0.80

Q11.8 (Land’s End) Geoff Gullo owns a small firm that manufactures “Gullo Sunglasses.” He
has the opportunity to sell a particular seasonal model to Land’s End. Geoff offers Land’s
End two purchasing options:

Option 1.  Geoff offers to set his price at $65 and agrees to credit Land’s End $53 for
each unit Land’s End returns to Geoff at the end of the season (because
those units did not sell). Since styles change each year, there is essentially
no value in the returned merchandise.

Option 2.  Geoff offers a price of $55 for each unit, but returns are no longer accepted.
In this case, Land’s End throws out unsold units at the end of the season.
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This season’s demand for this model will be normally distributed with mean of 200 and
standard deviation of 125. Land’s End will sell those sunglasses for $100 each. Geoff ’s
production cost is $25.

a. How much would Land’s End buy if they chose option 1?
b. How much would Land’s End buy if they chose option 2?
¢. Which option will Land’s End choose?
d

. Suppose Land’s End chooses option 1 and orders 275 units. What is Geoff Gullo’s
expected profit?

(Three Kings) Erica Zhang is the chief buyer for housewares at a large department store.
Unfortunately, her store faces stiff competition from specialty retailers that carry imported
cooking and dining articles. To meet this competitive challenge, Erica has reorganized her
housewares department to create a “store within a store” that has the same ambiance as
her competitors’. To kick off her concept, she plans a one-month promotion that features a
sale on several special items, including an imported Three Kings baking dish. (The Three
Kings baking dish leaves a “crown” image on the top of the cake.) These baking dishes
must be ordered six months in advance. Any leftover inventory at the end of the promotion
will be sold to a discount chain at a reduced price.

Erica has collected some pricing and cost data, listed in the following table, to help her
decide how many of the Three Kings baking dishes to order. Erica predicts total demand
for the imported baking dish to be normally distributed with mean of 980 and standard
deviation of 354. Leftover dishes will be sold to the discount chain for $15.

Three Kings baking dish:

Selling price $40.00
Purchase price $16.00
Shipping cost $ 3.00
Handling cost* $ 0.80
Warehouse surcharge** $ 1.10
Total cost $20.90

*Estimate of variable cost to uncrate, clean, and transport a dish to the housewares
department.
**Allocation of fixed overhead expenses in the shipping and receiving department.

For parts a through c, suppose 1,200 imported Three Kings baking dishes are ordered.

a. What is the fill rate?

b. What is the in-stock probability?

c. How many Three Kings cake dishes should she purchase?

d. Erica is concerned about customer service. Suppose she feels there is a loss of goodwill
of $10 for every customer that wants to purchase the Three Kings dish but is unable
to do so due to a stockout. Now how many Three Kings cake dishes should she pur-
chase?

(CPG Bagels) CPG Bagels starts the day with a large production run of bagels. Through-

out the morning, additional bagels are produced as needed. The last bake is completed at

3 p.m. and the store closes at 8 p.m. It costs approximately $0.20 in materials and labor

to make a bagel. The price of a fresh bagel is $0.60. Bagels not sold by the end of the day

are sold the next day as “day old” bagels in bags of six, for $0.99 a bag. About two-thirds
of the day-old bagels are sold; the remainder are just thrown away. There are many bagel
flavors, but for simplicity, concentrate just on the plain bagels. The store manager predicts
that demand for plain bagels from 3 p.m. until closing is normally distributed with mean of

54 and standard deviation of 21.

a. How many bagels should the store have at 3 p.m. to maximize the store’s expected
profit (from sales between 3 p.m. until closing)? (Hint: Assume day-old bagels are sold
for $0.99/6 = $0.165 each; i.e., don’t worry about the fact that day-old bagels are sold
in bags of six.)
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Suppose the manager would like to ensure at least a 99 percent fill rate on demand that
occurs after 3 p.m. How many bagels should the store have at 3 p.m. to ensure that fill
rate?

. Suppose that the store manager is concerned that stockouts might cause a loss of future

business. To explore this idea, the store manager feels that it is appropriate to assign
a stockout cost of $5 per bagel that is demanded but not filled. (Customers frequently
purchase more than one bagel at a time. This cost is per bagel demanded that is not
satisfied rather than per customer that does not receive a complete order.) Given the
additional stockout cost, how many bagels should the store have at 3 p.m. to maximize
the store’s expected profit?

Suppose the store manager has 101 bagels at 3 p.m. How many bagels should the store
manager expect to have at the end of the day?

Q 11.11 (The Kiosk) Weekday lunch demand for spicy black bean burritos at the Kiosk, a local
snack bar, is approximately Poisson with a mean of 22. The Kiosk charges $4.00 for each
burrito, which are all made before the lunch crowd arrives. Virtually all burrito customers
also buy a soda that is sold for 60¢. The burritos cost the Kiosk $2.00, while sodas cost the
Kiosk 5¢. Kiosk management is very sensitive about the quality of food they serve. Thus,
they maintain a strict “No Old Burrito” policy, so any burrito left at the end of the day is
disposed of. The distribution function of a Poisson with mean 22 is as follows:

Q FQ) Q FQ) Q FQ) Q FQ)
1 0.0000 11 0.0076 21 0.4716 31 0.9735
2 0.0000 12 0.0151 22 0.5564 32 0.9831
3 0.0000 13 0.0278 23 0.6374 33 0.9895
4 0.0000 14 0.0477 24 0.7117 34 0.9936
5 0.0000 15 0.0769 25 0.7771 35 0.9962
6 0.0001 16 0.1170 26 0.8324 36 0.9978
7 0.0002 17 0.1690 27 0.8775 37 0.9988
8 0.0006 18 0.2325 28 0.9129 38 0.9993
9 0.0015 19 0.3060 29 0.9398 39 0.9996

10 0.0035 20 0.3869 30 0.9595 40 0.9998

a. Suppose burrito customers buy their snack somewhere else if the Kiosk is out of stock.

b.

How many burritos should the Kiosk make for the lunch crowd?

Suppose that any customer unable to purchase a burrito settles for a lunch of Pop-Tarts
and a soda. Pop-Tarts sell for 75¢ and cost the Kiosk 25¢. (As Pop-Tarts and soda are
easily stored, the Kiosk never runs out of these essentials.) Assuming that the Kiosk man-
agement is interested in maximizing profits, how many burritos should they prepare?
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