


Wiener Processes

and Itô’s Lemma

Any variable whose value changes over time in an uncertain way is said to follow a

stochastic process. Stochastic processes can be classified as discrete time or continuous

time. A discrete-time stochastic process is one where the value of the variable can

change only at certain fixed points in time, whereas a continuous-time stochastic

process is one where changes can take place at any time. Stochastic processes can also

be classified as continuous variable or discrete variable. In a continuous-variable process,

the underlying variable can take any value within a certain range, whereas in a discrete-

variable process, only certain discrete values are possible.

This chapter develops a continuous-variable, continuous-time stochastic process for

stock prices. Learning about this process is the first step to understanding the pricing

of options and other more complicated derivatives. It should be noted that, in

practice, we do not observe stock prices following continuous-variable, continuous-

time processes. Stock prices are restricted to discrete values (e.g., multiples of a cent)

and changes can be observed only when the exchange is open for trading. Never-

theless, the continuous-variable, continuous-time process proves to be a useful model

for many purposes.

Many people feel that continuous-time stochastic processes are so complicated that

they should be left entirely to ‘‘rocket scientists.’’ This is not so. The biggest hurdle to

understanding these processes is the notation. Here we present a step-by-step approach

aimed at getting the reader over this hurdle. We also explain an important result known

as Itô’s lemma that is central to the pricing of derivatives.

14.1 THE MARKOV PROPERTY

A Markov process is a particular type of stochastic process where only the current value

of a variable is relevant for predicting the future. The past history of the variable and

the way that the present has emerged from the past are irrelevant.

Stock prices are usually assumed to follow a Markov process. Suppose that the

price of a stock is $100 now. If the stock price follows a Markov process, our

predictions for the future should be unaffected by the price one week ago, one month
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ago, or one year ago. The only relevant piece of information is that the price is now

$100.1 Predictions for the future are uncertain and must be expressed in terms of

probability distributions. The Markov property implies that the probability distribu-

tion of the price at any particular future time is not dependent on the particular path

followed by the price in the past.

The Markov property of stock prices is consistent with the weak form of market

efficiency. This states that the present price of a stock impounds all the information

contained in a record of past prices. If the weak form of market efficiency were not true,

technical analysts could make above-average returns by interpreting charts of the past

history of stock prices. There is very little evidence that they are in fact able to do this.

It is competition in the marketplace that tends to ensure that weak-form market

efficiency and the Markov property hold. There are many investors watching the stock

market closely. This leads to a situation where a stock price, at any given time, reflects the

information in past prices. Suppose that it was discovered that a particular pattern in a

stock price always gave a 65% chance of subsequent steep price rises. Investors would

attempt to buy a stock as soon as the pattern was observed, and demand for the stock

would immediately rise. This would lead to an immediate rise in its price and the

observed effect would be eliminated, as would any profitable trading opportunities.

14.2 CONTINUOUS-TIME STOCHASTIC PROCESSES

Consider a variable that follows a Markov stochastic process. Suppose that its current

value is 10 and that the change in its value during a year is �ð0; 1Þ, where �ðm; vÞ
denotes a probability distribution that is normally distributed with mean m and

variance v.2 What is the probability distribution of the change in the value of the

variable during 2 years?

The change in 2 years is the sum of two normal distributions, each of which has a

mean of zero and variance of 1.0. Because the variable is Markov, the two probability

distributions are independent. When we add two independent normal distributions, the

result is a normal distribution where the mean is the sum of the means and the variance

is the sum of the variances. The mean of the change during 2 years in the variable we

are considering is, therefore, zero and the variance of this change is 2.0. Hence, the

change in the variable over 2 years has the distribution �ð0; 2Þ. The standard deviation
of the change is

ffiffiffi

2
p

.

Consider next the change in the variable during 6 months. The variance of the

change in the value of the variable during 1 year equals the variance of the change

during the first 6 months plus the variance of the change during the second 6 months.

We assume these are the same. It follows that the variance of the change during a

6-month period must be 0.5. Equivalently, the standard deviation of the change is
ffiffiffiffiffiffiffi

0:5
p

.

The probability distribution for the change in the value of the variable during 6 months

is �ð0; 0:5Þ.
1 Statistical properties of the stock price history may be useful in determining the characteristics of the

stochastic process followed by the stock price (e.g., its volatility). The point being made here is that the

particular path followed by the stock in the past is irrelevant.

2 Variance is the square of standard deviation. The standard deviation of a 1-year change in the value of the

variable we are considering is therefore 1.0.
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A similar argument shows that the probability distribution for the change in the

value of the variable during 3 months is �ð0; 0:25Þ. More generally, the change during
any time period of length T is �ð0; T Þ. In particular, the change during a very short time
period of length �t is �ð0;�tÞ.
Note that, when Markov processes are considered, the variances of the changes in

successive time periods are additive. The standard deviations of the changes in

successive time periods are not additive. The variance of the change in the variable

in our example is 1.0 per year, so that the variance of the change in 2 years is 2.0 and

the variance of the change in 3 years is 3.0. The standard deviations of the changes in

2 and 3 years are
ffiffiffi

2
p

and
ffiffiffi

3
p

, respectively. (Strictly speaking, we should not refer to the

standard deviation of the variable as 1.0 per year.) The results explain why uncertainty

is sometimes referred to as being proportional to the square root of time.

Wiener Process

The process followed by the variable we have been considering is known as a Wiener

process. It is a particular type of Markov stochastic process with a mean change of zero

and a variance rate of 1.0 per year. It has been used in physics to describe the motion of

a particle that is subject to a large number of small molecular shocks and is sometimes

referred to as Brownian motion.

Expressed formally, a variable z follows a Wiener process if it has the following two

properties:

Property 1. The change �z during a small period of time �t is

�z ¼ �
ffiffiffiffiffi

�t
p

ð14:1Þ

where � has a standard normal distribution �ð0; 1Þ.

Property 2. The values of �z for any two different short intervals of time, �t, are

independent.

It follows from the first property that �z itself has a normal distribution with

mean of �z ¼ 0

standard deviation of �z ¼
ffiffiffiffiffi

�t
p

variance of �z ¼ �t

The second property implies that z follows a Markov process.

Consider the change in the value of z during a relatively long period of time, T . This

can be denoted by zðT Þ � zð0Þ. It can be regarded as the sum of the changes in z in

N small time intervals of length �t, where

N ¼ T

�t
Thus,

zðT Þ � zð0Þ ¼
X

N

i¼1
�i

ffiffiffiffiffi

�t
p

ð14:2Þ

where the �i (i ¼ 1; 2; . . . ;N) are distributed �ð0; 1Þ. We know from the second

property of Wiener processes that the �i are independent of each other. It follows
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from equation (14.2) that zðT Þ � zð0Þ is normally distributed, with

mean of ½zðT Þ � zð0Þ� ¼ 0

variance of ½zðT Þ � zð0Þ� ¼ N�t ¼ T

standard deviation of ½zðT Þ � zð0Þ� ¼
ffiffiffiffi

T
p

This is consistent with the discussion earlier in this section.

Example 14.1

Suppose that the value, z, of a variable that follows a Wiener process is initially 25

and that time is measured in years. At the end of 1 year, the value of the variable

is normally distributed with a mean of 25 and a standard deviation of 1.0. At the

end of 5 years, it is normally distributed with a mean of 25 and a standard

deviation of
ffiffiffi

5
p

, or 2.236. Our uncertainty about the value of the variable at a

certain time in the future, as measured by its standard deviation, increases as the

square root of how far we are looking ahead.

In ordinary calculus, it is usual to proceed from small changes to the limit as the small

changes become closer to zero. Thus, dx ¼ a dt is the notation used to indicate that

�x ¼ a�t in the limit as �t ! 0. We use similar notational conventions in stochastic

calculus. So, when we refer to dz as a Wiener process, we mean that it has the properties

for �z given above in the limit as �t ! 0.

Figure 14.1 illustrates what happens to the path followed by z as the limit �t ! 0 is

approached. Note that the path is quite ‘‘jagged.’’ This is because the standard

deviation of the movement in z in time �t equals
ffiffiffiffiffi

�t
p

and, when �t is small,
ffiffiffiffiffi

�t
p

is

much bigger than �t. Two intriguing properties of Wiener processes, related to this
ffiffiffiffiffi

�t
p

property, are as follows:

1. The expected length of the path followed by z in any time interval is infinite.

2. The expected number of times z equals any particular value in any time interval is

infinite.3

Generalized Wiener Process

The mean change per unit time for a stochastic process is known as the drift rate and

the variance per unit time is known as the variance rate. The basic Wiener process, dz,

that has been developed so far has a drift rate of zero and a variance rate of 1.0. The

drift rate of zero means that the expected value of z at any future time is equal to its

current value. The variance rate of 1.0 means that the variance of the change in z in a

time interval of length T equals T . A generalized Wiener process for a variable x can be

defined in terms of dz as

dx ¼ a dtþ b dz ð14:3Þ
where a and b are constants.

To understand equation (14.3), it is useful to consider the two components on the

right-hand side separately. The a dt term implies that x has an expected drift rate of

a per unit of time. Without the b dz term, the equation is dx ¼ a dt, which implies that

3 This is because z has some nonzero probability of equaling any value v in the time interval. If it equals v in

time t, the expected number of times it equals v in the immediate vicinity of t is infinite.
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Relatively large value of ∆t

Smaller value of ∆t

The true process obtained as ∆t → 0

Figure 14.1 How a Wiener process is obtained when �t ! 0 in equation (14.1).
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dx=dt ¼ a. Integrating with respect to time, we get

x ¼ x0 þ at

where x0 is the value of x at time 0. In a period of time of length T , the variable x

increases by an amount aT . The b dz term on the right-hand side of equation (14.3) can

be regarded as adding noise or variability to the path followed by x. The amount of this

noise or variability is b times a Wiener process. AWiener process has a variance rate per

unit time of 1.0. It follows that b times a Wiener process has a variance rate per unit

time of b2. In a small time interval �t, the change �x in the value of x is given by

equations (14.1) and (14.3) as
�x ¼ a�tþ b�

ffiffiffiffiffi

�t
p

where, as before, � has a standard normal distribution �ð0; 1Þ. Thus �x has a normal

distribution with
mean of �x ¼ a�t

standard deviation of �x ¼ b
ffiffiffiffiffi

�t
p

variance of �x ¼ b2�t

Similar arguments to those given for a Wiener process show that the change in the value

of x in any time interval T is normally distributed with

mean of change in x ¼ aT

standard deviation of change in x ¼ b
ffiffiffiffi

T
p

variance of change in x ¼ b2T

To summarize, the generalized Wiener process given in equation (14.3) has an expected

drift rate (i.e., average drift per unit of time) of a and a variance rate (i.e., variance per

unit of time) of b2. It is illustrated in Figure 14.2.

Value of
variable, x Generalized

Wiener processprocess
dx = a dt + b dz

dx = a dt

Wiener process, dz

Time

Figure 14.2 Generalized Wiener process with a ¼ 0:3 and b ¼ 1:5.
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Example 14.2

Consider the situation where the cash position of a company, measured in thou-

sands of dollars, follows a generalized Wiener process with a drift of 20 per year

and a variance rate of 900 per year. Initially, the cash position is 50. At the end of

1 year the cash position will have a normal distribution with a mean of 70 and a

standard deviation of
ffiffiffiffiffiffiffiffi

900
p

, or 30. At the end of 6 months it will have a normal

distribution with a mean of 60 and a standard deviation of 30
ffiffiffiffiffiffiffi

0:5
p

¼ 21:21. Our

uncertainty about the cash position at some time in the future, as measured by its

standard deviation, increases as the square root of how far ahead we are looking.

(Note that the cash position can become negative. We can interpret this as a

situation where the company is borrowing funds.)

Itô Process

A further type of stochastic process, known as an Itô process, can be defined. This is a

generalized Wiener process in which the parameters a and b are functions of the value of

the underlying variable x and time t. An Itô process can therefore be written as

dx ¼ aðx; tÞ dtþ bðx; tÞ dz ð14:4Þ

Both the expected drift rate and variance rate of an Itô process are liable to change over

time. In a small time interval between t and tþ�t, the variable changes from x to

xþ�x, where

�x ¼ aðx; tÞ�tþ bðx; tÞ�
ffiffiffiffiffi

�t
p

This equation involves a small approximation. It assumes that the drift and variance rate

of x remain constant, equal to their values at time t, during the time interval between t

and tþ�t.

Note that the process in equation (14.4) is Markov because the change in x at time t

depends only on the value of x at time t, not on its history. A non-Markov process could

be defined by letting a and b in equation (14.4) depend on values of x prior to time t.

14.3 THE PROCESS FOR A STOCK PRICE

In this section we discuss the stochastic process usually assumed for the price of a non-

dividend-paying stock.

It is tempting to suggest that a stock price follows a generalizedWiener process; that is,

that it has a constant expected drift rate and a constant variance rate. However, this

model fails to capture a key aspect of stock prices. This is that the expected percentage

return required by investors from a stock is independent of the stock’s price. If investors

require a 14% per annum expected return when the stock price is $10, then, ceteris

paribus, they will also require a 14% per annum expected return when it is $50.

Clearly, the assumption of constant expected drift rate is inappropriate and needs to

be replaced by the assumption that the expected return (i.e., expected drift divided by

the stock price) is constant. If S is the stock price at time t, then the expected drift rate

in S should be assumed to be �S for some constant parameter �. This means that in a

short interval of time, �t, the expected increase in S is �S�t. The parameter � is the

expected rate of return on the stock.
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If the coefficient of dz is zero, so that there is no uncertainty, then this model implies

that
�S ¼ �S�t

In the limit, as �t ! 0,
dS ¼ �S dt

or
dS

S
¼ � dt

Integrating between time 0 and time T , we get

ST ¼ S0e
�T ð14:5Þ

where S0 and ST are the stock price at time 0 and time T . Equation (14.5) shows that,

when there is no uncertainty, the stock price grows at a continuously compounded rate

of � per unit of time.

In practice, of course, there is uncertainty. A reasonable assumption is that the

variability of the return in a short period of time, �t, is the same regardless of the

stock price. In other words, an investor is just as uncertain of the return when the stock

price is $50 as when it is $10. This suggests that the standard deviation of the change in

a short period of time �t should be proportional to the stock price and leads to the

model
dS ¼ �S dtþ �S dz

or
dS

S
¼ � dtþ � dz ð14:6Þ

Equation (14.6) is the most widely used model of stock price behavior. The variable � is

the stock’s expected rate of return. The variable � is the volatility of the stock price. The

variable �
2 is referred to as its variance rate. The model in equation (14.6) represents

the stock price process in the real world. In a risk-neutral world, � equals the risk-free

rate r.

Discrete-Time Model

The model of stock price behavior we have developed is known as geometric Brownian

motion. The discrete-time version of the model is

�S

S
¼ ��tþ ��

ffiffiffiffiffi

�t
p

ð14:7Þ
or

�S ¼ �S�tþ �S�
ffiffiffiffiffi

�t
p

ð14:8Þ

The variable �S is the change in the stock price S in a small time interval �t, and as

before � has a standard normal distribution (i.e., a normal distribution with a mean of

zero and standard deviation of 1.0). The parameter � is the expected rate of return per

unit of time from the stock. The parameter � is the volatility of the stock price. In this

chapter we will assume these parameters are constant.

The left-hand side of equation (14.7) is the discrete approximation to the return

provided by the stock in a short period of time, �t. The term ��t is the expected value

of this return, and the term ��
ffiffiffiffiffi

�t
p

is the stochastic component of the return. The

Wiener Processes and Itô’s Lemma 309



variance of the stochastic component (and, therefore, of the whole return) is �2�t. This

is consistent with the definition of the volatility � given in Section 13.7; that is, � is such

that �
ffiffiffiffiffi

�t
p

is the standard deviation of the return in a short time period �t.

Equation (14.7) shows that �S=S is approximately normally distributed with mean

��t and standard deviation �
ffiffiffiffiffi

�t
p

. In other words,

�S

S

 �ð��t; �2�tÞ ð14:9Þ

Example 14.3

Consider a stock that pays no dividends, has a volatility of 30% per annum, and

provides an expected return of 15% per annum with continuous compounding. In

this case, � ¼ 0:15 and � ¼ 0:30. The process for the stock price is

dS

S
¼ 0:15 dtþ 0:30 dz

If S is the stock price at a particular time and �S is the increase in the stock price

in the next small interval of time, the discrete approximation to the process is

�S

S
¼ 0:15�tþ 0:30�

ffiffiffiffiffi

�t
p

where � has a standard normal distribution. Consider a time interval of 1 week,

or 0.0192 year, so that �t ¼ 0:0192. Then the approximation gives

�S

S
¼ 0:15� 0:0192 þ 0:30�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0192
p

�

or
�S ¼ 0:00288S þ 0:0416S�

Monte Carlo Simulation

A Monte Carlo simulation of a stochastic process is a procedure for sampling random

outcomes for the process. We will use it as a way of developing some understanding of

the nature of the stock price process in equation (14.6).

Consider the situation in Example 14.3 where the expected return from a stock is

15% per annum and the volatility is 30% per annum. The stock price change over

1 week was shown to be approximately

�S ¼ 0:00288S þ 0:0416S� ð14:10Þ

A path for the stock price over 10 weeks can be simulated by sampling repeatedly for �

from �ð0; 1Þ and substituting into equation (14.10). The expression ¼RANDð Þ in Excel
produces a random sample between 0 and 1. The inverse cumulative normal distribution

is NORMSINV. The instruction to produce a random sample from a standard normal

distribution in Excel is therefore ¼NORMSINVðRANDð ÞÞ. Table 14.1 shows one path
for a stock price that was sampled in this way. The initial stock price is assumed to be

$100. For the first period, � is sampled as 0.52. From equation (14.10), the change during

the first time period is

�S ¼ 0:00288 � 100 þ 0:0416 � 100 � 0:52 ¼ 2:45

Therefore, at the beginning of the second time period, the stock price is $102.45. The
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value of � sampled for the next period is 1.44. From equation (14.10), the change during

the second time period is

�S ¼ 0:00288� 102:45þ 0:0416� 102:45 � 1:44 ¼ 6:43

So, at the beginning of the next period, the stock price is $108.88, and so on.4 Note

that, because the process we are simulating is Markov, the samples for � should be

independent of each other.

Table 14.1 assumes that stock prices are measured to the nearest cent. It is important

to realize that the table shows only one possible pattern of stock price movements.

Different random samples would lead to different price movements. Any small time

interval �t can be used in the simulation. In the limit as �t ! 0, a perfect description

of the stochastic process is obtained. The final stock price of 111.54 in Table 14.1 can be

regarded as a random sample from the distribution of stock prices at the end of

10 weeks. By repeatedly simulating movements in the stock price, a complete prob-

ability distribution of the stock price at the end of this time is obtained. Monte Carlo

simulation is discussed in more detail in Chapter 21.

14.4 THE PARAMETERS

The process for a stock price developed in this chapter involves two parameters, � and �.

The parameter � is the expected return (annualized) earned by an investor in a short

period of time. Most investors require higher expected returns to induce them to take

higher risks. It follows that the value of � should depend on the risk of the return from

the stock.5 It should also depend on the level of interest rates in the economy. The higher

the level of interest rates, the higher the expected return required on any given stock.

Table 14.1 Simulation of stock price when � ¼ 0:15 and

� ¼ 0:30 during 1-week periods.

Stock price

at start of period

Random sample

for �

Change in stock price

during period

100.00 0.52 2.45

102.45 1.44 6.43

108.88 �0.86 �3.58
105.30 1.46 6.70

112.00 �0.69 �2.89
109.11 �0.74 �3.04
106.06 0.21 1.23

107.30 �1.10 �4.60
102.69 0.73 3.41

106.11 1.16 5.43

111.54 2.56 12.20

4 In practice, it is more efficient to sample ln S rather than S, as will be discussed in Section 21.6.

5 More precisely, � depends on that part of the risk that cannot be diversified away by the investor.
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Fortunately, we do not have to concern ourselves with the determinants of � in any

detail because the value of a derivative dependent on a stock is, in general, independent

of �. The parameter �, the stock price volatility, is, by contrast, critically important to

the determination of the value of many derivatives. We will discuss procedures for

estimating � in Chapter 15. Typical values of � for a stock are in the range 0.15 to 0.60

(i.e., 15% to 60%).

The standard deviation of the proportional change in the stock price in a small

interval of time �t is �
ffiffiffiffiffi

�t
p

. As a rough approximation, the standard deviation of the

proportional change in the stock price over a relatively long period of time T is �
ffiffiffiffi

T
p

.

This means that, as an approximation, volatility can be interpreted as the standard

deviation of the change in the stock price in 1 year. In Chapter 15, we will show that the

volatility of a stock price is exactly equal to the standard deviation of the continuously

compounded return provided by the stock in 1 year.

14.5 CORRELATED PROCESSES

So far we have considered how the stochastic process for a single variable can be

represented. We now extend the analysis to the situation where there are two or more

variables following correlated stochastic processes. Suppose that the processes followed

by two variables x1 and x2 are

dx1 ¼ a1 dtþ b1 dz1 and dx2 ¼ a2 dtþ b2 dz2

where dz1 and dz2 are Wiener processes.

As has been explained, the discrete-time approximations for these processes are

�x1 ¼ a1�tþ b1 �1
ffiffiffiffiffiffi

�t
p

and �x2 ¼ a2�tþ b2 �2
ffiffiffiffiffiffi

�t
p

where �1 and �2 are samples from a standard normal distribution �ð0; 1Þ.
The variables x1 and x2 can be simulated in the way described in Section 14.3. If they

are uncorrelated with each other, the random samples �1 and �2 that are used to obtain

movements in a particular period of time �t should be independent of each other.

If x1 and x2 have a nonzero correlation �, then the �1 and �2 that are used to obtain

movements in a particular period of time should be sampled from a bivariate normal

distribution. Each variable in the bivariate normal distribution has a standard normal

distribution and the correlation between the variables is �. In this situation, we would

refer to the Wiener processes dz1 and dz2 as having a correlation �.

Obtaining samples for uncorrelated standard normal variables in cells in Excel

involves putting the instruction ‘‘=NORMSINV(RAND))’’ in each of the cells. To

sample standard normal variables �1 and �2 with correlation �, we can set

�1 ¼ u and �2 ¼ �uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

v

where u and v are sampled as uncorrelated variables with standard normal distributions.

Note that, in the processes we have assumed for x1 and x2, the parameters a1, a2, b1,

and b2 can be functions of x1, x2, and t. In particular, a1 and b1 can be functions of x2
as well as x1 and t ; and a2 and b2 can be functions of x1 as well as x2 and t.

312 CHAPTER 14



The results here can be generalized. When there are three different variables following

correlated stochastic processes, we have to sample three different �’s. These have a

trivariate normal distribution. When there are n correlated variables, we have n different

�’s and these must be sampled from an appropriate multivariate normal distribution.

The way this is done is explained in Chapter 21.

14.6 ITÔ’S LEMMA

The price of a stock option is a function of the underlying stock’s price and time. More

generally, we can say that the price of any derivative is a function of the stochastic

variables underlying the derivative and time. A serious student of derivatives must,

therefore, acquire some understanding of the behavior of functions of stochastic

variables. An important result in this area was discovered by the mathematician

K. Itô in 1951,6 and is known as Itô’s lemma.

Suppose that the value of a variable x follows the Itô process

dx ¼ aðx; tÞ dtþ bðx; tÞ dz ð14:11Þ

where dz is a Wiener process and a and b are functions of x and t. The variable x has a

drift rate of a and a variance rate of b2. Itô’s lemma shows that a function G of x and t

follows the process

dG ¼
�

@G

@x
a þ @G

@t
þ 1

2

@
2
G

@x2
b2
�

dtþ @G

@x
b dz ð14:12Þ

where the dz is the same Wiener process as in equation (14.11). Thus, G also follows an

Itô process, with a drift rate of

@G

@x
aþ @G

@t
þ 1

2

@
2
G

@x2
b2

and a variance rate of
�

@G

@x

�2

b
2

A completely rigorous proof of Itô’s lemma is beyond the scope of this book. In the

appendix to this chapter, we show that the lemma can be viewed as an extension of well-

known results in differential calculus.

Earlier, we argued that
dS ¼ �S dtþ �S dz ð14:13Þ

with � and � constant, is a reasonable model of stock price movements. From Itô’s

lemma, it follows that the process followed by a function G of S and t is

dG ¼
�

@G

@S
�S þ @G

@t
þ 1

2

@
2
G

@S2
�
2
S
2

�

dtþ @G

@S
�S dz ð14:14Þ

Note that both S and G are affected by the same underlying source of uncertainty, dz.

This proves to be very important in the derivation of the Black–Scholes–Merton results.

6 See K. Itô, ‘‘On Stochastic Differential Equations,’’ Memoirs of the American Mathematical Society,

4 (1951): 1–51.
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Application to Forward Contracts

To illustrate Itô’s lemma, consider a forward contract on a non-dividend-paying stock.

Assume that the risk-free rate of interest is constant and equal to r for all maturities.

From equation (5.1),

F0 ¼ S0e
rT

where F0 is the forward price at time zero, S0 is the spot price at time zero, and T is the

time to maturity of the forward contract.

We are interested in what happens to the forward price as time passes. We define F as

the forward price at a general time t, and S as the stock price at time t, with t < T . The

relationship between F and S is given by

F ¼ SerðT�tÞ ð14:15Þ

Assuming that the process for S is given by equation (14.13), we can use Itô’s lemma to

determine the process for F . From equation (14.15),

@F

@S
¼ e

rðT�tÞ
;

@2F

@S 2
¼ 0;

@F

@t
¼ �rSe

rðT�tÞ

From equation (14.14), the process for F is given by

dF ¼
�

e
rðT�tÞ

�S � rSe
rðT�tÞ�

dtþ e
rðT�tÞ

�S dz

Substituting F for SerðT�tÞ gives

dF ¼ ð�� rÞF dtþ �F dz ð14:16Þ

Like S, the forward price F follows geometric Brownian motion. It has an expected

growth rate of �� r rather than �. The growth rate in F is the excess return of S over

the risk-free rate.

14.7 THE LOGNORMAL PROPERTY

We now use Itô’s lemma to derive the process followed by ln S when S follows the process

in equation (14.13). We define

G ¼ ln S

Since

@G

@S
¼ 1

S
;

@
2
G

@S 2
¼ � 1

S 2
;

@G

@t
¼ 0

it follows from equation (14.14) that the process followed by G is

dG ¼
�

�� �
2

2

�

dtþ � dz ð14:17Þ

Since � and � are constant, this equation indicates that G ¼ ln S follows a generalized

Wiener process. It has constant drift rate �� �
2
=2 and constant variance rate �2. The
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change in ln S between time 0 and some future time T is therefore normally distributed,

with mean ð� � �
2
=2ÞT and variance �

2
T . This means that

ln ST � ln S0 
 �

��

�� �2

2

�

T ; �
2
T

	

ð14:18Þ

or

ln ST 
 �

�

ln S0 þ
�

�� �
2

2

�

T ; �
2
T

	

ð14:19Þ

where ST is the stock price at time T , S0 is the stock price at time 0, and as before �ðm; vÞ
denotes a normal distribution with mean m and variance v.

Equation (14.19) shows that ln ST is normally distributed. A variable has a lognormal

distribution if the natural logarithm of the variable is normally distributed. The model

of stock price behavior we have developed in this chapter therefore implies that a stock’s

price at time T , given its price today, is lognormally distributed. The standard deviation

of the logarithm of the stock price is �
ffiffiffiffi

T
p

. It is proportional to the square root of how

far ahead we are looking.

SUMMARY

Stochastic processes describe the probabilistic evolution of the value of a variable

through time. A Markov process is one where only the present value of the variable

is relevant for predicting the future. The past history of the variable and the way in

which the present has emerged from the past is irrelevant.

A Wiener process dz is a Markov process describing the evolution of a normally

distributed variable. The drift of the process is zero and the variance rate is 1.0 per unit

time. This means that, if the value of the variable is x0 at time 0, then at time T it is

normally distributed with mean x0 and standard deviation
ffiffiffiffi

T
p

.

A generalized Wiener process describes the evolution of a normally distributed

variable with a drift of a per unit time and a variance rate of b2 per unit time, where

a and b are constants. This means that if, as before, the value of the variable is x0 at

time 0, it is normally distributed with a mean of x0 þ aT and a standard deviation of

b
ffiffiffiffi

T
p

at time T .

An Itô process is a process where the drift and variance rate of x can be a function of

both x itself and time. The change in x in a very short period of time is, to a good

approximation, normally distributed, but its change over longer periods of time is liable

to be nonnormal.

One way of gaining an intuitive understanding of a stochastic process for a variable is

to simulate the behavior of the variable. This involves dividing a time interval into

many small time steps and randomly sampling possible paths for the variable. The

future probability distribution for the variable can then be calculated. Monte Carlo

simulation is discussed further in Chapter 21.

Itô’s lemma is a way of calculating the stochastic process followed by a function of a

variable from the stochastic process followed by the variable itself. As we shall see in

Chapter 15, Itô’s lemma plays a very important part in the pricing of derivatives. A key

point is that the Wiener process dz underlying the stochastic process for the variable is

exactly the same as the Wiener process underlying the stochastic process for the function

of the variable. Both are subject to the same underlying source of uncertainty.
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The stochastic process usually assumed for a stock price is geometric Brownian

motion. Under this process the return to the holder of the stock in a small period of

time is normally distributed and the returns in two nonoverlapping periods are

independent. The value of the stock price at a future time has a lognormal distribution.

The Black–Scholes–Merton model, which we cover in the next chapter, is based on the

geometric Brownian motion assumption.
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Practice Questions (Answers in Solutions Manual)

14.1. What would it mean to assert that the temperature at a certain place follows a Markov

process? Do you think that temperatures do, in fact, follow a Markov process?

14.2. Can a trading rule based on the past history of a stock’s price ever produce returns that

are consistently above average? Discuss.

14.3. A company’s cash position, measured in millions of dollars, follows a generalized

Wiener process with a drift rate of 0.5 per quarter and a variance rate of 4.0 per quarter.

How high does the company’s initial cash position have to be for the company to have a

less than 5% chance of a negative cash position by the end of 1 year?

14.4. Variables X1 and X2 follow generalized Wiener processes, with drift rates �1 and �2 and

variances �21 and �2

2 . What process does X1 þX2 follow if:

(a) The changes in X1 and X2 in any short interval of time are uncorrelated?

(b) There is a correlation � between the changes in X1 and X2 in any short time interval?

14.5. Consider a variable S that follows the process

dS ¼ � dtþ � dz

For the first three years, � ¼ 2 and � ¼ 3; for the next three years, � ¼ 3 and � ¼ 4. If

the initial value of the variable is 5, what is the probability distribution of the value of

the variable at the end of year 6?
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14.6. Suppose that G is a function of a stock price S and time. Suppose that �S and �G are the

volatilities of S and G. Show that, when the expected return of S increases by ��S, the

growth rate of G increases by ��G, where � is a constant.

14.7. Stock A and stock B both follow geometric Brownian motion. Changes in any short

interval of time are uncorrelated with each other. Does the value of a portfolio consisting

of one of stock A and one of stock B follow geometric Brownian motion? Explain your

answer.

14.8. The process for the stock price in equation (14.8) is

�S ¼ �S�tþ �S�
ffiffiffiffiffi

�t
p

where � and � are constant. Explain carefully the difference between this model and each

of the following:
�S ¼ ��tþ ��

ffiffiffiffiffi

�t
p

�S ¼ �S�tþ ��
ffiffiffiffiffi

�t
p

�S ¼ ��tþ �S�
ffiffiffiffiffi

�t
p

Why is the model in equation (14.8) a more appropriate model of stock price behavior

than any of these three alternatives?

14.9. It has been suggested that the short-term interest rate r follows the stochastic process

dr ¼ aðb� rÞ dtþ rc dz

where a, b, c are positive constants and dz is a Wiener process. Describe the nature of

this process.

14.10. Suppose that a stock price S follows geometric Brownian motion with expected return �

and volatility � :
dS ¼ �S dtþ �S dz

What is the process followed by the variable S
n? Show that S n also follows geometric

Brownian motion.

14.11. Suppose that x is the yield to maturity with continuous compounding on a zero-coupon

bond that pays off $1 at time T . Assume that x follows the process

dx ¼ aðx0 � xÞ dt þ sx dz

where a, x0, and s are positive constants and dz is a Wiener process. What is the process

followed by the bond price?

14.12. A stock whose price is $30 has an expected return of 9% and a volatility of 20%. In

Excel, simulate the stock price path over 5 years using monthly time steps and random

samples from a normal distribution. Chart the simulated stock price path. By hitting F9,

observe how the path changes as the random samples change.

Further Questions

14.13. Suppose that a stock price has an expected return of 16% per annum and a volatility of

30% per annum. When the stock price at the end of a certain day is $50, calculate the

following:

(a) The expected stock price at the end of the next day

(b) The standard deviation of the stock price at the end of the next day

(c) The 95% confidence limits for the stock price at the end of the next day.
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14.14. A company’s cash position, measured in millions of dollars, follows a generalized

Wiener process with a drift rate of 0.1 per month and a variance rate of 0.16 per month.

The initial cash position is 2.0.

(a) What are the probability distributions of the cash position after 1 month, 6 months,

and 1 year?

(b) What are the probabilities of a negative cash position at the end of 6 months and

1 year?

(c) At what time in the future is the probability of a negative cash position greatest?

14.15. Suppose that x is the yield on a perpetual government bond that pays interest at the rate

of $1 per annum. Assume that x is expressed with continuous compounding, that interest

is paid continuously on the bond, and that x follows the process

dx ¼ aðx0 � xÞ dtþ sx dz

where a, x0, and s are positive constants, and dz is a Wiener process. What is the process

followed by the bond price? What is the expected instantaneous return (including interest

and capital gains) to the holder of the bond?

14.16. If S follows the geometric Brownian motion process in equation (14.6), what is the

process followed by

(a) y ¼ 2S

(b) y ¼ S
2

(c) y ¼ eS

(d) y ¼ e
rðT�tÞ

=S.

In each case express the coefficients of dt and dz in terms of y rather than S.

14.17. A stock price is currently 50. Its expected return and volatility are 12% and 30%,

respectively. What is the probability that the stock price will be greater than 80 in

2 years? (Hint : ST > 80 when ln ST > ln 80.)

14.18. Stock A, whose price is $30, has an expected return of 11% and a volatility of 25%.

Stock B, whose price is $40, has an expected return of 15% and a volatility of 30%. The

processes driving the returns are correlated with correlation parameter �. In Excel,

simulate the two stock price paths over 3 months using daily time steps and random

samples from normal distributions. Chart the results and by hitting F9 observe how the

paths change as the random samples change. Consider values for � equal to 0.25, 0.75,

and 0.95.
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APPENDIX

DERIVATION OF ITÔ’S LEMMA

In this appendix, we show how Itô’s lemma can be regarded as a natural extension of

other, simpler results. Consider a continuous and differentiable function G of a

variable x. If �x is a small change in x and �G is the resulting small change in G, a

well-known result from ordinary calculus is

�G � dG

dx
�x ð14A:1Þ

In other words, �G is approximately equal to the rate of change of G with respect to x

multiplied by �x. The error involves terms of order �x2. If more precision is required, a

Taylor series expansion of �G can be used:

�G ¼ dG

dx
�x þ 1

2

d 2G

dx2
�x2 þ 1

6

d 3G

dx3
�x3 þ 
 
 


For a continuous and differentiable function G of two variables x and y, the result

analogous to equation (14A.1) is

�G � @G

@x
�xþ @G

@y
�y ð14A:2Þ

and the Taylor series expansion of �G is

�G ¼ @G

@x
�x þ @G

@y
�yþ 1

2

@2G

@x2
�x2 þ @2G

@x @y
�x�yþ 1

2

@2G

@y2
�y2 þ 
 
 
 ð14A:3Þ

In the limit, as �x and �y tend to zero, equation (14A.3) becomes

dG ¼ @G

@x
dx þ @G

@y
dy ð14A:4Þ

We now extend equation (14A.4) to cover functions of variables following Itô processes.

Suppose that a variable x follows the Itô process

dx ¼ aðx; tÞ dtþ bðx; tÞ dz ð14A:5Þ

and that G is some function of x and of time t. By analogy with equation (14A.3), we

can write

�G ¼ @G

@x
�x þ @G

@t
�tþ 1

2

@2G

@x2
�x

2 þ @2G

@x @t
�x�tþ 1

2

@2G

@t2
�t

2 þ 
 
 
 ð14A:6Þ

Equation (14A.5) can be discretized to

�x ¼ aðx; tÞ�tþ bðx; tÞ�
ffiffiffiffiffi

�t
p

or, if arguments are dropped,

�x ¼ a�tþ b�
ffiffiffiffiffi

�t
p

ð14A:7Þ
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This equation reveals an important difference between the situation in equation (14A.6)

and the situation in equation (14A.3). When limiting arguments were used to move

from equation (14A.3) to equation (14A.4), terms in �x2 were ignored because they

were second-order terms. From equation (14A.7), we have

�x
2 ¼ b

2
�
2
�tþ terms of higher order in �t ð14A:8Þ

This shows that the term involving �x
2 in equation (14A.6) has a component that is of

order �t and cannot be ignored.

The variance of a standard normal distribution is 1.0. This means that

Eð�2Þ � ½Eð�Þ�2 ¼ 1

where E denotes expected value. Since Eð�Þ ¼ 0, it follows that Eð�2Þ ¼ 1. The expected

value of �2�t, therefore, is �t. The variance of �2�t is, from the properties of the

standard normal distribution, 2�t2. We know that the variance of the change in a

stochastic variable in time �t is proportional to �t, not �t2. The variance of �2�t is

therefore too small for it to have a stochastic component. As a result, we can treat �2�t

as nonstochastic and equal to its expected value, �t, as �t tends to zero. It follows from

equation (14A.8) that �x2 becomes nonstochastic and equal to b2dt as �t tends to zero.

Taking limits as �x and �t tend to zero in equation (14A.6), and using this last result,

we obtain

dG ¼ @G

@x
dxþ @G

@t
dtþ 1

2

@
2
G

@x2
b2dt ð14A:9Þ

This is Itô’s lemma. If we substitute for dx from equation (14A.5), equation (14A.9)

becomes

dG ¼
�

@G

@x
aþ @G

@t
þ 1

2

@
2
G

@x2
b
2

�

dtþ @G

@x
b dz:

Technical Note 29 atwww.rotman.utoronto.ca/
hull/TechnicalNotes provides proofs

of extensions to Itô’s lemma. When G is a function of variables x1, x2, . . . , xn and

dxi ¼ ai dtþ bi dzi
we have

dG ¼
�

X

n

i¼1

@G

@xi
ai þ

@G

@t
þ 1

2

X

n

i¼1

X

n

j¼1

@
2
G

@xi @xj
bibj�ij

�

dtþ
X

n

i¼1

@G

@xi
bi dzi ð14A:10Þ

Also, when G is a function of a variable x with several sources of uncertainty so that

dx ¼ a dtþ
X

m

i¼1
bi dzi

we have

dG ¼
�

@G

@x
aþ @G

@t
þ 1

2

@
2
G

@x2

X

m

i¼1

X

m

j¼1
bibj�ij

�

dt þ @G

@x

X

m

i¼1
bi dzi ð14A:11Þ

In these equations, �ij is the correlation between dzi and dzj (see Section 14.5).
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